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Abstract. Auto-segmentation of primary tumors in oropharyngeal cancer using
PET/CT images is an unmet need that has the potential to improve radiation oncol-
ogyworkflows. In this study, we develop a series of deep learningmodels based on
a 3DResidualUnet (ResUnet) architecture that can segment oropharyngeal tumors
with high performance as demonstrated through internal and external validation
of large-scale datasets (training size = 224 patients, testing size = 101 patients)
as part of the 2021 HECKTOR Challenge. Specifically, we leverage ResUNet
models with either 256 or 512 bottleneck layer channels that demonstrate internal
validation (10-fold cross-validation) mean Dice similarity coefficient (DSC) up
to 0.771 and median 95% Hausdorff distance (95% HD) as low as 2.919 mm.
We employ label fusion ensemble approaches, including Simultaneous Truth and
Performance Level Estimation (STAPLE) and a voxel-level threshold approach
based on majority voting (AVERAGE), to generate consensus segmentations on
the test data by combining the segmentations produced through different trained
cross-validation models. We demonstrate that our best performing ensembling
approach (256 channels AVERAGE) achieves a mean DSC of 0.770 and median
95% HD of 3.143 mm through independent external validation on the test set.
Our DSC and 95% HD test results are within 0.01 and 0.06 mm of the top ranked
model in the competition, respectively. Concordance of internal and external val-
idation results suggests our models are robust and can generalize well to unseen
PET/CT data. We advocate that ResUNet models coupled to label fusion ensem-
bling approaches are promising candidates for PET/CT oropharyngeal primary
tumors auto-segmentation. Future investigations should target the ideal combina-
tion of channel combinations and label fusion strategies tomaximize segmentation
performance.

Keywords: PET · CT · Tumor segmentation · Head and neck cancer ·
Oropharyngeal cancer · Deep learning · Auto-contouring
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1 Introduction

Oropharyngeal cancer (OPC) is a type of head and neck squamous cell carcinoma that
affects a large number of individuals across the world [1]. Radiation therapy is an effec-
tive component of OPC treatment but is highly dependent on accurate segmentation of
gross tumor volumes [2], i.e., visible gross disease that is informed by clinical exam-
ination and radiographic findings. Importantly, precise tumor delineation is crucial to
ensure adequate radiation therapy dose to target volumes while minimizing dose to sur-
rounding healthy tissues. The combination of computed tomography (CT) with positron
emission tomography (PET) allows for sufficient anatomic detail in determining tumor
location coupled to underlying physiologic information [3]. However, tumor segmen-
tation in OPC has long been seen as an inefficient and potentially inconsistent process
as multiple studies have demonstrated high human inter- and intra-observer segmen-
tation variability [4, 5]. Therefore, developing automated tools, such as those based
on deep learning [6–9], to reduce the variability in OPC PET/CT tumor segmentation
while retaining reasonable performance is imperative for improving the radiation therapy
workflow.

The annual Medical Image Computing and Computer Assisted Intervention Society
(MICCAI) Head and Neck Tumor Segmentation Challenge (HECKTOR) has provided
an avenue to systematically evaluate different OPC primary tumor auto-segmentation
methodologies through the release of high-quality,multi-institutional training and testing
PET/CTdata.We previously participated in the 2020HECKTORchallenge and achieved
reasonable results using deep learning approaches [10]. Subsequently, we improve upon
our previous approach through various architectural modifications, ensembling of inde-
pendent models’ predictions, and additional provided training/testing data, that ulti-
mately leads to improved segmentation performance. This work presents the results of
our OPC primary tumor auto-segmentation model based on a ResUnet deep learning
model applied to the 2021 HECKTOR Challenge PET/CT training and testing data.

2 Methods

We developed deep learning models (Sect. 2.3) for auto-segmentation of primary tumors
of OPC patients using co-registered 18F-FDG PET and CT imaging data (Sect. 2.1). The
ground truth manual segmentations of the tumors and the normalized imaging data
(Sect. 2.2) were used to train the models (Sect. 2.4). The performance of the trained
models for auto-segmentation were validated using a 10-fold cross-validation approach
(Sect. 2.5).

2.1 Imaging Data

The data set used in this study, which was released through AIcrowd [11] for the HECK-
TOR Challenge at MICCAI 2021 [12–14], consists of co-registered 18F-FDG PET and
CT scans for 325 OPC patients (224 patients used for training and 101 patients used for
testing, previously partitioned by the HECKTOR Challenge organizers). All imaging
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data in the training set (224 patients) was paired with ground truth manual segmenta-
tions of the OPC primary tumors derived from clinical experts (HECKTOR Challenge
organizers). All training and testing data were provided in Neuroimaging Informatics
Technology Initiative (NIfTI) format.

2.2 Image Processing

All images (i.e., PET, CT, and tumor segmentation masks) were cropped to fixed bound-
ing box volumes, providedwith the imaging data (Sect. 2.1) by theHECKTORChallenge
organizers [11], of size 144× 144× 144 mm3 in the x, y and z dimensions. To mitigate
the variable resolution of the PET and CT images, the cropped images were resampled
to a fixed image resolution of 1 mm in the x, y, and z dimensions.We used spline interpo-
lation of order 3 for resampling the PET/CT images and nearest-neighbor interpolation
for resampling the segmentation masks. We based our cropping and resampling work
on the code provided by the HECKTOR Challenge organizers (https://github.com/vor
eille/hecktor). The CT intensities were truncated to the range of [−200, 200] Hounsfield
Units (HU) to increase soft tissue contrast and then were normalized to a [−1, 1] scale.
The intensities of PET images were normalized with z-score normalization ([intensity-
mean]/standard deviation). We used the Medical Open Network for AI (MONAI) [15]
software transformation packages to rescale and normalize the intensities of the PET/CT
images. Image processing steps used in this manuscript are displayed in Fig. 1.

Fig. 1. An illustration of the workflow used for image processing. (A) Overlays of the provided
ground truth tumor segmentation masks (red outline) and the original CT (top) and PET (bottom)
images. (B) Overlays of the provided ground truth tumor segmentation masks (red outline) and
the processed CT (top) and PET (bottom) images. (Color figure online)

2.3 Model Architecture

A deep learning convolutional neural network model based on the ResUnet architecture
included in the MONAI software package was used for the analysis. As shown in Fig. 2,
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the network consisted of 4 convolution blocks in the encoding and decoding branches
and a bottleneck convolution block between the two branches. All convolution layers
used a kernel size of 3 except one convolution layer in the bottleneck, which used a kernel
size of 1. The number of output channels for each convolution layer is given above each
layer, as shown in Fig. 2. Each convolution block in the encoding branch was composed
of a two-strided convolution layer and a residual connection that contained a two-strided
convolution layer and a one-strided convolution layer. In the bottleneck, the residual
connection contained two one-strided convolution layers. In the decoding branch, each
block contained a two strided convolution transpose layer, a one strided convolution
layer and a residual connection. Batch normalization and parametric ReLU (PReLU)
activation functions were used throughout the architecture. The PET/CT images acted
as two channel inputs to the model, while a two-channel output provided the tumor
segmentation mask (i.e., 0= background, 1= tumor). The architecture shown in Fig. 2
corresponds to a ResUnet with a maximum of 512 channels in the bottleneck layer
(512 Model) where the number of channels in the convolution layers was (32, 64, 128,
256, and 512). We also implemented a model using a maximum of 256 channels in the
bottleneck layer (256 Model), which has the same structure as the 512 Model, but the
number of channels in the convolution layers was (16, 32, 64, 128, and 256).

Fig. 2. Schematic of the ResUnet architecture used for the segmentation model. The number of
channels (32, 64, 128, 256, and 512) is given above each block. The batch normalization and the
parametric ReLU layers are annotated by BN and PReLU, respectively. The channels given in the
figure are for the 512 model, while for the 256 model the channels are (16, 32, 64, 128, and 256).

2.4 Model Implementation

We used a 10-fold cross-validation approach where the 224 patients from the training
data were randomly divided into ten non-overlapping sets. Each set (22 patients) was
used for model validation while the remaining 202 patients in the remaining sets were
used for training, i.e., each set was used once for testing and nine times for training.
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Fig. 3. An illustration of the workflow of the training and inference phases of the segmentation
model. (A) Data transformation and augmentation is used to produce input data to the model.
An example of four patches of CT and PET images and the corresponding ground truth tumor
segmentation with at 50% representation of the tumor in these patches used for training the seg-
mentationmodel (four patches of images per patient - 96× 96× 96 voxels each). (B) Segmentation
model prediction using sliding window inferences (96× 96× 96 voxels each) and combining the
predicted masks from all patches to provide the final mask.

The processed PET, CT, and tumor masks (2.2) were randomly cropped to four random
fixed-sized regions (patches) of size (96, 96, 96) per patch per patient. The random spatial
cropping considered the patch center of mass as foreground (i.e., a tumor - positive) or
background (i.e., non-tumor - negative) with a 50% probability for both the positive
and negative cases as shown in Fig. 3A. We used a batch size of 2 patients’ images
and, therefore, a total of 8 patches of images. The shape of the input tensor provided
to the network (2.3) for a batch size of 2, patches per image of 4, a two-channel input
(PET/CT), and patch size of (96, 96, 96) is (8, 2, 96, 96, 96). The tumor mask was used
as the ground truth target to train the segmentation model. The shape of the target tensor
provided was (8, 1, 96, 96, 96). Tominimize overfitting, in addition to the random spatial
cropping to patch the images and masks, we implemented additional data augmentation
to both image and mask patches which includes random horizontal flips of 50%, and
random affine transformations with an axial rotation range of 12° and scale range of
10%. We used Adam as the optimizer and Dice loss as the loss function. The model was
trained for 700 iterations with a learning rate of 2× 10–4 for the first 550 iterations and 1
× 10–4 for the remaining 150 iterations. The image processing (2.2), data augmentation,
network architecture, and loss function were used from the software packages provided
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by the MONAI framework [15]; code for these packages can be found at “https://github.
com/Project-MONAI/”.

2.5 Model Validation

For each validation fold (i.e., 22 patients), we trained the 256 and 512 ResUnet models
(2.3) on the remaining 202 patients. Therefore, we obtained 10 different models for the
256 and512networks each from10-fold cross-validation.Weapplied an argmax function
to the two-channel output of each model to generate the predicted tumor segmentation
mask (i.e., 0= background, 1= tumor). We evaluated the performance of each separate
model on the corresponding validation set using metrics of spatial overlap (Sørensen–
Dice similarity coefficient [DSC] [16], recall, andprecision) and surface distance (surface
DSC [17], 95%Hausdorff distance [95%HD] [18]) between generated and ground truth
segmentations. The surface distance metrics were calculated using the surface-distances
Python package by DeepMind [17]. A tolerance of 3.0 mm was chosen for calculation
of surface DSC based on previous investigations [19, 20] as a reasonable estimate of
human inter-observer error.

For the test set (101 patients), we implemented two different model ensembling
approaches post-hoc (after training) to estimate the predicted tumor masks. In the first
approach, we use used the Simultaneous Truth and Performance Level Estimation (STA-
PLE) algorithm [21] as a method to fuse labels generated by applying the 10 models
produced during the 10-fold cross-validation on the test data set, i.e., generate the consen-
sus predicted masks from the different generated predicted masks (STAPLE approach).
The STAPLE algorithm was derived from publicly available Python code (https://git
hub.com/fepegar/staple). In the second approach, we implemented a simple threshold
of agreement based on all cross-validation fold models at the voxel level (AVERAGE
approach). The total number of cross-validation models used in thresholding could be
modulated as a parameter for this approach. For our purposes, we selected a threshold
of 5 cross-validation folds as a proxy for majority voting, i.e. at least 5 cross-validation
models must consider a voxel to be a tumor (label = 1) for that final voxel label to be
considered as a tumor (label = 1). Majority voting in this context was chosen since it is
common in other model ensembling approaches [22].

3 Results

The performances of the segmentation models are illustrated in Fig. 4, which shows
Boxplots of the DSC, recall, precision, surface DSC, and 95%HD distributions obtained
using the 10-fold cross-validation approach described in (2.5). The mean ± standard
deviation values of the DSC, recall, precision, surface DSC, and 95% HD achieved by
the 256 and 512 Models are 0.771± 0.039 and 0.768± 0.041, 0.807± 0.042 and 0.793
± 0.038, 0.788± 0.038 and 0.797± 0.038, 0.892± 0.042 and 0.890± 0.044, and 6.976
± 2.405 and 6.807 ± 2.357 respectively. The mean and median values of these metrics
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Fig. 4. Boxplots of the DSC, recall, precision, surface DSC, and 95% HD distributions for the
10-fold cross-validation data sets (Set 1 to Set 10–22 patients each*) used for the 256 and 512
ResUnetmodels. The lines inside the boxes refer to themedian values. The stars refer to significant
differences in the results by the two models (p-value < 0.05) using two-sided Wilcoxon signed-
rank test. 1One patient in Set 1 (CHUS028) did not return a segmentation prediction for either
model and was thus excluded from the analysis of surface distance metrics (surface DSC, 95%
HD).
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are summarized in Table 1. Notably, one case did not return a segmentation prediction
(CHUS028) for either the 256 or 512 models, which led to the spurious prediction of
surface distancemetrics. Therefore, this case has been excluded in the analysis of surface
DSC and 95% HD.

Table 1. 256 and 512 ResUnet model performance metrics. 1One case (CHUS028) in a cross-
validation fold contained no segmentation prediction for either model and led to erroneous surface
distance calculations; therefore, this case was excluded from the presented surface distance metric
results.

Model DSC Recall Precision Surface DSC1 95% HD1

(mm)

256 (mean) 0.771 ± 0.039 0.807 ± 0.042 0.788 ± 0.038 0.892 ± 0.042 6.976 ± 2.405

256 (median) 0.829 ± 0.024 0.873 ± 0.039 0.841 ± 0.037 0.970 ± 0.016 3.192 ± 0.816

512 (mean) 0.768 ± 0.041 0.793 ± 0.038 0.797 ± 0.038 0.890 ± 0.044 6.807 ± 2.357

512 (median) 0.828 ± 0.024 0.854 ± 0.040 0.849 ± 0.038 0.972 ± 0.013 2.919 ± 0.391

To visually illustrate the internal validation performance of the segmentation model,
samples of overlays of CT and PET images with the outlines of tumor masks using
ground truth and model segmentations from the validation data sets are shown in Fig. 5.
The figure shows representative segmentation results for DSC values of 0.54, 0.77, and
0.96 which are below, comparable, and above the segmentation model’s mean DSC of
0.77, respectively.

Finally, our models’ external validation (test set) performances based on ensembling
of cross-validation folds previously described are shown in Table 2. Mean DSC and
median 95% HD for our best model (256 AVERAGE) was 0.770 and 3.143 mm, respec-
tively (standard deviation or confidence intervals not provided by the HECKTOR 2021
submission portal). Our best model was ranked 8th place in the competition. Compared
to the top ranked submission on the HECKTOR 2021 submission portal (pengy), our
DSC and 95% HD results are within 0.01 and 0.06 mm, respectively.

4 Discussion

In this study, we have trained and evaluated OPC primary tumor segmentation mod-
els based on the 3D ResUnet deep learning architecture applied to large-scale and
multi-institutional PET/CT data from the 2021 HECKTOR Challenge. Moreover, we
investigate a variety of architectural modifications (512 vs. 256 channels in bottleneck
layer) and ensembling techniques (STAPLE vs. AVERAGE) for test set predictions.
Our approaches yield high and consistent segmentation performance in internal vali-
dation (cross-validation) and external validation (independent test set), thereby provid-
ing further empirical evidence for the feasibility of deep learning-based primary tumor
segmentation for fully-automated OPC radiotherapy workflows.
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Fig. 5. Illustrative examples overlaying the ground truth tumor segmentations (red) and predicted
tumor segmentations (yellow) on the CT images (first and third columns) and PET images (second
and forth columns) with different 3D volumetric DSC values (below, equivalent, and above the
mean estimated DSC value of 0.77) given at the right top corners of the PET images in the second
column. (Color figure online)

Table 2. Test set results for ensemble models. Metrics are reported from the HECKTOR 2021
submission portal.

Model Mean DSC Median 95% HD (mm)

256 STAPLE 0.763 3.433

512 STAPLE 0.759 3.291

256 AVERAGE 0.770 3.143

512 AVERAGE 0.761 3.155

Through internal validation procedures on the training set (10-fold cross-validation),
we attain mean DSC, recall, and precision values of 0.771, 0.807, and 0.788 for the
256 model and 0.768, 0.793, and 0.797, for the 512 model, respectively. While the
512 model offers a greater number of channels that could provide greater contextual
information, maximum DSC performance is achieved with the 256 model. This may
indicate the 256 model led to less over-fitting on the training data evaluation procedure.
Interestingly, there was a tradeoff between recall and precision for the twomodels tested,
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with the 256 model offering higher recall at the cost of precision compared to the 512
model. Regardless, both these internal validation results improve upon our 3D models
implemented in the 2020 HECKTOR Challenge, which only achieved a mean DSC of
0.69 [10]. These improved results potentially highlight the utility and importance of
residual connections in a Unet architecture for this task. Moreover, image processing
approaches that improve target class balance (i.e., tumor vs non-tumor) in the provided
images significantly improve model sensitivity. Finally, we have further investigated the
performance of our models using surface distance metrics, as these metrics have been
suggested to be more closely linked to clinically meaningful endpoints [23, 24]. We
observe minimal differences between the two models for the surface DSC, with both
models showing strong performance. However, the 512 model has a slightly lower 95%
HD, which may be favorable when more precise tumor boundary definitions are desired.

When models were evaluated on the test data (external validation), we demonstrate
high performance consistent with the internal validation results. Generally, the AVER-
AGEmethodoutperformed theSTAPLEmethod in termsof bothDSCandHD.Typically,
the AVERAGE method led to more conservative estimates than the STAPLE method,
which could indicate ground truth segmentations in the test set tended to be more con-
servative when considering tumor boundaries. Interestingly, while a tradeoff between
DSC and HD exists based on the channel number for the STAPLE method (256= better
DSC, 512 = better HD), this tradeoff is not present with the AVERAGE method, as the
256 model has better DSC and HD compared to the 512 model. Compared to our entry
for the 2020 HECKTOR Challenge [10], our mean DSC test results were improved by
a sizable degree from the original DSC of 0.637 (0.133 increase for our best model).
Moreover, we also improve upon the performance of the winning submission in the 2020
HECKTOR Challenge [25], which achieved a DSC of 0.759 (0.011 increase for our best
model). Our positive results may in part be due to the inclusion of ensembling coupled
to our improved network modifications (as indicated in the internal validation). The
utility of ensembling for PET/CT OPC tumor segmentation has been previously noted
since the winning entry in the 2020 challenge used an ensembling approach based on
leave-one-center-out cross-validation models to yield the best performing DSC results
[25]. Therefore, our results further incentivize the ensembling of model predictions for
OPC tumor segmentation data. While our results were not ranked particularly highly
within the 2021 HECKTOR leaderboard (8th place), it is worth noting our best model,
and most of the models within the top 10–15 entries, scored highly similarly for both
DSC and 95%HD. This may indicate a theoretical upper limit on this segmentation task,
regardless of model implementations.

In recent years, there has been increasing evidence suggesting the utility of applying
deep learning for fully-automated OPC tumor auto-segmentation in various imaging
modalities [20, 26–28]. PET/CT has recently shown excellent performance when used
as inputs to deep learning models, partly due to the large and highly curated datasets
provided by the HECKTOR Challenge [12]. While direct comparison of performance
metrics between segmentation studies is often ill-advised, the HECKTOR Challenge
offers a systematic method for directly compare segmentation methods with each other.
Moreover, since it has been suggested that themean interobserver DSC for head and neck
tumors in human experts is approximately 0.69 [29], our results indicate the potential
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for further testing to develop auto-segmentation workflows. However, it should be noted
that before any definitive statements could be said about the clinical value of an auto-
segmentation tool, the dosimetric impact and clinical acceptability of auto-segmeneted
structures should be thoroughly evaluated through further studies [24].

One limitation of our study is the reliance of our loss function purely on DSC as
an optimization metric. We have chosen the DSC loss since it has provided excellent
results in previous investigations and due to its widespread acceptance. However, other
loss functions such, as cross entropy [10] and focal loss [25], can be combined with the
DSC loss for model optimization which may require further investigation. Moreover,
additional measures of spatial similarity, such as surface DSC and 95%HD, are relevant
in auto-segmentation for radiotherapy applications [24], and therefore may be attrac-
tive candidates for use in model loss optimization [30]. The importance of additional
measures of spatial similarity seems to have been noted by the HECKTOR Challenge
organizers, as the 95% HD has now become a metric used in the leaderboard to rank
contestant performance. An additional limitation of our study is we have only tested
a few label fusion approaches as ensembling techniques for our models. For example,
we have selected STAPLE as a label fusion method because of its general ubiquity and
widely available implementations.However, STAPLEhas been criticized in the past [31];
therefore, additional label fusion approaches may be necessary to test in this framework
[32]. Moreover, for the AVERAGE ensembling method, the specific threshold in the
number of cross-validation models used to determine final label fusion can be seen as
an additional parameter to tune. While we have chosen a 5-model threshold as a proxy
for majority voting, alternative thresholding strategies can lead to more conservative or
liberal estimates of tumor segmentation.

5 Conclusion

This study presented the development and validation of deep learning models using a 3D
ResUnet architecture to segment OPC primary tumors in an end-to-end automated work-
flow based on PET/CT images. Using a combination of pre-processing steps, architec-
tural design decisions, andmodel ensembling approaches, we achieve promising internal
and external validation segmentation performance, with external validation mean DSC
and median 95% HD of 0.770 and 3.143 mm, respectively, for our best model. Our
method notably improves upon our previous iteration of our model submitted in the
2020 HECKTOR Challenge. Future studies should seek to further optimize these meth-
ods for improved OPC tumor segmentation performance in forthcoming iterations of the
HECKTOR Challenge.
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