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Human cognition is extremely flexible and can support a wide range of tasks. 
From speaking (multiple) languages to playing chess or driving a car. To 
support the knowledge required to accomplish all these tasks in the limited 
capacity available to people, there has to be overlap in this knowledge and it 
needs to consist of multi-purpose blocks of knowledge. Additionally, people 
are very quick in learning (simple) tasks. This suggests that people do not 
need to figure out from scratch how to perform a task but can instead draw 
from already available blocks of knowledge. These insights are widely 
accepted in the cognitive literature (Anderson et al., 2011; Salvucci, 2013), 
however current modelling practices rarely reflect it. Almost all models 
created in the fields of (cognitive) psychology and cognitive science are only 
developed for a single task with little regard for other related tasks. This 
implicit assumption that the mechanisms modelled in a single-task model 
only apply to this one task and context often imposes a large risk of overfitting 
on models constructed in this manner and it adds to the insularity of cognitive 
science. 
 The goal of this dissertation is to develop a modelling approach that 
allows modelers to put these insights into practice. This dissertation will focus 
on implementing such an approach in the cognitive architecture PRIMs 
(Taatgen, 2013); however, our efforts in implementing this in PRIMs will 
also be informative for how to implement it in other architectures 
(specifically the highly related architecture ACT-R). When successful, this 
modelling approach can be very valuable to the field of cognitive science. A 
modelling approach based on reuse will help modelers to create more 
generalizable, constrained and cognitively plausible models. Additionally, 
constructing models with the idea of reuse in mind can provide additional 
insights into an existing experimental paradigm that cannot be gained when 
only constructing single-task models. 
 The central concept in this modelling approach is a skill. A skill is a 
unit of (procedural) knowledge that accomplishes a basic general cognitive 
processing step that is applicable to (many) different tasks. For example, 
consolidating an item into memory, solving an algebraic equation, or 
determining whether a number is odd or even. These are just a few examples 
as what can be called a skill is very broad and, theoretically, any cognitive 
processing step that is reusable can be a skill. The basic idea behind our 
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modelling approach is that any task is a combination of several basic skills 
and that learning a new task only consists of assembling the correct skills. 
 

1. The cognitive architecture PRIMs 
PRIMs is the cognitive architecture at the centre of our efforts of 

developing a modelling approach based on skill reuse. PRIMs is heavily 
based on ACT-R and functions largely the same way. PRIMs was developed 
with the explicit aim of modelling knowledge transfer between tasks and 
therefore is very well suited to support a modelling approach based on reuse 
of procedural knowledge. As a basic understanding of PRIMs will facilitate 
the understanding of the following chapters of this dissertation, we will start 
with a basic overview of PRIMs. 
 
1.1. The modules 

Similar to ACT-R, PRIMs is a modular cognitive architecture. This 
means that the architecture consists of several independent cognitive modules 
capable of executing their respective function independently from one 
another and in parallel. PRIMs consists of five modules as depicted in Figure 
1: (1) the visual module, (2) the declarative memory module, (3) the working 
memory module, (4) the task control (or goal) module, and (5) the manual 
module. These modules are capable of performing a task from start to finish 
and they communicate through the central workspace via PRIMs.  

Firstly, the visual module. This module is also called the input 
module since its functionality is not limited to only visual information, it can 
be used to represent any type of sensory input (in practice it mainly is used 
for visual or auditory input). This module is very basic and consists of several 
buffer slots which represent the sensory input by means of symbols. For 
example, a red triangle would be represented by this module in two separate 
buffers, one buffer containing the symbol ‘red’ and the other containing the 
symbol ‘triangle’. In this manner any type of input can be provided to the 
central workspace.  

Secondly, the declarative memory module, this module is usually 
referred to by its abbreviation as the DM module. This module is more 
detailed and it represents the declarative memory (DM) system of the 
architecture. This module is responsible for the storage and retrieval of 
memory chunks and therefore plays a central role in many models. It 
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functions very similarly to the ACT-R DM module. It is populated by chunks 
which can be retrieved by means of a retrieval request. The chunks activation-
levels behave almost identically to the chunks in ACT-R’s declarative 
memory; it uses the same formulas to calculate the current activation of a 
chunk and the associated retrieval time. The main difference is that a 
currently active skill spreads activation to associated chunks The DM module 
takes as input retrieval requests which are partly completed chunks and it 
outputs the entire chunk with the highest activation that completes the input 
pattern. 

Thirdly, the working memory module. This module is often referred 
to as the imaginal buffer. This module is responsible for the temporary 
storage of highly relevant information. Similar to all the other modules it 
consists of several buffer slots. Relevant information can be placed in one of 
these slots by means of a PRIM without any penalty and it will be kept in this 
buffer slot until it is removed (also by a PRIM). Therefore, the imaginal 
buffer is capable of perfect storage for (theoretically) an unlimited amount of 
time. In practice, this module will only hold on to information for a few 
seconds, however this is mainly a result of modelling convention and not an 
architectural constraint. This module plays a central role in many models as 
it provides a crucial role as the keeper of short-term relevant information (i.e., 
working memory). In chapter 4 and chapter 5, the imaginal buffer will be 
discussed in more detail and its plausibility and role in supporting skill reuse 
will be more closely examined. 

Fourthly, the task control module. This module is almost exclusively 
referred to as the goal module as its place in the architecture is very similar 
to the ACT-R goal module. Similar to ACT-R, the PRIMs goal module is 
responsible for the ‘big picture’ control of a model. It lays out what the 
general next step of a model should be and strongly influences which operator 
(PRIMs’ version of production-rules) will be selected. However, the PRIMs’ 
goal module functions rather differently from its ACT-R counterpart. The 
goal module does not directly determine which operator will be selected by 
matching the left-hand side of an operator. Instead it only spreads activation 
to the operators that are associated with the current goal which makes it more 
likely that one of these operators is selected, but does not guarantee it. The 
goal buffer is instrumental for the central concept of this dissertation: the 
skill. Because of the close relationship between goal and skill, the terms are 
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often (sometimes confusingly) used interchangeably, however they are not 
exactly the same. A goal (i.e., the symbol representing this goal in the goal 
buffer) is the abstract ‘intention’ or objective that the model wants to 
accomplish while a skill is the collection of operators that will achieve this 
objective.  
 Finally, the manual module. This module is often referred to as the 
action module since it is responsible for the execution of the (often manual) 
action of a model (i.e., the model ‘output’). This module is fairly simple and 
is very flexible. It can execute any action that is defined in the model script, 
these are usually simple actions such as pressing a button, doing a saccade, 
or saying a word out loud. This module achieves this high level of flexibility 
because all important characteristics of an action can be specified, including 
the time it takes to execute it (including a noise parameter) and the ‘product’ 
of an action (i.e., which button is pressed on the keyboard or what word is 
being said). 
 

 
Figure 1. Overview of the PRIMs cognitive architecture. 
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1.2. The productions 
The modules can function independently, however, to be able to perform 
complex cognitive functions and accomplish tasks, the modules need to 
interact and communicate. In all production-based cognitive architectures 
such as PRIMs and ACT-R, this is done by productions. The productions are 
the ‘instructions’ that govern the behaviour of any model in a similar way as 
computer code governs the behaviour of a computer program. Constructing a 
model in any such architecture usually mainly revolves around creating the 
appropriate productions that will prompt the model to behave in the intended 
way.  

In PRIMs, these instructions are specified by creating operators. 
Operators contain the instructions for a certain model about how to complete 
the modelled task. Operators consist of two separate parts, the conditions and 
the actions. The conditions specify in what context an operator should fire. 
For example, an operator that should fire when there is a red triangle in the 
visual buffer would include conditions specifying that the first slot of the 
visual buffer should be red and the second slot should be triangle. In PRIMs 
terminology, this would be specified by writing V1 = red and V2 = triangle. 
The action part specifies what actions should be taken when the conditions 
are true. For example, move what is currently in the visual buffers to the 
declarative memory module into the working memory module so that the last 
seen stimulus will be remembered. This would be specified by writing V1 -> 
WM1 and V2 -> WM2.  

An interesting aspect about PRIMs (which is crucial for our goal of 
designing a modelling approach based on skill reuse) is that every operator 
consists of individual PRIMs. PRIMs are considered to be the basic building 
blocks of cognition and are therefore universally applicable for any task that 
is modelled using (the architecture) PRIMs. Only two types of PRIMs exist, 
condition PRIMs which can compare two values in the workspace and action 
PRIMs which are capable of moving a piece of information from one place 
in the workspace to another. This is why the conditions in the previous 
example have to be specified piecemeal, the presence of a red triangle in the 
visual buffer cannot be tested with a single ‘command’ checking for the 
presence of a red triangle as a whole. Because it consists of two characteristics 
(at least in this example), two separate PRIMs are needed: one checking for 
the presence of red in V1 and a second checking for the presence of triangle 
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in V2. The same applies to the action PRIMs, in order two move two pieces 
of information, two separate PRIMs are needed. 

In turn, operators can be organized into skills, the central concept of 
this dissertation. Skills are collections of operators that are capable of 
accomplishing a certain cognitive processing step. Skills are very flexible as 
the operators of a skill do not need to be executed in a certain order. This 
allows skills to achieve a certain goal relatively independent of the initial state 
of the workspace. Additionally, skills are fairly insensitive to the exact state 
of the workspace since they can include multiple operators performing the 
same action but with slightly different conditions. These characteristics make 
skills very powerful for reuse since they are flexible enough to function in 
different circumstances but at the same time they are still specific enough to 
accomplish their intended goal.  

To summarize, procedural knowledge in PRIMs is organized in the 
following way. At the lowest level, it is specified by individual PRIMs which 
consist of one simple instruction to either compare two values or move a piece 
of information. At the middle level are the operators which are collections of 
PRIMs. Operators are comparable to ACT-R production rules and they 
accomplish very specific and small cognitive steps. Finally, operators can be 
organized into skills. Skills are the largest unit of procedural knowledge in 
PRIMs and they consist of several operators that taken together can reliably 
accomplish a larger goal. 
 

2. Theoretical background of the modelling approach 
 As was mentioned before, the basic idea on which our modelling 
approach is based is that people continually reuse previously learned blocks 
of already learned procedural knowledge. In our approach these blocks are 
termed skills. This collection of skills continually evolves over someone’s 
lifetime; however, at any specific moment (e.g., when in the lab as a 
participant), a person merely applies the collection of skills that they currently 
have available to the challenges presented by the current task. This idea is 
developed from theories of skill acquisition in the line of research started by 
Fitts (1964). The original theory was later expanded on and refined by several 
researchers (J. R. Anderson, 1982; Kim, Ritter, & Koubek, 2013; Proctor & 
Dutta, 1995; Rasmussen, 1987) resulting in a consensus that skill learning 
occurs in three distinct stages. (1) A first stage responsible for learning basic 
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declarative and procedural knowledge, (2) a second stage responsible for 
consolidating this knowledge and, finally, (3) optimizing this knowledge for 
the current task.  

In the context of PRIMs and our modelling approach, the first stage 
is represented by learning combinations of PRIMs and combining them into 
operators. The second stage is represented by learning which operators are 
associated with a certain skill and completing a basic level of production 
compilation on these operators. The third stage is represented by finalizing 
production compilation and (if enough practice is available) optimizing the 
contents of a skill by pruning unnecessary operators or adapting the existing 
operators to the specific requirements of the current task. Fully completing 
this final stage would result in a very specific skill which cannot easily be 
applied to other situations anymore.  

We believe that, for adults in practice, most learning occurs on the 
second and third stages and that this type of learning is thus the most crucial 
learning that should be accounted for in cognitive models. For example, the 
learning that occurs when a participant enters a lab to perform a simple 
psychological task, most often happens between the second and third stages. 
A participant enters the lab with a certain amount of already available 
operators (i.e., they have fully completed first stage learning). Depending on 
the exact task they have likely also already learned a large number of basic 
skills (i.e., they have learned which operators successfully go together and 
for which purpose) but probably not all of the required skills are fully 
compiled (in chapter 5 we will explore what different levels of compilation 
can do to individual performance). Therefore, most of the learning that 
participants experience during an experiment and that should be accounted 
for in models occurs on the second stage (finalizing this stage) and the third 
stage (starting the process of optimizing the basic skill for the current task).  
 
3. Chapter overview 
In this dissertation we discuss our efforts in arriving at a modelling approach 
capable of reusing skills. We termed this approach the skill-based approach. 
 In chapter 2, we present the basic ideas and design of the skill-based 
approach. The skill-based approach is based on the idea that when people are 
confronted with a new task, they do not need to figure out from scratch how 
to accomplish this task but can, instead, rely on previously learned procedural 
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knowledge. In this chapter we propose the basic steps involved in creating a 
model using the skill-based approach and test the feasibility of these by 
creating a model of the attentional blink. 
 In chapter 3, we slightly deviated from directly developing the skill-
based approach and we focused on the attentional blink model. In this chapter, 
we further develop the attentional blink model created in chapter 2 and 
perform two experiments testing its predictions. The main prediction of this 
model is that the attentional blink is caused by selection of a sub-optimal skill. 
In order to test this prediction, we perform an experiment aimed at 
manipulating the skill used by the participants during the task. Our results 
suggest that the attentional blink task can be performed with two different 
skills and that one of these skills leads to much better performance. 
 In chapter 4, we returned to focus on the skill-based approach and 
discuss three limitations to the skill-based approach and the cognitive 
architecture we used while attempting to model the nine basic executive 
function tasks in Miyake et al. (2000). Two of these limitations were 
limitations to the initial design of the skill-based approach and one limitation 
concerned the cognitive architecture PRIMs. In this chapter, we discuss the 
details of these limitations and their relationship to the general issue of 
improving generalizability in cognitive modelling. Finally, we propose initial 
ideas as to how these limitations can be overcome. 
 In chapter 5, we built on the initial suggestions from chapter 4 about 
how to overcome the limitations and propose and implement solutions. The 
solutions were tested by creating models of the same executive function tasks 
that initially gave rise to the limitations. The proposed solutions were 
successful and allowed for the creation of the model of the executive function 
tasks using the skill-based approach. Furthermore, the models suggest that 
executive functioning heavily relies on learned skills (i.e., procedural 
knowledge) and it proposes procedural and automatic mechanisms for all 
three basic executive functions. 



2 
A skill-based approach to 

modelling the attentional blink 

People can often learn new tasks quickly. This is hard to explain with 
cognitive models, because they either need extensive task-specific 
knowledge or a long training session. In this article we try to solve this by 
proposing that task knowledge can be decomposed into skills. A skill is a 
task-independent set of knowledge that can be reused for different tasks. As 
a demonstration, we created an attentional blink (AB) model from the 
general skills that we extracted from models of visual attention and working 
memory. The results suggest that this is a feasible modelling method, which 
could lead to more generalizable models.  
 
 
 

 

 
 
 
 
 
 
 
 
 
 
This chapter has previously been published as: 
Hoekstra, C., Martens, S., & Taatgen, N. A. (2020). A Skill-Based 
Approach to Modeling the Attentional Blink. Topics in Cognitive Science, 
12(3), 1030-1045. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A SKILL-BASED APPROACH TO THE ATTENTIONAL BLINK | 2  
 

 13 

1. Introduction 
Humans have the impressive ability to learn certain relatively simple 

tasks with minimal instruction and in a very short period of time. The 
experimental tasks used in (cognitive) psychology are particularly good 
examples of these types of tasks. Participants have often never encountered 
these tasks before, yet are quickly able to work out what to do. This quick 
learning suggests that people reuse previously learned skills and apply them 
to new contexts (Salvucci, 2013; Taatgen, Huss, Dickison, & Anderson, 
2008). For example, if a task requires a stimulus to be remembered for later 
recall, people do not have to work out how to remember the stimulus, but they 
can simply reuse the already learned ‘remembering-skill’. It would be 
unnecessary, in this case, to reinvent the wheel. Learning how to do a new 
task simply means selecting the appropriate skills, assuming all these skills 
have already been acquired. 
 Skill is a commonly used term in cognitive psychology and is used 
to convey many (slightly) different meanings. In the context of this paper, 
skill refers to the largest unit of procedural knowledge that can be reused in 
different tasks. There can be many instances in which the same procedural 
knowledge (i.e., skills) can be reused. Traditionally, the idea of skill-reuse 
was often implemented in cognitive architectures in the form of subgoaling 
(Newell, 1990). A main task goal could be decomposed in subgoals, each of 
which could in theory be reused for other tasks. However, the subgoaling 
mechanism proved to be too brittle to support flexible reuse. Moreover, 
psychological data turned out to be inconsistent with models using a goal 
stack (Anderson & Douglass, 2001). The skill-based approach shares 
similarities with subgoaling, but does not use the goal-stack mechanism. 

Reusing skills speeds up learning, but it can also have negative side 
effects that lead to sub-optimal performance even though the cognitive 
system is, in principle, capable of optimal performance. That is, it is sub-
optimal strategy that underlies the impaired performance, not a fundamental 
information processing limit (e.g., Taatgen, Juvina, Schipper, Borst, & 
Martens, 2009). One factor underlying the sub-optimal strategy-choice might 
be the selection of the wrong skills, either because the "right" skill is not 
available, or because the interpretation of the task cues the wrong skill. A 
well-known instance of this is the Stroop effect (Stroop, 1935). Because 
people are so used to reading words, this automatically triggered skill 
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interferes with the task of naming the colour of the word. In this case, words 
trigger the ‘reading-skill’, which leads to worse performance. Another, less 
obvious, instance where this can happen is the attentional blink (AB).  

The AB is a well-studied phenomenon in cognitive psychology 
(Martens & Wyble, 2010). It refers to the finding that the second of two to-
be reported targets in a stream of distractors presented at a rate of 100 ms per 
item is often missed when it is presented within an interval of 200-500 ms 
after the first target (T1) (Raymond, Shapiro, & Arnell, 1992). Interestingly, 
the second target (T2) is hardly ever missed if it is presented directly (i.e., 
within 100 ms) after the first target (lag-1 sparing). This suggests that the 
cognitive system does possess the processing capacity to identify both targets, 
but that the chosen strategy prevents the second target from being reported. 

The crucial aspect of the strategy that most participants use can be 
the selection of a sub-optimal skill to consolidate the targets in memory. 
Many theories of the AB assume that consolidation of T1 into memory 
underlies the AB (Akyürek, Abedian-Amiri, & Ostermeier, 2011). Memory 
consolidation is thought to be a serial process, meaning that only one 
consolidation process can occur at a time and that the consolidation has to be 
completed before a new item can be consolidated. This means that T2 cannot 
always be consolidated straight away, but sometimes has to wait for the 
consolidation of T1 to be completed. This leads to the AB when consolidation 
of T1 has not yet been completed before T2 has disappeared from visual 
short-term memory. However, such theories all assume that targets are 
consolidated as separate memory items, whereas in other areas of memory 
research it is assumed that multiple items are consolidated in a single chunk. 

The strongest indication that strategy underlies the AB phenomenon 
is an experiment by Ferlazzo and colleagues (Ferlazzo, Lucido, Di Nocera, 
Fagioli, & Sdoia, 2007). In their experiment, participants were instructed to 
report two target letters (which were always a vowel and a consonant) either 
separately or as a single syllable. In the latter condition participants did not 
exhibit an AB. A possible explanation is that the original instruction cues a 
strategy in which all targets are consolidated separately, while the syllable 
instruction encourages consolidation of both targets in a single chunk. We 
will explore this difference by creating two versions of an AB-model that 
only differ in their consolidation strategy. 
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To create the model, we have used a novel approach. Instead of 
creating the model specifically for the AB, we built a model from general 
skills that we have constructed as parts of other models. In other words, the 
AB model only links together existing skills. We chose this approach because 
it mirrors how participants performing an AB-task work out what to do. They 
do not start from scratch, but they tie skills they already possess together in 
such a way that allows them to perform an AB-task. 

Many tasks share similarities and, therefore, many tasks require the 
same skills. The tendency of people to utilize this overlap between tasks calls 
for the creation of more generalizable models to reflect this approach. 
Moreover, creating models that use generalizable elements allows for the 
mechanisms used in these models to be placed in a larger cognitive context 
because each mechanism is essentially part of a generalizable skill. Currently, 
phenomena are usually modelled by specific cognitive machinery that 
captures the phenomenon found in empirical data. It is not common to place 
this machinery in a larger cognitive context and describe how it relates to 
other cognitive processes (i.e., specifying “where” or “when” it takes place 
in cognition). However, this leads to models with very specific mechanisms 
created to explain findings in one particular experimental paradigm. In 
contrast, creating models with a skill-based approach forces the mechanisms 
to be placed into a larger cognitive context because it is created as a part of a 
general skill that is also used in other tasks and cognitive processes. Because 
its underlying mechanism is the same for these tasks, it should also be 
predictive of behaviour outside of the initially modelled paradigm. 

We believe that creating cognitive models in this manner can be a 
promising contribution to the field in general. In particular because it could 
aid generalization among the many different models created in the highly 
specialized and compartmentalized fields of cognitive science. The goal of 
the skill-based approach is a continuation of one of the fundamental goals of 
cognitive architectures. Cognitive architectures have been developed in order 
to create a basic framework which can be applied to model a large variety of 
tasks. This ensures a certain amount of correspondence between models 
created using the same architecture, independent of the specific task 
modelled. The skill-based approach extends this idea. Applying this 
approach, in combination with a cognitive architecture, will allow for not 
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only the basic architecture to be considered but also previously acquired 
knowledge (skills). 

We created our AB-model in the cognitive architecture PRIMs 
(Taatgen 2013; 2014). PRIMs (abbreviation for primitive information 
processing elements) is based on ACT-R (Anderson et al., 2004) and works 
in a highly comparable way. The architectures of both ACT-R and PRIMs 
consist of a ‘central workspace’ and a number of modules capable of 
performing specific cognitive functions. The modules can communicate (i.e., 
exchange the results of their cognitive operations) with each other through 
the central workspace, which is subdivided in buffers. This exchange of 
information between the modules in PRIMs is controlled in largely the same 
way as it is in ACT-R. In ACT-R this is done by productions, and in PRIMs 
it is done by operators, but they have similar functionalities. For a more 
extensive discussion of PRIMs, see (Taatgen, 2013). A crucial difference 
between ACT-R and PRIMs is that in PRIMs operators are by default further 
organized into skills. A skill is a collection of operators capable of 
accomplishing a certain goal or processing step. Skills, therefore, form the 
bridge between single operators and the complete task that is being modelled. 
A task is built up from a certain number of skills and a skill, in turn, consists 
of a certain number of operators. This distinction is helpful because it allows 
for more flexibility while maintaining a high level of organization. Flexibility 
is improved because the model can diverge from the beaten path if the 
situation asks for it. Additionally, it allows for connections between 
operations that cannot be executed in a single operator (e.g., because they use 
the same buffers). 

Skills are combined into tasks by instantiating variables that are part 
of the skill (and, in turn, the underlying operators). For example, a skill for 
visual search may be instantiated by the type of item that we search for. 
Variable instantiation is also used to link skills together. For example, the 
visual search may need a more elaborate criterion, which in itself is another 
skill (e.g., search for a sheep with five legs). Therefore, building a task model 
that can be composed of existing skills entails instantiating the variables in 
those skills (and nothing else). 

The generalizability of skills makes it possible to use the same skills 
in models of different experimental tasks. The organization into skills thus 
allows us to employ a novel approach to constructing cognitive models, 
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placing them in a context of related models, tasks, and skills. We had two 
main goals in this project. Firstly, we wanted to investigate the feasibility of 
creating a cognitive model by tying together general skills. Secondly, we 
wanted to create a model of the AB which is capable of capturing the most 
commonly found effects in the AB-paradigm, including differences due to 
instruction. 

 
2. Method 

Instead of creating operators specifically for the attentional blink, we 
first considered which general skills are required to perform an AB-task and 
assembled the AB-model from these skills. In other words, we assembled the 
model from skills (we assume) participants have already acquired before 
entering the lab. 

Based on previous work and other models of the attentional blink, we 
identified four basic skills (cognitive processing steps) which had to be 
performed by our model of the AB. In short, these four skills are visual 
search, consolidation, retrieve, and report. More extensive discussions of 
them will follow. We developed these four skills by first creating models of 
other tasks which share (some) of these same basic skills. This step was done 
to get a better idea of what these general skills should be capable of and to 
test the plausibility of these skills. 

First, we will describe the three models that provided the building 
blocks for the AB-model. These three models are: (1) a visual search model, 
(2) a model of a simple working memory (SWM) task and (3) a model of a 
complex working memory (CWM) task. Not all parts of all three models will 
be used for the AB-model, but all three contain at least one of the four basic 
skills needed to perform an AB-task. 

The first model, the visual search model, is very straightforward.  The 
goal of this model is to find a vowel on a screen filled with other letters (see 
Figure 1). The main search skill processes the current visual item and 
determines its category through memory retrieval. If it does not match the 
target category (vowel in this case), it transfers control to another skill which 
focuses on the next search item. In visual search this is a shift of attention to 
another item. If it does match the target category, it transfers control to a third 
skill, in this case a skill that clicks on the target with the mouse. Finally, if it 
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runs out of items to attend to, it transfers control to yet another skill, which is 
not instantiated in the visual search model. 
 

 
Figure 1. Visual representation of the Visual Search model. The model uses 
the ‘Look for target’ skill to discriminate between non-targets (consonants) 
and the target (vowels) and clicks on the target when it discovers one. The 
search skill determines the category by a memory retrieval and is reused in 
both AB-models. 
  

In the AB-model, we will reuse the search skill to find targets, but we 
will instantiate it differently. To illustrate, Figure 2 lists the operators that 
make up the search skill, slightly abbreviated for clarity. In these operators 
Vx refers to a slot in the visual buffer, RTx refers to a slot in the retrieval 
(declarative memory) buffer, and Gx refers to a slot in the goal buffer. In these 
operators, values that are preceded by an asterisk are variables that need to be 
instantiated for a particular task. For visual search in the context of the 
previously mentioned example, we instantiate *fact-type with vowel, 
*next-stim with the attend-next skill, and *after-found-
target with the click-item skill. 

The second and third basic model are strongly related and provide 
the final basic skills. Both models deal with working memory tasks which 
require the participants to remember presented items and, after presentation 
of the items, recall which items have been seen. Although they both include 
a consolidation step, they accomplish this step with a different skill. Both 
build a chunk in working memory, however they differ in the moment of 
consolidation. The “consolidate-separate” skill, used in the CWM-model, 
starts consolidation immediately after an item is encountered. In contrast, the 
“consolidate-chunk” skill, used in the SWM-model, only starts consolidation 
after all items have been presented. Using these two consolidation skills, we 
created two versions of the AB-model, a “consolidate-separate” version and 
a “consolidate-chunk” version. 
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Figure 2. Example operators of the visual search skill. 

 
Finally, these two working memory task models provide the 

“retrieve” skill and the “respond” skill. The “retrieve” skill retrieves the 
appropriate consolidated item from memory and the “response” skill gives 
the appropriate response based on the retrieved item, completing the skills 
needed to create the AB-model (Figure 3). 

The four skills described above form the basic building blocks of 
both versions of our attentional blink model. To finalize the AB-model, the 
basic skills were put together in one model and were instantiated to fit the 
context of an AB-trial. This procedure was the same for both versions of the 
AB-model. In the AB-model, after presentation of a stimulus, the “search” 
skill checks whether this is a target or a distractor. In other words, the 
*fact-type variable is instantiated with letter. If the stimulus is a 
distractor, it is ignored and the model waits for the next stimulus (*next-
stim is instantiated with wait). If the stimulus is a target it switches to the 
consolidate skill (by instantiating *after-found-target with that 
skill), which moves the stimulus into a working memory slot. 

 
 



 20 

 
Figure 3. Visual depiction of the AB-models and basic models. The 
‘consolidate-chunk’ AB-model is represented by the purple star and the 
‘consolidate-separate’ AB-model is represented by the light blue star. A 
yellow circle around a skill indicates that this skill is used in both a basic 
model and one of the AB-models. 
 
The consolidate skill is the source of the attentional blink in our model. 
Depending on which skill is used to accomplish consolidation, the model 
either starts consolidating directly after encountering the first target or 
postpones consolidation until the second target is encountered. If the chunk 
is consolidated, no other operator can be executed for a period of, on average, 
200 ms (the imaginal delay parameter in ACT-R), leading to a possible 
attentional blink (see Figure 4). If consolidation is postponed until the arrival 
of the second target, no attentional blink will occur at this point and the model 
will keep performing the task normally (see Figure 5). After all stimuli are 
presented, the model will retrieve the targets that were consolidated on this 
trial (the “retrieve” skill) and then, after the retrieval, responding to the 
retrieved items (the “respond” skill). 
 
3. Results 

We compared the behaviour of the models with human performance. 
This was done in order to verify the feasibility of the basic models and to 
check how well the final AB-model could model the AB phenomenon. The 
comparisons were made with existing data from the literature, except for the 
visual search model as we had found no suitable data to compare it with. This 



A SKILL-BASED APPROACH TO THE ATTENTIONAL BLINK | 2  
 

 21 

is likely due to the fact that our visual search model is very simple and does 
not have any other functionalities besides what is described in the method 
section. Furthermore, the visual search model was not our primary interest, 
as it is not responsible for creating the AB. 

For the SWM-model a specific task was modelled, requiring 
participants to remember a certain number of digits and report them at the 
end of a stream (Anderson, Bothell, Lebiere, & Matessa, 1998). The critical 
manipulation in this experiment was that the digits were presented in multiple 
groups. This grouping was thought to influence chunking of the digits, digits 
grouped together during presentation would also be grouped together in 
memory (i.e., chunked together). The findings supported this expectation, 
such that participants showed longer reaction times during recall for the first 
item of a group, indicating that the groups were remembered (and recalled) 
as one chunk. The data from the simple working memory model showed this 
same pattern in reaction times as reported in Anderson et al. (1998). Just as 
in the reported data, reaction times in our model to items relating to the start 
of a new chunk were significantly longer, as tested by linear regression (β = 
0.43, SE = 0.003, t = 128.7, p < 0.001). 
 
 

 
Figure 4. Visual representation of the CWM-model and the “consolidate-
separate” AB-model. The CWM-model consolidates the presented numbers 
separately because working memory is engaged by the secondary task. The 
“consolidate-separate” AB-model starts consolidation directly after detecting 
T1 and therefore misses T2 on the lag 2 trial pictured here. 
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Figure 5. Visual representation of the SWM-model and the “consolidate-
chunked” AB-model. The SWM model consolidates the 3 numbers as one 
chunk. The “consolidate-chunked” AB-model moves T1 into working 
memory directly after detecting it and only consolidates both targets after 
detecting T2. This leads to the successful consolidation of both targets even 
at the Lag 2 trial pictured here. 

 
As can be seen in Figure 6, the reaction times produced by the model 

show the same typical pattern as the human participants. This reflects the 
strategy used by the model (and presumably the participants) of recalling the 
remembered digits. The digits are stored in memory in chunks of three in 
memory and this influences how the recall occurs. Firstly, the full chunk 
containing all three digits is retrieved from memory and, subsequently, the 
three responses are given without any further memory retrieval. Note 
however that the model is unable to capture the extra-long reaction times at 
the start of the recall-phase. These increased reaction times are likely due to 
processes relating to getting started on a new task, an aspect of the task 
unrelated to working memory so we chose not to model it at this moment. In 
addition to the reaction times, we also compared the accuracy of our model 
with the accuracy as reported in the original study (not pictured). The original 
paper only reports a significant effect of the length of the to-be learned list 
(F(9,621) = 128.05; p = 0.001) in the direction that longer lists are harder to 
recall. Their data also shows a clear effect of serial position, in that earlier 
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presented letters are recalled more accurately than later presented letters 
(although there is also a small recency effect). We tested our model on these 
same two effects of list length and serial position with a linear mixed effect 
model. Our AB-model shows a significant effect of both list length (β = 0.05, 
SE = 0.01, z = 3.7, p < 0.001) and serial position (β = 0.13, SE = 0.04, z = 
3.4, p < 0.001) which is in line with the data presented in the original study.  

The SWM-model data was collected over 15 runs with 350 trials per 
run (total of 5250 trials). Most of the parameters were the default PRIMs 
parameters (which are the same as the ACT-R default parameters for a big 
part). Only the retrieval threshold (rt was 0.6 instead of 0) and the latency 
factor (lf was 0.15 instead of 1.0) differed from default. This latency factor 
of 0.15 was also used in a previous model of the attentional blink (Taatgen et 
al., 2009). 
 

 
Figure 6. Model fit for reaction times in the SWM-task. Figure depicts the 
RTs produced by the model (dashed line) and human data (solid line).  
 

Secondly, we will discuss the comparison between the CWM-model 
and human performance. In the task we modelled, a series of 3, 4, 5, or 6 
digits were presented to the model. In between presentation of the digits, the 
model did a word-decision task in which it had to distinguish between nouns 
and adjectives. We compared the performance of our model on this task to a 
similar experimental task (Daily, Lovett, & Reder, 2001). In this task, 
participants were instructed to remember a series of digits (also 3 to 6), but 
here the digits were presented among letters which they were required to read 
aloud. Both of these tasks have in common that working memory is required 
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to perform the interrupting task (either deciding between a noun or adjective 
or reading a letter aloud). This demand on working memory makes it 
impossible for the participants (and the model) to chunk the items in memory. 
 

 
Figure 7. CWM-model fit for accuracy data. The average accuracy as a 
function of list length for the model (dashed line) and the human data (solid 
line). 
 

We compared model performance with human performance with 
respect to accuracy (see Figure 7). This was the only measure we could use 
because the original paper did not report any other measure (e.g., reaction 
times). Generally, the model shows a good fit to the human data reported by 
Daily et al. (2001). Both the model and the participants show decreased 
accuracy when the length of the presented list is longer. In both the original 
data (F(3, 63) = 90.80, p = .0001) (tested with an ANOVA) as in our model 
(β = -0.2, SE = 0.005, t = -37.2, p < 0.001) (tested with a general linear model) 
this was a strongly significant result. This decreased accuracy for longer lists 
occurs in the model because the presentation of the longer lists takes a longer 
time to be completed. The longer time required for presentation allows for 
additional item-decay in memory, leading to reduced accuracy for longer 
lists. The model, however, generally underestimates accuracy, this is 
probably due to the model being unable to capture the primacy effect 
(Murdock, 1962). The primacy effect is often modelled by including a 
rehearsal mechanism. The fact that we did not include such a mechanism to 
the model could thus explain the general underestimation of the accuracy. 
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Rehearsal is not directly related to working memory consolidation, so for 
reasons of simplicity we did not include this process in the model. The SWM-
model data consists of a total of 4500 trials (15 runs with 300 trials per run). 
Similar as with the CWM-model most of the parameters were kept at the 
default setting, except for the retrieval threshold and the latency factor. The 
retrieval threshold had a value of 0.5 and the latency factor was set at 0.15 for 
our model. 

Finally, we compared our AB-model (which resulted from the 
combination of the above discussed models) with human AB performance 
(see Figure 8). The specific task we modelled was the classic AB task 
reported in Chun & Potter (1995). In this standard version of the AB, 
participants are instructed to identify two digits within a stream of distracting 
letters and, at the end of the stream, report which digits they have seen. We 
modelled this experiment with the version of the AB-model that used the 
“separate-consolidation” skill. The attentional blink, characterized by a 
strong performance decrement at lags 2 and 3, is nicely captured by our AB-
model. Performance at Lag 2 (β = -0.47, SE = 0.02, t = -25.2, p < 0.001) and 
Lag 3 (β = -0.41, SE = 0.02, t = -22, p < 0.001) is significantly lower than at 
Lag 1. The original paper also reports significant performance decreases at 
Lag 2 (t(5) = 6.6, p < 0.01) and Lag 3 (t(5) = 4.1, p < 0.01). In the model, the 
AB occurs because consolidation of the first target (T1) is still in progress 
when the second target (T2) is presented. Therefore, T2 cannot be 
consolidated and will not be reported at the end of the stream. Our model also 
shows the typical lag-1 sparing effect. This is because consolidation of T1 
often has not started at the moment that T2 is presented at lag 1. Therefore, 
they can both be consolidated into a single chunk and reported at the end of 
the stream. Finally, the model shows the slow performance increase for the 
later lags (lag 4 and higher). This is caused by the slow increase of the 
likelihood that T1 consolidation is finished by the time T2 is presented. 

The AB-model data consists of 15 runs with 600 trials per run (for a 
total of 9000 trials). Most of the parameters were kept at the default values, 
except for the latency factor, activation noise, and the imaginal delay factor. 
The latency factor was again set to 0.15, following (Taatgen et al., 2009). The 
activation noise was set to 0.35, which is a little bit higher than default, this 
was done in order to create some extra noise on the behaviour of the model 
and produce slightly more human-like performance. Finally, the time it took 
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for a chunk to be encoded into the imaginal buffer, the imaginal delay 
parameter, varied from trial to trial (also following Taatgen et al., 2009). Its 
value ranged from 50 ms to 350 ms and was drawn from a uniform 
distribution with an average of 200 ms. This variation made it possible for 
the model to still detect both targets on lag-2 and lag-3 trials in some 
instances.  
 

 
Figure 8. AB-model fit for T2 accuracy. Figure showing T2 accuracy in an 
AB-task for the model (dashed line) and human data (solid line).  
 

Using the other version of the consolidation skill (the “consolidate-
chunk” version) in the AB-model, however, will prompt the model to always 
try to consolidate both targets into a single chunk, which should prevent the 
AB to occur. Importantly, both versions of the AB-model were run with 
exactly the same model parameters. We compared the performance of the 
AB-model instantiated this way to the data from Experiment 2 in the paper 
reporting a reduced AB when participants were instructed in a way that 
promoted chunking (Ferlazzo et al., 2007) (see Figure 9). The model mirrored 
the general performance level and, crucially, showed no AB. Performance on 
lag 2 (β = 1.76, SE = 0.15, z = 11.6, p < 0.001) and lag 3 (β = 1. 6, SE = 0.14, 
z = 11.6, p < 0.001) was significantly higher in the “consolidate-chunk” 
version compared to the “consolidate-separate” version. The model, however, 
shows a slight performance decrease at lag 1 which is significantly lower than 
lag 6 performance (β = -0.13, SE = 0.01, t = -2.1, p < 0.001). This was caused 



A SKILL-BASED APPROACH TO THE ATTENTIONAL BLINK | 2  
 

 27 

by the way in which noise in the visual system was simulated, which meant 
that occasionally T2 had already disappeared before it was processed fully 
and therefore it was missed. We do not consider this problematic, because in 
many AB experiments lag 1 performance is slightly lower than performance 
on long lags. The “consolidate-chunk” version model data also consists of 15 
runs with 600 trials per run (in total 9000 trials). As was mentioned before, 
the parameters were exactly equal to the parameters used for the “consolidate-
separate” version of the model. 
 

 
Figure 9. Model fit for the alternative AB model (consolidate-chunk). Figure 
showing T2 accuracy for the alternative AB model (dashed line) and human 
data (solid line).   
 
4. Discussion 

Computational models of cognitive psychological phenomena are 
often able to accurately capture one specific phenomenon, however they are 
often hard to generalize to other tasks and cognition in general (Anderson et 
al., 2004). In this paper, we attempted to (partly) bridge this gap by employing 
a novel approach to building cognitive models, which mirrors the way people 
approach a new task. People do not consider every task in isolation but they 
use knowledge gained from the past. That is, they reuse skills learned from 
doing other tasks and apply them to the (new) task at hand (Salvucci, 2013; 
Taatgen, 2014). This paper describes our attempt to apply a similar approach. 
However, our approach differs from earlier efforts, because the "building 
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blocks" for a task are much larger. In the earlier work, the level of reuse was 
operators. Therefore, a new task had to be constructed out of existing 
operators, which is, even in the case of a simple task such as the attentional 
blink, still a substantial number (see Figure 3). In the skill-based approach, 
only four skills needed to be combined. This is not only consistent with the 
amount of time people need to prepare for the task, but it also sheds new light 
on the nature of the attentional blink, and the effect of instruction. 

The comparisons between our models and human data show that our 
models are reasonably able to capture human performance. This result 
demonstrates the basic feasibility of the described modelling approach. It is 
possible to break a task down into a limited set of skills that are reusable in 
different tasks. This is an important first step towards creating more 
generalizable models, because it allows for a method of creating models that 
are built from the same building blocks. Using existing building blocks when 
modelling a new task allows for much more integration of any new model 
into the already existing collection of models and might better reflect the way 
people approach a new task. Finally, our AB-model can be placed in a larger 
cognitive context. It provides a clear and generalizable explanation of the AB 
using terms that can be related to other theories and empirical findings. This 
is the main benefit of creating models with the skill-based approach. In our 
case, our model not only provides an account of the AB but, importantly, also 
suggests some general limitations to memory consolidation. The skill-based 
approach facilitates the investigation of the mechanisms that lead to 
experimental findings instead of only focusing on the findings themselves.  

Note, however, that the devil is in the details. Building a model using 
this approach can be challenging, especially when it comes to determining 
how small differences between tasks can best be handled. Such differences 
make it difficult to use exactly the same operator (and therefore the same 
skill). Every operator has a condition-checking part (which checks whether 
this operator should be activated now) and an action-performance part (which 
actually executes the ‘cognitive action’ or PRIM). The action-performance 
part is relatively easy to generalize across tasks, but the condition-checking 
part is more challenging. Basically, the condition-checking part checks 
whether the situation matches the predefined situation in which this operator 
should be executed. This makes it difficult to generalize the condition-
checking across tasks since a different task usually also means a different 
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situation. We solved this problem in the models described in this paper by 
defining the conditions in such a way that they work for all the modelled 
tasks. This is a workable solution, but it is time-consuming and a more 
optimal method for condition-checking is needed. 

A further limitation to the models described here is that they did not 
perfectly capture all aspects of human performance. However, we do not see 
this as a major issue because we did not set out to create complete models of 
the described experimental paradigms. Instead we aimed to create models of 
the main findings only because we were merely interested in the skills that 
are important for the AB. Although there remain limitations and 
improvements to be made to the skill-based approach, we consider it a 
feasible and promising approach to improve the generalizability of models. 

The second goal we set out to achieve in this paper was to create a 
model of the AB that can account for differences due to instruction. The 
model described in this paper produces most of the basic effects from the 
classic AB-task, showing lag-1 sparing, the AB itself and the gradual 
improvement on later lags. Although there are many additional aspects of the 
AB reported in the extensive literature which we did not discuss, we believe 
that the model described here is an adequate first attempt that can be built on 
in future work.  

For now, the fact that the model captured the basic AB effects implies 
that these effects, at their core, may be caused by improper selection of skills. 
At the start of a new task, a participant has to figure out which skills to 
combine in order to be able to perform the new task. The models we created 
suggest that there are (at least) two different skills which can take care of the 
consolidation into working memory aspect of the task: (1) consolidate every 
presented target into working memory separately (as in the CWM-task) or (2) 
consolidate targets as larger chunks (as in the SWM-task). The chunk-
consolidation skill as used in the SWM-task would be the optimal pick in this 
situation, two items can be consolidated into one chunk and there would be 
no negative unexpected effects. This approach is perhaps employed by 
participants after receiving the experimental instructions from the Ferlazzo et 
al. (2007) study. However, given that standard AB instructions consider 
targets as separate items probably prompts most participants to use the 
separate-consolidate skill from the CWM-task.  
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The emphasis put on strategy by our model could explain previous 
findings in the AB literature that have proven difficult to explain. This 
includes the effect of instructions as well as the existence of non-blinkers 
(individuals who do not show an AB) (Martens, Munneke, Smid, & Johnson, 
2006; Willems & Martens, 2016; Willems, Wierda, van Viegen, & Martens, 
2013), and the reduction of AB-magnitude because of training (Choi, Chang, 
Shibata, Sasaki, & Watanabe, 2012). All these effects could be explained by 
the type of consolidation strategy. Different instructions might cue the 
‘correct’ consolidation skill, non-blinkers could be more naturally inclined to 
use the ‘correct’ chunking strategy compared to blinkers, and the training 
procedure by Choi and colleagues might nudge participants toward using the 
same optimal strategy.  

To summarize, our novel skill-based approach to cognitive modelling 
resulted in valid models, created using a more natural and human-like 
method. In addition, we believe it shows great potential to generate more 
generalizable and thus more flexible models. Therefore, we will continue 
working on the skill-based approach, by testing the underlying assumptions 
(e.g., people are able to apply previously learned skills to new tasks) and 
creating additional models using this approach for other paradigms. Finally, 
building models with the skill-based approach can lead to interesting new 
perspectives on well-established cognitive phenomena such as the AB. The 
choice of consolidation strategy may play an important role in the AB, 
explaining individual differences as well as instruction and training effects of 
the AB. 



3 
Testing the skill-based approach: 

consolidation strategy impacts 
attentional blink performance 

Humans can learn simple new tasks very quickly. This ability suggests that 
people can reuse previously learned procedural knowledge when it applies 
to a new context. We have proposed a modelling approach based on this 
idea and used it to create a model of the attentional blink (AB). The main 
idea of the skill- based approach is that models are not created from scratch 
but, instead, built up from reusable pieces of procedural knowledge (skills). 
This approach not only provides an explanation for the fast learning of 
simple tasks but also shows much promise to improve certain aspects of 
cognitive modelling (e.g., robustness and generalizability). We performed 
two experiments, in order to collect empirical support for the model’s 
prediction that the AB will disappear when the two targets are consolidated 
as a single chunk. Firstly, we performed an unsuccessful replication of a 
study reporting that the AB disappears when participants are instructed to 
remember the targets as a syllable. However, a subsequent experiment 
using easily combinable stimuli supported the model’s prediction and 
showed a strongly reduced AB in a large group of participants. This result 
suggests that it is possible to avoid the AB with the right consolidation 
strategy. The skill-based approach allowed relating this finding to a 
general cognitive process, thereby demonstrating that incorporating this 
approach can be very helpful to generalize the findings of cognitive models, 
which otherwise tends to be rather difficult.  
 
 
 
 
This chapter has previously been published as: 
Hoekstra, C., Martens, S., & Taatgen, N. A. (2022). Testing the skill-based 
approach: Consolidation strategy impacts attentional blink performance. 
Plos one, 17(1), e0262350.  
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1. Introduction 
People rarely encounter a task that shares no similarities with tasks 

that have been done before. A smart strategy, therefore, would be to analyse 
which components of a task have been done before and which components 
are new, in order to be able to focus on the novel and more challenging 
aspects of a task. Such an approach could explain why people can learn 
certain simple new tasks with impressive speed. It can also explain why 
performance on some tasks is suboptimal: not because they are incapable of 
optimal performance, but because combining elements from a prior learning 
history leads to a suboptimal strategy. Furthermore, it may be a crucial aspect 
of human cognition and be the reason why human behaviour is so flexible 
and reliable.  

The attentional blink (AB) paradigm is a good example of a simple 
but novel task. The objective for the participants in an attentional blink 
experiment is to identify and remember two targets amongst a stream of (to-
be ignored) distractors. Although the task is fairly challenging given that 
items are presented at a rate of about 10 per second, participants only need to 
distinguish the targets from the distractors, remember the targets and report 
them at the end of the stream. Therefore, participants need to be provided 
with very limited instructions and require little time to execute this task 
properly. This impressive speed suggests that people can use skills they 
learned outside of the current context and apply them to the new context 
(Salvucci, 2013; Taatgen et al., 2008). In the example of the AB, in order to 
be able to remember the target stimulus the participants do not need to figure 
out from scratch how to remember a stimulus, they can simply use some sort 
of ‘remembering’ skill they already possess and use it to accomplish the AB 
task demands. This supports the notion that learning most new tasks does not 
require any new knowledge, it simply requires combining existing knowledge 
in a novel way. 

In a previous paper (Hoekstra, Martens, & Taatgen, 2020) we created 
a cognitive model of the attentional blink (AB) based on this idea. This model 
was able to capture the most important aspects of the data reported in this 
paradigm and achieved this result using a novel and more human like 
modelling approach. This approach could provide certain improvements to 
areas in which models are currently lacking, which we will describe in the 
following section. The main objective in the current paper is to collect 
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empirical evidence for the predictions made by this AB model on variations 
of this task. However, for reasons of clarity and completeness, we will first 
restate the reasoning behind the approach used to create the model and its 
contributions as well as the theoretical foundation of the AB model. 
 
1.1. The Skill-Based Approach 
 At its core, the skill-based approach is a theory that explains the fast 
learning people are capable of when presented with a simple new task. This 
finding is hard to explain with cognitive models because they either require a 
long training session or a large amount of task-specific procedural knowledge 
specified by the modeler. The skill-based approach offers an explanation that 
does not require either. It does this by assuming that people can apply 
previously learned procedural knowledge, represented as skills, when these 
skills are useful in the context of the new task. Skill is a common word in the 
literature and has been used to refer to many different concepts. In this paper, 
skill refers to a collection of procedural knowledge that accomplish a certain 
general processing step and that can be used in multiple tasks. In our models, 
skills are represented by a set of operators (i.e., production rules) that can be 
used in different contexts by instantiating the variables depending on the 
context. Interestingly, when this theory is computationally implemented in 
this way, additional benefits to modelling in general become apparent 
because the strategy people employ to facilitate this type of fast learning 
(reusing of skills) seems to be a crucial element of human cognition 
underlying more characteristics of human behaviour that have previously 
been difficult to capture by cognitive models.  

The most striking example of such a characteristic is the impressive 
behavioural flexibility people possess. People are capable of performing a 
wide range of tasks while cognitive models developed to mirror this 
behaviour are generally only capable of performing the specific task they are 
modelling. Presumably, this disparity is caused by the fact that people use 
general and reusable skills while cognitive models usually do not. In addition 
to underlying flexible and robust behaviour in humans, the possibility of skill 
reuse also strongly limits the burden on procedural memory. Instead of a 
different skill for every different context (e.g., a different skill for 
remembering names and remembering capitals), only a limited set of reusable 
skills needs to be stored (e.g., the same ‘remembering’ skill is used for names 



TESTING THE SKILL-BASED APPROACH | 3  

 35 

and for capitals). In summary, reusing skills allows people to behave in an 
efficient, flexible, and reliable way (Taatgen et al., 2008) and translating this 
strategy to cognitive modelling would also allow cognitive models to behave 
in a more efficient, flexible, and reliable way. 

Additionally, the skill-based approach is an important addition to the 
value of cognitive architectures. Cognitive architectures are general 
modelling frameworks in which a large variety of tasks can be modelled (see 
e.g., (Kotseruba & Tsotsos, 2020) for an overview of cognitive architectures). 
Using a cognitive architecture to create a model offers two important 
advantages: (1) models will have a high level of cognitively plausibility since 
they are created within an empirically supported architecture and (2) models 
will be highly generalizable since they all operate within the same basic 
architecture. We believe that these two core aspects of cognitive architectures 
can be strongly improved by considering skill reuse when creating a new 
model (e.g., by applying some principles of the skill-based approach). Models 
that are created with such an approach will be more plausible since the pieces 
of procedural knowledge (i.e., the skills) are validated by using them in other 
(similar) tasks (Hoekstra et al., 2020) and they cannot be (implausibly) (task-
) specific since they need to be general enough to be reused. This will also 
increase the generalizability of a model since not only will the basic structure 
of human cognitive system be considered (the “architecture”) but also how 
this system is used (the procedural knowledge). 

Besides being important for the design of cognitive architectures, the 
skill-based approach may also improve the results of modelling efforts that 
do not make use of a cognitive architecture. Cognitive modelling is a tool 
used in many different fields answering widely varying questions. This 
presents a challenge with integrating this multitude of models into a single 
theory of cognition (Anderson et al., 2004). Possibly, the skill-based 
approach could aid integration of the many models because it allows 
researchers to more easily relate the mechanism they are modelling to the 
general field by explicitly defining the modelled mechanism as part of a more 
general cognitive process. Additionally, the skill-based approach could 
support the creation of a collection of skills from which modelers can draw 
from when building new cognitive models. This would be a huge step towards 
increasing the consistency between models of similar tasks based on the 
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notion that models that perform the same processing steps should accomplish 
these processing steps in the same fashion (i.e., with the same skill). 

We brought the skill-based approach into practice by creating a 
model of the attentional blink (AB) (Hoekstra et al., 2020). This model was 
created using the cognitive architecture PRIMs (Taatgen, 2013, 2014). 
PRIMs (which stands for primitive information processing elements) is based 
on ACT-R and has many of the same basic characteristics (Anderson, 2007; 
Anderson et al., 2004). Cognitive processing in both PRIMs and ACT-R 
revolves around information exchange within the central workspace by 
several modules capable of performing specific cognitive functions (e.g., the 
visual module is capable of visual processing). This way, a cognitive system 
gets built up from the modules capable of performing specific actions that can 
share the results of their actions with each other through the central 
workspace. The modules communicate in such a way that the result of the 
cognitive actions performed by one module can serve as input for the other 
modules. This allows for models to be created that are capable of performing 
a task from start to finish in many different fields (Salvucci, 2006; Taatgen, 
Van Rijn, & Anderson, 2007; Van Rij, van Rijn, & Hendriks, 2012). The 
communication between the modules is controlled in PRIMs and ACT-R in 
largely the same way. In ACT-R this is done by productions and in PRIMs 
this is accomplished by operators, but they have generally the same 
functionality. A crucial advantage of using PRIMs over ACT-R is that PRIMs 
allows for operators (i.e., productions in ACT-R) to be organized into skills. 
A skill is a collection of operators that, combined, are capable of achieving a 
certain well-defined cognitive processing step within one model while still 
being general enough to be reused in other models. The generalizability of 
skills allows for the same skills to be used in multiple models independent of 
which exact task is modelled. Additionally, the PRIMs architecture was 
developed with the intent of breaking up the relatively task-specific 
processing steps of ACT-R into more elementary and general steps. These 
elementary processing steps (the PRIMs) are central to the PRIMs 
architecture and facilitate creating reusable skills because the skills 
themselves are made up from general and elementary processing steps. This 
is the main reason why the PRIMs architecture is well suited for creating 
models based on skill-reuse. 
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1.2. Skill Selection in the Attentional Blink 
Reusing skills is a vital part of human cognition and has many 

advantages. However, in some cases, this reuse of skills might have 
unintended negative consequences. Skills that work perfectly in some tasks 
might lead to sub-optimal performance in other (but highly similar) tasks 
even though the cognitive system is, in principle, capable of perfect 
performance (Taatgen et al., 2009). The Stroop effect (Stroop, 1935) might 
be the most famous instance of such sub-optimal skill selection. People are 
so used to reading, that the ‘reading’ skill is automatically triggered even 
when the task is to identify the colour of a word (e.g. “red”) rather than 
naming the word (e.g. the word “blue”), resulting in prolonged RTs in case 
of mismatch.  

The attentional blink (AB) could be the inadvertent result of a 
comparable situation. The AB is an intensively studied paradigm in cognitive 
psychology (Dux & Marois, 2009; Martens & Wyble, 2010). It refers to the 
finding that the second of two targets (referred to as T2) is often missed when 
it is presented in an interval of 200-500 milliseconds after the first (referred 
to as T1). However, when T2 is presented directly after T1, performance is 
not impaired and participants are able to identify T2 correctly most of the 
time. This Lag-1 sparing shows that people are, in principle, capable of 
remembering both targets, but that sub-optimal skill selection might lead to 
the performance impairment in identifying the second target for somewhat 
longer lags (e.g., at lags 2 or 3). 
 The crucial component of the sub-optimal performance may lie in the 
selection of the particular skill that accomplishes the consolidation of the 
targets in memory. Although there is no consensus on the exact mechanism 
behind the AB, memory consolidation has frequently been implicated to play 
a major causal role in this process (Akyürek et al., 2011) and many theories 
hold memory consolidation as the main factor underlying the AB (Bowman 
& Wyble, 2007; Chun & Potter, 1995; Jolicoeur & Dell’Acqua, 1998; 
Shapiro, Raymond, & Arnell, 1994; Taatgen et al., 2009). These theories 
differ in the fine details, however they all assume that the AB is the result of 
a similar two-stage process. This includes a first stage in which stimuli can 
be processed in parallel followed by a second stage in which only one 
stimulus can be consolidated into memory at the same time. According to 
these theories, this serial consolidation process forms the bottleneck 
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responsible for the AB when T1 and T2 are presented in close temporal 
proximity but not immediately following each other. In these cases, T2 has to 
wait for T1 to be consolidated and, therefore, runs the risk of being 
overwritten in short-term visual memory by the following masking distractor, 
preventing T2 from being consolidated (Giesbrecht & Di Lollo, 1998; Seiffert 
& Di Lollo, 1997). 

Although the attentional blink is often conceived as a fundamental 
limit to human processing, several studies have reported various categories 
of manipulations that have led to substantial reductions and sometimes even 
complete eliminations of the AB, suggesting that the AB does not reflect a 
structural bottleneck. Some of these studies have manipulated the stimuli 
directly, e.g., the AB completely disappears when then the T2 is the 
participant’s own name (Shapiro, Caldwell, & Sorensen, 1997), however 
significant AB reductions have also been reported without manipulating the 
stimuli. One line of studies manipulating participants’ attentional engagement 
in the task have reported a counter intuitive improvement to AB performance 
when participants were focused less on the primary AB task. These 
manipulations include playing music to the participants and encouraging 
them to be distracted while performing an AB task (Olivers & Nieuwenhuis, 
2005), having the participants perform a concurrent secondary task (Taatgen 
et al., 2009), and distracting the participants with task irrelevant motion and 
flickering (Arend, Johnston, & Shapiro, 2006). Additionally, a specific type 
of training has been shown to be beneficial for AB performance (Choi et al., 
2012) and, finally, the existence of non-blinkers (individuals who do not 
display an AB) further questions the fundamental nature of the AB (Martens 
et al., 2006; Martens & Wyble, 2010; Willems & Martens, 2016). 

These manipulations reducing the AB without changing the stimuli 
strongly imply that strategy plays a crucial role in generating (and 
eliminating) the AB. We operationalize strategy as sub-optimal skill selection 
in this paper. The manipulations may have led to a reduced AB by 
successfully changing which strategy (and therefore which skill) participants 
were using to consolidate the targets into memory. It is our hypothesis that, 
instead of consolidating both targets separately, participants have been cued 
to consolidate both targets as a single chunk following these manipulations. 
This is similar to an earlier account, which states that the less engaged 
participants are unable to exert sufficient cognitive control to start 
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consolidating immediately after encountering the first target (Taatgen et al., 
2009). The training may nudge participants towards using the chunked 
consolidation strategy and the non-blinkers might instinctively (or 
accidentally) employ this strategy. The crucial consequence of using the 
strategy of consolidating both targets as one chunk is that the bottleneck of 
stage-two processing as described earlier would not occur. Instead of 
consolidating T1 into memory as soon as it is identified (and therefore 
preventing T2 from being consolidated), T1 consolidation is postponed until 
T2 has been identified as well and both targets are consolidated together in 
one chunk.  

Concrete evidence for the effect of strategy on AB performance was 
provided by an experiment performed by Ferlazzo and colleagues (Ferlazzo 
et al., 2007). This paper reported the results of an experiment in which 
participants were either instructed to report the presented targets (which were 
always a vowel and a consonant) as two separate letters (the standard AB 
instructions) or to report them as a syllable. Interestingly, participants did not 
show an AB in the latter syllable condition. A possible explanation could be 
that participants in the syllable condition adopted a chunking consolidation 
strategy and thereby avoided the AB bottleneck, whereas the participants in 
the separate condition adopted the standard separate consolidation strategy 
and thus fell into the AB trap.  
 
1.3. Modelling the AB using the Skill-Based Approach 

In the paper mentioned at the start of the introduction (Hoekstra et 
al., 2020) we investigated this effect of strategy on the AB by creating two 
versions of a cognitive model of the AB that only differed in their 
consolidation skill. The “consolidate-separate” version of the model 
consolidated the two targets as separate chunks into memory and the 
“consolidate-chunked” version of the model consolidated the two targets as a 
single chunk into memory. The model was created using the skill-based 
approach, which meant that instead of creating a model specifically for the 
AB, we composed the model from skills taken from other models. The skills 
used in both versions of the model were mostly identical, the only difference 
was that the consolidation skill used by the “consolidate-separate” version 
was taken from a model of a complex working memory task (in which 
participants consolidate every target separately) while the consolidation skill 
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used by the “consolidate-chunked” version was taken from a model of a 
simple working memory task (in which participants consolidate multiple 
targets as a single chunk). 

Both versions of the AB model were capable of capturing the data 
reported in the literature (see Figure 1). The “consolidate-separate” version 
of the model successfully showed the most important aspects of data reported 
in the AB literature: Lag-1 sparing, the AB itself and the steady performance 
increase on the later lags (Figure 1a). The “consolidate-chunked” version of 
the AB model, crucially, does not produce an AB. This version of the model 
avoided the AB because memory consolidation is accomplished by a different 
consolidation skill. Instead of consolidating a single target into memory as 
soon as it is encountered, this consolidation-skill postpones consolidation 
until both targets have been detected and consolidates both targets as a single 
chunk into memory. We hypothesized that the syllable instruction condition 
of the study by Ferlazzo and colleagues prompted this consolidation strategy 
and, therefore, allowed the participants to bypass the AB. The “consolidate-
chunked” version of the model indeed showed a good fit with the data 
reported in the syllable condition of the study by Ferlazzo and colleagues 
(Ferlazzo et al., 2007) (Figure 1b). Crucially, the only difference between 
both versions is the consolidation-skill, all other aspects of the model (e.g., 
model parameters) were held equal. 

 
1.4. Current study 
 The skill-based approach to model the AB did not only result in a 
model capable of capturing important aspects of the data reported in the AB 
literature but also constitutes a more naturalistic and human like modelling 
approach. This promising first step provided basic evidence for the potential 
of the skill-based approach. In the current study, we will attempt to collect 
additional empirical evidence for the central prediction of the AB model that 
the employed consolidation strategy greatly impacts AB performance.  

We will do this by first attempting to replicate the previously 
mentioned study conducted by Ferlazzo and colleagues (Ferlazzo et al., 
2007). Secondly, we will perform an experiment centred around the same 
prediction using different targets than commonly used in AB studies. These 
two experiments allow us to test the effect of consolidation strategy on AB 
performance. Additionally, it provides an opportunity to test the flexibility of 
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the models created by the skill-based approach, because the task demands of 
the second experiment are slightly different compared to the original AB task, 
requiring small adjustments to the model. 

 
Figure 1. Model fits for both versions of the AB model. (a) the “consolidate-
separate” model with data reported in a classic AB study (Raymond et al., 
1992). (b) the “consolidate-chunked” version of the AB model with the data 
reported in Ferlazzo et al. (2007).  
 
2. Experiment 1 

Experiment 1 was a replication attempt of the experiment in the study 
conducted by Ferlazzo and colleagues (Ferlazzo et al., 2007) in which the 
targets (a vowel and a consonant) had to be reported as a single syllable. The 
goal was to verify the original findings and to create a complete data set which 
would allow for a more detailed model fit. Although we did not carry out an 
exact replication of the experiment reported in the original paper, the results 
should be comparable since the crucial manipulation was identical in both 
studies. 
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2.1. Method 

2.1.1. Experimental setting 
The research took place in the lab of the Artificial Intelligence 

department of the Bernoulli Institute at the University of Groningen. The 
experiment was run and programmed with OpenSesame (Mathôt, Schreij, & 
Theeuwes, 2012) using the backend PsychoPy (Peirce et al., 2019) on a 
MacOS computer. The participants were seated approximately 0.5 meter 
away from the computer screen, which was a 24 inch LCD Benq XL2420-B 
with a refresh rate of 60 Hz. 
 
2.1.2. Participants 
 All 18 participants (10 female, aged 18 to 25, mean = 21.2 years) who 
took part in the experiment were students of the University of Groningen and 
received a financial compensation of 8 euros for their participation. The 
sample size was based on the large effect size reported by Ferlazzo and 
colleagues (Ferlazzo et al., 2007). Additionally, a power analysis was 
performed utilizing the method provided by (Chow, Wang, & Shao, 2007). 
This analysis was based on the effect size and standard deviation reported by 
the original study and indicated that 14 was the recommended sample size for 
those values. Finally, prior to the experiment, participants signed an informed 
consent form and ethical approval was acquired from the Research Ethical 
Review Committee of the University of Groningen. 
 
2.1.3. Stimuli 

On every trial a sequence of twenty stimuli was presented consisting 
of 18 distractor stimuli (digits) and 2 target stimuli (letters). The distractors 
could be any digit with the exception of 1, 5, and 9. They were randomly 
drawn with the single rule that two subsequent distractors could not be 
identical. The targets on every trial consisted of a vowel-consonant pair 
(creating a syllable). The order of presentation was random but the frequency 
of appearance was balanced; on half of the trials the vowel was presented first 
(i.e., as T1), on the other half of the trials the consonant was presented first. 
The vowel on every trial was randomly drawn from a collection of four 
vowels: ‘A’, ‘E’, ‘I’, and ‘U’. The consonant on every trial could be any 
consonant (except for ‘S’, ‘Q’ or the semi-vowel ‘Y’). The stimuli were 
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presented in white at the centre of the screen on a black background. The font 
used for both the targets and distractors was ‘droid sans mono’ which is the 
default font used by OpenSesame. The size of both the distractors and the 
targets was about 1° of visual angle. 
 
2.1.4. Procedure 

The experiment was set up with a between-subjects manipulation of 
instruction. The participants were instructed to either remember the two target 
letters as two separate letters (the ‘separate’ condition) or as a single syllable 
(the ‘syllable’ condition). Participants in either condition were not aware of 
the other condition. Participants were randomly assigned to a condition, 
which due to a technical oversight led to a small imbalance between the 
conditions. At the end of data collection, 10 participants had been assigned to 
the ‘syllable’ condition and 8 participants had been assigned to the ‘separate’ 
condition. Additionally, the serial position of the second target (T2) relative 
to the first target (T1) was varied (referred to as lag). The lags included in this 
study were lag 1, 2, 3, 4, 5, and 6. All 6 lags were presented 70 times (420 
experimental trials in total). 

Before the experiment started, participants received a short verbal 
instruction from the experimenter. This verbal instruction was given in 
addition to further written instructions on the computer screen which 
participants could read at their own pace. The verbal instructions were given 
because participants’ understanding of the instructions was a crucial part of 
the experimental manipulation. Finally, participants performed 18 practice 
trials, 3 trials per lag. The participants received feedback about their 
performance during the practice trials, but they did not receive any feedback 
during the experimental trials. 

All trials in the experiment consisted of a rapid serial visual 
presentation (RSVP) stream containing 20 items presented at a rate of 10 Hz 
(see Figure 2). The RSVP stream was always preceded by a fixation cross 
presented for one second in the centre of the screen. The stimulus onset 
asynchrony (SOA) in this study (100 ms) was longer than was reported in the 
original study (80 ms). This was decided after an unsuccessful pilot study 
with low accuracy indicating that an SOA of 80 ms was too fast in the current 
design. One reason for this discrepancy with the original study could be that 
the targets were more easily distinguishable from the distractors in the 
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original study (e.g., because of the font), but this cannot be verified from the 
reported information. Finally, at the end of every trial, two white dots 
appeared in the centre of the screen prompting the participants to type in the 
two letters they had seen during the RSVP stream. This response screen was 
identical in both conditions. The participants provided their answers with the 
letter keys on the keyboard without time pressure. Participants required 
approximately 45 minutes to complete the experiment. 
 

 
Figure 2. Schematic representation of a trial in Experiment 1. 
 
 
2.2. Results 

The main goal of Experiment 1 was to replicate the original findings 
as reported by Ferlazzo and colleagues (Ferlazzo et al., 2007) regarding the 
effect of instruction on AB performance. They reported a strongly reduced 
AB in the ‘syllable’ condition. We conducted a highly comparable 
experiment and thus expected that the participants in the ‘syllable’ group 
would show a strongly reduced AB while the participants in the ‘separate’ 
group would show a standard AB. 

However, the data do not support this hypothesis. As can be seen in 
Figure 3a, there were no large differences in T2|T1 accuracy between the two 
conditions at any lag. T2|T1 accuracy refers to the T2 accuracy on trials in 
which T1 was correctly identified. The largest difference exists at Lag 2 
where average performance in the ‘syllable’ condition was slightly higher 
than in the ‘separate’ condition. However, this difference was not statistically 
significant as tested with a logistic linear mixed effects regression model (β 
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= 0.22, SE = 0.42, z = 0.5, p = .59). Furthermore, the data from our ‘syllable’ 
condition differs strongly from the original data and does not show the strong 
AB reduction reported in the original study. In short, the data does not support 
the conclusion that the AB magnitude differs significantly between the two 
instruction conditions and thus failed to replicate the findings of the original 
study. 
 

 
Figure 3. Comparison of replication and original study. (a) the mean T2|T1 
accuracy per instruction condition over the six lags in our study. (b) the mean 
T2|T1 accuracy of the original study by Ferlazzo and colleagues (Ferlazzo et 
al., 2007). In contrast to the original, performance in the ‘syllable’ condition 
(blue line in 3a) did not significantly differ from the AB in the ‘separate’ 
condition (orange line in 3a) in our study. Additionally, the difference in 
general accuracy between our data and the ‘separate’ condition of the original 
study (orange line in 3b) implies a difference in difficulty level of the two 
studies.  
 
2.3. Discussion 
 Ferlazzo and colleagues (Ferlazzo et al., 2007) reported the results of 
an AB experiment in which participants showed a strongly reduced AB when 
instructed to report the two targets as a syllable. We explained these results 
by assuming that these participants employed a different consolidation 
strategy than commonly employed in the standard AB task. Instead of 
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consolidating both targets separately into memory, they may have 
consolidated both targets as one chunk and therefore managed to avoid the 
bottleneck of memory consolidation thought to underlie the AB.  

In Experiment 1 we attempted to replicate these results. The design 
of Experiment 1 was highly similar to the design of the original study 
involving the same manipulation of instructing the participants to report the 
targets either as a syllable or as separate letters and used similar stimuli. 
Nevertheless, this experiment failed to replicate the results of the original 
study: there was no significant difference in AB magnitude between the two 
instruction conditions. 

The main reason for the failed replication may be that we were unable 
to effectively manipulate the participants’ consolidation strategy. This could 
perhaps have been caused by subtle differences in how the instructions were 
phrased. Additionally, the participants in our sample might have been less 
sensitive to the syllable instructions. Possibly, due to differences in linguistic 
and cultural background, the concept of a syllable may not have been as clear 
to our Dutch participants compared to the original Italian participants, and, 
therefore, may have been ineffective in spurring the chunked consolidation 
strategy (Ferlazzo, personal communication, June 26, 2019). Note also that 
the SOA was 20 ms longer than in the original study, which may have played 
a role in the effectiveness of inducing the chunked-consolidation strategy. In 
addition, the targets in the original study may have been substantially easier 
to distinguish from the distractors, which could have improved performance 
and facilitated in the chunking of the targets. This possibility is supported by 
the fact that the participants in the ‘separate’ condition of the original study 
outperformed the participants in both of our conditions. Note, however, that 
the reduced AB in the original study could not simply have been an artifact 
of the stimuli used in the original study. The original study also included a 
‘separate’ condition which showed a mostly standard AB (as can be seen in 
Figure 3b). 

Although the original results were not replicated, it seems unlikely 
that those results were merely a chance finding. There were small differences 
between the original study and the replication which might have prevented us 
from successfully manipulating the participants’ consolidation strategy. 
Furthermore, the original paper reports two additional experiments that both 
supported the results of the experiment we attempted to replicate. To 
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conclude, although the failed replication suggests that the manipulation of the 
original study does not reliably result in the same effect, one may also argue 
that it does not categorically reject the original results but rather shows how 
difficult it is to manipulate participant strategy. Therefore, we conducted 
Experiment 2 involving a stronger manipulation of participant strategy in 
order to accurately test the predictions of our AB model. 
 
3. Experiment 2 

The manipulation we included in the design of Experiment 1 seemed 
to be insufficient to cue participants to use the chunked consolidation 
strategy. An additional manipulation enforcing this strategy is thus necessary 
to create a suitable data set to test the predictions of our AB model. Therefore, 
Experiment 2 was set up, containing targets that were expected to promote 
chunking in addition to the instruction manipulation. 
 
3.1. Method 

3.1.1. Participants 
In total, 82 participants (45 female, average age: 20.9) took part in 

the experiment. All participants were students of the University of Groningen 
who received a financial compensation of 8 euros for their participation. Two 
participants were removed from the final data analysis because too many 
trials had to be excluded (see ‘data preparation’ below for more details). The 
sample size was increased in response to the small effect of the instruction 
manipulation found in Experiment 1. Ethical approval was acquired from the 
Research Ethical Review Committee of the University of Groningen and 
participants signed an informed consent form before taking part in the study. 
 
3.1.2. Stimuli 

The same experimental setting and apparatus was used as in 
Experiment 1. On each trial a sequential stream of twenty stimuli was 
presented, including multiple distractor non-targets and one or two targets. 
The distractors were letters, randomly drawn with replacement, with the 
additional constraint that two sequential stimuli were never identical. The 
targets in this study were chosen in order to promote chunking. They 
consisted of corners of a square, as used in a study by Akyürek and colleagues 
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(Akyurek et al., 2012), shown in Figure 4a. Every corner of the full square 
was 7 pixels wide and both the horizontal and the vertical side were 23 pixels 
long with 8 pixels of white space in between two neighbouring corners. The 
white space in between the corners gave the impression that the corners were 
distinct but, because of the total configuration, still part of a bigger figure 
(e.g., forming a square). On most trials, two targets were presented consisting 
of one or two corners. The exact make up of these two targets was determined 
randomly with the single rule that there could be no overlapping corners (e.g., 
if T1 consisted of the bottom left and the bottom right corner, then T2 could 
not contain any of these corners), see Figure 4b and 4c for examples of 
targets. Both the targets and the distractors appeared in a similar size of 
around 2 degrees of visual angle on the screen. The font used for the 
distractors was ‘droid sans mono’. 

 
Figure 4. Examples of the stimuli used in the study. (a) the full square that 
was used as the base for the creation of the targets. (b) an example target of 
the maximum size (i.e., 2 corners). (c) an example target with only one corner. 
The two targets in one stream could consist of any combination of these 
targets as long as there were no overlapping corners.  
 
3.1.3. Experimental design and procedure 

The experiment was set up with a between-subjects manipulation of 
instructions. Participants in the ‘separate’ group were instructed to report both 
targets separately whereas participants in the ‘combined’ group were 
instructed to report the two targets as a single unit. Participants were not 
aware of the existence of the other condition. Additionally, the lag of T2 was 
varied. In this study lags 1, 2, 3, 4, 6, and 8 were included in the design. All 
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6 lags were presented equally often (50 trials per lag) and the order was 
determined randomly (without replacement). 

Before the experiment started, verbal instructions were provided in 
addition to written instructions on the screen in a similar manner as in 
Experiment 1 to ensure adequate understanding of the task. Additionally, 
participants performed 24 practice trials with two targets (4 for each lag) and 
4 trials in which only one target was presented to further ensure correct 
understanding of the task (28 in total). 

The experiment consisted of 378 trials in total (including practice) 
and took around 45 minutes to complete. Every trial in the experiment 
consisted of an RSVP stream of 20 items with a presentation rate of 12 Hz 
(i.e., every item was on screen for 83.3 ms) preceded by a fixation cross which 
was on screen for 1 second. The presentation rate was slightly faster than in 
Experiment 1 and most AB tasks (frequently presented at 10 Hz) to make the 
task sufficiently challenging for the participants. On most of the experimental 
trials (300 out of the 350 experimental trials) two targets were presented. On 
the remaining 50 trials only one target was presented and the place of the T2 
was taken up by an additional distractor. 

Finally, at the end of every trial one or two response screens appeared 
(depending on the instruction condition). The response screen displayed a 4 
by 4 grid with all response options (16 options in total). These response 
options consisted of all 15 possible targets and an option to indicate that there 
was no second target present or that the target in question was missed. The 
response option screen was identical in both conditions. Each response was 
given by pressing the appropriate key on the keyboard that was associated to 
it (a key was displayed underneath every response option). There was no 
spatial regularity between the location of the response options on the screen 
and the location of the keys on the keyboard. The keys with which the 
participants responded were the numerical keys at the top of the keyboard and 
the letters ‘Q’ up to ‘T’. The ‘Enter’ key was used to indicate that the 
participants had not seen the target. There was no time constraint on the 
responses.  

Note that participants in the ‘separate’ group gave two responses 
while participants in the ‘combined’ group were only required to give a single 
response (Figure 5). This difference may have resulted in some of the 
participants in the ‘separate’ condition to also attempt to remember the order 
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of the two targets. They were not instructed to report the two targets in the 
order in which they appeared and the feedback they received during the 
practice trials also did not depend on this order. However, the participants 
were also not explicitly instructed to report the targets in any order, so it is 
possible that some participants did attempt to remember the order of the 
targets. This might have made the task slightly more difficult for some of the 
participants in the ‘separate’ condition. However, we expected that this 
difference would only influence general accuracy and not AB magnitude. 
Furthermore, we took measures to limit the influence of this difference which 
are described in the next section. The crucial aspect of these measures is that 
the order was not relevant in either condition during data analysis. 

 

 
Figure 5. Schematic overview of a single trial with two targets. Every trial 
started with the presentation of a fixation cross for one second (not shown). 
The presentation rate of the stimuli was 12 Hz with no inter stimulus interval. 
 
3.1.4. Data preparation 

The stimuli used in the study and our hypothesis required a somewhat 
different way to collect the participants’ responses than is common in AB 
tasks. The main difference between our study and most AB tasks is that the 
participants in the ‘combined’ instruction group only provided a single 
response. Because of this, we needed a method to be able to distinguish 
between T1 and T2 accuracy based on this single response. Additionally, in 
order to match the difficulty of responding correctly in both conditions of our 
study, the two responses given in the ‘separate’ condition had to be treated as 
a single response, ignoring the order of the responses, similarly to the 
‘combined’ condition. To resolve these two issues, we transformed our data 
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in the following way. Firstly, we combined the two responses given on every 
trial by the participants in the ‘separate’ condition into a single response. 
After this step, we treated the data from both conditions in the same way. 
Extracting the T1 and T2 accuracy from these single responses was 
subsequently done by comparing the presented T1 and T2 on a trial to the 
response given on that trial. If the response included all the corners belonging 
to one of the targets, this target was counted as correct. On the other hand, if 
the response did not include all the corners presented as one of the targets, 
this target was considered to be incorrect. Trials in which the participants 
reported more corners than were presented were excluded from the data 
analysis (7% of trials). Exclusion was chosen over simply judging the 
response incorrect because it cannot be retroactively determined whether the 
error should be attributed to T1 or to T2. Finally, as mentioned before two 
participants were completely excluded from the analysis because more than 
half of their trials were excluded after this step, leaving a total of 80 
participants in the analysis. 
 
3.2. Cognitive Model 
3.2.1. Original Cognitive Model 

A large portion of the model has already been created as part of a 
previous effort (Hoekstra et al., 2020). For clarity, we will first repeat and 
summarize the methodology of that work before describing the adjustments 
we made in order to adapt the model to the current task demands. 

The initial cognitive model was constructed using the skill-based 
approach as outlined in the introduction. This meant that instead of creating 
a model specifically for the attentional blink it was assembled from general 
skills, mirroring how participants would approach a new task. Based on 
previous research and other models of the AB, we identified four basic skills 
required to successfully perform an AB task. These four basic skills were 
created by developing three models of other tasks that also made use of one 
or more of these skills. These three models were: (1) a visual search model, 
(2) a model of a complex working memory (CWM) task, and (3) a model of 
a simple working memory (SWM) task. Complete descriptions of the three 
basic models and more details on the modelling methodology can be found 
in the previously mentioned paper, where we also show that the models fit 
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the appropriate experimental data for the memory tasks (Hoekstra et al., 
2020). 

After creating the three basic models, all the building blocks needed 
to create the final AB model were present and the AB model was assembled 
in the following way. The visual search model provided the first skill for the 
AB model: the “search” skill, used to distinguish targets from distractors in 
the AB stream. The simple working memory model and the complex working 
memory model provided the other skills. Firstly, the CWM model supplied 
the “consolidate-separate” skill, consolidating one individual item into 
memory. The reason for using this strategy is that in CWM experiments, the 
items that have to be memorized are interleaved with another task. This 
consolidation skill was used for the version of the AB model that modelled 
the standard consolidation strategy during AB tasks. The model of the SWM 
task provided the alternative consolidation strategy. This consolidation skill 
is capable of consolidating multiple items as a single chunk into memory, 
based on evidence in the literature that people do indeed use chunking 
strategies in such experiments (Anderson et al., 1998). This skill was used for 
the alternative AB model. The CWM and SWM models provided two 
additional skills, one responsible for retrieving the consolidated items from 
memory (the “retrieve” skill) and the other responsible for responding with 
the retrieved items (the “respond” skill). Thus, both working memory task 
models and both versions of the AB models used the same “retrieve” and 
“respond” skill.  
 
3.2.2. Modified Cognitive Model 

A modification to one of the skills described above had to be made 
in order to align the model with the demands of the task used for Experiment 
2. This new task is largely the same as the previous task with the exception 
that the stimuli were different. Because of this, the visual search skill had to 
be instantiated differently.  

Instantiation plays a crucial role in facilitating skill reuse because it 
allows for the task-specific information used by a skill to be adjusted without 
changing the procedural rules (i.e., the operators). In PRIMs models, skills 
often contain a certain number of variables which can be specified differently 
depending on the concrete task the model will be performing. For example, 
the same visual search skill is used for the model of Experiment 1 and 
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Experiment 2, but the variable “distractor-type” (specifying the nature of the 
distractors) is instantiated differently (among other variables). In the model 
of Experiment 1 this variable is instantiated as “number” and in the model of 
Experiment 2 this variable is instantiated as “letter”. Because all task-specific 
symbolic knowledge is represented by such variables it becomes possible to 
reuse skills in different contexts without changing the skills themselves.  

In addition, a variable can also be instantiated with another skill. The 
main advantage of instantiating variables with a skill is that for every skill it 
can be specified which skill to perform after it. This is crucial for skill reuse 
since it allows for the general skills to be carried out in any order (e.g., in 
some tasks it is required to immediately respond after retrieving the correct 
answer while in other tasks it might be required to perform some additional 
processing before responding, but this does not change the skill itself). We 
used this characteristic to adapt the four basic skills we created according to 
the demands of the AB task. For example, in the visual search skill a subskill 
determines how to get to the next stimulus. In a standard visual search task 
this is done by an eye movement to the next unattended stimulus, but in the 
AB task it is to wait for a new stimulus in the same location. 

The changes to the visual search skill had one important consequence 
for the performance of the model. Instead of using a declarative memory 
retrieval as selection criterion to distinguish between letters (the targets) and 
numbers (the distractors), a perceptual judgement was used as criterion to 
distinguish between the corners of a square pictured in Figure 2 (the targets) 
and letters (the distractors). The main impact of this change is that the 
perceptual judgment is faster than a memory retrieval. 

After modifying the visual search skill, all skills were put together in 
the AB model which carried out the task in the following way. If a letter (i.e., 
a distractor) is presented, the model ignores this stimulus and waits for the 
next. When a corner of a square (i.e., a target) is encountered, the model 
switches to one of the “consolidation” skills (depending on which version is 
run). If the “consolidate-separate” skill is performed, the model instantly 
consolidates the target into memory and no other operator can be executed 
for, on average, 200 milliseconds (the imaginal delay parameter in ACT-R 
and PRIMs), possibly leading to an attentional blink. The duration of this 
period varied between 50 and 350 ms, randomly determined using a uniform 
distribution. If the “consolidate-chunk” skill is performed, the model 
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postpones consolidation of the target until the second target is encountered 
and keeps performing the task normally, such that no blink occurs in this 
version of the model. After all stimuli have been presented, the model uses 
the “retrieve” skill to retrieve the consolidated items from memory and, 
finally, uses the “respond” skill to respond with the retrieved items. 

The underlying cause for the AB in our model is very similar to an 
AB model created in ACT-R (Taatgen et al., 2009) in the sense that the AB 
is caused by a wrong consolidation decision and not by fundamental 
information processing limits. The crucial aspect of the consolidation 
decision revolves around when the contents of the imaginal buffer (i.e., 
working memory) are committed to longer term storage. In our model this 
moment of encoding is directly linked to the consolidation skills. The 
‘consolidate-separate’ skill encodes an item into longer term memory as soon 
as it encounters a target, while the ‘consolidate-chunked’ skill will only start 
consolidation when both targets have been detected. That the encoding 
moment can depend on the context is suggested by AB studies that use three 
sequential targets (Di Lollo, Kawahara, Ghorashi, & Enns, 2005; Olivers, van 
der Stigchel, & Hulleman, 2007). In these studies, the third target (presented 
at the ‘lag 2’ position in normal AB studies) is reported just as frequently as 
the first target, completely eliminating the classic AB effect. These results 
support the idea that the moment of memory consolidation varies depending 
on context or perhaps strategy. In this conception, the AB is caused by the 
fact that the ‘consolidate-separate’ skill is the default consolidation skill for 
most participants in the AB context and that it can be avoided when 
participants are compelled to use the ‘chunked-consolidation’ skill. 

The predictions of the model (see Figure 6) are similar to the 
predictions by the original PRIMs model shown in Figure 1. These 
predictions were made by running both versions of the model 20 times with 
500 trials per run for a total of 20000 trials (10000 per version). 

 
3.3. Results 

3.3.1. Effect of instruction 
Our main hypothesis concerned the effect of instruction on 

performance in an AB task (Figure 7). We predicted that the participants in 
the ‘combined’ condition would show a smaller AB than the participants in 
the ‘separate’ condition. We chose to define AB magnitude by the slope with 
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which T2|T1 accuracy improved over the lags. This method was 
recommended by MacLean and Arnell (MacLean & Arnell, 2012), especially 
for studies investigating modulations of the AB, and has been used before in 
a similar fashion (e.g., (Beanland & Pammer, 2012)). The main advantage of 
this method over taking difference scores (e.g., Lag 8 – Lag 2) is that it factors 
in all intermediate lags, not just the extreme lags. Furthermore, this method 
allows for quantification of the effect, since it not only provides information 
about whether the slopes are significantly different (i.e., the p-value), but also 
provides an indication of how different the slopes are (i.e., the effect size). 

 
Figure 6. Model predictions for both version of the modified AB model. The 
predictions of the ‘consolidate-separate’ version of the model include a 
mostly standard AB with the deepest point at lag 2 (a). The predictions of the 
‘consolidate-chunked’ version include no AB and a very high overall 
performance level (b). Confidence intervals were calculated using the 
Agresti-Coull method (Agresti & Coull, 1998). 
 
To test our hypothesis, we fitted a logistic generalized linear mixed effects 
model on the T2|T1 accuracy data. This was done with the statistical software 
‘R’ (R Core Team, 2015, 2017) using the package ‘lme4’ (Bates, Mächler, 
Bolker, & Walker, 2015). P-values were extracted with the package 
‘lmerTest’ (Kuznetsova, Brockhoff, & Christensen, 2017) using the 
Satterthwaite method (Giesbrecht & Burns, 1985; Hrong-Tai Fai & 
Cornelius, 1996). 
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Figure 7. T2 accuracy as a function of instruction and lag. T2 accuracy in the 
‘combined’ condition (blue line) has a significantly smaller slope over lag 
than T2 accuracy in the ‘separate’ condition (orange line). Confidence 
intervals were calculated using the Agresti-Coull method (Agresti & Coull, 
1998). 

 
Our final model, testing the effect of instruction on T2|T1 accuracy, included 
two fixed effects (Instruction and Lag) and a random intercept for subject. 
Instruction was a categorical factor with ‘separate’ as the reference level. Lag 
was a numerical factor starting at Lag 2. Lag-1 trials were not included in this 
model because of our definition of AB magnitude (see above). The analysis 
revealed no significant main effect of Instruction (β = 0.0.18, SE = 0.35, z = 
0.5, p = .6) indicating that there was no difference in T2 performance between 
the two instruction conditions at the first level of Lag (i.e., Lag 2). The 
analysis did reveal a significant main effect of Lag (β = 0.29, SE = 0.02, z = 
15.9, p < .0001) with the positive beta coefficient of 0.29 indicating that T2 
performance improved on later lags. Finally, the analysis revealed a 
significant interaction between Lag and Instruction (β = -0.14, SE = 0.02, z = 
-5.6, p < .0001) implying that the slope of Lag is less steep in the ‘combined’ 
condition which indicates that the participants in the ‘combined’ condition 
showed a relatively smaller AB.  

We, additionally, performed a post-hoc analysis of the unexpected 
difference between the two conditions at lags 4-8. In order to perform this 
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analysis, we ran the same model but with Lag as a categorical factor instead 
of as a continuous variable. Entering Lag as a categorical factor allowed us 
to test for an interaction between Lag and Instruction for every level of Lag 
separately instead of testing for an interaction over all levels of Lag 
collectively. This analysis revealed a significant interaction between 
Instruction and Lag at lag 4 (β = -0.34, SE = 0.14, z = -2.3, p = .02), lag 6 (β 
= -0.74, SE = 0.15, z = -4.9, p < .0001), and lag 8 (β = -0.67, SE = 0.16, z = -
4.2, p < .0001) indicating that performance was significantly lower in the 
‘combined’ condition at these lags. 

In addition to analysing the T2|T1 accuracy, we also conducted 
statistical tests on the effect of Instruction and Lag on T1 performance in a 
similar fashion. Our final model included Instruction and Lag both as 
categorical factors and a random intercept for subject. Average T1 
performance differed slightly per condition: 94% in the ‘separate’ condition 
compared to 91% in the ‘combined’ condition. However, this difference did 
not reach significance at any of the lags (all ps > .05). 

Finally, we analysed the performance on the trials where only one 
target was presented. Participants performed very well on these trials, 
correctly reporting the ‘T1’ in 96% of the trials. Performance on these trials 
was almost identical across the conditions with 97% accuracy in the 
‘separate’ condition and 96% accuracy in the ‘combined’ condition. 
 
3.2.2. Model predictions for the Effect of Instruction 

The model predicted different performance patterns for the 
participants in the ‘combined’ condition and in the ‘separate’ condition. In 
particular, it predicted that the participants in the ‘separate’ condition would 
show a strong blink characterized by a serious decline in performance at Lag 
2 and a quick recovery at Lag 3. In contrast, the model predicted that the 
participants in the ‘combined’ condition would not show an AB, performing 
close to ceiling at all lags. Although the model predictions were in the correct 
direction (there was a relatively smaller blink in the ‘combined’ condition), 
the difference between conditions was much smaller than anticipated by the 
model. Therefore, the model predictions regarding the effect of instructions 
were not fully supported by the data. 

The model also predicted that the targets that were used in 
Experiment 2 (see Figure 4) would have an impact on performance. Because 
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it was relatively easy to distinguish the targets from distractors in comparison 
to the ones typically used in regular AB designs, the task in Experiment 2 did 
not require a memory retrieval. The first step done by the model (i.e., 
detecting T1 from the stream of distractors) could therefore be accomplished 
faster, which subsequently caused the model to be faster in completing 
consolidation of the targets. This meant that the entire AB occurred slightly 
earlier, resulting in the atypically quick recovery in model performance at lag 
3. This prediction was supported by the participant data: the AB was deepest 
at lag 2 and recovered quickly at lag 3. 

Although the significant difference in AB magnitude between the 
two groups shows an influence of the instruction manipulation, its impact was 
not as large as predicted by our model. This weaker than predicted effect of 
the experimental manipulation may have been caused by an only partial 
success of the strategy manipulation. The unpredictable nature of strategy 
manipulations, as suggested by the results of Experiment 1, implies that the 
instruction manipulation may have had a different effect on individual 
participants. Some participants in the ‘combined’ condition may have still 
used the more natural separate consolidation strategy, furthermore, some 
participants in the ‘separate’ condition may have been prompted by the nature 
of the targets to adopt the chunked consolidation strategy.  

Additionally, the data analysis revealed an unexpected difference 
between the instruction conditions at the later lags (lags 4-8). Before data 
collection, we expected that the ‘separate’ condition may be slightly more 
difficult because participants might attempt to also remember the order of the 
targets. However, the data analysis showed that this relationship was the other 
way around: rather than better, performance was worse in the ‘combined’ 
condition. This finding is remarkable because the ‘combined’ condition 
should always be less difficult than the ‘separate’ condition. After all, if it is 
possible to report the two targets separately, it should also be possible to 
report them as one combined unit. 

In order to better understand these two issues, a closer look at the 
individual performance patterns of the participants in our study is required. 
To accomplish this, we performed a cluster analysis. This method allowed us 
to extract the most commonly occurring performance patterns in the data and 
to group similarly performing participants together based on the observed 
patterns of behaviour.  
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3.2.3. Cluster analysis 

Cluster analysis is a collection of data driven statistical methods able 
to create groups of participants within a single data set. In our case, we wanted 
to group the participants in our experiment based on their T2|T1 accuracy for 
each lag. Many different clustering methods exist, differing in complexity 
and their applicability to certain data sets. We used the k-means clustering 
algorithm, which groups the data based on various sets of numbers (vectors) 
with which the squared distance from one of these sets is minimized for all 
sets that were observed (in our case, each observed set refers to a single 
participant). The cluster analysis was carried out with the R-package 
‘factoextra’ (Kassambara, 2017). 

Before a k-means cluster analysis can be performed, the k (i.e., the 
number of clusters resulting from the analysis) has to be determined. We 
accomplished this using a common approach actualized in the R-package 
‘NbClust’ (Charrad, Ghazzali, Boiteau, & Niknafs, 2014). This method 
calculates 30 different measures calculating the optimal number of clusters, 
with the most optimal number of clusters being the number that received the 
most support from all 30 measures. For our data, 12 of these 30 measures 
suggested that 3 was the optimal number of clusters. The next most supported 
number of clusters was 2, with 5 measures supporting it. Therefore, we 
performed a k-means cluster analysis on the T2|T1 performance data for all 
lags included in our study with k = 3. This means that our cluster analysis will 
result in three groups of participants with different performance patterns.  

The cluster analysis resulted in three differently sized groups of 
participants who showed distinctly different T2|T1 accuracy patterns (see 
Figure 8). The three clusters together explained 76.8% of the total variance 
in the data. The first and largest cluster consisted of 52 participants of which 
28 came from the ‘combined’ condition and 24 from the ‘separate’ condition. 
It contained the participants who performed remarkably well in our study, 
performing at approximately 90% accuracy and showing no or little AB. The 
second cluster contained 16 participants of which 12 were in the ‘separate’ 
condition, showing a mostly classic AB pattern, but demonstrating little lag-
1 sparing. The final and smallest cluster contained 12 participants of which 
10 had been in the ‘combined’ condition and showed a performance pattern 
that was quite different from the previous two. Whereas these participants 
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performed relatively well at Lag 1 with 70% accuracy, they performed quite 
poorly at the subsequent lags, hardly reaching 40% accuracy.  

 
Figure 8. The three clusters present in the T2|T1 accuracy data. Indicated 
underneath the x-axis label are the number of participants included in this 
cluster per condition. Additionally, the dashed lines depict the cluster 
averages separately per instruction condition. 

 

An interesting aspect of the results of the cluster analysis was that participants 
in the ‘separate’ condition seemed more likely to be assigned to Cluster 2 
while participants in the ‘combined’ condition were more likely to be 
assigned to Cluster 3. Using a Pearson’s chi-squared test on the distribution 
of participants from the two conditions assigned to either Cluster 2 or 3, we 
found a significant difference (χ2 (1) = 7.1; p = .008), confirming that 
condition was an important factor in determining which cluster a given 
participant was assigned to. A comparable result was achieved when the 
distribution of participants from both conditions over all three clusters was 
tested (χ2 (2) = 9.5; p = .009). 

In addition to examining the differences between the instruction 
conditions across clusters we can inspect the differences between the 
conditions within a cluster. Figure 8 additionally shows the average 
performance of participants assigned to each cluster separately for both 
conditions. It reveals that the participants in both conditions performed very 
similarly to the cluster average in Cluster 1 and Cluster 2, indicating that the 
cluster analysis was successful in grouping comparable participants in those 
clusters. However, the participants in Cluster 3 differ in one crucial aspect. 
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The participants in the ‘separate’ condition show a performance pattern 
characterized by a deep and long AB including a return to normal 
performance levels at the later lags, while the participants in the ‘combined’ 
condition show consistently poor performance. This supports the idea that the 
instruction manipulation led participants to adopt different strategies. 
Specifically, it appears that the participants in the ‘combined’ condition rarely 
used the standard ‘consolidate-separate’ skill indicated by the very small 
number of participants showing a regular AB. However, it also suggests that 
quite some participants in the ‘separate’ condition used the ‘consolidate-
chunked’ strategy (reflected in Cluster 1). Finally, it is important to repeat 
that the instructions did not include any specific directions on how the targets 
should be consolidated but merely concerned how the targets would be 
reported. Therefore, the participants were free to consolidate the two targets 
in any way they saw fit without breaking any of the instructions, which may 
have contributed to the unpredictability of strategy choice. 

To conclude, the two previous analyses suggest that the instruction 
prevented participants in the ‘combined’ condition from adopting the 
standard ‘consolidate-separate’ skill, but that it did not prevent the 
participants in the ‘separate’ condition from spontaneously also using the 
same chunked consolidation skill. This again shows the unpredictable nature 
of strategy manipulations and supports the necessity of the cluster analysis to 
get an accurate understanding of the data. 
 
3.2.4. Model Fit Cluster Analysis 

The unreliable change in strategy following the instruction 
manipulation prevents direct comparison of the model predictions with 
participant performance since the model assumes that the manipulation will 
result in a perfect separation of strategies (i.e., that every participant dutifully 
uses the instructed strategy). Therefore, we compared the model prediction to 
the patterns revealed by the cluster analysis. An important side note is that 
we did not perform any model fitting after data collection, the presented 
model outcomes are purely predictions made before the experiment was 
conducted. The performance of the participants in Cluster 1 was compared 
with the version of the AB model that consolidated the two targets as one 
chunk and the performance of the participants in Cluster 2 was compared with 
the version of the AB model that consolidated both targets separately. 
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This strongly improved the fit of the model predictions with the 
participant data (Figure 9). The performance of the ‘consolidate-chunked’ 
version of the AB model lines up well with the performance of the 
participants in Cluster 1. Both the model and the participants performed very 
accurately with an accuracy level of around 90% combined with a very small 
AB (Figure 9a). Additionally, the ‘consolidate-separate’ version of the model 
shows the same pattern of performance as the participants in Cluster 2 (Figure 
9b). Both the model and the participants show a clear AB with lowest 
performance at lag 2 and a quick recovery at lag 3. 

Although the model predicted the correct direction of the effect, it 
did strongly overestimate the size of the effect (i.e., the AB magnitude). This 
might be due to the decreased T1 difficulty in Experiment 2 which might have 
a mediating effect on the AB (Visser, 2007). We chose not to account for this 
in our model because we cannot conclude that T1 difficulty is indeed the 
reason for the smaller AB and because incorporating a potential mechanism 
that might be able to explain it would diminish the generalizability of our AB 
model. A final interesting finding in Cluster 2 was that these participants did 
not show Lag-1 sparing. Although the cause of this cannot be conclusively 
determined, it may be due to the quicker target detection in our study relative 
to other AB studies. This faster target detection may have shifted the AB to 
the left, leading to worse performance at lag 1 but improved performance at 
lag 3. 

Cluster 1 and Cluster 2 are in line with the model predictions, 
however our model does not account for the pattern shown by the participants 
in Cluster 3. The surprisingly low accuracy in this cluster was not predicted 
by the model and the data and design of the current study cannot give a 
definite answer as to what caused this performance pattern. However, it might 
be related to the combined consolidation strategy since it is displayed mainly 
by participants in the ‘combined’ condition. 

 
3.4. Discussion 

The design of Experiment 1 proved insufficient to change the 
consolidation strategy employed by the participants during an AB task. 
Therefore, we conducted Experiment 2 which included targets that promote 
chunking, in addition to the instruction manipulation already present in 
Experiment 1 (see Figure 4).  
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Figure 9.  Model predictions and participant data for Cluster 1 and Cluster 2. 
(a) the predictions of the ‘consolidate-chunked’ version of the AB model 
(dashed orange line) which lines up well with the performance of the 
participants from Cluster 1 (solid orange line). (b) the predictions of the 
‘consolidate-separate’ version of the model (dashed blue line) and the 
performance of the participants in Cluster 2 (solid blue line). Confidence 
intervals were calculated using the Agresti-Coull method (Agresti & Coull, 
1998). 
 
The results of Experiment 2 revealed a significantly reduced AB for the 
participants who were instructed to remember both targets as a single chunk 
(i.e., the ‘combined’ condition) compared to the participants who were 
instructed to remember both targets separately (i.e., the ‘separate’ condition). 
Although this result is in line with the predictions of the model, the 
modulation of the AB was much weaker than predicted by the AB model and, 
therefore, this initial analysis does not (fully) support the model predictions.  

However, it is likely (as suggested by the results of Experiment 1) 
that the instruction manipulation has a different effect on individual 
participants. Therefore, we conducted a cluster analysis on the data in order 
to gain insight into these individual differences. The cluster analysis revealed 
three distinct performance patterns: (1) a large group of participants that 
performed remarkably well on all lags and hardly showed an AB, (2) a group 
of participants experiencing a mostly regular AB although without Lag-1 
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sparing and, finally, (3) a group of participants that performed relatively well 
at Lag 1 but performed very poorly at all subsequent lags.  

The first pattern revealed by the cluster analysis is especially 
intriguing since it shows a very strong modulation of the AB experienced by 
a large number of participants (52). This opposes the common assumption 
that the AB reflects a fundamental limitation of cognition and raises the 
question of how these participants were able to avoid the AB bottleneck. 
Although it cannot be concluded with certainty, it is unlikely that this strong 
modulation is caused by the individual ability of the participants, because of 
the large number of participants in which it was observed. Additionally, it 
cannot be produced by the stimuli alone because the cluster analysis also 
revealed a group of participants showing a mostly regular AB. Therefore, it 
is likely that these participants managed to avoid the AB by using a particular 
strategy.  

We assume that this strategy is the chunked consolidation strategy, 
because the use of the strategy seems to be directly linked to the targets used 
in Experiment 2, which were easily combined into a single chunk of 
information. This characteristic was initially intended to merely support the 
instruction manipulation, however after data collection it seems likely that 
the targets also cued the chunked consolidation strategy and that the 
instruction manipulation was not the only driving factor. Although our data 
cannot prove without question why the participants in cluster 1 managed to 
avoid the AB, their performance suggests they adopted the chunked 
consolidation strategy, which was triggered by a combination of the stimuli 
and instructions which allowed them to avoid the memory consolidation step 
thought to underlie the AB.  

The performance pattern of the participants in the third cluster was 
unexpected and the design of the study does not provide a clear answer to 
why this occurred. However, significantly more participants from the 
‘combined’ condition were assigned to this cluster. This suggests that these 
participants might have struggled with executing the ‘consolidate-chunked’ 
strategy. A crucial difference between the two conditions is that the two 
targets need to be integrated into one object in the ‘combined’ condition while 
this is not necessary in the ‘separate’ condition. It could be that this 
integration proved very difficult for these participants and that this led to the 
low performance at the later lags. The relatively good performance at Lag 1 
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in this cluster also suggests that the main difficulty with these participants 
occurs when there is at least one distractor in between the two targets. In 
accordance with this idea, the participants from the ‘separate’ condition in 
this cluster performed very differently. These participants showed a long and 
deep blink (as can be seen in Figure 8) which suggests no problems with 
integration but mainly points to a pronounced AB. 

An important limitation of the current study is that the model 
predictions were only supported in a relatively ‘post-hoc’ manner. Although 
we consider the outcome of the cluster analysis to be a better reflection of the 
data than the partition into the two original conditions, we acknowledge that 
our initial hypothesis was not confirmed but that we only found support for 
our model in a different manner than we initially conceived. The post-hoc 
nature of the cluster analysis increases the uncertainty that the ‘chunked’ 
consolidation strategy is responsible for the absence of an AB in Cluster 1. 
This uncertainty is smaller for Cluster 2 since the ‘consolidate-separate’ 
strategy is the strategy that participants are commonly assumed to employ 
during standard AB tasks (Dux & Marois, 2009; Martens & Wyble, 2010). 
However, the ‘consolidate-chunked’ strategy is not commonly used to 
explain performance during AB tasks (although it has been suggested before 
(Taatgen et al., 2009)) and the data of the current study cannot unequivocally 
prove that this strategy was responsible for the absence of an AB in Cluster 
1. An experiment using physiological measures might provide more 
conclusive answers, pupil dilation data combined with the ‘deconvolution’ 
method capable of entangling pupil responses to quickly occurring stimuli 
might be a good candidate for that (Wierda, van Rijn, Taatgen, & Martens, 
2012; Willems, Damsma, Wierda, Taatgen, & Martens, 2015). 

To conclude, our model does not provide a full explanation of the 
cognitive mechanisms involved in performing the modelled task. This is 
common in computational models since it is possible to check the model 
predictions against all aspects of the data and therefore exposes every aspect 
of the model that is not fully in line with reality. Following the 
generalizability ambitions of the skill-based approach we decided against 
adjusting model details after data collection (e.g., its parameters) because it 
often reduces generalizability to other tasks. Furthermore, refraining from 
post data collection adjustments also provides an interesting opportunity to 
learn from the incorrect model assumptions. One crucial aspect the model did 
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not predict correctly was the large individual variation participants within an 
instruction condition showed. As previously mentioned, we assume this is 
due to differences in strategy although the data cannot fully exclude other 
possibilities or confirm that the strategies responsible are the ones we 
modelled. A second crucial aspect the model did not account for was that the 
combined instructions would have such a negative effect on so many 
participants. It seems that these participants struggled with integrating the two 
targets when there were one or more distractors in between the two targets. 
These two factors prevented us from analysing the data in the way we 
intended and the post hoc nature of the analysis we performed instead reduces 
the reliability of the conclusions. However, the strong reduction of the AB in 
such a large group of participants is surprising given the existing literature 
and the nature of the targets supports the idea that this might be due to a 
difference in how the targets were consolidated compared to more regular AB 
tasks. 
 
4. General Discussion 
In a previous paper (Hoekstra et al., 2020) a model of the AB was created 
only using skills (pieces of procedural knowledge) that had been created as 
part of other tasks. This resulted in a more naturalistic and human like model 
of the AB that succeeded in capturing commonly reported aspects of the data. 
Additionally, the model offered an explanation for the strong reduction 
(Arend et al., 2006; Olivers & Nieuwenhuis, 2005; Taatgen et al., 2009) and 
sometimes complete elimination (Choi et al., 2012; Ferlazzo et al., 2007) of 
the AB under certain experimental conditions. The model accounts for these 
findings by assuming that participants avoid the AB by using a different 
consolidation strategy (and skill). Instead of consolidating the two targets 
separately, they are consolidated together in a single chunk. This strategy 
allows participants to bypass the bottleneck of serial consolidation commonly 
suspected to be responsible for the AB. 

In the current paper we attempted to collect empirical evidence 
supporting our AB model. We conducted a replication study of an experiment 
which reported that participants did not experience an AB when instructed to 
remember the two targets as a single syllable (Ferlazzo et al., 2007). Our 
replication study failed to show the same effect. This failed replication is 
valuable to report and shows the unpredictable nature of manipulations aimed 
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at changing participants’ strategy. Additionally, the difference in results of 
two very similar experiments (the original study and our replication) 
combined with the large individual differences shown in Experiment 2 
indicate that the specifics of the design, for example the stimuli or the 
composition of the sample, may considerably change the outcome of an AB 
experiment. This strengthens the case for the use of large sample sizes in AB 
studies and shows the importance of including an investigation into the 
individual differences present in the sample (e.g., with cluster analysis). 

Subsequently, we conducted a second experiment which included 
targets that facilitated chunking in order to obtain a suitable data set on which 
we could test our model predictions. The results of this experiment supported 
these predictions in that a significant AB reduction was found, but not to the 
extent predicted by the model. We explained this smaller than predicted effect 
by assuming that the instructions did not have the same effect on every 
participant. Participants in the ‘combined’ condition may still have employed 
the more common ‘separate-consolidation’ strategy while some participants 
in the ‘separate’ condition may have been prompted by the targets to use the 
‘chunked-consolidation’ strategy. 

Therefore, we performed a cluster analysis on the data to gain 
additional insight into these individual performance patterns. This analysis 
revealed the two performance patterns predicted by our model which are 
indicative of the two different consolidation strategies. In addition, it revealed 
a third performance pattern which might be the result of an inadequate 
execution of the chunked consolidation strategy. In conclusion, the direct 
manipulation of consolidation strategy only (the instruction manipulation) 
did not result in full support for our model predictions. However, the 
experiment included an additional indirect manipulation of consolidation 
strategy (the nature of the targets), the effect of which was uncovered by the 
cluster analysis. The combination of the direct and indirect manipulation 
show that it is possible to circumvent the AB bottleneck when a different 
strategy than the commonly presumed ‘consolidate separate’ strategy is 
adopted. 

Most of the components of the AB model were created for a previous 
paper (Hoekstra et al., 2020) using a novel modelling approach which 
involves only (re)using skills taken from other models. This approach is based 
on the idea that people do not consider a new task in isolation but use 
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previously learned procedural knowledge (skills) to perform the new task. 
The skill-based approach is one way of bringing that idea into practice and 
the data collected in Experiment 2 supports its predictions. The model we 
created improved on two of the core advantages of models created within a 
cognitive architecture: cognitive plausibility and generalizability. Our model 
has become more plausible than it would have been without considering skill 
reuse because the skills we used to model the AB have been verified by using 
them in other tasks besides the AB task. This reuse also shows that the 
procedural knowledge (the operators/production rules) used by our AB model 
is not implausibly (task-) specific. Furthermore, the use of general procedural 
knowledge has made the findings of our AB model more easily generalizable 
to other contexts. The fundamental limit to item consolidation can be 
expected in any situation in which people use the “consolidate-separate” skill 
(and be avoided by using the “consolidate-chunked” skill). 

This requirement that the model can only be created from reusable 
skills encouraged a simplistic approach to building the model and resulted in 
a more natural and straightforward explanation of the AB. In our model, the 
AB is simply a consequence of normal cognitive functioning and does not 
require any specific mechanisms primarily aimed at explaining the AB. 
Additionally, our model offers a new perspective on the AB by showing the 
importance of strategy during an AB task. This effect of strategy may be the 
reason why it has been so challenging to arrive at a consensus on the 
mechanisms behind the AB. Previous models of the AB only propose a single 
mechanism responsible for the AB and therefore are unable to account for 
effects caused by differences in strategy. However, our data and model 
suggest that strategy plays a crucial role and that a singular explanation of the 
AB might not be sufficient. 

Another advantage of the more simplistic modelling approach 
imposed by the limitations of the skill-based approach is the improved ability 
to relate the proposed mechanisms to other (general) theories and models. 
Our AB model is not as extensive and detailed as other AB models nor does 
it propose a completely original mechanism to be responsible for the AB. 
However, this mechanism is explicitly defined as part of a general processing 
step (memory consolidation), which strongly aids the integration of the 
insights gained from this model with existing theories. As mentioned before, 
there is no consensus on the mechanism responsible for the AB (e.g., see 
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(Olivers & Meeter, 2008; Wyble, Bowman, & Nieuwenstein, 2009) for 
alternative accounts), and we do not claim that our model resolves all the 
differences between the many models of the AB. However, using the skill-
based approach, we were able to precisely identify a general cognitive process 
potentially responsible for the AB. This link to more general theories 
generally lacks in other AB models (which, on the other hand, are often more 
detailed than our model). However, this link is highly valuable. It strongly 
improves the generalizability of models and theories which can reduce the 
division between the different models of the AB and, in general, between the 
sub fields of cognitive psychology. 

To summarize, the main benefit of using the skill-based approach is 
the improved balance between specificity and generalizability. Models 
created using the skill-based approach are specific enough to explain a certain 
phenomenon but, at the same time, are general enough to be easily linked to 
more general theories and other models. 

The skill-based approach in its current form can nevertheless be 
improved in multiple ways. Firstly, creating models with this approach is 
more cumbersome and time consuming compared to standard modelling 
practices. The skills need to be built in a way that suits multiple tasks 
increasing the difficulty of creating these skills and they need to be verified 
by creating extra models that use the same skills. Secondly, applying the skill-
based approach is complicated by certain assumptions made by many 
cognitive architectures. For example, the strict rule-based firing of production 
rules in ACT-R makes it very difficult to develop general production rules 
that can be used in multiple tasks. PRIMs allows more flexibility because 
operator selection is partly based on activation, however explicit condition 
checking is still required for reliable behaviour. 

In our future work we will work on improving these aspects of the 
skill-based approach. However, the two main benefits of this approach can 
also be achieved by partial implementation of the principles of the skill-based 
approach. Models can become more flexible and human-like by considering 
that operators/production-rules are likely to be reused in other contexts when 
building a model. Additionally, the fact that our AB model could be easily 
related to other models and general theories is largely due to dividing the 
cognitive processes involved in the modelled task into general processing 
steps (i.e., skills). 
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In conclusion, building cognitive models based on the idea of skill-
reuse can create novel insights and presents important improvements to 
certain aspects of cognitive modelling. In the case of the AB, it has shown 
that the AB can be a simple consequence of normal cognitive functioning and 
that it can be avoided using an alternative consolidation strategy. Because the 
AB model was created with general pieces of procedural knowledge (skills), 
the model reached a level of flexibility and robustness which is difficult to 
achieve without such an approach. Finally, we have shown that the skill-
based approach is capable of producing valid models and new predictions. 
 



4 
Obstacles to the skill-based 

approach: why is skill reuse so 
hard for cognitive architectures?  

Skill reuse is a commonly accepted aspect of human cognition but it has 
been difficult to translate to cognitive architectures. We developed the skill-
based approach which enables modelers to create models composed of 
skills created for other tasks but it does not (yet) support fully reusable 
skills. We will discuss three factors that prevent full reusability: inflexible 
WM, rigid goal selection and all-or- nothing condition checking. The 
factors are discussed in the context of the architecture PRIMs but they also 
apply to many other cognitive architectures. Finally, we discuss possible 
solutions to alleviate these issues. 
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1. Introduction 
Many tasks share considerable overlap in the cognitive elements required to 
complete it (Lee & Anderson, 2001). This cognitive overlap is one of the key 
fundamental principles underneath the attempt of cognitive architectures to 
arrive at a unified theory of cognition. In cognitive architectures the overlap 
in cognitive elements is put into practice by defining the blank slate cognitive 
system (i.e., the architecture) consisting of modules and buffers that underlies 
all behaviour (J. R. Anderson et al., 2004). This approach has led to successful 
modelling of a wide range of tasks and paradigms; however, a crucial 
additional consequence of the cognitive overlap between tasks has never 
received much attention. Not only can the same architecture be used to 
complete many tasks, this architecture can also very often be used in the same 
way (i.e., with the same procedural knowledge). Incorporating this into 
cognitive architectures would take into account the fact that huge proportions 
of our capabilities have been acquired through a long process of development 
and learning while currently only the innate aspects of cognition are 
considered. In order to bring this idea into practice, we have developed the 
skill-based approach to cognitive modelling. 

This approach can be valuable for multiple reasons. Firstly, models 
will mirror human behaviour more closely which will improve model fit 
(Stearns & Laird, 2018). Secondly, reusing procedural knowledge is a large 
contributor to the flexibility people possess in executing various tasks. 
Incorporating it into cognitive modelling and AI could strongly improve 
flexibility and robustness (Taatgen et al., 2008). Finally, the large range of 
models created in the different fields of cognitive science can be integrated 
more easily if they all draw from one pool of basic building blocks. 
 
1.1. PRIMs 
We have explored the idea of skill reuse in the cognitive architecture PRIMs 
(Taatgen, 2013). We will give a short introduction to PRIMs here and in the 
relevant sections further down the paper. (See Taatgen (2013) for a complete 
introduction). PRIMs is based on ACT-R and inherits many of its properties. 
It is a cognitive architecture built up from distinct cognitive modules whose 
actions are controlled by “production-rules” (operators in PRIMs) and it 
contains a similarly functioning declarative memory system. An important 
distinction between the two architectures is that the operators in PRIMs are 
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built up from smaller units than ACT-R’s production rules. These smaller 
units are the primitive information processing elements (PRIMs). PRIMs are 
considered the basic elements of cognition and are only capable of either 
moving or comparing pieces of information in the workspace. Although a 
single PRIM is not very powerful, combinations of PRIMs (i.e., operators) 
are able to execute complex cognition on the same level as ACT-R. These 
primitive operations are assumed to be universally applicable to any task and 
therefore can provide low-level mechanisms of transfer. They are also 
relatively easy to implement in neural architectures (Stocco, Lebiere, & 
Anderson, 2010). The central concept of the skill-based approach, a skill, is 
one level above an operator. A skill is a reusable collection of operators that 
perform a part of a task. Although a skill is larger than an operator, carrying 
out a skill still only takes a small amount of time in the order of one second 
or less.  

The low-level transfer combined with the higher-level concept of a 
skill make PRIMs well-suited for exploring the skill-based approach although 
(most of) its principles can be implemented in other cognitive architectures 
as well.   
 
1.2. The Skill-Based Approach 
The central idea of the skill-based approach is to construct models of tasks in 
the same way humans would approach a new task. When people are 
confronted with a new task, they do not need to figure out from scratch how 
to complete this task but instead can rely on previously learned knowledge 
which has proven successful (Salvucci, 2013). A good example of this are the 
experimental tasks typical of cognitive psychology. Participants have usually 
never encountered these tasks before, yet they are quickly able to figure out 
what to do. Since they do not have time to learn new procedural knowledge 
specific to this task, it suggests that they reuse existing procedural knowledge. 
Concretely, the skill-based approach assumes that learning (almost) any new 
task merely means composing it from already existing skills.  

A fundamental challenge to emulating this human-like flexible 
behaviour in cognitive models is balancing generalizability with accuracy. 
Different tasks come with different contexts and the model needs to be 
general enough to function in all these contexts but also specific enough to 
produce the same result regardless of that context. The common solution to 
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this challenge is to allow for dynamic variable binding (Greff, van Steenkiste, 
& Schmidhuber, 2020); that is, allow variables to take on different values 
depending on the context. Although this solution is commonly adopted across 
different types of AI, there is no consensus on how it should be implemented 
(Feldman, 2013). The solution adopted by PRIMs is variable instantiation; a 
skill is created with general variable names which are only defined 
(instantiated) when the skill is used in a new context. However, there is no 
principled way in which this mechanism is implemented in the architecture. 

More exact details can be found in our previous publications on the 
skill-based approach in which we propose the method (Hoekstra et al., 2020) 
and test the validity of its predictions (Hoekstra, Martens, & Taatgen, 2022b), 
but in short the skill-based approach works as follows. The first step of the 
skill-based approach is determining which basic skills are responsible for 
performing the modelled task based on previous literature. This step comes 
forth out of the fundamental principle of the skill-based approach that every 
task is a composition of basic processing steps that have been done (many 
times) before. For example, in the attentional blink (Martens & Wyble, 2010) 
model we have constructed (Hoekstra et al., 2020), the four basic skills we 
included were ‘visual search’, ‘consolidation’, ‘retrieval’, and ‘response’. 
Skills that were reused from other models. This first step increases the 
generalizability of a model because the ubiquity of its basic building blocks 
allows it to be easily linked to other models and theories. The second step 
involves creating and testing the validity of the basic skills. In this step, other 
models which include (some of) the basic skills are built and these models 
are compared with human data. In our attentional blink model, we completed 
this step by creating a model of a simple visual discrimination task and two 
working memory tasks (a simple working memory task and a complex 
working memory task). This step is necessary to create the basic skills and it 
provides evidence for the accuracy of these skills. The final step involves 
adapting the basic skills to the context of the task of interest. In PRIMs, the 
cognitive architecture we used, this is done by instantiating the skills. 

Following this method, we succeeded in constructing a model of the 
attentional blink (AB) that consisted of elements (skills) that worked in both 
the original task (e.g., the complex working memory task) as well as the AB 
task. This shows that it is possible to create cognitive models out of elements 
created for other tasks and that models can be created by merely assembling 
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already existing procedural knowledge. However, the process of creating 
these skills was quite laborious and it often required making modifications to 
the basic skills that seemed too “AB-specific” to be part of general basic skills 
(Hoekstra et al., 2020). In short, we succeeded in creating a model with 
reused skills but not with fully reusable skills. That is, we managed to create 
an AB model out of skills that are also parts of other models (and are therefore 
reused) but these skills cannot be freely reused in every other task that 
includes the same basic skill (i.e., they are not fully reusable). However, this 
is crucial; making the step from reused skills to reusable skills would realize 
the full potential of the skill-based approach. It would standardize the 
knowledge used in cognitive models as well as increasing the ease with which 
skill-reuse can be implemented during model building. 

 
1.3. Current paper 
In the current paper, we will discuss which factors cause the difficulties in 
creating fully reusable skills. We will describe three open questions that 
complicate the implementation of the skill-based approach, specifically in 
PRIMs but some also apply to ACT-R. Although these open questions 
demonstrate practical problems in implementing the skill-based approach, 
they also point to fundamental unanswered questions about how flexibility 
should be balanced with cognitive plausibility as well as learnability. The 
questions will be illustrated by challenges we encountered while using the 
skill-based approach to model the updating tasks described by Miyake and 
colleagues (Miyake et al., 2000). 
 
2. Inflexible Working Memory 
In PRIMs and ACT-R the main purpose of working memory (WM) is to keep 
relevant information quickly available and to support the building of new 
chunks. WM in ACT-R does not consist of one dedicated system but instead 
consists of two modules that together function as WM: declarative memory 
and the problem state (Nijboer, Borst, van Rijn, & Taatgen, 2016). 
Declarative memory is responsible for storing chunks while the problem state 
takes care of keeping the chunks immediately available and is capable of 
creating new chunks. 

In PRIMs, WM does consist of a single dedicated module responsible 
for keeping information readily available and for creating new (long-term) 
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memory chunks. This module is called the imaginal buffer; however, it is 
often referred to as the WM-buffer and, for clarity, we will follow that 
convention. The WM-buffer in PRIMs works as any other buffer in the 
architecture in the sense that it has slots in which information can be placed 
and retrieved without any penalty. The slots function independently of one 
another and are numbered starting with one. Information is placed in and 
withdrawn from WM by a PRIM. For example, placing information presented 
on the screen in WM can be done by the PRIM V1 -> WM1 and information 
can be taken out from WM by a PRIM such as WM1 -> AC2. Information 
can also be moved around within WM, for example WM4 -> WM1. The use 
of numbered slots in WM makes it much easier to reuse skills and operators 
compared to using named slots such as in ACT-R. However, it is not flexible 
enough to facilitate full reusability because the numbered slots are often still 
too rigid. 

The inflexible working memory causes two main issues. The first is 
that the slots that will be used by the skills in the separate tasks need to be 
calibrated to work together. This requires a lot of effort from the modeler and 
although it is manageable for smaller and homogenous models, it quickly 
becomes unwieldy when the model involves many skills and different types 
of tasks. This is not a fundamental limitation, but it does present an obstacle 
to the adoption of the skill-based approach, especially when skill reuse is only 
a secondary interest. The second issue is more fundamental. Reusability of 
skills depends on the availability of the WM slots used in the original task. 
When these slots are not available in a different task, the skill cannot be 
reused. For example, the ‘read’ skill in our updating model stores the newly 
presented item in WM5 because the first four slots are used to keep track of 
the previously presented items. This might become problematic if the model 
would move on to a five-item memory task because the WM5 slot will be 
used to keep track of the fifth item. This illustrates that WM is not flexible 
enough unless a skill is designed while keeping every possible combination 
of tasks in mind and that full reusability is not yet possible. 

Besides causing practical difficulties in using the skill-based 
approach, the issues with WM also point to a more fundamental question of 
how WM should be implemented in a cognitive architecture. The challenge 
is that WM needs to be extremely flexible on the one hand, but also consistent 
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with the limitations that have been identified in the literature on working 
memory.  
The buffer-based design of PRIMs’ WM has the advantage of being relatively 
flexible. It can be used in many types of tasks and it can store many types of 
information, additionally it provides a means of keeping information readily 
available. However, it lacks some plausibility because it assumes perfect 
(decay-free) storage of its contents which is not fully in line with the WM 
literature. 

The alternative to using a buffer for WM is to store items in 
declarative memory. This is an attractive option, because it puts no hard limit 
on the number of items, but it still imposes a soft limit through memory decay. 
However, using declarative memory as WM also has a strong limitation in 
the sense that the information is not readily available, and has to be retrieved 
first. Given that items can only be retrieved one at a time, it is impossible to 
interrelate two or more items, which is a necessity for almost all tasks. 

In conclusion, the practical issues we encountered while exploring 
the skill-based approach not only point to implementation issues but also to 
fundamental questions of how flexibility and plausibility should be balanced 
in WM. 
 
3. Rigid Goal Selection 
The goal module plays a central role in determining which production will 
fire in both ACT-R and PRIMs. Although the goal buffer plays a similar role 
in both architectures it does not work in the same way. In ACT-R the goal 
buffer influences production selection through the goal-state chunk present 
in the goal buffer and exerts its influence in a very explicit manner. Only 
production-rules which condition side matches the pattern in the goal-state 
chunk will be considered for selection. This way, the goal module is largely 
responsible for guiding the model towards firing the right productions at the 
right time. 

The goal module in PRIMs has the same general role and also is 
responsible for the broad strokes ‘supervision’ of the model through a task. 
However, the goal module in PRIMs executes its role in a different and less 
explicit way. Operator selection in PRIMs is determined by the activity of the 
operators in memory. The most active operator gets selected first and its 
conditions are compared to the current context, if the conditions match the 
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context the operator will fire. If the conditions do not match, the next most 
active operator will be retrieved and its conditions tested. This process repeats 
until an operator with matching conditions is found which will then fire. The 
goal buffer has a large influence on this process by spreading activation to 
operators that are associated with the current goal. This biases the selection 
process towards selecting operators that match the goal without guaranteeing 
that such operators will fire (noise or non-matching conditions can still 
prevent it). The subtle but forceful influence the PRIMs goal module exerts 
allows for organized behaviour while still allowing for flexibility within a 
task and, importantly, between tasks. The limitation related to the goal 
module is not how the goal module impacts operator selection but instead in 
how the goal itself is selected. 

As is the case with all exchanges of information in PRIMs, goals are 
also determined by a PRIM. A new goal becomes active by a PRIM updating 
the value in G1 (the first slot of the goal-buffer). Although it is also possible 
to create situations in which multiple goals are active, for simplicity sake we 
will focus on a situation with one active goal. Goals are defined by symbols 
(similar to ACT-R) and therefore setting ‘respond’ as the goal can be done by 
the PRIM respond -> G1, if there is a skill with that same name. There are 
no rules about when or how the goal-determining PRIM needs to fire, 
however the architecture is designed in such a way that the most logical place 
for such a PRIM is in the final operator of a skill. This is very useful for 
simple models because it allows for an easy to understand (and flexible) way 
in which the model moves from one goal to the next. However, it becomes 
limiting in more complex models, especially in tasks in which the order of 
the goals is not always the same. 

Determining the next skill within the previous skill essentially means 
that the next goal is decided by the previous goal. This severely limits full 
reusability of a skill because the role of a skill differs depending on the task. 
In some tasks, a certain skill might only be used at the end of a task (and 
therefore would not even require a next-skill operator) while in a different 
task the same skill might be a central part of the task and be used multiple 
times within a single trial. Switching skills gets further complicated by 
condition checking (which will be discussed in the next section) because 
different conditions might require the same skill to be performed next and, 
therefore, require separate operators. Often these limitations lead to a large 
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array of different operators whose only function is switching to the next skill 
in different situations. For example, the ‘update-WM’ skill required four 
different operators only for switching between skills in the three tasks we 
modelled due to its centrality in those tasks. Extending the ‘update-WM’ skill 
to more tasks would only introduce more of such operators even though the 
basic procedural knowledge of updating WM would remain the same. This 
puts the cognitive plausibility of this way of switching skills into question, 
because it implies that every skill includes many operators that are only 
responsible for switching to the next skill. 

This exposes two core limitations that are present in the current 
conception of PRIMs (and also ACT-R). Firstly, skills take care of two 
separate aspects of cognition: they perform the cognitive processing steps and 
are responsible for goal selection. That is, they are responsible for both 
selecting the goals and ensuring that they are achieved. This makes skill reuse 
difficult because, as our example shows, the basic procedural knowledge 
(which takes care of achieving a certain goal) might remain stable in most 
situations but the goal selection process might be different. Separating goal 
selection from goal execution will make skill reuse much easier. The second 
limitation is related to the type of information on which goal selection is 
based. Currently, goals are purely selected based on declarative knowledge. 
At the start of a task, by creating the goal-switching operators a ‘plan’ for the 
task is laid out and the model is practically incapable of deviating from this 
path. This way of goal selection is too rigid and overlooks the fact that people 
select goals based on a plan combined with their perception of the current 
situation (Altmann & Trafton, 2002). 

Our modelling suggests that goal selection should be separated from 
execution and be made more flexible. However, this is not an easy task. The 
basic assumptions of PRIMs do not consider goal selection a special case of 
cognition and posit that it should be accomplished by a PRIM. Furthermore, 
increasing the flexibility of goal selection leads to questions of how this 
flexibility can be balanced with reliability since a more flexible model will 
also be more unpredictable. 
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4. Condition checking 
The final factor limiting the creation of fully reusable skills we will discuss 
here is related to a fundamental aspect of both ACT-R and PRIMs, namely 
condition checking. In both architectures, productions consist of a condition 
side (left-hand side) and an action side (right-hand side). The conditions are 
compared to the content of the buffers before the action side is executed. In 
ACT-R, the conditions of all productions are evaluated in parallel and when 
multiple productions match the current contents of the buffer the production 
with the highest utility factor will be chosen. In PRIMs, condition checking 
occurs serially starting with the first condition of the most active operator. 
When one of the conditions does not match, the next active operator will be 
tested until a matching operator is found. This takes a certain amount of time 
at first, but after a while most conditions will be compiled into one execution 
cycle and the most active matching operator will usually be picked without 
any time cost (comparable to ACT-R).  

Conditions are thought to be a fundamental part of procedural 
knowledge in both architectures. Therefore, full skill reusability means that 
both the action as well as the condition side need to be reused. Although the 
action side usually works in both tasks, the condition side is more 
problematic. After all, a different task usually means a different context to 
which the conditions will be matched. This often means that the condition 
side of an operator needs to be adapted to the new task which hinders 
reusability. Conditions that are especially challenging are those that are 
related to specific situations in a certain task. For example, in one of the 
updating models WM needed to be updated based on information in the visual 
buffer while in a different model it had to be updated based on information in 
WM itself. In this situation the action PRIMs (the right-hand side) were 
identical, but a different operator still needed to be created to accommodate 
the difference in conditions. 

This leads to the question to which extent conditions are reused. The 
quick learning displayed by humans suggests that some previously learned 
condition-action associations are retained when a new task is performed, 
however our modelling implies that this does not apply to all of them. Take 
for example the operator depicted below.  
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operator respond-value-WM1 { 
 V1 = *report-instructions 
 WM1 <> nil 
 ==> 
 *action -> AC1 
 WM1 -> AC2 
 } 

 
This operator gives the response (stored in WM1) at the end of a trial by 
performing an action (e.g., pressing a key on a keyboard). In this case, the 
second condition can be retained without problem because reporting WM1 
would always require WM1 to not be empty. However, the other condition 
which tests whether the report instructions are currently on-screen should 
probably not be retained because it depends on the task.  

The example suggests that not all conditions are created equal and 
that some conditions should not be reused. Especially conditions aimed at 
representing a task-specific situation hinder skill reuse suggesting that 
conditions might not be the best way to represent task-specific context.  
 
5. Potential solutions 
The three limitations we discussed impede the practical usefulness of the 
skill-based approach but we believe that they will not present a fundamental 
roadblock to fully reusable skills. The limitations we discussed are largely 
consequences of the reliance of cognitive models on the input of task-specific 
details from the modeler. Therefore, these issues might be alleviated by 
implementing learning mechanisms with which the model can figure out task-
specific details independently or by providing more principled ways in which 
the modeler can specify such details. 

The first limitation we discussed involved WM. The key issue here 
is that the inflexible WM demands a lot of coordination from the modeler 
because the model is not aware of the identity of the WM contents. A possible 
way to alleviate this would be to store the to-be remembered value together 
with its meaning (e.g., store the value “four” together with “current-
stimulus”). This cannot be done in the current conception of the WM; 
however, the DM module does possess the required properties. By storing 
chunks in the DM (such as depicted below) the model would be aware of the 
value as well as the identity.  
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ISA fact 
SLOT1 binding-fact 
SLOT2 current-stimulus 
SLOT3 four 

 
In this situation, the current PRIMs imaginal buffer (i.e., the WM buffer) 
would be used almost exclusively to facilitate the creation of new chunks and 
as a problem-state (Borst, Taatgen, & van Rijn, 2010). Importantly, in order 
to keep the high flexibility of a buffer-based WM, these chunks should be 
accessible without the need of an explicit retrieval request but instead through 
means of a PRIM. For example, by allowing a PRIM to directly create 
bindings (e.g., four -> *current-stimulus).  

This way of organizing WM provides a better balance of flexibility 
and plausibility, because chunks are subject to decay and retrieval times, 
however the information in WM is still easily accessible because it can be 
directly done by a PRIM. Furthermore, this design of the short-term memory 
would also provide a mechanism for the variable binding problem discussed 
earlier in the introduction. The dynamic bindings required to facilitate 
flexible model behaviour could be stored in this same manner. Ideally, the 
model would create these flexible binding chunks independently (e.g., when 
‘reading’ the instructions) which would tremendously improve skill 
reusability as well as model autonomy. 

The second limitation we discussed involved the manner in which the 
next skill is selected in PRIMs. This issue boils down to how the next goal is 
placed in the goal buffer. In the current situation, the previous skill usually 
places the next skill in the goal buffer but this method creates a large amount 
of procedural knowledge only aimed at switching between skills. 

There is a possible solution that fits the PRIMs philosophy. Instead 
of having one active skill, two skills can be active: one skill for execution, 
and one skill for planning. The execution skill carries out the actions required 
to achieve a particular subtask, and then terminates itself. The planning skill 
is then responsible for selecting a next skill. This would be a big improvement 
over the current situation because it allows for goal switching separate from 
goal execution based on both a pre-made plan as well as the current context. 
Additionally, it allows for a flexible representation of task-specific 
information without the need to include such information in the general skills. 
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The final limitation we discussed concerned condition-checking. The 
limitation to skill reusability associated with condition-checking is that every 
task has a different context which makes it likely that the original conditions 
will not apply. Additionally, our modelling showed an important distinction 
between generally applicable conditions and task-specific conditions and 
raised the question whether conditions are the best way to represent task-
specific context. 

Testing conditions is one way to establish a mapping between the 
current state of the cognitive system and the action to be taken, but not the 
only one. Neural network approaches to modelling operators often use 
inspiration from the basal ganglia. The basal ganglia are considered to be 
central to forming context-action mappings and recent modelling efforts have 
created models capable of creating such mappings. These mappings provided 
reusable context-action associations while retaining flexibility by means of 
small changes to the connection weights in the network (Stewart, Bekolay, & 
Eliasmith, 2012; Taatgen, 2020). Such functionality could be incorporated in 
production-based architectures by specifying (or learning) connections 
between certain items in the workspace and operators. For example, the first 
condition of the previously mentioned example could be replaced by 
specifying a positive connection (through spreading activation) between the 
report-instructions and this operator. This would make it more likely that it 
gets picked when such instructions are on the screen but it does not prevent 
the operator from firing when they are absent. This functionality is already 
possible in PRIMs but it might be helpful to explicitly make it part of an 
operator definition (in addition to conditions) which is not only practical but 
also highlights that these connections are reused. 
 
6. Conclusion 
The skill-based approach is a promising addition to the arsenal of a cognitive 
modeler; however, the previous discussion has shown that there are still some 
important limitations. The inflexible WM demands a lot of coordination from 
this modeler, the unnatural goal selection requires a large amount of 
inefficient procedural knowledge and the all-or-nothing condition checking 
severely hampers the versatility of operators. Resolving these issues will 
require some substantial modifications to the cognitive architecture we 
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employed and to production-system architectures in general. We proposed 
some solutions in this paper which we will explore in a subsequent study.  

The current paper resulted from attempting to apply the skill-based 
approach to a series of basic tasks that make use of skills that are widely used. 
The difficulties we experienced show that current cognitive architectures do 
not support the creation of fully reusable skills. This does not mean, however, 
that the skill-based approach is completely ineffective, current architectures 
do support the use of reused skills and capitalizing on this characteristic will 
already result in more valid and generalizable models. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 
A skill-based model of executive 

function 

The skill-based approach is a promising modeling approach which allows 
modelers to create models based on the idea of skill reuse. However, as we 
discussed in the previous chapter there are three limitations that prevent full 
adoption of the ideas of the approach and the creation of fully reusable skills. 
In this chapter we propose solutions to all three of these limitations. These 
solutions will be tested by creating models of the executive function tasks 
described in Miyake et al. (2000). The solutions made it much easier to create 
models using the skill-based approach and, additionally, the resulting model 
of executive function (consisting of eight smaller models) provided interesting 
insights into the nature of the EFs as described in Miyake et al. (2000). Our 
model suggested a fundamental cognitive strategy for each of the three EFs. 
Additionally, it showed that the individual differences present in executive 
functioning might be caused by differences in procedural knowledge instead 
of differences in the (more) stable architectural mechanisms that this 
procedural knowledge acts upon.  
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1. Introduction 
The skill-based approach is a novel modelling approach with great potential 
to improve generalization and integration across models made for different 
tasks and in different fields. It accomplishes this by allowing modelers to 
mirror the way in which humans learn to accomplish a new task during model 
creation. The fundamental aspect of human behaviour that the skill-based 
approach attempts to integrate into modelling practice is skill-reuse. People 
can learn new tasks very quickly, which suggests that they reuse already 
existing procedural knowledge and apply it to the new situation (Hoekstra, 
Martens, & Taatgen, 2020). In this view, learning a new task does not require 
(a lot of) learning of new procedural knowledge but merely consists of 
assembling the correct blocks of knowledge that are already available. In the 
previous chapter we discussed three limitations we encountered in PRIMs 
while applying the skill-based approach to the executive function tasks 
described in Miyake et al. (2000) and proposed solutions to these limitations. 
In this chapter, we will describe how we implemented these solutions in 
PRIMs and we will test whether they have the intended effect by creating a 
model of the tasks described in Miyake et al. (2000) using the skill-based 
approach. Additionally, the model that would result from this effort could 
shed light on certain unknown aspects of executive function. 

All our efforts using the skill-based approach have been based on the 
cognitive architecture PRIMs (Taatgen, 2013). Although PRIMs was 
developed with skill-reuse in mind, there were still certain limitations present 
in the architecture and in how we used the architecture to create reusable 
skills. The previous chapter contains a more detailed discussion of the 
limitations and the situations in which they become problematic. Here we will 
shortly repeat these limitations and subsequently discuss the worked-out 
solutions and how they were implemented in PRIMs. We will first shortly 
discuss the PRIMs syntax in order to facilitate understanding the examples 
containing PRIMs model code.  
 
1.1. PRIMs syntax 
The central elements of any PRIMs model are the operators. Operators consist 
of a left-hand side with conditions and a right-hand side specifying the actions 
taken when the conditions are true. The conditions can be specified using two 
symbols which are also often used in other programming languages. A test 
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for equality is specified with a single equals sign (=) and a test for inequality 
is specified by a less than and a larger than sign (<>). The border between 
condition and action PRIMs is indicated by two equal signs and a larger than 
sign (==>). An action PRIM is indicated with a minus sign and a larger than 
sign resembling an arrow (->), this arrow represents the moving of 
information from one buffer-slot to another. For example, the PRIM V1 -> 
WM1 represents the copying of information from the first slot of the visual 
buffer to the first slot of the working memory buffer. Finally, PRIMs allows 
for the use of symbolic constants. These are indicated by plain text identifying 
the constant in question. For example, the concept of ‘one’ is represented by 
the constant one. However, when a constant is preceded by an asterisk (*), 
it represents a variable. This means that the meaning of this ‘constant’ 
depends on a binding and can therefore be different in different models or 
even change at different times within a single model. Depicted below in Table 
1 depicts an example operator which includes all six elements of the basic 
PRIMs syntax. 

Table 1. Example operator adapted to include all six basic syntax elements. 

PRIMs code Meaning 
operator left-hand Name of the operator 

V3 = *target Check whether V3 is the value associated with target 
WM1 <> left Check whether WM1 does not contain left  

==> Indication that the following lines will be the action 
PRIMs 

V1 -> WM1 Copy the current content of V1 to WM1 
nil -> WM2 Place nil in WM2, meaning that it will be emptied 
Respond -> G1 Copy the constant respond to G1 

 
1.2. Overcoming the limitations to the skill-based approach
1.2.1. Working Memory 
 PRIMs’ WM buffer is relatively flexible in the sense that it can deal 
with any type of information that can be defined in the workspace, however 
it has limited flexibility when it comes to reusing the procedural knowledge 
(i.e., the operators) required to interact with this system. Like all other 
buffers, the WM buffer has numbered slots. It works similar to all the other 
buffers in the architecture because information can be moved in and out of 
the slots by a PRIM. For example, information can be moved into WM with 
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a PRIM such as V2 -> WM1 and out of WM with a PRIM such as WM2 -> 
AC2. The limitation to reuse introduced by this design is that the numbered 
slots imply that every slot in WM is a different location in WM. Although 
this might be true on a lower level of analysis (two different items are not 
stored in the exact same ‘location’ in WM, whether that is a different group 
of neurons or in a different firing pattern), on the higher level of analysis on 
which PRIMs usually operates it is not helpful and severely limits skill reuse. 
For most models it is only necessary to indicate that something should be held 
in WM, the exact location is of secondary importance. Because location 
cannot function as the indication for identity, it is also required to store the 
identity of an item alongside the value. Finally, these system characteristics 
should be achieved in a cognitively plausible way. 

Aspects of working memory in PRIMs, and also in ACT-R, have 
always been modelled either by using WM buffer (or imaginal buffer in ACT-
R), or by relying on declarative memory. For example, the working memory 
strategies discussed earlier in this thesis in the context of attentional blink all 
rely on temporary storage in declarative memory. The modification to 
PRIMs’ working memory system we proposed was to add the functionality 
of short-term bindings, which is an extension of the idea to use declarative 
memory as part of working memory. A binding is a short-term connection 
between a symbol in the architecture (e.g., current-count) and a value (e.g., 
four). This binding is represented by a chunk in declarative memory (DM) 
such as depicted below. 
 

ISA binding 
SLOT1 current-goal-chunk523 
SLOT2 current-count 
SLOT3 four 

 
The binding makes a connection between an identity and a value because they 
are stored in the same chunk. Additionally, this is done in a cognitively 
plausible way because PRIMs’ DM is based on the DM in ACT-R which in 
turn is based on a long line of memory research (Anderson, 1983, 2007; 
Anderson, Bothell, Lebiere, & Matessa, 1998). Although a binding is 
represented by a chunk and behaves the same in DM, it cannot be interacted 
with in the exact same manner. It is possible to search for the value of an 
identity (e.g., what value is associated with current-count?), but not the other 
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way around (e.g., which identities are associated with the value three?). 
Instead bindings are created, updated and retrieved by means of a PRIM. 
Bindings are created by assigning a value to a symbol in the same way as 
information is moved into the WM buffer (V1 -> *current-count) and 
retrieved in the same way as information is moved out of the WM buffer 
(*current-count -> AC2). Updating an existing binding is not fundamentally 
different from creating a new one, it is accomplished with the same PRIM 
and it results in the creation of a new chunk without the previous chunk being 
deleted. Bindings are a compromise between explicit retrievals (which 
always requires two operators, and can only retrieve one item at a time) and 
storing intermediate results in buffers, which is immediate but inflexible. 
Retrieval of bindings is part of execution of an operator, but still has the 
properties of a regular retrieval in the sense that it costs time, and may fail. In 
addition, creating a binding incurs the costs normally associated with creating 
a chunk in the working memory buffer (200 ms). 
 
1.2.2. Skill selection 
 The second limitation is the way in which control is handed over from 
one skill to another. Similar to the situation with WM, skill selection is not 
assumed to be an exceptional cognitive process and is therefore assumed to 
be accomplished with a PRIM as any other cognitive process. For example, 
selecting the skill to consolidate an item is done with the PRIM consolidate -
> G1. There is no pre-specified way in which skill selection occurs, although 
the design of the architecture makes it likely that the next skill is selected as 
the final step of accomplishing the previous skill. This system is quite flexible 
because changing which skill should be set as the next skill can be changed 
without fundamentally changing the operator through instantiation (Taatgen, 
2013). However, when tested to the limit it does become a limitation because 
a skill does not always have a clear-cut ‘end-goal’ (which decides the moment 
in which the next skill is placed in G1), and it can have multiple next skills 
within a single task and especially between multiple tasks (this leads to a large 
number of operators only aimed at switching to the next skill) or there perhaps 
might not even be a next skill. 

The solution we proposed to alleviate the issues associated with skill 
selection does not entail an entirely new mechanism but rather a new method 
how the next skill should be selected. We proposed that skill selection should 
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be accomplished by a separate skill which is executed in between two skills. 
Instead of selecting the next skill, the previous skill places the ‘select-next-
skill’ skill in G1. This skill then, based on the current context, determines 
which skill should be accomplished next by placing that skill in the goal 
buffer. This skill is created specifically for one task and consists of several 
operators that place the next skill in G. Depicted below is an example of such 
a select-next-skill skill. This skill is taken from the category switch task. The 
operators in this skill are fairly straightforward, all they do is place the next 
skill in G1 depending on the current context. The first operator places the shift 
skill in G1 (i.e., it selects the shift skill as the next skill) when the current 
context matches the context that requires the model to switch to the shift skill. 
The second and third operator are similar, however they accomplish a switch 
to the retrieve-characteristics skill and the select-next-skill-category-switch 
(which does nothing, resulting in the model waiting for the next stimulus) 
respectively. Because the operators are always made specifically for every 
task, it is not necessary to use bindings. 
 
define skill select-next-skill-category-switch { 
  
 operator go-to-shift { 
 V1 <> G2 
 V2 = nil 
 ==> 
 shift -> G1 
 } 
 
 operator go-to-retrieve { 
 V1 <> nil 
 V2 <> nil 
 RT1 = nil 
 ==> 
 retrieve-characteristics -> G1 
 } 
 
 operator wait-for-next { 
 V1 = G2 
 V2 = nil 
 ==> 
 select-next-skill-category-switch -> G1 
 } 
 
}  
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This is not a fundamentally different approach to the current goal selection 
mechanism because it is still done by a PRIM. However, the context in which 
a goal should be selected becomes much more flexible (because it only 
competes with other goals instead of all operators in a skill and can be set 
specifically for every task). Furthermore, the goal selection operators do not 
compete directly with the ‘action’ operators of a skill which makes model 
behaviour much more straightforward, especially in multi-task situations. 
Finally, this approach can capture the early learning effects when people start 
performing a simple new task. The operators in this skill will gradually 
undergo production compilation representing the increased performance 
speed when the precise steps for accomplishing a task become clear.  
 The new mechanism for goal selection allows skills to be picked 
purely based on the contents of the buffers (i.e., the state of the global 
workspace) by means of the creation of new operators. PRIMs currently does 
not include a mechanism with which these operators can be created by the 
model itself. However, since operators are merely chunks in declarative 
memory, this mechanism should be well within its capabilities. 
 
1.2.3. Condition checking 
 The final limitation to PRIMs concerns condition checking. 
Condition checking is the manner in which a PRIMs model determines which 
operator to select at what moment. Every operator consists of a condition-
side and an action-side. The condition-side contains the context in which an 
operator should be executed represented as conditions (statements about 
states of buffers which can be true or false). The action-side consists of the 
PRIMs which should be executed when these conditions are met. The 
operator selection process in PRIMs occurs in the following way. First, the 
most active operator is retrieved and its conditions are tested. If any of the 
conditions are false, this operator is rejected and the next-most active operator 
is retrieved and its conditions tested. This process is repeated until an operator 
is found with only true conditions. Although conditions can contain 
instantiable variables which adds some level of flexibility, they are still not 
flexible enough to work in a multi-task model. In order for a model to work 
as intended, conditions often need to be specified quite precisely. The 
conditions required for an operator to work in one task usually do not translate 
fully to a different task which means that an operator cannot be reused. 
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 In order to alleviate the problems associated with this issue we 
proposed that the use of conditions should be minimal and that it should be 
combined with an additional mechanism. This additional mechanism is 
spreading activation. Spreading activation is a large aspect of PRIMs and 
ACT-R and it plays an important role in the memory systems of both 
architectures. In PRIMs, operators are simply seen as chunks in declarative 
memory and are therefore also affected by spreading activation. Additionally, 
PRIMs and ACT-R assume that chunks also receive activation from all other 
modules in the workspace (e.g., when the number three is on the screen, this 
might spread activation to a chunk containing the number three). These two 
assumptions combined make it possible that certain connections between 
operators and the context could be learned and that they might play a large 
role in operator selection and could replace some conditions. Take for 
example the operator below. 
 

operator report-value-WM1 {  
V1 = report  
WM1 <> nil 
==> 
press -> AC1 
WM1 -> AC2 

} 
 
This operator gives the response (stored in WM1) at the end of a trial by 
performing an action (e.g., pressing a key on a keyboard). In this example, 
the second condition will always be useful for this operator because WM1 
should not be empty when the model reports what is stored here. However, 
the first condition is task-specific, it requires V1 (the first slot of the visual 
buffer) to contain report. Although giving a response will often be 
accompanied by a request to give this response, it does not necessarily need 
to be the case. Therefore, a better way of defining this operator would be to 
remove the first condition and replacing the second condition with a positive 
association between this operator and the presence of report in V1. In our 
proposed method that can be done in the following way. 
 
set-sji("report-value-WM1","input","slot1","report",1) 
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This function creates a positive association between the operator called 
‘report-value-WM1’ and the chunk ‘report’ when it is present in slot1 of the 
input buffer (which is V1) with a value of 1. This means that whenever 
‘report’ is in V1 that this operator will get an additional activation of 1, 
making it more likely to be retrieved. 
 This approach to operator selection allows for much improved 
flexibility in model behaviour. One improvement is that allows for 
disjunctions: 'report' in V1 can activate the operator, but also 'write' in V1 or 
any other buffer. More complex combinations are also possible, for example 
that two out of three conditions need to be satisfied. Minimizing the use of 
conditions is very valuable from a skill-reuse standpoint since it greatly 
reduces the chance that a condition prevents an operator from matching a new 
context. Additionally, allowing for spreading activation between the buffers 
in the workspace and operators leads to controlled but highly flexible model 
behaviour. Furthermore, these associations are very simple and could result 
from a simple reinforcement learning process. Such a process is a good 
candidate for how the Basal Ganglia learns and determines action selection 
(Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Cisek & Kalaska, 2010; 
Redgrave, Prescott, & Gurney, 1999) and has successfully been used in recent 
modelling efforts to create context-action mappings (Stewart, Bekolay, & 
Eliasmith, 2012; Taatgen, 2020). PRIMs also possesses a mechanism capable 
of learning such connections, although for the current modelling project we 
set these by hand. 
 
1.3. Executive functions 
In order to test the modifications we proposed, we set as a goal to model the 
nine basic tasks from Miyake et al. (2000) using the skill-based approach. In 
addition to providing a solid test case for the skill-based approach, the final 
models can also shed light on two aspects that are not yet fully clear in the 
executive functions literature: (1) what are the active mechanisms of 
executive function and (2) are executive functions learned procedural 
knowledge or do they rely on some level of innate ability?  
 Executive functions (EF), also referred to as executive or cognitive 
control, refer to a group of processes thought to underlie conscious and active 
cognitive performance: tasks in which you have to actively take control and 
cannot rely on a ‘automatic’ pilot. For example, solving complex equations, 
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playing chess, or writing a concise introduction to a complex and broad topic. 
Performing a task that relies on executive control is often effortful (van der 
Wel & van Steenbergen, 2018) and high performance is difficult to sustain 
for a long time (Thomson, Besner, & Smilek, 2015). People who excel at 
applying EFs often also excel in other aspects of their life: academic success 
(Borella, Carretti, & Pelegrina, 2010; Gathercole, Pickering, Knight, & 
Stegmann, 2004), job performance (Bailey, 2007) and even physical health 
(Miller, Barnes, & Beaver, 2011; Riggs, Spruijt-Metz, Sakuma, Chou, & 
Pentz, 2010) are all related to high executive function. In contrast, poor 
executive function has been often shown to play a big role in psychological 
disorders such as addiction (Baler & Volkow, 2006), depression (Tavares et 
al., 2007) and schizophrenia (Barch, 2005). Over the years, a certain level of 
consensus has started to arise that there are three core EFs (Huizinga, Dolan, 
& Van der Molen, 2006; Lehto, Juujärvi, Kooistra, & Pulkkinen, 2003). 
These are (1) the ability to switch between tasks and mental sets, (2) the 
ability to monitor and update working memory, and (3) the ability to inhibit 
responses and reflexes. Different researchers use different labels for these 
EFs, ranging from more specific to broader. Early research on EFs (Duncan, 
Johnson, Swales, & Freer, 1997; Logan, 1985; Miyake et al., 2000; Rabbitt, 
1997; Smith & Jonides, 1999) looked at the three core EFs as fundamental 
building blocks of controlled cognition and defined the three EFs with these 
three narrow labels: shifting, updating, and inhibition. These labels, however, 
are limited and later research has argued towards broadening the scope of 
these three core EFs and the labels associated with them. For example, 
Diamond (2013) suggests that better terms would be: cognitive flexibility 
instead of shifting, working memory instead of updating and inhibitory 
control instead of inhibition. Although the broader terms are valuable we will 
mainly use the labels as defined by Miyake et al. (2000) because we are 
mostly interested in EFs as fundamental building blocks and in order to keep 
unity in terminology between our paper and the original. 

The first core EF, shifting or cognitive flexibility, refers to the ability 
to switch between performing different tasks, operations, or ‘mental sets’ 
(Monsell, 2003). This is often understood to involve disengaging from an 
irrelevant task or mode and subsequently shifting engagement to a more 
relevant task or mode. Although shifting is often conceived as switching 
between tasks, it is also very common to require shifting within a task. For 



 98 

example, to safely get to your destination while driving a car it is crucial to 
be able to switch between attending the traffic situation and navigating to 
your destination. 

Updating refers to the ability to maintain a correct representation of 
the current situation in working memory. This requires the maintenance of 
currently important information as well as the replacing of no longer relevant 
information. A crucial element of the Updating function as identified by 
Miyake et al. (2000) is that it uniquely refers to active working memory 
functioning and does not include passive storage of information. For 
example, again in driving, it would include updating the current speed after 
seeing a speed sign but it would not include changing the speed based on 
subtler road-design features (e.g., trees alongside the road aimed at slowing 
drivers down). 

The final core EF, inhibition, refers to the ability to actively prevent 
dominant or automatic responses or actions from occurring when needed. 
Inhibition is a broad term which is also used in many other areas of research, 
for example in neuroscience to refer inhibitory (in contrast to excitatory) 
effects of one neuronal population on another. However, inhibition in this 
sense is only used to refer to the active and deliberate prevention of responses, 
habits or reflexes. Additionally, the use of the term inhibition is only 
conceptually and does not mean to imply a mechanism. It does not mean to 
suggest that inhibition is achieved by suppressing (i.e., lowering the 
activation) of the automatic response, it is also plausible that the suppression 
is achieved by boosting the alternative (Kimberg & Farah, 1993) or, perhaps, 
through a combination of both processes. For a final driving example, 
inhibition of the distracting effect that a conversation with someone on the 
passenger seat might have, could be accomplished by suppressing attention 
to the passenger or by boosting attention to the driving task. 
 As was already mentioned in the previous paragraph, EFs are usually 
defined in terms of their effects and usefulness in achieving active and 
controlled cognition. However, a description of cognitive mechanisms 
responsible for the EFs is often lacking. This is a rather limited view which 
adds to the big variation in conceptualization and used methods employed by 
researchers in different fields or even within a field (Jurado & Rosselli, 2007; 
Miyake & Friedman, 2012). Additionally, it results in a limited understanding 
of how to improve executive functioning (Morrison & Chein, 2011; 
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Shipstead, Redick, & Engle, 2012) and why deficits in EFs can lead to 
impaired cognitive performance and psychological disorders (Brown, 2006; 
Duijkers, Vissers, & Egger, 2016; Pennington, 1997). To our knowledge, our 
model is the first attempt at modelling all three core EFs in a single cognitive 
model (consisting of numerous smaller models) and attempting to arrive at 
one unitary mechanism for each of the three EFs. Because we only performed 
simple model fits we do not claim that the mechanisms we implemented for 
the three EFs are complete. However, our model can be very valuable in 
generating more precise hypotheses about these mechanisms, especially 
because we used the skill-based approach. 
 The skill-based approach is ideally suited for specifying the general 
mechanism underlying each of the three EFs because it is based on the same 
basic idea as the study of executive functions: a few basic abilities are 
responsible for a wide range of behaviour. These few basic abilities are the 
general skills in a skill-based approach model and the core EFs in the theory 
of executive function. This allows for a model to be created in such a way 
that one of the main difficulties in the study of executive function, task 
impurity, does not become an issue. Task impurity refers to the fact that EFs 
cannot be measured directly and always have to be embedded in a task 
(Miyake & Friedman, 2012). This makes it impossible to get a clean idea of 
an individuals’ executive performance in a single task because the variance 
attributable to executive functioning will be hidden within task-related 
variance (e.g., differences in shifting ability in a task-switching experiment 
will be clouded by the specific proficiency in this task). EFs can only be 
measured by combining performance on multiple different tasks, allowing for 
the task-specific variance to be ignored and the EF to be extracted. This is 
exactly what the skill-based approach allows a modeler to do; it allows a 
modeler to create models of multiple tasks while keeping the generalizable 
aspect constant (i.e., the basic skill or the EF). 
 The exploration of the cognitive mechanisms underlying the three 
core EFs, also allows us to investigate to what extent executive function is an 
innate ability and to what extent it is a learned behaviour. There have been 
many studies investigating whether executive function can be improved. 
Many of these studies have shown that executive function can indeed be 
improved (Bergman Nutley et al., 2011; Diamond & Lee, 2011; Karbach & 
Kray, 2009; Klingberg, 2010). Working memory (i.e., updating) in particular 
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seems to be sensitive to training (Gray et al., 2012; Kamijo et al., 2011). 
However, concerns have been raised about the ecological validity of these 
studies and the effects of this training often do not show much transfer (Blair, 
2017; Morrison & Chein, 2011; Shipstead et al., 2012) indicating that these 
training programs only have a limited effect on the core EF. Overall, EF 
training seems to have an effect on performance, however the extent of this 
improvement and the reasons why are not clear. Our model can provide an 
answer to these questions, because these seemingly paradoxical results are 
not so surprising when they are considered through the lens of the skill-based 
approach.  

One of the crucial assumptions of the skill-based approach is that 
every task is accomplished by selecting the appropriate (previously learned) 
skills. The tasks used to study each of the three core EFs are very similar and 
likely rely on the same basic skill (e.g., the Updating tasks all use the 
‘updating’ skill and the Shifting tasks all use the ‘shifting’ skill). We consider 
these basic skills the procedural aspect of an EF. However, this procedural 
aspect is not capable of influencing behaviour by itself since all it can do is 
move information around the central workspace. In order to achieve what the 
procedural knowledge sets out to do, it requires the tools to accomplish it. In 
the context of the PRIMs architecture, these tools are the architectural 
mechanisms that the procedural knowledge acts upon. We consider these 
architectural mechanisms the automatic aspect of an EF. The procedural 
aspect of an EF can be improved either through exploration of the most 
effective operators or by training the operators through production 
compilation; however, PRIMs does not cover to what extent architectural 
mechanisms can be improved through training. The difference in trainability 
of these two aspects explains why training on one EF task can only 
occasionally improve performance on a secondary task. Although both tasks 
measuring the same EF rely on the same architectural mechanism, training 
does not result in improved performance because the architectural 
mechanisms (the automatic aspect of an EF) cannot be improved. This means 
that training is only possible when both tasks require the exact same basic 
skill. If they do not rely on the same basic skill (this can also be the case for 
tasks using the same EF), then training will not transfer across the tasks. In 
the perspective of the skill-based approach, training effects are caused by 
training the basic skills required to do an EF task and not the underlying 
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automatic mechanisms. This perspective also has implications for how 
individual differences in EFs might arise. Individual EF differences are often 
exclusively considered to be caused by stable fundamental differences in 
cognitive functioning (the automatic aspect in the skill-based approach 
perspective) (Carlson, Moses, & Claxton, 2004; Friedman & Miyake, 2017; 
Miyake & Friedman, 2012). However, learned basic skills might be an 
additional important underlying source of these individual differences.  
 
1.4. Current study 
The current study has two main goals: (1) test the proposed modifications 
aimed at improving skill reusability and (2) test the perspective of the skill-
based approach on the nature of EF. The first goal will be accomplished by 
creating eight models of simple executive function tasks. These tasks are very 
similar to the tasks used by Miyake et al. (2000). Being able to successfully 
model these tasks using the skill-based approach suggests that our 
modifications have been successful and that creating models using the skill-
based approach is possible. The model created this way will be an extensive 
model of executive functions which can suggest possible cognitive 
mechanisms. Additionally, the skill-based approach predicts that differences 
in how well the required basic skills are learned can be a large contributor to 
individual differences on EF tasks. This hypothesis will be tested by running 
the models with different levels of training on the basic skills and comparing 
the individual differences present in the models because of these differences 
to human data. 
 

2. Method 
2.1. Data collection procedure 
The data was collected as part of a larger study on the correlations between 
the basic EF tasks and higher-level tasks similar to the design by Miyake et 
al. (2000). Participants completed the nine basic tasks in one first session and 
the higher-level tasks in a later second session. Unfortunately, this larger 
study was never published and certain details about the data collection 
procedure are therefore lost. This is not ideal; however, the information we 
do have is sufficient for our current purposes because we only perform simple 
model fits which do not rely on intricate manipulations or small details. 
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 The data for the larger study was collected in a lab in the Psychology 
department of the University of Groningen in two sessions with several 
participants participating simultaneously. Participants were seated in 
separated cubicles and did not interact during the session. For our current 
purposes we will only look at the nine basic tasks included in the first session. 
The experiments were run and programmed using the experimental software 
E-prime (Psychology Software Tools, 2012). All experiments were 
conducted on a computer with the Windows operating system and 
participants provided responses by pressing keys on a keyboard.  

In total 73 participants took part in the experiment. These participants 
were students of the University of Groningen who received partial course 
credit for participating. Participants signed an informed consent form before 
taking part in the study and ethical permission was acquired from the ethics 
committee psychology of the University of Groningen. Seven participants 
only completed six or fewer tasks and were therefore removed from the 
dataset, leaving 66 participants in the final dataset on which we performed 
the analyses. 
 
2.2. The tasks 
The final collection of tasks we modelled included eight tasks: three shifting 
tasks, three updating tasks, and two inhibition tasks. The original task battery 
also included a third inhibition task, a stop-signal task, however there was a 
problem during data collection which prevented the accuracy from being 
logged correctly during no-go trials. Because of this, we decided to exclude 
the stop-signal task from further analysis and only included the eight tasks 
which did not experience any problems. Four of the eight tasks in our battery 
were also used by Miyake et al. (2000: the keep track task, the letter memory 
task, the antisaccade task, and the Stroop task. Some of them were slightly 
modified to better fit the data collection setting (e.g., pen and paper responses 
were changed to keyboard responses). Additionally, it included four tasks that 
were not included in Miyake et al. (2000): the category-switch task, the 
colour-shape task, the colour-letter task, and the spatial two-back task. 
 The following three tasks were used as shifting tasks: 
 Category-switch. In the category-switch task, a word was presented 
on the screen. The participant was asked to answer one of two questions about 
the presented stimulus, either (1) “is the stimulus alive?” or (2) “is the 
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stimulus bigger than a football?”. What question was asked was determined 
randomly for each trial. In order to successfully perform this task, a 
participant was required to quickly switch between the two possible task sets. 
Additionally, 150 ms before the stimulus was presented, the to-be asked 
question was indicated by presenting the category on the screen (“alive” for 
the first question or “size” for the second question). The cue and the stimulus 
remained on the screen until a response was given. The response was given 
by pressing ‘f’ on the keyboard for yes and ‘j’ for no. The participants did 
one practice block of 20 trials and two experimental blocks of 54 trials each 
for a total of 108 experimental trials. Participants’ performance on this task 
was measured by calculating the difference between the average reaction time 
(RT) on trials on which a switch was necessary and trials on which no switch 
was necessary (i.e., switch cost). 
 Color-letter. The colour-letter task is highly comparable to the 
number-letter task in Miyake et al. (2000) and in Rogers & Monsell (1995). 
Participants were required to switch between determining whether a letter 
was a vowel or a consonant or between whether the letter was blue or red. 
The letter was presented in one of four quadrants on the screen. The trial type 
was indicated by the position of the letter. When the letter was in the two top 
quadrants, the participant should indicate whether the letter was a vowel or 
consonant. When the letter was in the bottom two quadrants, the participant 
was to indicate the colour. The position of the letter was different on every 
trial and rotated clockwise over the quadrants, always starting in the lop left 
quadrant. A letter was on the screen for 5 seconds or until the participant gave 
a response. This response was given by pressing ‘f’ to indicate vowel or red 
and ‘j’ to indicate consonant or blue. The participants did one practice block 
of 24 trials (6 full rotations) and two experimental blocks of 56 trials each (14 
full rotations) for a total of 112 experimental trials. The performance measure 
taken from this task was the difference between average RT in trials on which 
the letter is in the first or third quadrant (switch trials) and trials on which the 
letter was in the second or fourth quadrant (no-switch). 
 Color-shape. The colour-shape task was very similar to the other two 
tasks in that participants had to switch between two ways of responding to 
the stimulus. In this task, the stimulus on the screen was a figure (triangle or 
square) in a certain colour (blue or red). The participants had to indicate the 
identity of the shape or the colour of the shape. The aspect to attend was 
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determined randomly on every trial. The type of trial was indicated 150 ms 
before the shape was presented by either presenting ‘k’ (which stands for 
‘kleur’ in Dutch – ‘colour’ in English) or ‘v’ (which stands for ‘vorm’ in 
Dutch – ‘shape’ in English). The informative cue made it easier to understand 
which aspect to attend. The cue and the stimulus stayed on-screen until a 
response was given. This response was given by pressing a key on the 
keyboard, the ‘f’ to indicate either red or triangle and the ‘j’ to indicate blue 
or circle. The participants did one practice block of 12 trials and two 
experimental blocks of 54 trials each for a total of 108 experimental trials. 
Similar to the category-switch task, the performance measure was the 
difference in RT between switch trials and no-switch trials. 

The following three tasks were used as updating tasks: 
 Keep-track. The basic design of the keep-track task we used was very 
similar to the design used by Miyake et al. (2000) which was originally 
adapted from Yntema (1963). In the keep-track task, participants were 
required to keep track of the most recent item of several categories, doing this 
successfully required participants to keep the most recent item of the 
categories in mind while frequently updating which item was the most recent 
one. The difference between the task our participants did and the one used by 
Miyake et al. (2000) was the number of categories that had to be updated, 
four in our task compared to either two or three in the original task. A trial 
started with the four target categories at the bottom of the screen. Then, 
fifteen words were successively presented in a random order for 1500 ms each 
while the target categories remained visible on the screen. Distractor words 
not belonging to any of the target categories were also among the presented 
words. At the end of a trial, the participant was asked to indicate the final item 
of every category by typing in the answer. Prior to the start of the task, the 
participants were made familiar with the items and their respective category. 
The total stimulus set consisted of five categories with six items each. The 
participants did one practice block with three trials and one experimental 
block with fifteen experimental trials. The performance measure taken from 
this task was the average accuracy with which the final items were recalled. 
 Letter-Memory. The letter-memory task was also very similar to the 
task in the original study which was adapted from Morris & Jones (1990). In 
this task, participants were required to remember the final three letters in a 
series. This task also required continuous updating of the to-be recalled items. 
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The series was presented serially for 2000 ms each and no letters in the series 
could repeat. No instructions were given about how to perform the task. This 
differs from the original study which instructed the participants to 
continuously rehearse the final letters out loud. The length of the presented 
series varied randomly between 5, 7, 9, or 11 letters to ensure that the 
participants would be engaged from the start of the series. The participants 
indicated their response at the end of a trial by typing in the letters in the order 
in which they were seen. A reply was only counted as correct if the letter as 
well as the location was provided correctly (e.g., the final letter of the series 
would need to be the final letter of the responses). The participants did one 
practice block of three trials and one experimental block of 18 trials. The 
performance measure taken from this task was the average accuracy in 
providing the final three letters (and their location) of the series. 
 Spatial two-back. The final updating task was not included in the 
original study. The spatial two-back task (Ellis, Silberstein, & Nathan, 2006) 
is a specific version of the more standard n-back task (Jaeggi, Buschkuehl, 
Perrig, & Meier, 2010; Redick & Lindsey, 2013) in which the participant is 
required to remember spatial locations instead of letters or other more 
declarative items. A trial of this task started with ten white squares arranged 
in columns alternating between three and two rows (see Figure 1a). During a 
trial, the squares would turn black in a semi-random order one at a time (see 
Figure 1b). A square would be black for 500 ms after which it went back to 
white and all squares would be white for 1000 ms until the next square would 
turn black. The sequence was determined semi-randomly in order to ensure 
that half of the trials would be a two-back trial. To do the task successfully, 
participants had to remember the two previous locations and compare the 
current location to the two-back location (i.e., the location before the 
previous). Participants were required to give a response on every trial. They 
indicated that the current location was the same as the two-back location by 
pressing ‘j’ on the keyboard and indicated that it was not the same by pressing 
‘f’. Every block consisted of 24 trials (i.e., 24 locations). Participants did one 
practice block and four experimental blocks for a total of 96 experimental 
trials. The performance measure taken from this study was the proportion of 
correct responses (either correctly detecting a two-back or correctly detecting 
that the trial was not a two-back). 
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Figure 1. Illustration of the spatial two-back task. Figure 1a shows the 
configuration of the ten squares in the task. Figure 1b shows an example of 
how the current location was indicated by ‘lighting up’ one of the squares. 
 

The following two tasks were used as inhibition tasks: 
 Antisaccade. The main goal of the antisaccade task is to inhibit the 
reflexive saccadic response to a new visual stimulus. The antisaccade task 
used here and in Miyake et al. (2000) was adapted from the task described in 
Roberts, Hager, & Heron (1994). A trial of the antisaccade task started with 
a fixation cross lasting between 1500 and 3500 ms. A small cue was then 
presented on one side of the screen for 225 ms, followed by the larger target 
which was on screen for 150 ms on the opposite side of the screen. The cue 
was a small black square. The target was an arrow within a small square that 
could point left, up, or right. The task for the participant was to indicate the 
direction of the arrow. Because the target was on screen for such a short 
amount of time directly following the onset of the cue, the reflexive saccade 
to the cue had to be inhibited in order to correctly identify the target. The 
responses were given by pressing the arrow key on the keyboard 
corresponding to the arrow direction of the target. The participants performed 
one block of 22 practice trials and one block of 90 experimental trials. 
Participants’ performance was measured by calculating the average accuracy 
with which the target was identified. 
 Stroop. The Stroop task (Stroop, 1935) is a well-known task in 
cognitive psychology in which the automatic process of reading a word has 
to be inhibited. The Stroop task analysed here was a slightly adapted version 
from the task described in Miyake et al. (2000). This was done to make it 
suitable for a setting in which vocal responses could not be provided. The 
task for the participant was to indicate the colour of a presented word. This 
version of the task included three types of trials: (1) congruent trials in which 
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a colour word was presented in the same colour as the word (e.g., the word 
‘blue’ in blue), (2) conflict trials in which a colour word was presented in a 
different colour (e.g., the word ‘blue’ in red), and (3) neutral trials in which 
the presented word was not a colour word in a random colour (e.g., the word 
‘hat’ in green). Every trial type was presented 60 times. A block consisted of 
a mix of the different trial types which were determined randomly by drawing 
from the possible trial types without replacement. On every trial, the target 
word was presented in the middle of the screen flanked by two response 
options for 2500 ms or until a response was given. The response options were 
the correct answer and a randomly determined other colour (this could also 
be the conflicting colour word in the incongruent trials). The response was 
indicated by pressing the ‘f’ key for the left response option and the ‘j’ key 
for the right response option. Participants did one practice block of 18 trials 
and four experimental blocks of 45 trials each for a total of 180 experimental 
trials. Participants’ performance on this task was measured by calculating the 
difference in reaction time between the conflict and congruent trials. 
 
3. Models and Model Results 
3.1. General structure of the model 
The tasks described above show the typical “unity and diversity” often found 
in executive function tasks. There are a lot of similarities between the tasks 
aimed at measuring the same EF and much lower (apparent) overlap between 
tasks measuring different EFs. We attempted to achieve this unity in our 
model by assuming that a core EF is accomplished by a basic skill and reusing 
this basic skill in all tasks using that core EF. Therefore, we assumed that 
there would be three basic skills underlying the performance on these eight 
tasks. A basic “shifting” skill, a basic “updating” skill and a basic “inhibition” 
skill. Additionally, the tasks share further non-EF related similarities because 
all tasks require the participants to provide a response and three tasks require 
participants to read a word and encode it into WM. Therefore, two more basic 
skills underlie the models: a “respond” skill and a “read” skill. In total, five 
basic skills were used in the modelling of these eight tasks: “shift”, “update”, 
“inhibit”, “read”, “respond” (see Table 2 for the overlap). Finally, all models 
required a certain amount of specific procedural knowledge to be able to 
perform the modelled tasks, which needed to be created separately for every 
model. See the appendix for more details about the model building process 
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and how the changes we proposed to the skill-based approach and the 
cognitive architecture facilitated this process. 
 
Table 2. Skill overlap between the modelled tasks. All tasks measuring the 
same EF share their respective basic skill, all tasks share the respond skill, 
and three tasks share the read skill. 
 

Task/skill Shift Update Inhibit Read Respond 
Category-Switch X    X 

Color-Letter X    X 

Color-Shape X    X 

Keep-Track  X  X X 

Letter-Memory  X  X X 

Spatial two-back  X   X 

Antisaccade   X  X 

Stroop   X X X 

 

3.2. Resulting models and model fits 
3.2.1. Basic Models 
The above described modelling structure resulted in eight models built around 
three basic EF skills and two additional general skills. We will now describe 
the basic functioning of the EF skills and with which architectural 
mechanisms they interact. Additionally, we will describe how these skills 
were integrated in the eight tasks and how well they fit the data. The basic 
skills vary in their procedural complexity: the updating skill is the most 
procedurally complex (i.e., it has the most operators) while the two other 
skills are procedurally less complex since they rely more on architectural 
mechanisms. Although the basic skills we created are sufficient to model all 
eight tasks included in this study, this does not guarantee that they are also 
sufficient for all tasks requiring these EFs.  

 
 
3.2.2. Shifting Models 
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The shifting task we modelled all required the model to shift between two 
tasks. The procedural knowledge required for the shifting skill is fairly 
straightforward as can be seen below. This skill only consists of two operators 
which perform the two basic operations required for a successful shift. The 
first operator retrieves a new task set (the task set associated with either ‘task 
1’ or ‘task 2') and the second operator puts this task set in the right place so 
that it can influence further processing. In essence, shifting is accomplished 
by setting a binding (*characteristic) to a certain value depending on the 
retrieved task set and because this binding is embedded throughout the model 
it will influence the model to perform either ‘task 1’ or ‘task 2’. This binding 
influences processing by serving as input for memory retrievals and in 
condition checking.  
 
define skill shift { 
  
 operator retrieve-task-set { 
 RT1 = nil 
 ==> 
 task-set -> RT1 
 *task -> RT2 
 V1 -> RT3 
 } 
 
 operator set-characteristic { 
 RT1 <> nil 
 ==> 
 RT3 -> G2 
 RT4 -> *characteristic 
 *next-skill-shift -> G1 
 } 
} 

 
 The category-switch model (see Figure 2a) consists of two basic 
skills (shift and respond) and two skills specific for this model (select-next-
skill-category-switch and retrieve characteristic). These skills were 
combined in the following way. The model starts a trial with the select-next-
skill-category-switch skill. This skill determines whether the current trial is a 
switch trial or not. If necessary, when the shift is completed, the model returns 
to the select-next-skill-category-switch skill and waits for the presentation of 
the word. After presentation of the word, the retrieve characteristics skill 
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determines the answer of whether the presented word is alive or bigger than 
a football (depending on the trial) by performing a memory retrieval. Finally, 
the respond skill carries out the final response. 
 The colour-letter model (Figure 2b) also consists of two basic skills 
(shift and respond) and two skills specific to this model (select-next-skill-
colour-letter and attend-colour-or-type). The colour-letter model is 
combined in the following way. The colour-letter task starts with a blank 
screen for 150 ms, during this the model starts with the select-next-skill-
colour-letter skill which determines whether the current trial is a switch trial 
or not. If they are not the same, the model will go to the shift skill. After 
completing the shift, the model will return to the select-next-skill-colour-
letter and waits for the presentation of the letter. If they are the same, the 
model simply waits for the letter presentation. After the letter is presented, 
the model will go to the attend-colour-or-type skill which either attends the 
letter itself or the colour in which the letter is presented. Finally, after either 
the letter-type or colour is determined, the response skill gives the appropriate 
response. 
 The colour-shape model (Figure 2c) also consists of two basic skills 
(shift and respond) and two skills specific to this model (select-next-skill-
colour-shape and attend-colour-or-shape). These skills are combined for the 
colour-shape task in the following way. The model starts in the select-next-
skill-colour-shape skill which determines whether a trial is a switch trial or 
not. When the shift is completed, the model will return to the select-next-skill-
colour-shape and waits for the shape to be presented. If the previous task and 
cue are the same, the model does not need to switch and simply waits for the 
shape to be presented. After presentation of the shape, the attend-colour-or-
shape skill determines the colour or the identity of the shape. Finally, the 
respond skill gives the final response. Please see the appendix for a more 
detailed description of the three shifting models. 
 

3.2.3. Shifting model fit 
We assessed the fit of the models by comparing the performance of the model 
to the performance of the participants on the inhibition tasks in the larger 
study on EF. We did this by means of a visual inspection (see Figure 3) and 
by a simple statistical comparison of the models and the data. This was done 
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by creating linear regression models of both the data produced by the model 
as well as the data produced by the human participants and comparing the 
intercepts and slopes of these regression models. These regression models 
were created with the statistical software ‘R’ (R Core Team, 2017) and the 
package ‘lme4’ and ‘lmerTest’ (Bates, Mächler, Bolker, & Walker, 2015; 
Kuznetsova, Brockhoff, & Christensen, 2017). The models are very simple 
and do not include any random slopes or intercepts. For the shift tasks, we 
analysed both the accuracy and the reaction time data. This means that for 
every task we ran four separate linear models, two on the human data 
(accuracy and RT) and two on the model data (accuracy and RT).  
 

 

 
Figure 3. Shifting model fit. The model fits of the three models created for 
the shifting tasks. The human data in the dark green, the model in the light 
green. Figures show the average accuracy and average reaction times in 
switch and non-switch trials for the category-switch task and the colour-shape 
task. For the colour-letter task, the figure shows the average accuracy and RT 
in the four quadrants that the letter could be presented in: quadrant 1 and 3 
are switch trials. 
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Table 3. Linear model estimates for the model and the human data. The 
estimates produced by the linear regression models for the three Shifting 
tasks. Significant slopes at the p < .05 level are indicated with an *. 

 Model  Human data 
 Estimate SE t value p value  Estimate SE t value p value 
Category 
switch 

         

Accuracy          
(Intercept) 88.2 0.6 147.8 > .001*  85.1 0.9 92.9 > .001* 
Switch -2.8 0.6 -3.3    .001*  -1.1 1.3 -0.9     .376 
Reaction 
times 

         

(Intercept) 1123 3.5 314.8 > .001*  1115 18.4 60.5 > .001* 
Switch 409.7 5 81.2 > .001*  295.7 26.1 11.4 > .001* 
          
Color 
letter 

         

Accuracy          
(Intercept) 89.5 0.5 164.8 > .001*  93.0 2.3 41.3 > .001* 

Switch 1.3 0.6 2.0    .04*  -2.4 2.6 -0.9     .353 
Letter 1.5 0.6 2.4    .02*  -7.8 2.6 -3.0    .003* 
Reaction 
times 

         

(Intercept) 676.6 4.6 146.8 > .001*  664.7 26.7 24.9 > .001* 
Switch 542.2 5.3 103.1 > .001*  406.6 30.8 9.8 > .001*     
Letter 173.7 5.3 32.6 > .001*  145.7 30.8 4.7 > .001* 
          
Color 
shape 

         

Accuracy          
(Intercept) 93.1 0.3 323.5 > .001*  92.9 1.6 57.8 > .001* 

Switch -1.0 0.4 -2.5    .01*  -2.1 2.3 -0.9     .359 
Reaction 
times 

         

(Intercept) 1050.8 3.5 298.3 > .001*  1063.1 38.5 27.6 > .001* 

Switch 432.8 5.0 86.9 > .001*  335.6 54.4 6.1 > .001* 

 
We assessed the fit of the shifting models by looking at the average 

accuracy on switch and non-switch trials and the reaction times of these two 
types of trials. The visual inspection of the fits suggests that both the accuracy 
and reaction times of the models are highly comparable to the accuracy and 
reaction times of the human participants. Both the models and participants 
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perform the shifting tasks with around 80% to 90% accuracy and both show 
the crucial increased reaction times for switch trials. The models, however, 
seem to consistently have slightly higher switch costs than the human 
participants in all three models. However, overall the models and the human 
participants show large similarities, both in terms of absolute performance 
(similar accuracies and RTs) as well as in the crucial effect of longer RTs and 
slightly lower accuracy in switch trials. These conclusions are supported by 
the linear regression models (see Table 3).  
 

3.2.4. Updating Models 
The updating skill is the most complex skill and consists of six operators as 
can be seen below. These operators accomplish the basic updating step in the 
three updating tasks. This basic updating step can have two general 
characteristics, it can either (1) update a single value or (2) shift multiple 
values. Updating a single value is a fairly basic operator since it only consists 
of creating one new binding. Shifting (not to be confused with the shifting 
EF) is more complex and represents the updating necessary in for example 
the letter-memory task: adding a new value to the existing list, removing the 
oldest value, and shifting the other values over one position (resulting in two 
or three new bindings). Note that this definition of updating does not include 
removal of the old binding but merely creating a new more recent one. 
Updating single values is the most basic function of the updating skill and 
needed to be done in all three updating tasks, while the two shifting operators 
were only used in one task each.  
 
define goal update { 
  
 operator update-first { 
 WM1 <> nil 
 ==> 
 *current-target -> *first-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-second { 
 WM1 <> nil 
 ==> 
 *current-target -> *second-item 
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 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-third { 
 WM1 <> nil 
 ==> 
 *current-target -> *third-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-fourth { 
 WM1 <> nil 
 ==> 
 *current-target -> *fourth-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator shift-values-three { 
 WM1 <> nil 
 ==> 
 *second-item -> *first-item 
 *third-item -> *second-item 
 *current-target -> *third-item 
 *next-skill-update -> G1 
 } 
 
 operator shift-values-two { 
 WM1 <> nil 
 ==> 
 *second-item -> *first-item 
 *current-target -> *second-item 
 *next-skill-update -> G1 
 } 
 
} 
 

The keep-track model (see Figure 4a) consisted of three basic skills 
(read, update, and respond) in addition to one keep-track specific skill 
(category search). These skills were combined in the following way. At the 
start of a trial, the first item was read by the read skill. Subsequently, the 
category search skill determined to which category this item belonged 
through means of a memory retrieval. Afterwards, the update skill updated 
the binding associated with this category (e.g., the *third-item). This process 
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repeated until the end of the trial. At the end of a trial, the final responses 
were given by the respond skill which was done by retrieving the value 
associated with each of the bindings and typing them on a keyboard. In order 
to successfully perform the keep-track task, the first four operators of the 
update skill were needed. 

The letter-memory model (Figure 4b) also consisted of three basic 
skills (read, update, and respond) in addition to one letter-memory specific 
skill (count). These skills were combined for the letter-memory task in the 
following way. At the start of a trial, the read skill read the first letter. After 
this, the count skill placed a value in WM1 depending on how many stimuli 
had already been presented (e.g., a ‘1’ for the first letter and a ‘more-than-
three’ for the fourth letter and up). Subsequently, the update skill performed 
the correct update based on the value stored in WM1, it fired one of the 
update-x operators if this value was lower than three and it fired the shift-
values-three if this value was ‘more-than-three’. This process repeated until 
the final letter was presented. Finally, the respond skill took care of the 
responses at the end of the trial in the same way as in the keep-track model. 

The spatial two-back model (Figure 4c) consisted of only two basic 
skills (update and respond) and one two-back-specific skill (compare). These 
skills were combined for the spatial two-back task in the following way. 
When a square was presented, the compare skill compared the location of the 
current square to the location of the two-back square. After this, the respond 
skill gave the response associated with the outcome of the compare skill 
(pressing ‘j’ for yes and ‘f’ for no). Finally, the update skill performed the 
update, either with the update-first or update-second operator for the first two 
locations of the trial or with the shift-values-two operator for the remainder 
of the trial. This process repeated until the end of the trial. 

  
3.2.5. Update model fit 
Similar to the shifting models, we assessed the fit of the updating models by 
comparing the model performance to the performance of the participants on 
the same updating tasks in the larger study on EF. This was also done by a 
visual inspection supplemented with a simple statistical analysis. This 
analysis included creating a linear regression model with one dependent 
variable and one continuous independent variable per task. 
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Figure 5. Update model fit. Figure shows the model fits in the updating tasks 
with human data in dark orange and model data in light orange. Shown for 
the keep-track task is average accuracy for the four category numbers, for the 
letter-memory task is average accuracy for the three letter positions, for the 
spatial two-back performance over the course of the experiment (divided in 
blocks with ‘0’ being the practice block). 
 
 This process revealed that the models performed the three updating 
tasks very similarly to the human participants (Figure 5). All three tasks 
included a different manipulation; however, our models showed the same 
performance patterns as the human participants in all three tasks. The models 
showed a significant slope in the same direction as the participants in the 
keep-track and the spatial two-back over the respective independent variables 
tasks as well as showing a non-significant positive slope in the letter-memory 
task as a function of letter position (as can be seen in Table 4). Although it is 
a very rudimentary model fitting procedure, the models perform similarly to 
the human participants in the crucial aspects of these three tasks lending 
credibility to the validity of the three updating models.  
 
3.2.6. Inhibition Models 
The procedural knowledge included in the skill responsible for inhibition is 
less extensive than the update skill. It only includes two operators; the first 
operator retrieves the correct ‘inhibition instructions’ based on the current 
task the model is performing and the second operator activates the retrieved 
‘inhibition instructions’ by placing it in WM1. These ‘inhibition instructions’ 
have spreading activation relationships (Sjis) with certain operators in the 
model. Therefore, in our models, inhibition is accomplished by placing 
something in WM1 which spreads activation to operators. In both tasks we 
modelled, the instructions in WM1 could spread both positive and negative 
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activation. This will likely be necessary in many tasks modelled in a 
production-based architecture because the model can never be idle (i.e., there 
is a production firing at all times). This means that it is just as important to 
boost the alternative path as it is to inhibit the undesired path.  
 
Table 4. Regression coefficients of the Updating tasks. The estimates 
produced by the linear regression models for the three Updating tasks. 
Significant slopes at the p < .05 level are indicated with an *. 
 Model Human data 
 Estimate SE t value p value Estimate SE t value p value 

Keep track         

Accuracy         

(Intercept) 74.7 0.9 79.2 > .001* 83.1 2.4 34.3 > .001* 

Category number -3.9 0.3 -11.5    .001* -4.1 0.9 -4.6 > .001* 

         
Letter memory         

Accuracy         

(Intercept) 72.2 1.6 44.3 > .001* 67.1 3.1 21.6 .03* 

Letter position 1.5 0.8 2.0 .06 5.9 1.4 4.1 .15     

         
Spatial two-back         

Accuracy         

(Intercept) 40.3 0.7 55.0 > .001* 39.3 2.9 13.6 > .001* 

Block 5.6 0.3 18.9 > .001* 7.1 1.2 6.0 > .001* 

 
 
We chose to model inhibition using retrieval of an ‘instruction’ from DM 
because it can provide a simpler learning mechanism and it provides a 
straightforward way in which previously learned information can be brought 
to the current task. It provides a simpler learning mechanism because the only 
thing that needs to be learned is an association between this ‘instruction’ (e.g., 
inhibit-saccade) and the operators that need to be inhibited or boosted. 
Secondly, all these associations can easily be brought into the current task by 
simply retrieving this ‘instruction’ and placing it in WM1. Although it would 
be interesting to investigate how these associations are learned, for the current 
models we merely provided them by hand. 
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define skill prepare-to-inhibit { 
  
 operator retrieve-preparation { 
 G1 = *prepare-goal 
 RT1 = nil 
 RT2 = nil 
 ==> 
 *fact-type -> RT1 
 *task -> RT2 
 } 
 
 operator activate-instructions { 
 G1 = *prepare-goal 
 RT1 <> nil 
 RT2 <> nil 
 ==> 
 RT3 -> WM1 
 *next-skill-prepare -> G1 
 } 
 
} 
 

The antisaccade model consisted of two basic skills (prepare-to-
inhibit and respond) and two specific antisaccade skills (select-next-skill-
antisaccade and determine target). These skills were combined for the 
antisaccade task in the following way (Figure 6a). A trial of the antisaccade 
task started with a fixation cross, during this time the prepare-to-inhibit skill 
prepared for the upcoming stimuli by placing inhibit-saccade in WM1. After 
the prepare-to-inhibit skill, the model switched to the determine target skill. 
This skill waited for the arrival of the distractor and the target. Finally, the 
respond skill gave the final response by pressing the appropriate arrow key 
on the keyboard (left, up, or right). 

The Stroop model consisted of three basic skills (read, prepare-to-
inhibit, and respond) and three Stroop specific skills (select-next-skill-stroop, 
determine colour, and choose hand). These skills were combined for the 
Stroop task in the following way (Figure 6b). A trial of the Stroop also started 
with a fixation cross, during this time the prepare-to-inhibit skill prepared for 
the upcoming trial by placing inhibit-reading in WM1. After this, the model 
waited for the word to be presented. Depending on the activation of the 
operators the model could either select the read skill or the determine colour 
skill. Selecting the read skill could lead to a slowed reaction and selecting the 
determine colour skill would be the optimal choice. After detecting the colour 
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of the word, the choose hand skill determines the correct hand to respond 
with. Finally, the respond skill would press the key associated with the correct 
hand. 

Figure 6. Overview of the inhibition models. The top panels show the skills 
involved in the two models, how they were instantiated (i.e., which bindings 
were added to the model) in the middle panel, and the bottom panel shows 
the way in which they were arranged for these models. (A) depicts the 
antisaccade model. (B) depicts the Stroop model. The bottom panel of (B) 
shows how the model works on a conflict trial in which it did not inhibit the 
prepotent read response. 
 
3.2.7. Inhibition model fit 
The antisaccade task did not include any manipulations that needed to be 
modelled and there were no important aspects in the reaction time data since 
all participants needed to do was press a key on the keyboard after the target 
was presented. Therefore, we only performed the model fit procedure on the 
average accuracy of responding the arrow direction. We did this with a very 
simple linear model that only included an intercept. The Stroop task included 
a more complex manipulation in the three different trial types. To analyse this 
data, we performed linear regression models on the accuracy and reaction 
time data with one three-level independent variable of Trial Type with 

Antisaccade

Determine Target

Respond

A

Prepare

Select Next

Stroop

B

Sel. next Prepare Sel. next Det. 
target Sel. next Respond

Select Next Determine Color Choose Hand

Read Prepare Respond

Sel. next Prepare Sel. next Read Sel. next Det. 
Color

Sel. next Choose 
Hand

Sel. next Respond

*prepare-goal = prepare-to-inhibit
*fact-type = prep-fact

*task = antisaccade
*next-skill-prepare = select-next

*action = press
*read-skill = read (not used)
*report-instructions = report

*prepare-goal = prepare-to-inhibit
*fact-type = prep-fact

*task = stroop
*next-skill-prepare = select-next

*key-right = J
*key-left = F

*next-skill-respond = select-next

*report-instructions = report
*respond-skill = respond

*next-skill-read = select-next
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Conflict as reference level. Neither of these models included random slopes 
or intercepts. 
 

 
Figure 7. Inhibition model fit. Figure shows the average accuracy for the 
antisaccade and Stroop tasks and the average reaction time for the Stroop task 
for the human data and the model. The human data is in dark red with the 
model data in light red. Depicted for the Stroop tasks is the average accuracy 
and RT in the three different trial types (conflict, congruent, and neutral). 
 
 The analysis of the antisaccade task showed that the model and the 
human participants performed were very similar in their accuracy of reporting 
the direction of the arrow (see Figure 7). Additionally, the participants and 
the model showed the same hierarchy in trial difficulty in the Stroop task. For 
both the model and the participants the conflict trials were the most difficult 
(as indicated by the slowest RTs and lowest accuracies), followed by the 
neutral trials and, finally, the congruent trials were the easiest for both the 
model and the participants. These results suggest that the inhibition skill we 
created is cognitively plausible. The coefficients of the linear models can be 
found in Table 5. 
 
3.3. Can the models explain individual differences? 
To answer our second research question whether differences in basic EF skill 
proficiency can explain the individual differences present in these tasks, we 
ran the models with different levels of training on the EF skills (for more 
details see the ‘model training’ section in the appendix). In total, we ran 400 
simulated participants with varying levels of training on the EF skills. We 
split these participants in two halves for every task, one half with the 50% 
best performing ‘participants’ (high performers) on this task and the other 
half with the 50% worst ‘participants’ (low performers) on this task. 
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Subsequently, we compared the average performance of these two halves 
with the average performance of the human participants who were split in the 
same manner (see Figure 8). 
 
Table 5. Linear model estimates for the model and the human data. The 
estimates produced by the linear regression models for the three Shifting 
tasks. Significant slopes at the p < .05 level are indicated with an *. 

 Model  Human data 
 Estimate SE t value p value  Estimate SE t value p value 

Antisaccade          

Accuracy          

(Intercept) 77.7 0.3 254.3 > .001*  79.2 1.7 46.5 > .001* 

          
Stroop          

Accuracy          

(Intercept) 83.7 0.3 253.2 > .001*  77.6 1.7 44.6 > .001* 

Congruent 9.7 0.5 20.7 > .001*  17.2 2.5 7.0 > .001*     

Neutral 7.4 1.5 15.9 > .001*  12.9 2.5 5.2 > .001* 

Reaction times          

(Intercept) 1108.2 6.2 251.2 > .001*  1108.9 29.4 53.5 > .001* 

Congruent -31.1 6.2 -21.0 > .001*  -140.5 29.4 -4.8 > .001*     

Neutral -63.9 6.2 -10.2 > .001*  -71.4 29.4 -2.4 .016* 

 

 Overall, this analysis shows high similarity in how the high and low 
performing groups in the simulated participants and the human participants 
perform. In almost all tasks, the high performing models perform at the same 
level as the high performing participants and the low performers perform 
similarly worse in the models and the human data. The only exceptions are 
that the models do not capture the low performers in the two-back task and 
the Stroop task. More details about the analysis can be found in the 
‘individual differences model fit’ section of the appendix. These results show 
that manipulating the level of training of the basic EF skills (representing 
different levels of proficiency) leads to the same differences in performance 
that are found in human data. However, this analysis only considered the 
overall performance of two groups and not the performance on the individual 
level. To analyse how well our models fit the data on the individual level, we 
additionally calculated the correlations between the tasks for the model and 
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the data. More specifically, the correlation between the average performance 
of the (simulated) participants on all tasks. The results of this can be seen in 
Table 6 (for the data) and Table 7 (for the model).  
 

Figure 8. Comparison of the high and low halves. Figure showing the top 
50% performers (‘high’) and the bottom 50% performers (‘low’) in the model 
and the data. The data is displayed in the dark colours and the model in the 
light colours. 
 

The correlations between the tasks in the human data are very low 
with no correlations that could be considered strong (i.e., over .4). There were 
four significant correlations, the correlation between category-switch and 
colour-shape (r (64) = .25, p = .04), between colour-letter and colour-shape 
(r (64) = .37, p = .001), between letter-memory and the spatial two-back task 
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(r (64) = .29, p = .018). The final correlation is between tasks measuring two 
different EFs, namely colour-shape and Stroop (r (64) = .32, p = .008). The 
final correlation was surprising and might be due to the fact that both tasks 
heavily rely on colour processing. 
 
Table 6. Pearson correlation coefficients for the eight tasks in the human 
data. Shifting tasks are green, updating tasks are yellow and inhibition tasks 
are orange. Significant correlations where p < .05 are indicated with an *. 

Task 1 2 3 4 5 6 7 8 

1. Category-switch 1        

2. Color-letter .14 1       

3. Color-shape .25* .37* 1      

4. Keep-track .20 .11 .17 1     

5. Letter-memory -.07 -.05 .09 .13 1    

6. Spatial two-back -.09 -.06 .02 -.21 .29* 1   

7. Antisaccade -.05 -.01 -.16 .10 .01 -.11 1  

8. Stroop .24 .17 .32* .04 -.07 .04 .12 1 

 
Table 7. Pearson correlation coefficients for the eight tasks in the model 
data. Shifting tasks are green, updating tasks are yellow and inhibition tasks 
are orange. Significant correlations where p < .05 are indicated with an *. 

Task 1 2 3 4 5 6 7 8 

1. Category-switch 1        

2. Color-letter .91* 1       

3. Color-shape .91* .90* 1      

4. Keep-track -.02 -.02 -.01 1     

5. Letter-memory .01 .02 .02 .70* 1    

6. Spatial two-back .01 .03 .03 .73* .96* 1   

7. Antisaccade .04 .06 .05 -.09 -.02 -.02 1  

8. Stroop .14* .13* .13* -.08 -.03 .02 .55* 1 



 126 

 

The correlations calculated based on our model data are much 
stronger. The model data contains ten significant correlations. The three 
shifting tasks are highly correlated (all rs > .9 and ps < .001), the three 
updating tasks are highly correlated (rs > .7 and ps < .001), and finally, the 
inhibition tasks are also strongly correlated (r (398) = .55, p < .001) The only 
significant correlations between tasks outside an EF are the correlations 
between the Stroop task and the three shifting tasks: category-switch (r (398) 
= .14, p = .005), colour-letter (r (398) = .13, p = .012) and colour-shape (r 
(398) = .13, p = .012). 
These results provide two crucial insights. Firstly, it provides additional 
evidence for the validity of the individual models. The average performances 
on the tasks associated with the same EF are highly correlated suggesting that 
the skills we created are central to these tasks. Secondly, it shows that 
simulated low EF proficiency strongly influences performance on the tasks 
associated with that EF and, crucially, this impaired performance is limited 
to the tasks associated with that EF. Additionally, the correlations found in 
the human data follow largely the same pattern with high(er) correlations in 
the tasks associated with the same EF. However, the absolute values of these 
correlations are very different, the tasks belonging to the same EF are all 
correlated in the model (compared to only some of them in the data) and the 
magnitude of these correlations is much larger in the model. The very strong 
correlations between the tasks are caused by the fact that a well-trained skill 
(e.g., shifting) is very predictive of performing well on all tasks involving that 
skill (e.g., category-switch) because the models do not include any additional 
source of ‘noise’ in the current model besides the default sources in PRIMs. 
This could be differences in strategy (e.g., using a very active strategy on the 
letter-memory but a very passive one on the two-back), effects of fatigue or 
motivation, or any other difference present in noisy human data.  

In conclusion, both the analysis comparing high and low performers 
as well as the correlation analysis suggest that differences in EF skill 
proficiency can lead to large differences in performance (as shown by our 
models in both analyses), however in human data this effect is accompanied 
by several other factors influencing performance (especially shown by the 
lower correlations in the human data).  
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4. Discussion 
4.1. The Skill-Based Approach 
The skill-based approach is a promising method to increase generalizability 
in cognitive modelling. Although the cognitive architecture PRIMs is 
designed with the aim of enabling skill reuse, there are still limitations that 
prevented the creation of fully reusable skills (Hoekstra et al., 2022a). In the 
previous chapter, we identified these limitations and proposed initial 
modifications to the PRIMs architecture. In this chapter, we fledged out the 
proposals from the previous chapter and tested whether these modifications 
really improved the process of using the skill-based approach. This was done 
by re-attempting the modelling of the EF tasks described in Miyake et al. 
(2000) with the modifications included in PRIMs. Additionally, the models 
created in such a way could provide interesting insights in the underlying 
mechanisms of the modelled EFs and shed light on the question whether EFs 
are a learned or innate ability. 
 We identified three limitations to the implementation of the skill-
based approach in PRIMs: (1) inflexible WM, (2) rigid goal selection and, (3) 
all-or-nothing condition checking. We introduced temporal bindings to 
PRIMs with the aim of improving the flexibility of WM. Secondly, we 
introduced the convention of using a specific skill for goal selection to 
improve the flexibility of goal selection. Finally, we introduced the use of 
spreading activation as an alternative to condition checking to ease the 
inflexibility associated with condition checking. 
 The three modifications greatly improved the effectiveness of the 
skill-based approach. This was largely accomplished by the increase in the 
level of skill reusability made possible by these modifications. Although 
reuse may seem like a dichotomous variable (i.e., a skill is reusable or not), 
there are different levels of reuse. The skills we created for the attentional 
blink (AB) models (Hoekstra et al., 2020; Hoekstra, Martens, & Taatgen, 
2022b) possessed the basic level of reusability because they were used in 
more than one task. However, their reusability was limited since they cannot 
be reused in a different context outside of the AB without considerable 
changes to the procedural knowledge of this skill (i.e., the operators). The 
limited reusability in the AB models was largely caused by the necessity to 
include subtle task specific knowledge as part of the procedural knowledge 
of the skill (Hoekstra et al., 2022a). The modifications we made to the 
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architecture and the modelling approach tempered this necessity and allowed 
the creation of functional and effective general skills without having task 
specific knowledge fundamentally entrenched in the reusable skill. 
 The use of spreading activation instead of conditions was the most 
important modification we made. Conditions were the prime culprits in 
importing task specific knowledge into a reusable skill. The need to specify 
the context in which an operator should fire as a fundamental part of an 
operator severely limits reusability because a different task almost guarantees 
a different context. Using flexible spreading activation relationships between 
operators and context maintains the high level of controlled model behaviour 
realized by conditions and combines it with the flexibility that comes with 
these relationships not being a fundamental part of the operator. Additionally, 
the mechanism with which these relationships can be learned are in line with 
current research on how the Basal Ganglia learn and accomplish action 
selection (Redgrave et al., 1999; Stewart et al., 2012; Stocco, Lebiere, & 
Anderson, 2010).  

The added functionality of temporary bindings to the PRIMs 
architecture was an additional major benefit to skill reusability. Skills can 
now be designed in such a way that they can store and retrieve information 
from short-term memory without the need to specify where to store the item 
or from where to the retrieve the item. This prevents reuse limitations caused 
by differences in working memory slot availability between tasks. This 
especially impacted the reusability of the update skill. Additionally, bindings 
allow for a plausible and principled way in which task specific information 
can be integrated into the general procedural knowledge. These bindings also 
provide a more plausible mechanism with which these task specific pieces of 
information can be learned. It is plausible to assume that people create a 
collection of new bindings when reading (or listening to) task instructions. 
Furthermore, this mechanism provides interesting hypotheses about when 
and how the learning of a new task might be easier or harder. For instance, a 
task will be more difficult to learn if it involves the creation of many new 
bindings or when some bindings are only rarely used (and therefore may have 
decayed). 

The new way of selecting which goal to select next also greatly 
improves skill reusability. Because of this method, skills do not need to 
include several operators that are only responsible for switching to the next 
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goal and only need to include one PRIM or operator that switches to the 
select-next-skill skill when the goal is completed. The necessity of this 
modification largely depends on the complexity of the task in which the skill 
needs to be integrated. It is mainly useful for particular skills that have a 
variable endpoint or need to switch to several different goals. However, it 
also plays an important conceptual role in that it provides a more plausible 
learning mechanism. Employing a separate skill for goal selection models the 
gradual learning of the order of skills in a new task more accurately than a 
method that uses operators that are fundamental parts of the skill (and 
therefore are already learned). 
 The modifications we proposed and tested also introduced new 
challenges and questions. Firstly, it is not clear how the different methods to 
perform operator selection relate to one another. It is not clear whether the 
method we proposed here (using spreading activation relations) should 
completely replace conditions or whether they coexist. Furthermore, if they 
do coexist, it is not clear how to exactly combine the two methods or how the 
balance might develop over time (e.g., are Sjis slowly replaced by conditions 
or the other way around, or not at all?). Additionally, the extent to which 
spreading activation relationships (Sjis) are reused is not clear: are they stable 
or does their influence on behaviour decrease over time?  

Secondly, the temporary bindings introduced a new but potentially 
strong influence on model behaviour. The bindings follow the same 
principles of the other chunks in DM (e.g., decay, noise, or retrieval failure 
rates). This can have an occasional big impact when, for example, a crucial 
binding fails to be retrieved at an important moment. In addition to that, it 
also has a consistent subtle impact on the reaction times of a model over the 
course of an experiment. Because the bindings slowly decay over time, 
reaction times on later trials will be slower than reaction times on earlier trials 
if this effect is not counteracted. This raises the questions whether bindings 
should be treated the same as other chunks in DM. Following the idea of 
rational analysis (Anderson & Schooler, 1991; Chater & Oaksford, 1999; 
Schooler & Anderson, 1997), it is likely that the development of the 
activation of a binding depends on the importance of this binding in the task. 
This is currently not taken into account. Alternatively, it could also be 
possible that frequently used bindings become part of the procedural 
knowledge of a particular skill when it is very highly learned. This skill would 
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be optimized and very quick for one specific task but lose its generalizable 
nature. Mechanisms that could accomplish this would be very useful for 
further development of the skill-based approach and cognitive architectures 
in general. 

Finally, the biggest downside of our method of selecting the next goal 
is that it might, occasionally, be too slow. After performing the same task for 
a certain amount of time, goal selection might be achieved automatically 
which makes the goal selection skill redundant. This high level of learning 
can be for a large part captured by production compilation (over time the 
select-next operators can be completed in one execution cycle), however, this 
still might be too slow in situations with many different small goals. This 
slower selection of goals becomes especially apparent in highly learned tasks. 
However, this downside is not completely a limitation of this method of goal 
selection but perhaps more a limitation of general skills. Similar to the 
problem discussed with the temporal bindings: when people become highly 
skilled in a certain task they may not use the general skill anymore but they 
might use a specific (not generalizable) skill instead. 

 To conclude, the modifications to the architecture and the modelling 
approach greatly improved the process of creating models with the skill-based 
approach. This is largely due to the big improvement to skill reusability made 
possible by these changes which resulted in the creation of skills that did not 
include task specific knowledge that prevented reuse in other contexts. 

 
4.2. Executive functions 
As mentioned before, the successful modifications resulted in a model of EF 
that can provide interesting insights in the mechanism underlying the EFs and 
shed light on the question whether EFs are part of the cognitive architecture 
or consist of a set of learned general skills. The now feasible skill-based 
approach is in a unique position to provide these insights because, in a sense, 
it functions as the cognitive modelling equivalent of the latent factor analysis. 
Because of task impurity, performance on several tasks need to be combined 
in order to extract the EF. Without going into the statistical details, this is 
accomplished by factor analysis by combining the performance on individual 
tasks and building the EFs from the interplay between the tasks. For example, 
a participants’ Updating performance is determined by combining 
performance on all updating tasks and determining the common factor in 
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these tasks (i.e., the Updating EF). The skill-based approach allows for a very 
comparable process. By constructing a single skill that will be used in all 
tasks requiring this skill, the nature of this skill and therefore the common 
element between these tasks, will become gradually apparent. For instance, 
creating the ‘updating’ skill for only one updating task will make the skill 
very specific for this single task. However, applying this same skill to a 
second and a third updating task will include common aspects that were not 
clear from the first task and exclude aspects that only apply to one (or two) 
of the tasks, resulting in only the common updating aspect between all tasks. 
 
4.2.1. Mechanisms of executive functions 
Much is known about the importance of executive functioning in daily life. 
A strong ability to perform the three core EFs, shifting, updating, and 
inhibition has been found to predict academic success (Gathercole, Pickering, 
Knight, & Stegmann, 2004), job performance (Bailey, 2007) and even 
physical health (Riggs et al., 2010). Additionally, low executive functioning 
has been shown to play in role cognitive impairments and psychological 
disorders such as addiction (Baler & Volkow, 2006), depression (Tavares et 
al., 2007) and schizophrenia (Barch, 2005). However, an explanation of what 
underlies this big impact of executive functioning is often lacking. This is 
because the focus of most research on EFs is on uncovering the role EFs play 
in general cognition, but not on the cognitive mechanisms underlying these 
EFs. This narrow view leads to a limited understanding of why low executive 
functioning can lead to impaired performance or psychological disorders 
(Duijkers et al., 2016) or how to improve it (Shipstead et al., 2012). The 
model (consisting of eight smaller models) we created of all three core EFs 
using a unitary mechanism for each EF can suggest the basic mechanisms 
underlying the core EFs.  

As was mentioned in the introduction, according to the skill-based 
approach a core EF consists of two parts. The first part is the procedural part, 
this includes the operators and skills required to accomplish the function of 
the core EF. The second part is the automatic part, this includes the 
architectural mechanisms that the ‘active’ part acts upon but cannot be 
directly controlled by the person (or model). For example, for the updating 
skill, the procedural part are the operators that change the values associated 
with the variables and the automatic part are the bindings (DM chunks) that 
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are created by those operators. The automatic part represents the DM 
characteristics (e.g., decay or noise, aspects that are outside of conscious 
control). These aspects depend on each other but influence the update success 
independently. For example, someone might have very efficient updating 
operators but also a very high decay rate. This person would perform quite 
poorly on an updating task; however, this is only due to the poorly functioning 
automatic aspect of Updating. 

Using the skill-based approach, capable of extracting the processing 
steps all three shifting tasks have in common, we concluded that a successful 
shift contains two basic cognitive processing steps (at least in the tasks we 
modelled). Firstly, a new task set needs to be retrieved from declarative 
memory which, secondly, needs to be stored in such a way that it can be 
retrieved quickly. This might seem like a redundant way of processing since 
it includes two memory retrievals while it could also be accomplished with a 
single retrieval. However, the storage of the task set in an easier to access 
place is crucial to support fast and accurate processing (similar reasons why 
a computer needs working memory). These general processing steps were 
captured in our model by the shifting skill which contained two operators. 
The first operator of this skill retrieves a task set from declarative memory 
and the second operator updates a certain binding based on the retrieved task 
set. The binding that is updated by the skill is a crucial binding which either 
influences which operator subsequently fires or how subsequent operators 
will function. These two processing steps are the procedural part of the 
shifting ability. The automatic part of the shifting EF depends on the 
effectiveness of short-term memory, both in the ability to remember multiple 
task sets as in the ability to maintain the current relevant task set. We did not 
manipulate the automatic part of Shifting in our model (all models had the 
same DM parameters), however in people, differences in the automatic part 
of shifting might be a large contributor to individual variation. To conclude, 
the cognitive mechanism underlying Shifting consists of procedural 
knowledge that retrieves task sets from declarative memory and stores them 
in an easy to access location. Additionally, these easily accessible task sets 
require a healthy short-term memory system to survive until they are 
retrieved. 

The basic cognitive processing steps we identified as underlying the 
three updating tasks are as follows. Firstly, identifying the update-target. For 



A SKILL-BASED MODEL OF EXECUTIVE FUNCTION | 5  
 

 133 

example, when updating a count to three, three is the update-target. Secondly, 
selecting which already existing variable should be updated. Thirdly, 
changing the value associated with the to-be-updated variable from the 
previous value to the update-target. For example, in the keep-track task, the 
first step is identifying that the newly presented item should be remembered 
(if it belongs to one of the target categories), the second step is determining 
which variable to update (e.g., the third category if the item belongs to the 
third category) and, finally, actually updating the value associated with this 
category to the new value (e.g., the third category is now iron). This process 
is the same for updating that requires shifting but it is repeated as many times 
as necessary depending on the number of items that need to be shifted. For 
example, on the fifth trial of a letter-memory task, the newly presented letter 
should go to the spot currently associated with the previous newest letter and 
the previous newest letter should go to the spot previously associated with the 
previous second-oldest letter and the previous second-oldest letter is now the 
new oldest letter. This is simply a repetition of identifying the update-target, 
identifying the to-be updated variable and performing the update three times. 
These three processing steps are the basic procedural part of Updating. The 
automatic part of updating, similar to the automatic part of Shifting relies 
heavily on the effectiveness of short-term memory since the most recent 
version of every variable-value pair needs to remain more active than any of 
the previous versions. The success of this mainly depends on the noise levels 
in DM, high noise makes it more likely that an older version of a variable-
value pair will be more active by chance than the newest version. 
Interestingly, high levels of decay might actually improve performance on an 
updating task since older versions might dip below the retrieval threshold 
sooner and noise (assuming it does not scale with decay) impacts the 
activation levels less strongly. Because updating often is the main goal of 
updating tasks, people might adopt active strategies that reduce the reliance 
on short-term memory. These strategies could include rehearsal or 
visualization of the to-be remembered items. Adoption of such strategies 
might have a strong impact on between-subject variation or even between-
task variation (within one subject). Because of the importance of strategy, the 
basic procedural part of Updating that is measured in EF tasks might often 
include strategy effects. However, we did not include this in our model 
because it would not fundamentally change the cognitive mechanism 
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underlying updating but merely repeated updating (in the case of rehearsal) 
or updating in a different modality (in the case of visualization, although this 
might be very different from the updating we considered here). To conclude, 
the cognitive mechanism underlying Updating consists of procedural 
knowledge that identifies the update-target, determines what to update and 
establishes an association between the update-target and the determined to-
be updated variable. Additionally, these associations require a healthy short-
term memory to be retrieved later and strategy might play a considerable role 
in compensating for the unpredictability of short-term memory. 

The basic processing steps that the two inhibition tasks share are as 
follows. Firstly, a memory retrieval has to be done to retrieve the correct 
‘inhibition instructions’, these instructions are variables that represent the 
particular inhibition that is required for the current task (e.g., inhibit-reading 
for the Stroop task). Secondly, these instructions need to be placed in the 
workspace so they can influence further processing. In our models, the 
instructions were placed in the first slot of the imaginal buffer, however it is 
possible to place these instructions anywhere in the workspace. A suitable 
alternative location for this would be the goal buffer since the instructions 
play a comparable role as a goal. Interestingly, something representing those 
‘instructions’ could also be placed in the input buffer (i.e., on the screen, a 
sound, or an object), although this will likely not be considered Inhibition 
since it does not involve active effort (besides the initial placement). In the 
end, the core characteristic of Inhibition is that something that influences 
operator selection into the intended direction is actively placed in the 
workspace. The procedural part of Inhibition is accomplished by the 
retrieving and placing of ‘inhibition instructions’ in the workspace. The 
automatic part depends on declarative memory (to store the ‘instructions’) 
and on the effect that the ‘instructions’ have on subsequent operator selection. 
The ‘instructions’ need to be able to overcome the influence of the unintended 
direction, for example the saccadic reflex to a new stimulus in the antisaccade 
task or the habit of reading a word in the Stroop task. This requires very fast 
acting and powerful spreading activation. Furthermore, the stochastic nature 
of operator selection requires this spreading activation to be considerable 
larger than the reflexive behaviour in order to compensate for potential noise. 
An interesting question is whether individual variation in Inhibition ability is 
caused by differences in ability to set high enough spreading activation 
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relationships (e.g., some people can only produce Sjis of maximum 1 while 
other can produce Sjis of 3 or more) or if this variation is caused by strategy 
(i.e., the choice to prepare or not), or, alternatively, a difference in how easy 
spreading activation relationships can be learned (e.g., some people can learn 
that they need to inhibit a particular operator after only two unsuccessful trials 
while others might need twenty). To conclude, the cognitive mechanism for 
Inhibition requires an active step to retrieve and place ‘inhibition instructions’ 
in the workspace. Additionally, these instructions need to have a strong 
enough influence to overcome the pre-potent behaviour. 
 
4.2.2. Can executive functions be improved? 

There has been a lot of research on whether executive functioning 
can be improved or whether it is a stable characteristic of any individual. 
Many studies have shown a significant effect of EF training on performance 
on other EF tasks (Bergman Nutley et al., 2011; Diamond & Lee, 2011; 
Karbach & Kray, 2009; Klingberg, 2010). Especially, Updating seems to be 
sensitive to training effects (Gray et al., 2012; Kamijo et al., 2011). However, 
the ecological validity of these studies has been questioned and they often 
show little to no transfer beyond the initial training task (Morrison & Chein, 
2011; Shipstead et al., 2012). Overall, these studies indicate that EF training 
has an effect on performance, however it is highly questionable whether these 
training programs truly improve the core EF (Blair, 2017). 

Our model could potentially provide a basic answer to the 
paradoxical results produced by the research on EF training. Our model 
assumes that the core EFs (shifting, updating, and inhibition) depend on two 
related but independent aspects, a procedural part and an automatic part as 
described above. Furthermore, it assumes that the automatic aspects are stable 
within and between participants (i.e., people do not differ in their module 
efficiency and this efficiency is the same for every task). Therefore, it predicts 
that all the individual differences can be ascribed to differences in the 
procedural part of an EF. We tested this prediction by running several models 
with differing levels of procedural EF ability to check whether such models 
would display comparable individual differences (between the different 
models) as is found between human participants. 

The models, only differing in how well the basic EF skills function, 
showed very comparable performance to the human participants in our data 
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set. The top 50% highest performing models performed very similarly to the 
top 50% of human performers and the bottom 50% of models and humans 
also showed highly comparable performance patterns. This suggests that the 
individual variance present in the data can be explained by merely varying 
the mastery levels of the procedural knowledge required for the eight EF 
tasks. This result supports the idea that the procedural part of the core EFs 
can explain the entire range of individual differences present in these tasks. 
This is a very different view of executive functioning than the one that is 
currently common in the EF literature. Instead of conceptualizing an EF as a 
hard to pin-down abstract construct, it views it as tangible and concrete blocks 
of procedural knowledge. 

Furthermore, our model explains the inconsistent results produced by 
the studies investigating the effects of EF training. Our model suggests that 
success of training depends on two things: (1) the tasks need to rely on the 
same procedural knowledge and (2) the participants have relatively 
underdeveloped basic EF skills. Firstly, the tasks need to rely on the same 
procedural knowledge because training is only effective when the procedural 
knowledge required for the training task is the same or highly similar to the 
test task. Secondly, the skill level of the individual participant is crucial 
because the training only works for participants that have relatively 
underdeveloped basic EF skills. Only these participants still have room to 
improve because the basic skills can receive additional training. If a 
participant has fully developed basic EF skills (i.e., they are fully 
compilated), training is not possible even though the tasks might have a lot in 
common. Training beyond the compilation of the basic skills would require 
the learning of new skills that only apply to the training task, but not beyond 
that. 

However, our model is not complete. The data and the model showed 
a very similar pattern of correlations between the tasks with many significant 
correlations between tasks measuring the same EF and few correlations 
between tasks belonging to different EFs. However, the correlations found in 
the model were much higher compared to the correlations present in the 
human data. This suggests that other sources of individual variation also 
strongly influence the individual differences found in the EF tasks. This 
includes differences in strategy, motivation or fatigue. 
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To conclude, differences in how well a basic EF skill is learned can 
provide an explanation for the individual differences found in the EF tasks. 
Furthermore, the differentiation between the procedural part of an EF and the 
automatic part of an EF is very helpful in explaining why EF training is 
sometimes effective and sometimes not effective. This is because only the 
procedural part of an EF can be trained (if there is still room for training), but 
not the automatic part. 
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Appendix 
Detailed description of model building procedure 
The basic practical process of building the models was as follows. We started 
by fully building one model from start to finish (e.g., the letter-memory 
model) and perform basic model fitting (compare accuracy and RT to the 
human data). Subsequently, we built the next model from the same core EF 
(e.g., the keep-track model) and started by creating the specific skills required 
to accomplish this task. Then, we added the already built basic skill to the 
model. This often required some small changes to the basic skill(s) in order 
to successfully integrate into the new model. These changes were usually due 
to the original skill being too specific for the first task which made it 
incomplete for the second task or prevented it from functioning properly in 
the second task. An example of the first reason is that the keep-track model 
needed to update four items while the letter-memory model only updated 
three which required adding a new operator. An example of the second reason 
is that the updating operators were only used at the start of the task in the 
letter-memory model while they were used throughout the whole task in the 
keep-track model, thus requiring the conditions to be modified in order to 
reflect this. After the basic skills were integrated into the new model, we 
performed a basic model fit procedure again on both tasks. This was done on 
both tasks because the changes made to the basic skill could have resulted in 
changed model behaviour on the first task. During model building we kept all 
model parameters equal in order to get a clear idea of how the basic skills 
functioned. Because of this, during model running almost all parameters 
could be kept equal as well. Only the latency factor was different in the Stroop 
model models because the bindings were slowing the model down too 
strongly, otherwise all parameters were kept constant. 

The changes to the architecture we proposed were instrumental in 
this process. These were: temporary bindings, a specific goal selection skill, 
and limited condition checking combined with spreading activation. The 
specific goal selection skill is the smallest modification and is already 
explained with a specific example in the introduction, therefore we will only 
discuss the specific use of the bindings and the condition checking here. 
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The temporary bindings were used to store information that was 
relevant at certain points in the task but did not need to be present in the 
workspace at all times. Specifically, they were used for two important roles 
in the models: (1) storage of task-specific information and (2) storage of 
short-term relevant information. Both of these roles can be illustrated by 
looking at the first operator of the final update skill depicted below. 

The first role is crucial for adding task-specific information to a 
general skill. Infusing the task-specific information into a general skill is one 
of the biggest challenges when creating reusable skills. The bindings allowed 
for a flexible but concrete way of doing this because the task-specific 
information did not need to be included in the procedural knowledge of a 
skill. Instead, the task-specific information was provided by the bindings. 
This role can be seen in the final PRIM of the operators of the update skill 
depicted below. These PRIMs place the next goal in the goal buffer which is 
stored in the binding *next-skill-update. Because this is stored in a binding it 
can be different in every task and, potentially, within a task (which is how it 
was used in the shift skill). The second role was especially fundamental to the 
updating tasks since it allowed for the flexible storage of the to-be 
remembered items in these three tasks. The bindings allowed for storage of 
short-term relevant information of to-be remembered values combined with 
their ‘identity’. Because of this, the model did not need to know exactly where 
an item was stored but only which item (i.e., the identity) to retrieve. This 
role can be seen in the first PRIM of the operators, these PRIMs update the 
value of the binding *first-item based on the value stored in the binding 
*current-target. In addition to a more flexible use of WM across task, this 
method also frees up the imaginal buffer to only be used for immediately 
relevant information (such as providing the information on which this 
operator is selected) and it prevents the difficult calibration process when this 
operator is reused in a different context. For example, if this operator would 
place the current-target in WM2 instead of a binding, it would require WM2 
to be available. 
 
define goal update { 
  
 operator update-first { 
 WM1 <> nil 
 ==> 
 *current-target -> *first-item 
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 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-second { 
 WM1 <> nil 
 ==> 
 *current-target -> *second-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-third { 
 WM1 <> nil 
 ==> 
 *current-target -> *third-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator update-fourth { 
 WM1 <> nil 
 ==> 
 *current-target -> *fourth-item 
 nil -> WM1 
 *next-skill-update -> G1 
 } 
 
 operator shift-values-three { 
 WM1 <> nil 
 ==> 
 *second-item -> *first-item 
 *third-item -> *second-item 
 *current-target -> *third-item 
 *next-skill-update -> G1 
 } 
 
 operator shift-values-two { 
 WM1 <> nil 
 ==> 
 *second-item -> *first-item 
 *current-target -> *second-item 
 *next-skill-update -> G1 
 } 
 
} 
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 Secondly, the modifications proposed to condition checking were 
used to allow for more flexible use of the operators in a skill. Instead of 
specifying specific conditions for every operator, the conditions were kept to 
a minimum and task-specific conditions were replaced by setting spreading 
activation relationships (Sji’s). This can be seen by looking at the conditions 
of the operators in the final update skill depicted above. The only condition 
used in all operators is checking whether WM1 is not empty. In this case, the 
task-specific information about which operator to select was indirectly 
provided by WM1 because we set different Sji’s between contents of WM1 
and the operators. As a side note, this is only an illustration of how conditions 
can be replaced by setting Sji’s, it does not always have to be done by using 
the imaginal buffer. For example, in the keep-track task, which updating 
operator to select was based on which category should be updated. This was 
done by setting the following Sji’s. 
 

set-sji("update-first","imaginal","slot1","one",3) 
set-sji("update-second","imaginal","slot1","two",3) 
set-sji("update-third","imaginal","slot1","three",3) 
set-sji("update-fourth","imaginal","slot1","four",3) 

 
Running these functions set positive Sji’s of three between a certain value in 
WM1 and an operator (e.g., when one is in WM1, spread three activation to 
the operator update-first, or when two is in WM1, spread three activation to 
the operator update-second). A skill specific for the keep-track task assigns a 
number to a category based on the position of this category on the screen (the 
most left receives one and the most right receives four). Throughout all 
models, task-specific conditions were replaced, when necessary, by setting 
spreading activation relationships in this manner. In this example, using 
spreading activation instead of conditions was useful because it removed the 
need to add the condition that a certain value should be present in WM1. This 
condition would be useful for this particular task; however, it would not be 
(necessarily) useful in other tasks. 
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Detailed descriptions of models 
Shifting models 
 The category-switch model (see Figure 4a) consists of two basic 
skills (shift and respond) and two skills specific for this model (select-next-
skill-category-switch and retrieve characteristic). These skills were 
combined in the following way. The model starts a trial with the select-next-
skill-category-switch skill. This skill determines whether the current trial is a 
switch trial or not by comparing the current cue (‘size’ or ‘alive’) to the task 
that the model did on the previous trial (also either ‘size’ or ‘alive’). If they 
are not the same the model is doing a switch-trial, which means that it will 
change to the shift skill which will change the value associated with 
*characteristic to either ‘size’ or ‘alive’ depending on the trial. When the 
shift is completed, the model returns to the select-next-skill-category-switch 
skill and waits for the presentation of the word. If they are the same, the model 
does not need to shift and it simply waits until the word is presented. After 
presentation of the word, the retrieve characteristics skill determines the 
answer of whether the presented word is alive or bigger than a football 
(depending on the trial) by performing a memory retrieval based on the value 
in *characteristic. Finally, the respond skill carries out the final response 
which is either pressing ‘j’ for yes or ‘f’ for no. In order to integrate the 
reusable shift and respond skill into the model the bindings were instantiated 
as follows. For the shift skill, *task was instantiated as category-retrieval and 
*next-skill-shift was instantiated as select-next-skill-category-switch. For the 
respond skill, *key-right was instantiated as J, *key-left as F, and *next-skill-
respond as select-next-skill-category-switch. 
 The colour-letter model (Figure 4b) also consists of two basic skills 
(shift and respond) and two skills specific to this model (select-next-skill-
colour-letter and attend-colour-or-type). Although the select-next-skill-
colour-letter has the same function as the select-next-skill-category-switch, it 
is nevertheless considered as a distinct skill because the operators are not the 
same. The colour-letter model is combined in the following way. The colour-
letter task starts with a blank screen for 150 ms, during this the model starts 
with the select-next-skill-colour-letter skill which determines whether the 
current trial is a switch trial or not. It does this by comparing the location of 
where the next letter will be to where the previous letter was. If they are not 
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the same, the model will go to the shift skill. This skill will change the value 
associated with *characteristic to either ‘letter-type’ or ‘colour’ depending 
on the trial. After completing the shift, the model will return to the select-
next-skill-colour-letter and waits for the presentation of the letter. If they are 
the same, the model simply waits for the letter presentation. After the letter is 
presented, the model will go to the attend-colour-or-type skill which either 
attends the letter itself or the colour in which the letter is presented. The letter-
type (vowel or consonant) is determined through a memory retrieval (which 
takes two operators), whereas the colour is determined simply by attending 
the colour (which only takes one operator). Finally, after either the letter-type 
or colour is determined, the response skill gives the appropriate response (‘f’ 
for vowel or red or ‘j’ for consonant or blue). In order to integrate the reusable 
shift and respond skill into the model the bindings were instantiated as 
follows. For the shift skill, *task was instantiated as colour-letter and *next-
skill-shift was instantiated as select-next-skill-colour-letter. For the respond 
skill, *key-right was instantiated as J, *key-left as F, and *next-skill-respond 
as select-next-skill-colour-letter. 
 The colour-shape model (Figure 4c) also consists of two basic skills 
(shift and respond) and two skills specific to this model (select-next-skill-
colour-shape and attend-colour-or-shape). These skills are combined for the 
colour-shape task in the following way. The model starts in the select-next-
skill-colour-shape skill which determines whether a trial is a switch trial or 
not by comparing the new cue to the task done on the previous trial. If they 
are not the same, the model goes to the shift skill which changes the value 
associated with *characteristic to either ‘colour’ or ‘shape’ depending on the 
trial. When the shift is completed, the model will return to the select-next-
skill-colour-shape and waits for the shape to be presented. If the previous task 
and cue are the same, the model does not need to switch and simply waits for 
the shape to be presented. After presentation of the shape, the attend-colour-
or-shape skill determines the colour or the identity of the shape. This can be 
done by simply attending the stimulus without the need of a memory retrieval. 
Finally, the respond skill gives the final response (either ‘f’ for red or triangle 
or ‘j’ for blue or square). In order to integrate the reusable shift and respond 
skill into the model the bindings were instantiated as follows. For the shift 
skill, *task was instantiated as colour-shape and *next-skill-shift was 
instantiated as select-next-skill-colour-shape. For the respond skill, *key-
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right was instantiated as J, *key-left as F, and *next-skill-respond as select-
next-skill-colour-shape. 
 
Updating models 

The keep-track model (see Figure 5a) consisted of three basic skills 
(read, update, and respond) in addition to one keep-track specific skill 
(category search). These skills were combined in the following way. At the 
start of a trial, the first item was read by the read skill. Subsequently, the 
category search skill determined to which category this item belonged 
through means of a memory retrieval. Afterwards, the update skill updated 
the binding associated with this category (e.g., the *third-item). This process 
repeated until the end of the trial. At the end of a trial, the final responses 
were given by the respond skill which was done by retrieving the value 
associated with each of the bindings and typing them on a keyboard. In order 
to successfully perform the keep-track task, the first four operators of the 
update skill were needed. In order to integrate the reusable read, update and 
respond skill into the model the bindings were instantiated as follows. For the 
read skill, *report-instructions was instantiated as report, *respond-skill as 
respond and *next-skill-read as category-search. For the update skill, *next-
skill-update was instantiated as read. For the respond skill, *action was 
instantiated as press, *read-skill as read, and *report-instructions as report. 
Different bindings needed to be created for the updating tasks because 
different operators from the respond skill were used. The previously 
mentioned bindings were also created; however, they did not influence model 
behaviour. 

The letter-memory model (Figure 5b) also consisted of three basic 
skills (read, update, and respond) in addition to one letter-memory specific 
skill (count). These skills were combined for the letter-memory task in the 
following way. At the start of a trial, the read skill read the first letter. After 
this, the count skill placed a value in WM1 depending on how many stimuli 
had already been presented (e.g., a ‘1’ for the first letter and a ‘more-than-
three’ for the fourth letter and up). Subsequently, the update skill performed 
the correct update based on the value stored in WM1, it fired one of the 
update-x operators if this value was lower than three and it fired the shift-
values-three if this value was ‘more-than-three’. This process repeated until 
the final letter was presented. Finally, the respond skill took care of the 
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responses at the end of the trial in the same way as in the keep-track model. 
In order to successfully perform the letter-memory task, the model required 
three single-value update operators and the shift-value-three operator. In 
order to integrate the reusable read, update and respond skill into the model 
the bindings were instantiated as follows. For the read skill, *report-
instructions was instantiated as report, *respond-skill as respond and *next-
skill-read as count. For the update skill, *next-skill-update was instantiated 
as read. For the respond skill, *action was instantiated as press, *read-skill 
as read, and *report-instructions as report.  

The spatial two-back model (Figure 5c) consisted of only two basic 
skills (update and respond) and one two-back-specific skill (compare). These 
skills were combined for the spatial two-back task in the following way. 
When a square was presented, the compare skill compared the location of the 
current square to the location of the two-back square. After this, the respond 
skill gave the response associated with the outcome of the compare skill 
(pressing ‘j’ for yes and ‘f’ for no). Finally, the update skill performed the 
update, either with the update-first or update-second operator for the first two 
locations of the trial or with the shift-values-two operator for the remainder 
of the trial. This process repeated until the end of the trial. In order to 
successfully perform the two-back task, the model required the first two 
single-value update operators and the shift-values-two operator. In order to 
integrate the reusable update and respond skill into the model the bindings 
were instantiated as follows. For the update skill, *next-skill-update was 
instantiated as read. For the respond skill, *action was instantiated as press, 
*read-skill as read, and *report-instructions as report. 
 
Inhibition models 

The antisaccade model consisted of two basic skills (prepare-to-
inhibit and respond) and two specific antisaccade skills (select-next-skill-
antisaccade and determine target). These skills were combined for the 
antisaccade task in the following way. A trial of the antisaccade task started 
with a fixation cross, during this time the prepare-to-inhibit skill prepared for 
the upcoming stimuli by placing inhibit-saccade in WM1 which spread 
activation to associated operators in such a way that it inhibited the reflexive 
response of looking at a new stimulus (also depicted above). After the 
prepare-to-inhibit skill, the model returned to the select-next-skill-
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antisaccade skill. This skill selected the next goal which was to determine the 
direction of the upcoming arrow and switched to the determine target skill. 
This skill waited for the arrival of the distractor and the target. On a successful 
antisaccade trial this skill ignored the first stimulus (the distractor) and only 
attended the target. On an unsuccessful trial, this skill did attend to the first 
stimulus and was unable to respond fast enough to detect the direction of the 
target arrow. After attending either the distractor or the target, the model 
returned to the select-next-skill-antisaccade skill which then moved on to the 
respond skill. Finally, the respond skill gave the final response by pressing 
the appropriate arrow key on the keyboard (left, up, or right). In order to 
integrate the reusable prepare-to-inhibit and respond skill into the model the 
bindings were instantiated as follows. For the prepare-to-inhibit skill, 
*prepare-goal was instantiated as prepare-to-inhibit, *fact-type as prep-fact, 
*task as antisaccade, and *next-skill-prepare as select-next-skill-
antisaccade. For the respond skill, *action was instantiated as press, *read-
skill as read, and *report-instructions as report. The binding *read-skill is 
still defined in this model because the operator using it would not be able to 
fire if it did not exist. However, this does not influence model behaviour 
because this operator fires at the end of a trial. 
The Stroop model consisted of three basic skills (read, prepare-to-inhibit, 
and respond) and three Stroop specific skills (select-next-skill-stroop, 
determine colour, and choose hand). These skills were combined for the 
Stroop task in the following way. A trial of the Stroop also started with a 
fixation cross, during this time the prepare-to-inhibit skill prepared for the 
upcoming trial by placing inhibit-reading in WM1 which spread activation to 
operators in such a way that it inhibited the prepotent response of reading a 
word. After this, the model returned to the select-next-skill-stroop skill which 
waited for the word to be presented and selected the next skill. Depending on 
the activation of the operators in this skill, this could be either of two skills: 
the read skill or the determine colour skill. If the model selected the read 
skill, it would read the word which would take a certain amount of time before 
returning to the select-next-skill-stroop. Then, if it is a conflict trial (e.g., the 
word blue printed in red) it would need to select the determine colour skill (it 
could also skip this step which would result in an incorrect response). If the 
model had selected the determine colour skill it would go straight to this part 
or, alternatively, if it was a congruent trial it could skip the determine colour 
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skill because it already had the correct answer. The determine colour skill, 
then, attended the colour in which the word was printed and placed it in the 
binding *current-target so that it could be remembered for later use and the 
model returned to select-next-skill-stroop. This skill would select the choose 
hand skill which determines the correct hand to respond with by looking at 
the response options that flanked the presented word. Then, the model would 
return to select-next-skill-stroop one more time which selected the respond 
skill. Finally, the respond skill would press the key associated with the correct 
hand (‘f’ for left and ‘j’ for right). In order to integrate the reusable read, 
prepare-to-inhibit and respond skill into the model the bindings were 
instantiated as follows. For the read skill, *report-instructions was 
instantiated as report, *respond-skill as respond and *next-skill-read as 
select-next-skill-stroop. For the prepare-to-inhibit skill, *prepare-goal was 
instantiated as prepare-to-inhibit, *fact-type as prep-fact, *task as 
antisaccade, and *next-skill-prepare as select-next-skill-stroop. For the 
respond skill, *key-right was instantiated as J, *key-left as F, and *next-skill-
respond as select-next-skill-stroop. 
 
Model training 
Besides testing the effectiveness of the proposed changes to the architecture, 
a second goal of this study was to investigate how differences in basic-skill 
proficiency can lead to individual differences in performance on the EF tasks. 
To achieve this, we ran models that differed with respect to the amount of 
training they received, which resulted in differences in the amount of 
production compilation that the basic skills underwent. 

Production compilation is a fundamental aspect of PRIMs and it 
explains why people speed up over the course of performing a task (Taatgen 
& Lee, 2003). Production compilation allows combinations of PRIMs that are 
part of the same operator and therefore often executed together to combine 
into one. When the process of production compilation is completed every 
operator of a model can be fully executed in one production cycle regardless 
of how many PRIMs are in this operator. In short, production compilation 
happens automatically every time a model runs and therefore the more often 
a model has run the quicker it is in performing its actions. 
 Because of the importance of production compilation, the usual 
model running procedure of PRIMs models consists of a training phase and 
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an experimental phase (similar to how psychological experiments include a 
training block before the experimental block). Typically, the training phase 
is used to allow the model to complete production compilation, however for 
our current goal we ran two different versions of the training phase for every 
basic skill. One resulting in full production compilation (high proficiency) 
and one resulting in incomplete production compilation (low proficiency). 
The high proficiency version included as many practice trials necessary to 
achieve full compilation (e.g., 50), while the low proficiency version include 
only half that number (e.g., 25). 

Subsequently, we tested the effect of the different levels of basic-skill 
proficiency on model performance. The model runs were structured in such a 
way that every run simulated a single participant. A participant did all eight 
tasks with the same level of basic-skill proficiency; however, the different 
skills could have different proficiencies. Each combination of basic-skill 
proficiencies was included fifty times, resulting in a total of 400 simulated 
participants. This means that every proficiency level was run 200 times total 
evenly combined with both levels of the two other skills (e.g., the 
combination low shift, high update, high inhibition was run fifty times, the 
combination low shift, low update, high inhibition was run fifty times et 
cetera until all combinations were included). After every ‘participant’ the 
models were reset. The tasks in the experimental phase were always done in 
the same order, however this did not cause any issues because production 
compilation was turned off during the experimental phase. 
 
Individual differences model fit 
We determined the fits of all models the same way as the individual model 
fits by creating a separate linear regression model for the model data and the 
human data and comparing the resulting model estimates. For this analysis 
we ran a simple linear model with one dependent variable (the measure 
plotted in Figure 10) and one categorical independent variable Group (i.e., 
high or low performers) with high performers as the reference level. There 
were no random slopes or intercepts in the models. Table 5 shows the 
estimates produced by these models. The high Group was the reference level; 
therefore, the average performance of this group is shown as the intercept and 
the average performance of the low Group is shown as the coefficient (called 
Low). Because the low Group is a coefficient what is shown in the table is 
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the difference between the low and high Group (i.e., in order to arrive at the 
average performance of the low group, the coefficients should be added to 
the intercept). 
 The fit of the shifting tasks was determined by looking at the average 
switch costs of the high and low performers. These were calculated by taking 
the average reaction time on a switch trial and subtracting the average 
reaction time on a non-switch trial. Visual inspection suggests that the fits of 
the shifting models is good. The high and low halves of the model perform 
very similarly to the high and low halves of the human data. The low 
performers in all tasks in both the model and the participants have higher 
switch costs than the high performers and the magnitude of this effect seems 
very comparable. This is corroborated by the linear models. In the category-
switch task, the high performers had similar low average switch costs in the 
model and the data with 154 ms and 180 ms respectively. Additionally, the 
low performers had significantly higher switch costs in both the model and 
the data with a very similar increase of 287 ms and 254 ms respectively. The 
same was true for the colour-letter task, with the high performers having very 
similar low average switch costs in the model and the data with 211 ms and 
242 ms respectively. Additionally, the low performers had significantly 
higher switch costs in the model and the data with a very similar increase of 
286 ms and 318 ms respectively. Finally, the colour-shape task showed a 
similar pattern. The high performers have low average switch costs in the 
model and the data with 213 ms and 144 ms respectively. Additionally, the 
low performers had significantly higher average switch costs in both the 
model and the data with an increase of 294 ms and 352 ms respectively. 
 The fit of the updating tasks was determined by looking at the 
average accuracy of the high and low performers. Visual inspection suggests 
that the model fits are good. The models and the participants performed at 
very similar levels in the high and low groups in all tasks and the difference 
between high and low was comparable in the model and the data. This was 
supported by the linear models. For the keep-track task, the high performers 
reached a similar high average accuracy in the model and the data of 94% and 
91% respectively. Additionally, the low performing group achieved a 
significantly lower level of performance in both the model and the data with 
a decrease of 11 percent point and 18 percent point respectively. A similar 
pattern was visible for the letter-memory task. The high performers reached 
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a high level of accuracy in both the model and the data with 99% and 93% 
respectively. Additionally, the low performers scored considerably and 
significantly lower in the model and the data with a decrease of 44 percent 
point and 34 percent point respectively. Finally, the spatial two-back task 
showed the same pattern. The high performers performed very well in both 
the model and the data with an average accuracy of 77% and 82% 
respectively. Additionally, the low performers performed significantly worse 
in the model and the data with a decrease in performance of 26 percent point 
and 47 percent point. The model did not capture the magnitude of the Group 
effect very well though. This is because the model always made a guess on 
every trial, while the low-performing participants may not have given a 
response at all when they lost track of the stimuli. Because of this, the model 
could not perform under chance level (which was 50%) whereas the 
participants did. 
 The fit of the inhibition tasks was determined by looking at the 
average accuracy for the antisaccade task and at the average stroop 
interference for the Stroop task. The stroop interference was calculated per 
participant by taking the average response time on conflict trials and 
subtracting the average response time on congruent trials. The visual 
inspection suggests a good fit for the models. The high and low performers 
have similar average performance and follow the same pattern in the 
antisaccade task. The interference costs in the Stroop task are also very 
similar, although the model seems to slightly underestimate the stroop 
interference in the low performers. This was supported by the linear models. 
For the antisaccade task, the high performers reached a similarly high level 
of accuracy in both the model and the data with 87% and 90% respectively. 
Additionally, the low performers performed significantly worse in the model 
and the data with a decrease of 11 percent point and 17 percent point 
respectively. For the Stroop task, the high performers experienced similarly 
low levels of stroop interference in the model and the data with 57 ms and 78 
ms respectively. Additionally, the low performers experienced significantly 
higher levels of stroop interference in both the model and the data, although 
the average interference of 124 ms in the model was lower than the average 
interference of 199 ms in the data. 
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Table A1. Regression estimates for the high and low performers in all tasks. 
The intercept shows the average performance of the high performers. The 
coefficient indicated with Low shows the adjustment to the intercept for the 
low performers.  

 Model Human data 
 Estimate SE t value p value Estimate SE t value p value 

Shifting          

Category-switch          

(Intercept) 154.4 7.1 21.7 > .001* 179.9 16.1 11.2 > .001* 

Low 286.7 10.1 28.5 > .001* 253.5 22.6 11.2 > .001* 

Color-letter         

(Intercept) 210.8 9.1 23.3 > .001* 241.8 28.3 8.5 > .001* 

Low 286.1 12.8 22.3 > .001* 318.3 39.8 9 > .001* 

Color-shape         

(Intercept) 213.3 7.2 29.7 > .001* 143.9 26.1 5.5 > .001* 

Low 294.3 10.1 29 > .001* 351.8 36.6 9.6 > .001* 

         
Updating         

Keep-track         

(Intercept) 94.1 0.4 263.6 > .001* 91.3 1.2 79.2 > .001* 

Low -10.9 0.5 -22.3 > .001* -17.9 1.6 -11.4 > .001* 

Letter-Memory         

(Intercept) 98.8 0.4 269.8 > .001* 93.1 4.2 22 > .001* 

Low -44.1 0.5 -85.3 > .001* -33.8 5.4 -6.2 > .001* 

Spatial Two-back         

(Intercept) 77.4 0.08 975 > .001* 81.7 2.7 29.8 > .001* 

Low -26.1 0.1 -233 > .001* -46.8 3.9 -12 > .001* 

Inhibition         

Antisaccade         

(Intercept) 86.5 0.3 291 > .001* 89.7 2 44.5 > .001* 

Low -11.1 0.4 -26.7 > .001* -17 2.8 -6.1 > .001* 

Stroop          

(Intercept) 56.8 1.8 31 > .001* 77.7 7.9 9.7 > .001* 

Low 67.6 2.6 26.1 > .001* 131.2 11.3 11.6 > .001* 
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In this dissertation we attempted to develop a modelling approach that mirrors 
the human approach to novel (simple) task learning. When people are 
confronted with a new task, they do not figure out from scratch how to 
accomplish this task but instead rely on previously learned knowledge. This 
is the approach we intended to translate to a practical and useable modelling 
approach. Instead of creating a brand-new model for every new task as is 
currently standard practice in cognitive modelling, the modelling approach 
we set out to develop would allow modelers to reuse blocks of procedural 
knowledge (i.e., skills) that were created for other models and use them for 
the new model. The approach we developed to this end is called the skill-
based approach. 

In this discussion, we will discuss the final resulting modelling 
approach and how it can contribute to cognitive science, and the general 
challenges in translating the approach to other cognitive architectures. 
 

1. Main conclusions of the dissertation 
 The work done in chapter 2 in proposing, developing and testing the 
initial version of the skill-based approach pointed to three main conclusions. 
Firstly, we successfully created a model of the attentional blink from skills 
that were taken from other models. This shows the basic feasibility of the 
skill-based approach and supports the idea that performing a simple task 
(such as the attentional blink task) is done by simply selecting the appropriate 
skills. Secondly, it suggested that this selection does not always select the 
most optimal skill for the task. Although the task can be completed in most 
situations (all Lags except for Lag 2 and 3) with the separate consolidation 
skill, it does not work for Lag 2 and Lag 3. Finally, chapter 2 showed the 
basic feasibility of the skill-based approach in producing plausible and novel 
models. 
 Chapter 3 further developed and tested the attentional blink model 
proposed in chapter 2. This chapter provided two main conclusions. Firstly, 
a large cluster of participants did not experience the attentional blink in our 
second experiment, this suggests that the attentional blink is not as 
fundamental to human performance as is often assumed. Secondly, it showed 
that models created using the skill-based approach can provide interesting 
new insights in an intensively studied experimental paradigm since our model 
suggests that the attentional blink is a simple consequence of the normal 
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functioning of the cognitive system (i.e., it is the result of a general 
consolidation skill without any extra assumptions). 
 Chapter 4 discussed three limitations to the initial design of the skill-
based approach and the PRIMs architecture. The limitations and its solutions 
showed that, even in a cognitive architecture such as PRIMs, facilitating skill 
reuse has not received enough attention. Additionally, implementing changes 
to support skill reuse raises many interesting questions about how cognitive 
architectures should be designed, after all, skill reuse is done by people and 
therefore cognitive architectures should be able to support it too. 
 Chapter 5 implemented the changes proposed in chapter 4 and 
applied the approach to the paradigm of executive functioning. This chapter 
shows that the changes we made to PRIMs and the skill-based approach 
strongly improved the feasibility of the skill-based approach in a more 
involved experimental paradigm. Additionally, it provided a new perspective 
on executive functioning. This supports the idea that using skill reuse as a 
basis for a modelling project can lead to interesting new insights. 
 
2. The resulting modelling approach 
The skill-based approach has gone through several stages of development 
during the different chapters of this dissertation. From a basic idea that every 
task consists of multiple smaller (reusable) pieces to the final conception of a 
skill being any collection of operators that has become associated with a 
certain goal and the inclusion of specific modelling conventions. We will now 
describe the main result of this dissertation, the final (at least at the end of 
this dissertation) version of the skill-based approach. 

The skill-based approach centres around defining the basic skills for 
the to-be modelled task and assembling a model from these basic skills. Basic 
skills are the skills that a modeler can assume to already be learned when the 
task is performed for the first time (e.g., when the participant enters the lab). 
This means that stage two learning as described in the line of research started 
by Fitts (1964) is completed to a certain extent (the operators are associated 
with a certain purpose/goal) and the operators have undergone a basic level 
of compilation.  

The first step of creating a model with the skill-based approach is 
identifying the basic processing steps required to complete the to-be modelled 
task and identifying which basic skills capable of accomplishing these steps 
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a participant might already possess when entering the lab. This step represents 
the idea that the new task is (mostly) a composition of previously learned 
skills which only need to be applied to the new task. This can be done by 
looking at relevant literature and previously built models.  

The second step is creating and validating the identified basic skills. 
This is done by creating other models that include the required basic skill that 
participants have done before or, alternatively, by creating models of tasks 
(which participants did not necessarily do before) but use the same basic skill. 
For example, in our initial model of the attentional blink, we created a model 
of a simple working memory task in order to build the consolidation skill 
which is also used for performing the attentional blink. We did not assume 
that participants had done this simple working memory task before but 
because this task is so similar to basic tasks people do every day (e.g., 
remembering a phone number), it still served as a helpful proxy and a good 
source to create the basic skill. The skill created in this way is subsequently 
validated by fitting the data produced by this model to real human data. 

The final step is adapting the basic skills to fit the context of the 
current task. This final step depends on the cognitive architecture (or other 
modelling method) employed by the modeler. In general, this step should not 
fundamentally change the procedural knowledge of the skill but merely 
integrate the basic skill in the specific context of the task. For example, using 
a flexible and principled way in which symbols can be changed in a symbolic 
architecture or a way in which the operators can be flexibly linked to the new 
context (i.e., specifying which operator should fire at what moment). 

Following the above described steps will result in a model that is 
more constrained, cognitively plausible and whose findings can be more 
easily translated to other models. Models are more constrained because it 
limits a modeler in how the operators or production-rules can be created. By 
embedding the productions used for the final model into a different model, 
the productions cannot be made too specifically for the final task or be 
modified slightly in order to better fit the data. Additionally, models will be 
more plausible because they will be created in a way that mirrors human 
cognition and the skills used in the model will already be supported by human 
data (i.e., in the other task used to create the basic skill) before being used in 
the final task improving the chance that the skill is performing in a realistic 
way. Finally, it will be easier to translate the findings of a model to other 
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models and, crucially, it will be easier to integrate findings from other models 
into a new model. By using the skill-based approach, the process of creating 
a cognitive model consists for a large part out of reusing already existing 
skills. These skills might be created by other researchers from other fields 
studying different experimental paradigms and using these skills in a new 
model would automatically integrate these findings into the new model. This 
will be a very explicit gradual building of knowledge wherein any new 
modelling project will integrate all available relevant previous knowledge. 
 
3. Skill-based approach in other cognitive architectures 
In this dissertation we focused on implementing the skill-based approach in 
the cognitive architecture PRIMs. However, the general principles of the 
approach are not limited to this architecture alone, they can be implemented 
in other architectures as well. Although we did not explicitly investigate 
which obstacles will be encountered when implementing the skill-based 
approach in specific other cognitive architectures, the general issues that are 
present in PRIMs will most likely generalize to other architectures. 

The fundamental challenge in creating a model from reusable parts 
is the balance between being general enough to work in multiple contexts 
while still remaining specific enough to model the data in one specific task. 
Almost all cognitive architectures or other modelling methods are primarily 
designed to support creating models for one specific task. Therefore, the basic 
structure of these architectures and methods will be strongly leaning towards 
being too specific and lose the ability to create fully generalizable models. 
We identified three crucial general areas which might lead to reuse limitations 
when using an architecture designed for single-task models. More details on 
these issues and how we solved them in PRIMs can be found in Chapters 4 
and 5. 

The first area concerns how to store short-term relevant information 
(i.e., working memory). Storing short-term information is crucial for a model 
to function properly. This information has to be quickly and reliably available 
and therefore needs to be stored in a very predictable location. The model 
needs to both know the location of every relevant item (e.g., where is the 
phone number stored) in order to quickly retrieve it as well as know what is 
stored in every location (e.g., a phone number is stored here) in order to 
quickly update the correct information. This is not a large issue for models 
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that only have to model a single task, because the same type of information 
can always be stored in the same location: location and identity are equal. 
However, when a model needs to be designed to work in multiple contexts, 
this equality of identity and location does not always hold. For the one model 
it might be logical to store a phone number in slot 1, but a different model 
might already use slot 1 for something else. Therefore, location and identity 
cannot be assumed to be equal for reusable skills and a different method of 
indicating what is where and where is what is required. This method has to 
be flexible without becoming cognitively implausible.  

The second area concerns how to accomplish goal selection. Goals 
are commonly assumed to be crucial for organizing behaviour and cognition 
and they play a central role in many cognitive architectures such as ACT-R 
(Anderson et al., 2004), SOAR (Laird, 2012; Laird, Newell, & Rosenbloom, 
1987) and PRIMs (Taatgen, 2013). These architectures assume that every task 
is divided into a certain number of goals and that higher-level goals (e.g., 
completing an entire task) is accomplished by performing (sub-)goals in the 
correct order. For example, in the attentional blink task, the first goal is to 
identify the targets from distractors, the second goal is to consolidate the 
encountered target into memory and the final goal is to give a response. Goal 
selection for a single-task model is very different from goal selection for 
models based on reusable skills. Single-task models often have a very clear 
order in which the goals have to be accomplished and, therefore, relationships 
between goals are often described in terms of other goals (e.g., perform 
‘consolidation’ after ‘identify’), however this is not the case for a model 
based on reusable skills. Designing a way of accomplishing goal selection 
that works for reusable skills cannot rely on knowledge about what the 
previous goal was. Instead it has to be able to be flexibly defined based on 
context cues (Altmann & Trafton, 2002). 

The third area concerns how to specify the context in which an action 
should be taken. Most cognitive architectures provide a wide range of 
possible actions that can be executed by a model. It is, therefore, not a small 
task for a modeler to make sure that the model executes the correct action at 
the right time. This is usually done by providing a context in which it should 
be executed for every action. Context usually refers to the situation in the 
workspace (i.e., what information is in the buffer slots). For single-task 
models it is usually possible to come up with the correct context for every 
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task, because the number of actions is limited and the number of possible 
contexts is not too large. Additionally, every action is usually only required 
to be selected in one or a few contexts. When constructing multi-task models, 
it becomes clear quite quickly that it is very difficult to specify the context in 
which an action should be taken, because there are many possible actions, the 
same action has to be chosen in sometimes very different contexts, and the 
actions encounter many different contexts in which they should not be 
chosen. This difficulty is mainly caused by two characteristics of the way in 
which most cognitive architectures require action-context combinations to be 
specified. The first characteristic is that the context in which an action is 
supposed to be chosen is fundamentally linked to the action itself and 
unchangeable (e.g., in ACT-R the right-hand side of a production-rule cannot 
exist without its left-hand side). Because of this assumption, every action 
needs to be separately defined for every situation that it should be chosen by 
the model. The second characteristic is that the context requirements for an 
action to be chosen have to be fully met. If a single requirement is not met, 
an action will not be picked. This makes the action-context combination very 
inflexible. In order for actions to be picked flexibly, the action selection 
mechanism has to be different. The context in which an action can be chosen 
should not be fundamentally linked to the action itself (or it should be very 
limited at least) and the mechanism with which an action is selected should 
not be based on an all-or-nothing decision but, instead, be more gradual. A 
final issue with the current action selection mechanism is that it does not 
reflect current neurological evidence. Action selection is thought to be the 
result of a relatively simple reward learning process in the Basal Ganglia 
(Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Cisek & Kalaska, 2010; 
Redgrave, Prescott, & Gurney, 1999). Such a process is unlikely to end up 
with an explicit summary of the correct context for every action. 
 To summarize, most architectures are designed for single-task 
models, therefore their designs possess certain characteristics that make 
creating multi-task models very difficult. These limitations include short-
term memory, goal selection and action selection. However, this is not an 
extensive list of all issues and not all architectures experience the same issues 
to the same extent. One commonality among these issues is that the model 
relies on input from the modeler about certain task-specific characteristics: it 
relies on the modeler indicating what goes where in short-term memory (and 



DISCUSSION | 6  
 

 161 

maintaining this implicit organization throughout the model), it relies on the 
modeler providing the order in which the goals should be accomplished, and 
it relies on the modeler providing the exact context in which an action should 
be selected. This task-specific input from the modeler is often completely 
interwoven with the model which makes it very likely that a model created 
this way is too task-specific. Additionally, the mechanisms currently in place 
to inject task-specific information into a model are not designed for multi-
task models. They are often not flexible enough, too interwoven with the (in 
theory) generalizable parts of the model and hard to capture with simple 
learning mechanisms.  
 
4. Roadblocks to adoption of the skill-based approach 
The skill-based approach is a very promising modelling method and could 
prove to be very valuable to many projects. However, this raises a crucial 
question for the conclusion of this dissertation. How likely is it that the skill-
based approach will be adopted by the wider modelling community and what 
might the roadblocks towards this path be? 

Firstly, the research field is a crucial factor for the usefulness and 
usability of the skill-based approach. The skill-based approach is most 
suitable to fields studying higher levels of cognition and experimental 
paradigms involving tasks that study the interaction of several skills. Very 
fundamental cognitive research (e.g., studying the basic functioning of 
working memory) will profit less directly from applying the skill-based 
approach. However, even in such fundamental research, the idea behind the 
skill-based approach is still very valuable. Considering that the task being 
studied is part of the larger picture of cognition and fundamentally 
accomplished by skills will mediate the tunnel vision that often occurs when 
a paradigm is thoroughly investigated (e.g., the attentional blink). 
Furthermore, it would also facilitate the permeation of the knowledge gained 
by fundamental research into other (possibly more applied) fields of study. A 
related potential roadblock is that the modelling ‘software’ used is highly 
instrumental in the ease with which the skill-based approach can be applied. 
Paradigms that model cognition on a very basic level (e.g., neural networks) 
or a very abstract level (e.g., accumulator models) will be less conducive to 
supporting the skill-based approach. However, for such models it can still 
prove very valuable to break the modelled task down into composite skills 
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and consider which of these skills are responsible for producing the modelled 
effects. It will link the lower level behaviours of the neural networks to higher 
levels of behaviour and cognition and it will remove a large part of the 
abstraction inherent in the abstract models such as accumulator models.  

A second challenge in the application of the skill-based approach is 
that even in suitable modelling paradigms and cognitive architectures, using 
the approach will take more time and effort than not using it. Fully applying 
the skill-based approach requires a modeler to create additional models next 
to the model the modeler is interested in. This will always take more time 
than only creating the model of the task that the modeler intends to model. 
Additionally, this modeler would require data to fit the basic models which 
might require running additional experiments or searching the literature for 
suitable datasets. Furthermore, as we experienced during the model building 
for this dissertation, using the same skill for multiple models is challenging 
since changing one aspect of the skill to fit one task will often result in 
changing model behaviour on the other tasks which might result in a vicious 
domino effect of changes. Although this extra labour and time cost is 
considerable, it might only be temporary since over time a kind of library of 
skills will develop which will eventually greatly speed up the modelling 
process (although this ‘library-effect’ will be limited to users of the same 
architecture). However, for this case, a middle-ground solution might prove 
to be the most effective. Merely composing a model out of skills will already 
provide most of the benefits of using the skill-based approach without any of 
the extra time investment. By determining which skills are used in the 
modelled task and using the structure in the model will already improve the 
generalizability and explainability of this model greatly. 

To conclude, fully applying the skill-based approach might prove to 
be too challenging in many situations, however, considering the philosophy 
behind it that every task is a composition of skills will be very valuable in 
improving the generalizability and plausibility of models in all fields of 
cognitive science. 
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Mensen zijn ontzettend snel in het leren van (simpele) taken. Dit wijst 
erop dat we wanneer we geconfronteerd worden met een nieuwe taak, 
we niet van nul hoeven te beginnen met het uitvogelen van hoe de taak 
werkt maar dat we al bestaande kennis kunnen inzetten in deze nieuwe 
situatie. Dit inzicht is breed geaccepteerd onder cognitieve 
wetenschappers, maar wordt echter zeer beperkt toegepast tijdens het 
bouwen van cognitieve modellen. Bijna alle modellen worden 
gecreëerd voor een enkele taak zonder dat er aandacht voor is dat de 
onderdelen van dit model waarschijnlijk ook gebruikt worden in andere 
situaties. Dit kan ervoor zorgen dat een model te specifiek is en dus 
weinig bijdraagt aan de algemene kennis over cognitie. Om dit te 
voorkomen hebben wij een modelleermethode ontwikkeld die 
modelbouwers in staat stelt om modellen te bouwen op de manier zoals 
mensen het leren van nieuwe taken aanvliegen, namelijk met het 
hergebruiken van al bestaande vaardigheden. Volgens deze methode is 
het leren van een nieuwe taak slechts het juist herkennen van welke (al 
geleerde) vaardigheden nuttig zijn voor de nieuwe taak. De methode 
heet de skill-based methode omdat het ervan uitgaat dat elke taak 
bestaat uit (meerdere) basisvaardigheden (skills) die ingezet kunnen 
worden in meerdere situaties. 
 In hoofdstuk twee hebben we dit idee voorgesteld en hebben 
we de eerste versie van de skill-based methode ontwikkeld. In deze 
versie waren de stappen om de skill-based methode uit te voeren eerst 
het ontleden van de verwerkingsstappen die nodig waren voor het 
uitvoeren van een taak en daarna het bouwen van modellen van andere 
taken die deze zelfde verwerkingsstappen nodig hadden. Op deze 
manier konden we een model bouwen van de taak waar we 
geïnteresseerd in waren, zonder dat we specifiek voor deze taak iets 
nieuws hoefden te bouwen. Dit brachten we in de praktijk door middel 
van het creëren van een model van de attentional blink. De attentional 
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blink is een cognitief fenomeen dat gevonden wordt in een taak waarin 
de proefpersonen twee ‘targets’ moeten ontdekken in een reeks van 
afleiders die zeer snel worden gepresenteerd (vaak met een snelheid 
van 10 items per seconde). De attentional blink is dan dat de tweede 
‘target’ vaak wordt gemist als deze wordt gepresenteerd tussen 200 en 
500 milliseconde na de eerste. Interessant genoeg wordt de tweede 
‘target’ veel vaker gezien als deze direct na de eerste wordt 
gepresenteerd. De eerste stap van de skill-based methode is het bepalen 
van de onderliggende basisvaardigheden van een taak. Voor een 
attentional blink taak zijn dit: ‘target’ detectie, geheugen consolidatie, 
het ophalen van opgeslagen items uit het geheugen, en het geven van 
het antwoord. Vervolgens maakten we deze vaardigheden door het 
creëren van drie verschillende modellen, een simpel model dat ‘targets’ 
kan vinden, een model van een eenvoudige werkgeheugentaak en een 
model van een complexe werkgeheugentaak. Hiernaast had dit een 
model een strategiecomponent in de zin van dat het model de 
attentional blink taak met twee verschillende strategieën kon uitvoeren. 
De eerste strategie was het apart onthouden van de twee targets, dit 
hield in dat het model de twee ‘targets’ opsloeg in twee verschillende 
‘chunks’. De tweede strategie was een ‘chunking’ strategie, dit hield in 
dat het model de twee ‘targets’ in het geheugen opsloeg als één 
‘chunk’. Chunk betekent brok en is de wetenschappelijke term voor 
een object (‘herinnering’) in het declaratief geheugen; bijvoorbeeld de 
cijfers 1, 9, 8, 8 kunnen apart onthouden worden in vier verschillende 
‘chunks’, maar ze kunnen ook worden opgeslagen als een geheel (in 
één chunk dus) als 1988. Het interessante aan deze twee strategieën is 
dat het model voorspelde dat er geen attentional blink zou optreden als 
iemand de tweede ‘chunking’ strategie zou toepassen. Dit is een 
verassende voorspelling omdat wordt aangenomen dat de attentional 
blink een fundamentele beperking van het cognitieve systeem is. Dit 
hoofdstuk wijst op twee rode draden die door de gehele dissertatie 
lopen. Ten eerste suggereert het dat een simpele taak (zoals de 
attentional blink) gedaan wordt door het simpelweg ophalen van 
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basisvaardigheden en dat deze basisvaardigheden soms tot imperfecte 
prestaties kunnen leiden. Ten tweede toont het de fundamentele 
haalbaarheid van de skill-based methode en laat het zien dat deze 
methode tot plausibele en interessante nieuwe modellen kan komen.  
 In hoofdstuk drie testten we de voorspelling van het model dat 
we in het vorige hoofdstuk hebben gebouwd dat het gebruiken van een 
‘chunking’ strategie voorkomt dat de attentional blink optreedt. Dit 
testten we ten eerste door het repliceren van een experiment gedaan 
door Ferlazzo et al. (2007). Dit experiment liet zien dat proefpersonen 
die de attentional blink uitvoerden met de instructies dat de twee 
‘targets’ (letters in dit geval) een lettergreep vormden geen attentional 
blink vertoonden. Dit komt overeen met onze voorspelling dat het 
onthouden van de twee targets als één geheel (in dit geval als een 
lettergreep) ervoor zorgt dat de attentional blink vermeden kan worden. 
Echter repliceerden we deze resultaten niet. Dit kan komen door 
taalverschillen tussen de twee studies, onze proefpersonen hadden 
overwegend Nederlands als moedertaal terwijl de proefpersonen in de 
originele studie vooral Italiaans als moedertaal hadden. Omdat we nog 
steeds ons model wilden testen hebben we een tweede experiment 
uitgevoerd waarin we expliciet de strategie wilden manipuleren in 
combinatie met ‘targets’ die makkelijker als één geheeld onthouden 
konden worden. Dit leidde tot een merendeels succesvolle test van de 
voorspelling van ons model. Via k-means clustering vonden we drie 
clusters van proefpersonen met verschillende prestatie patronen. We 
vonden een groot cluster van proefpersonen die geen attentional blink 
ervaarden tijdens het experiment. Dit laat zien dat het gebruiken van 
‘targets’ die makkelijk als één geheel onthouden kunnen worden leidt 
tot een grote verbetering van de prestatie in een attentional blink taak. 
Echter, deze prestatieverbetering kwam niet alleen voor in de groep die 
de instructies had gekregen om de ‘targets’ als één geheel te onthouden 
dus we kunnen niet met volledige zekerheid vaststellen dat deze 
prestatieverbetering voortkomt uit het toepassen van de ‘chunking’ 
strategie. Dit hoofdstuk draagt twee belangrijke inzichten toe aan de 
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uiteindelijke conclusie van deze dissertatie. Ten eerste laat het zien dat 
de attentional blink niet een fundamentele beperking is omdat het niet 
optrad in een grote groep proefpersonen in het tweede experiment. Ten 
tweede laat het zien dat modellen die gebouwd zijn met de skill-based 
approach interessante nieuwe inzichten kunnen leveren, ook in een 
paradigma dat al vele jaren heel intensief is bestudeerd. In dit geval is 
dit inzicht dat de attentional blink voortkomt uit het normale 
functioneren van het cognitieve systeem zonder dat er extra aannames 
voor nodig zijn. 
 In hoofdstuk vier verlegden we de focus weer naar de 
ontwikkeling van de modelleer methode. Nadat bleek dat de methode 
in principe haalbaar is door het creëren van de modellen van de 
‘attentional blink’, pasten we de methode toe op een grotere set van 
taken. Deze taken zijn de negen basistaken van executieve functies 
zoals beschreven in Miyake et al. (2000). Naast dat het een goede test 
voor de methode is om negen taken te modelleren zijn de vaardigheden 
waar deze taken van gebruik maken cruciaal voor veel van de 
dagelijkse bezigheden van mensen en worden ze dus veel gebruikt in 
vele verschillende situaties waardoor ze, in theorie, ideaal geschikt zijn 
om de methode te testen. Echter, tijdens het creëren van deze modellen 
liepen we tegen beperkingen in onze methode en in de cognitieve 
architectuur die we gebruikten. Deze beperkingen zijn veroorzaakt 
omdat bij het ontwerp van de cognitieve architectuur niet genoeg 
aandacht is geweest voor het creëren van modellen voor meerdere 
taken. Dit is een fundamentele uitdaging in het veld van cognitief 
modelleren. Het doel van dit veld is om een volledig computermodel 
van cognitie te bouwen met alle eigenschappen van menselijke 
cognitie. Echter, er is een groot fundamenteel verschil tussen de manier 
waarop mensen werken en de manier waarop computers werken dat 
van belang is voor deze uitdaging (er zijn er natuurlijk heel veel). De 
meeste mensen kunnen uitstekend omgaan met onzekerheid en 
onnauwkeurigheid, terwijl computers volledig stuklopen tenzij er een 
heel duidelijk vooropgezet plan is dat gevolgd kan worden. Dit zorgt 
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ervoor dat het heel lastig is voor modelbouwers om een goede balans 
te vinden tussen flexibiliteit en voorspelbaarheid. Aan de ene kant is 
het van belang dat een gebouwd model flexibel is en om kan gaan met 
verscheidene situaties, maar aan de andere kant is het ook van belang 
dat een model voorspelbaar gedrag vertoont. Wat dit hoofdstuk 
concludeert is dat het cruciaal is om een duidelijk onderscheid te 
hebben tussen taak-specifieke (kennis die alleen toepasbaar is voor één 
situatie) en algemene kennis (kennis die toepasbaar is in meerdere 
situaties) om een goede balans te krijgen tussen flexibiliteit en 
voorspelbaarheid. Er is zeer specifieke kennis nodig om een model zich 
voorspelbaar te laten gedragen, maar aan de andere kant is er ook 
genoeg algemene kennis nodig om dit op een flexibele manier toe te 
kunnen passen. Dit hoofdstuk laat zien dat er te weinig aandacht is voor 
het hergebruik van vaardigheden zelfs in een cognitieve architectuur 
(PRIMs) die specifiek ontwikkeld is om dit te faciliteren. Ten tweede 
toont het aan dat er nog veel onbeantwoorde vragen zijn over hoe 
hergebruik precies kan worden geïmplementeerd in cognitieve 
architecturen. 
 In hoofdstuk vijf gaan we dieper in op de problemen en de 
potentiele oplossingen die we in het vorige hoofdstuk aanstipten. We 
presenteren oplossingen voor het loskoppelen van taak-specifieke en 
algemene kennis en testten of dit ervoor zorgde dat het maken van 
modellen volgens de skill-based methode makkelijker zou worden. Het 
resultaat van dit hoofdstuk is dat de oplossingen die we presenteerden 
inderdaad ervoor zorgden dat de skill-based methode beter verliep. Dit 
wijst erop dat het loskoppelen van taak-specifieke kennis van algemene 
kennis een cruciale stap is die cognitieve architecturen moeten nemen 
om herbruikbare vaardigheden te kunnen ondersteunen. Het tweede 
doel van hoofdstuk vijf was het creëren van een uitgebreid model van 
executieve functies. Dit model, gebouwd dus met de skill-based 
methode, verschafte een interessant nieuw inzicht in de studie van 
executieve functies. Executieve functies verwijzen naar een groep van 
cognitieve processen die bewust en actief functioneren mogelijk 
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maken. Dit is nodig om taken te kunnen doen waarbij je doelgericht 
bezig moet zijn en niet kunt vertrouwen op de ‘automatische piloot’. 
Executieve functies zijn zeer belangrijk en onderzoek heeft aangetoond 
dat ze cruciaal zijn in bijna alle aspecten van het dagelijks functioneren. 
Beter executief functioneren is gelinkt aan betere prestaties op school 
en werk, en slecht functioneren is gelinkt aan een grotere kans op 
psychische problemen zoals depressies of verslavingen. Omdat deze 
functies zo belangrijk zijn is er veel aandacht om deze te verbeteren. 
Denk bijvoorbeeld aan de vele ‘braintrain’ spellen en apps. Het idee 
van deze interventies is dat het trainen op deze executieve functies de 
algemene vaardigheid verbetert en dat er na de training beter 
gepresteerd kan worden in alle gebieden waar deze executieve functie 
nuttig is. Dit beschouwt de hersenen als een soort spier die getraind kan 
worden, het trainen van de spier zorgt ervoor dat het beter functioneert 
in alle gevallen waar deze spier nodig is. Volgens ons model is dit 
echter niet het geval. Het trainen van een vaardigheid is alleen nuttig 
als deze exact hetzelfde is als de vaardigheid in het dagelijks leven. Dit 
is vaak niet het geval omdat de trainingstaak meestal gebaseerd is op 
het gebruik van een bepaalde strategie die niet makkelijk te vertalen is 
naar de echte situatie. Hiernaast wordt de daadwerkelijke algemene 
executieve vaardigheid al zo vaak uitgevoerd in het normale 
functioneren en is dus goed getraind dat er sowieso al weinig 
trainingswinst te behalen is. Vaak worden individuele verschillen niet 
bepaald door verschillen in algemeen executief functioneren maar juist 
in het handig gebruik maken van strategieën. Dit hoofdstuk laat zien 
dat het loskoppelen van taak-specifieke en algemene kennis ervoor 
zorgt dat het hergebruiken van vaardigheden makkelijker wordt. 
Daarnaast toont het nogmaals aan dat het gebruiken van de skill-based 
methode kan leiden tot interessante nieuwe inzichten. 




