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Abstract

Marketing attribution is the process of allocating appropriate credit to each
marketing touchpoint a customer has encountered before conducting the desired
customer action, e.g., a purchase. Ideally, this credit should be capturing the
incremental effect of the touchpoint on the customer action. Finding this incre-
mental effect is relevant for marketers to decide on budget allocations and to
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decide how, when, and where to target which customer. This chapter introduces
and discusses various marketing attribution techniques. The techniques range
from basic attribution techniques, like touch-based attribution and Shapley
values, to advanced attribution techniques, like randomized field experiments
and Markov chains. The chapter discusses the up- and downsides of each
attribution technique, discusses alternative methods if one method is inappropri-
ate, and links this to the concept of incrementality and causality, i.e., to which
degree the technique gives proper credits to the different channels or touchpoints
the customer has encountered. This chapter is accompanied by the necessary
R-scripts to generate the datasets and estimate the attribution techniques, which
can also be downloaded at http://www.evertdehaan.com.

Keywords

Marketing attribution · Advertising effectiveness · Credit allocation · Attribution
modeling · Last click · First click · Last touch · First touch · Shapley values ·
Causality · Incremental effects · Field experiments · Propensity scores ·
Matching · Markov models · R-code · R-script · Model estimation

Introduction

Due to digitalization and the rise of the Internet, it has become easier to track
individual consumers in their (online) customer journey. For marketers, this means
that they can get insights into which touchpoints a consumer has encountered. For
example, how many times did the consumer see a banner advertisement, what did
(s)he search for on a search engine, if (s)he used a price comparison site, and when
and how (s)he has visited a firm’s website. Furthermore, with online retailing, it is
easily possible to observe which consumers have purchased and link the touchpoints
to this purchase. The touchpoints and the moment of purchase together form a
customer’s path to purchase. A question that can arise when looking at such a
path to purchase is which touchpoints have influenced the purchase decision. This
question is the core of (online) marketing attribution.

Attribution is defined as the process to “allocate appropriate credit for a desired
customer action to each marketing touchpoint across all online and off-line chan-
nels” (Kannan et al. 2016). The desired customer action is typically a conversion or a
purchase. In other words, with attribution, one wants to find out:

• To what extent a (combination of) touchpoint(s) has/have impacted the likelihood
to purchase (or the likelihood of another desired outcome) for an individual
customer. This is individual-level attribution.

• How a (combination of) marketing channel(s) influence(s) the overall sales
(or another desired outcome) for the firm. This is aggregate-level attribution.
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As Hanssens (2021) has put it, “the key challenge in digital attribution is to
estimate the incremental purchase probability achieved by a certain media interven-
tion.” The word “incremental” is crucial here, i.e., the difference in the purchase
probability, because of a specific media intervention (i.e., touchpoint or marketing
outing). Finding this incremental effect and thus conducting attribution is relevant
for marketers to decide on budget allocations and to decide how, when, and where to
target which customer. The importance of this is clear from some practical examples.
When eBay stopped using search engine advertising (SEA), they saw in many cases
no change in traffic to eBay’s website because of the substitution coming from
organic (i.e., nonpaid) search engine traffic (Blake et al. 2015). Procter and Gamble
cut $200 million in digital ad spend and reallocated this to other channels, including
television and radio, which increased its reach by 10% (Johnson 2018). When Uber
cut two-third of their ad spending, which saved $100 million in costs, they saw
almost no change in app installations (WARC 2021). Knowing which touchpoints
contribute to the desired outcome is thus crucial for a firm’s bottom-line performance
and can help to improve marketing effectiveness.

This chapter will discuss techniques for both individual- and aggregate-level
attribution. The chapter furthermore provides R-scripts for the attribution techniques
and to generate the datasets. The datasets are easy to adjust, e.g., the scripts can
easily be changed to include additional consumers and additional marketing chan-
nels or to adjust the model’s assumptions and effect sizes. With the script to estimate
the attribution models, it is also easy to apply the models to other, e.g., real-life
datasets. All of this makes the datasets and R-scripts, and hence this chapter, useful
for teaching purposes and marketing practitioners.

The next section of this chapter introduces the dataset for the individual-level
attribution. Hereafter, some basic attribution methods are discussed, including touch-
based attribution, regression-based models, and Shapley values. Section “Attribution
Modeling Process with Experimental Data,” introduces a kind of golden standard for
attribution, namely a randomized field experiment at the individual customer level.
In section “Additional Topics for Individual-Level Attribution,” attribution methods
are discussed when the ideal data is not available or when additional insights are
needed, including propensity score matching and Markov models. In section six,
some methods for aggregate-level attribution are discussed. The final section con-
cludes this chapter.

Dataset

We will use the same dataset throughout the next three sections, covering individual
consumer-level attribution. The dataset can be generated with the R-script or be
downloaded directly, together with all other datasets and R-scripts used in this
chapter, at http://www.evertdehaan.com. The dataset contains 50,000 customer
journeys, with ~25% of the journeys resulting in a purchase and each journey having
between 1 and 50 touchpoints in total. We have in total eight unique touchpoints,
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ranging from banner impressions and clicks to SEA for brand- and product-related
keywords.

The first step in attribution is thus to have the right data available to conduct
attribution modeling. For managers and researchers, who want to apply the tech-
niques from this chapter on their own data, we recommend to collect the right data
and structure it in the right way. The right data would (at an individual customer
level) include the different touchpoints a customer has encountered over time, and
can be further enriched with customer-specific information (e.g., demographic and
customer relationship data) and other browsing behavior (e.g., clickstream data
which provides information on what a customer does on the website, see for instance
also Moe 2003). The structure of these data can be similar to the example data,
discussed in this section and used in the following three sections. If individual-level
data is not available (in general, or for some channels), another option would be to
use time series data; more on the structure of this type of data and how to model
attribution with these data are discussed in the section “Attribution with Aggregate-
Level (Quasi-)Experimental Data.”

We can get some descriptive statistics of the journeys with the following R-script.

# Get descriptive statistics
library(psych)
describe(consumers)

Table 1 shows some of the descriptive results, together with a description of what
each variable measures. The 7th (“Banner_no_click”) up until the 14th
(“Direct_visit”) variable measure the number of occurrences for the eight different
touchpoints in each path to purchase. With attribution, we want to see how these
touchpoints influence the purchase, i.e., the 19th (last) variable. We furthermore have
information on the length of the customer relationship and the customer lifetime
value. The dataset contains data from two field experiments, captured with the
“Firm_banner” and “Flyer_region” variables. In the section “Attribution Modeling
Process with Experimental Data,” we will explain these experiments further.

An example of a path to purchase, which will come back throughout this chapter,
is shown in Fig. 1. This path of purchase is from customer #134 from the dataset. We
see that this customer is first coming into contact with a banner by the firm but does
not click on it. After this, the customer uses a search engine where (s)he uses a
product-related keyword and clicks on a sponsored search link to visit the website.
The two subsequent visits are direct visits to the website, which occur by typing in
the website’s URL. Hereafter are again two banner impressions; the customer clicks
on the second banner impression, leading to another website visit. Next are another
direct visit and a banner impression. Finally, the customer uses a search engine to
search for the company (i.e., branded search), clicks on the sponsored search link,
and conducts a purchase.

When looking at Fig. 1, we might ask which of the nine touchpoints has made
sure that this customer has conducted the purchase. Was this because of the branded
SEA in the end? Or did the banner impression which in the beginning started this
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Table 1 Variable descriptions and descriptive statistics

Variable name Description Mean sd Median Min Max

1. Consumer_ID A unique
customer ID

1 50,000

2. Existing_customer Dummy
indicating if the
customer made a
purchase before

0.50 0 1

3. Relation_length Amount of
months active at
the firm
(measured on
January 1)

15.25 19.53 1 0 60

4. CLV Customer lifetime
value in dollars
(measured on
January 1)

904.43 1197.41 55.64 0 7341

5. Firm_banner Dummy variable
indicating if the
customer was in
the firm’s banner
(1) or charity
banner (0) group

0.80 0 1

6. Email_group Dummy variable
indicating if the
customer signed
up for the email
newsletter (1) or
not
(0) (introduced on
January 1)

0.27 0 1

7. Banner_no_click Count variable,
indicating the
number of banner
impressions
without a click
(from the firm or
charity)

2.04 2.49 1 0 29

8. Banner_click Count variable,
indicating the
number of banner
clicks (for the firm
or charity banner)

0.12 0.39 0 0 6

9. SEA_product_click Count variable for
the amount of
website visits
through
sponsored search
results using
product-related
keywords

0.50 0.89 0 0 10

(continued)
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Table 1 (continued)

Variable name Description Mean sd Median Min Max

10. SEA_brand_click Count variable for
the amount of
website visits
through
sponsored search
results using
firm�/brand-
related keywords

0.81 1.21 0 0 14

11. Price_comp_click Count variable,
indicating the
number of
website visits
through a price
comparison site

0.44 0.84 0 0 12

12. Email_no_click Count variable,
indicating the
number of emails
received without
clicking on a link
and visiting the
website

0.10 0.45 0 0 7

13. Email_click Count variable,
indicating the
amount of email
links clicked on
and, i.e., visiting
the website

0.05 0.26 0 0 7

14. Direct_visit Count variable,
indicating the
number of direct
website visits
(e.g., by typing in
the URL)

2.49 2.82 2 0 32

15. First_channel* String variable,
naming the first
channel in the
path to purchase

16. Last_channel* String variable,
naming the last
channel in the
path to purchase

17. Amount_touchpoints Count variable,
summing up all
touchpoints in the
path to purchase

6.53 5.99 5 1 50

(continued)
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path to purchase cause the end result? Or should all touchpoints get (equal or
different) credits for the purchase? Or would the customer also have conducted the
purchase without any of the (advertisement-based) touchpoints?

We want to determine what would have happened if certain (combinations of)
touchpoints were not there. If the conversion still happens without a specific
touchpoint, then that touchpoint should not get any credit for the conversion. If the
conversion would not happen without the touchpoint, that touchpoint should get
credit. A challenge is that we can only observe the path to purchase as it was, i.e., we
do not observe if the outcome would be different if the path to purchase would be
different. Luckily, attribution techniques can provide insights into this, as discussed
in the following sections of this chapter.

Problems with Basic Attribution Methods

This section discusses some basic attribution methods, which have been used a lot in
practice, but have the downside that they do not answer the attribution question,
namely what the incremental effect of a channel is. We discuss these methods, to
show how they work, what insights they bring, and to what extent they relate to the
attribution question and are thus useful for practice. We will start with touch- or
click-based attribution methods, followed by correlations and regression models,
and finally, we discuss the more advanced Shapley value–based attribution method.

Table 1 (continued)

Variable name Description Mean sd Median Min Max

18. Flyer_region Dummy variable,
indicating if the
consumer lives in
a region where the
firm distributed
their flyers (1) or
not (0)

0.50 0 1

19. Purchase Dummy variable,
indicating if the
path to purchase
ended with a
purchase (1) or
not (0)

0.26 0 1

Fig. 1 Example customer path to purchase
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Touch-Based Attribution

An advantage of online attribution is that we can observe all consumers’ online
touchpoints, website visits, and conversions. Based on these data, we can observe
the customers’ path to purchase and perform touch-based attribution, sometimes
also called click-based attribution. Historically, the most popular form of touch-
based attribution is last-touch attribution, i.e., the last touchpoint a customer comes
into contact with before a purchase gets all credit for that purchase. In the example
from Fig. 1, last-touch attribution would thus give branded SEA full credits for the
purchase. There are also other touch-based attribution methods, e.g., first-touch-
based attribution gives full credit to the first touchpoint, average (or linear) touch
attribution gives all touchpoints equal credit, and time decay attribution gives the
lowest credit to the first touchpoint and the highest credit to the last touchpoint.
Figure 2 visualizes the different touch-based attribution methods and also indicates
what this means for the journey from Fig. 1.

To see to what extent touch-based attribution can come to different conclusions,
let us use the dataset introduced in the previous section. The following R-script
conducts three different touch-based attribution techniques. Table 2 presents the
outcomes of the R-script.

# Number of occurrences of touchpoint
consumers_journey$n <- 1
aggregate(consumers_journey$n, by=list(consumers_journey
$Channel_name), FUN=sum)
consumers_journey$n <- NULL
# Last-touch, total amount conversions
aggregate(consumers$Purchase, by=list(consumers$Last_channel),
FUN=sum)
# First-touch, total amount conversions
aggregate(consumers$Purchase, by=list(consumers$First_channel),
FUN=sum)
# Average-touch, total amount conversions
sum(consumers$Banner_click/consumers$Amount_touchpoints*consumers
$Purchase)

Fig. 2 Touch-based attribution examples
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sum(consumers$Banner_no_click/consumers
$Amount_touchpoints*consumers$Purchase)
sum(consumers$Direct_visit/consumers$Amount_touchpoints*consumers
$Purchase)
sum(consumers$Email_click/consumers$Amount_touchpoints*consumers
$Purchase)
sum(consumers$Email_no_click/consumers
$Amount_touchpoints*consumers$Purchase)
sum(consumers$Price_comp_click/consumers
$Amount_touchpoints*consumers$Purchase)
sum(consumers$SEA_brand_click/consumers
$Amount_touchpoints*consumers$Purchase)
sum(consumers$SEA_product_click/consumers
$Amount_touchpoints*consumers$Purchase)

As shown in Table 2, the three different touch-based attribution methods come to
different conclusions. First of all, with last touch, a sale can only be attributed to a
channel that leads directly to a website visit; this is why a mere banner impression or
a received email that does not receive a click do not get credit for a conversion. With
first touch and average touch, also mere exposures can get credit. For these latter two
attribution methods, banner impressions get a relatively high amount of credit.
Sometimes for first-touch attribution and average-touch attribution also only actually
clicks are being used (i.e., click-based instead of touch-based attribution), which
would change the numbers since the banner impression and received email would
then drop out.

Direct visits and branded SEA get much credit with last-touch attribution but less
with the other two attribution methods. This difference might be because at the end
of a (longer) customer journey, the consumer already knows where to buy and goes
directly to the website (or types in the brand name at a search engine). Product-

Table 2 Credit allocation using touch-based attribution

Conversions attributed to
channel Conversion percent per channel

n
Last
touch

First
touch

Average
touch

Last
touch

First
touch

Average
touch

Banner click 6,029 154 185 217.6 2.55% 3.07% 3.61%

Banner
impression

101,930 0 3,979 3,309.4 0.00% 3.90% 3.25%

Direct 124,486 7,838 4,716 5,426.5 6.30% 3.79% 4.36%

Email click 2,265 166 159 157.1 7.33% 7.02% 6.94%

Email
received

5,141 0 354 253.8 0.00% 6.89% 4.94%

Price
comparison

21,872 1,468 1,212 992.4 6.71% 5.54% 4.54%

SEA branded 40,253 2,473 1,166 1,633.4 6.14% 2.90% 4.06%

SEA product 24,773 692 1,020 800.8 2.79% 4.12% 3.23%

Total 326,749 12,791 12,791 12,791 3.91% 3.91% 3.91%
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related SEA, i.e., people clicking on a sponsored search link when using a product-
related keyword, gets relatively more credit with first-touch and average-touch
attribution. This difference might also be due to the stage in which the customer
uses product-related SEA. Product-related SEA is mainly used at the start when the
customer looks for broader information and is not sure yet where to buy the product.
These differences are also in line with findings from Rutz and Bucklin (2011).

A downside of all the touch-based attribution methods is that none of these
methods answer the attribution question, namely “to what an extent a (combination
of) touchpoint(s) has/have impacted the likelihood to purchase.”We do, namely, not
observe if the conversion would not have happened without a specific (combination
of) touchpoint(s). The touch-based attribution methods do thus not work well for
attribution purposes, as scientific studies have also shown (e.g., De Haan et al. 2016;
Li and Kannan 2014). Instead, we have to use alternative methods that tell us if the
effects are causal, i.e., without the touchpoint the outcome (e.g., purchase) would
have been different. The criteria for causality, and hence suitable attribution, are:

1. Covariation: A shock in the independent variable (i.e., the exposure to a
touchpoint) correlates with a shock in the dependent variable (i.e., the desired
customer outcome).

2. Order in time: The shock in the independent variable has to occur before the
shock in the dependent variable.

3. No third variable: There are no other variables or reasons that explain the effect
(e.g., confounds like seasonality or self-selection bias). In other words, the change
in the dependent variable is due to the change in the independent variable (i.e., the
touchpoint occurring in the path to purchase).

Touch-based attribution methods do not meet the third criterion since the expo-
sure to a touchpoint and purchase might be driven by, for instance, seasonality, e.g.,
during peak seasons, the number of purchases is higher, and firms spend more on
marketing activities. Another explanation might be the self-selection by consumers,
e.g., consumers who sign up for a newsletter are already more likely to purchase in
the future, even without receiving the newsletter. We thus have to find alternative
methods that can give more certainty about the causality to conduct accurate
attribution, especially in terms of excluding all potential third variables.

More information on causality is also provided in other chapters in this book, e.g.,
Artz and Doering (2021), Bornemann and Hattula (2018), Ebbes et al. (2016), and
Valli et al. (2017).

Correlations and Regression Models

Another, more algorithmic, way of doing basic attribution is looking at correlations
or estimating a regression model. In such a way, one can relate the touchpoints a
customer has come into contact with to the dependent variables of interest, e.g., a
purchase. Furthermore, it is possible to see how the touchpoints correlate to each
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other and other variables like the consumer’s characteristics. Let us investigate with
the following R-script some correlations in our dataset.

# Make correlation plot
library(corrplot)
my_data <- consumers[, c(2,3,4,5,6,7,8,9,10,11,12,13,14,17,18,19)]
res <- cor(my_data)
corrplot(res, type = "upper", tl.col = "black", tl.srt =
45, sig.level = 0.01, insig = "blank")
rm(my_data)
rm(res)

Figure 3 visualizes the output of the correlation analysis. We can observe that the
“purchase” variable correlates positively, but weakly, with most other variables.
“Purchase” is strongest correlated with the “direct visit” and “amount touchpoints”
variables. These correlations mean that the direct visits and the path to purchase
length are the strongest indicators of a purchase. This could make sense since
consumers who visit the website directly might be more likely to know the online
retailer already. Indeed, we can observe that direct visits also positively correlate
with the “existing customer,” “relation length,” and “CLV” (customer lifetime value,
i.e., how much the customer’s future transactions are worth in terms of net present
value) variables, indicating that these consumers might already be loyal to the online

Fig. 3 Correlation matrix
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retailer. In this case, it might thus not be the channel that is driving the purchase, but
the type of consumer that uses the channel determines the chance of a conversion.

Furthermore, longer paths to purchase might relate to more informed and inter-
ested consumers and are more likely to convert. This indicates that the amount of
touchpoints is not per se driving purchase, but it is the consumer’s underlying
“degree of interest.” Correlations thus have to be interpreted with caution since
they only tell us something about the association between variables but do not give
us causal information.

When looking at the correlations from Fig. 3, we can furthermore see that the
banner variables and the SEA product variable are positively related to each other,
which might relate to the phases in the path to purchase; consumers who first see a
banner might later be interested in clicking on it, and later search for product
information. Correlation tables can thus be convenient to understand patterns in
the data, which could be input for more complicated methods to find out causal
effects.

A more elaborate form of investigating the associations between variables is by
estimating a regression model (see for more details Skiera et al. [2018]). An
advantage of a regression model over correlations is that we can control for third
variables and thus can get a step closer to finding causal relations. Since the
dependent variable “purchase” is binary, a logistic regression model is most appro-
priate in our case (see for more details Tillmanns and Krafft [2017]). With the
following R-script, we estimate some logistic regression models.

# Load package to make an output table of all models
library(sjPlot)
library(sjmisc)
library(sjlabelled)
# Logistic regression models to predict the purchase likelihood
model1 <- glm(Purchase ~ as.factor(Last_channel), data=consumers,
family=binomial)
model2 <- glm(Purchase ~ as.factor(Last_channel) +
Existing_customer + Relation_length + log(CLV+1) +
Amount_touchpoints + Flyer_region, data=consumers,
family=binomial)
tab_model(model1, model2, transform = NULL, collapse.ci = TRUE,
p.style = "stars")

Table 3 shows the output of the models. Model 1 only looks at the last channel
used and is thus very similar to the last-touch attribution procedure. “Banner_click”
is here the reference category, meaning that the interpretation of the parameters is
relative to this touchpoint. The variables “Banner_impression” and
“Email_received” have a strong negative parameter estimate, which makes sense
because these variables do not directly relate to a conversion, as discussed in the
previous section. The parameter for “Direct_visit” is positive and significant, mean-
ing that there is a significantly higher chance of conversion when this channel is the
last touchpoint than when “Banner_click” is the last touchpoint. These parameters
are all in line with what we saw in Table 2. When we control for some customer-
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specific variables, as is done in Model 2 in Table 3, we can see that “Direct_visit”
becomes statistically insignificant. This change in significance might be because the
direct channel is used more by existing and loyal customers, who also have a higher
chance of conversion, i.e., these variables are confounding variables. Indeed, if the
consumer is an existing customer of the firm and has a long relationship and a high
CLV, the likelihood of conversion is higher, i.e., the type of customer using the
channel (partly) explains the effectiveness of the channel. With this, we demonstrate
the advantage of a regression model compared to merely looking at correlations,
namely that we can correct for some confounding variables.

Although the correlation table nicely shows how the different channels relate to
each other, which can give us an idea about what touchpoints belong together to
target specific customers, and how the channels relate to purchase, it does not give us
information on the causal effects. As was the case with touch-based attribution,
potential third variables are, however, not excluded. The logistic regression model
can be more appropriate for attribution than the touch-based attribution since we can
incorporate third variables as control variables, like the strength of the relation with
the customer. It still does not provide us with causal information since we cannot say
with certainty that we control for all other factors and what would have happened if a
particular channel or touchpoint did not occur. Hence, also correlations and regres-
sion models do not address the underlying question of attribution.

Table 3 Logistic regression output using touch-based attribution

Model 1 Model 2

Purchase Purchase

Predictors Log-Odds Log-Odds

(Intercept) �1.05 ***(�1.24 – �0.87) �3.47 ***(�3.70 – �3.25)

Last_channel
[Banner_impression]

�17.52(�99.01 –�124.06) �18.43(�87.53 – �111.02)

Last_channel [Direct_visit] 0.28 ** (0.10–0.47) 0.08(�0.13–0.30)

Last_channel [Email_click] 2.12 *** (1.77–2.48) 1.76 *** (1.37–2.15)

Last_channel [Email_received] �17.52(�498.46 –
�646.32)

�18.71(�566.97 –
�613.56)

Last_channel [Price_comp_click] 0.22 * (0.03–0.42) 0.26 * (0.04–0.48)

Last_channel [SEA_brand_click] 0.24 * (0.05–0.43) 0.13(�0.09–0.35)

Last_channel
[SEA_product_click]

�0.25 *(�0.45 – �0.05) �0.20(�0.43–0.04)

Existing_customer �0.42 **(�0.72 – �0.12)

Relation_length 0.01 *** (0.01–0.01)

CLV + 1 [log] 0.23 *** (0.19–0.27)

Amount_touchpoints 0.15 *** (0.15–0.16)

Flyer_region 1.05 *** (1.00–1.10)

Observations 50,000 50,000

R2 0.077 0.294

* p < 0.05 ** p < 0.01 *** p < 0.001
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Shapley Value–Based Attribution

As discussed, with attribution, we want to determine what would have happened to
the outcome variable of interest provided that a channel was not there. Both the
touch-based attribution and attribution based on correlations and a regression model
do not answer the attribution question. A method that comes closer, and is also more
popular in recent years, is Shapley value–based attribution, which has its roots in
cooperative game theory (Shapley 1953). This method compares similar paths to
purchase, with the only difference that some paths contain a specific touchpoint, but
the other paths do not contain this touchpoint.

To give an example of this method, let us imagine a simplified path to purchase of
Fig. 1. Assume we have consumers who first comes into contact with a banner, and
the consumer does not click on it. After this, these consumers search for information
using a product-specific keyword and visit the website by clicking on a SEA link,
and finally the consumers search for information using a brand-specific keyword and
revisit the website by clicking on a SEA link. If we have a large enough group of
these consumers, we can calculate the conversion probability of such a path.
Similarly, we can investigate another group of consumers, but with the difference
that the first touch point (i.e., the banner impression) is not included in the path to
purchase. If we compare the first path to purchase’s conversion probability with the
second path to purchase, we can calculate the increase in conversion probability if an
extra touchpoint was there. This procedure is what we do with the following
R-script.

# Get all paths to purchase that are "Banner impression" -> "SEAR
product click" -> "SEA brand click"
consumers_shapley <- consumers[consumers$Amount_touchpoints==3,]
consumers_shapley <- consumers_shapley[consumers_shapley
$First_channel=="Banner_impression",]
consumers_shapley <- consumers_shapley[consumers_shapley
$Last_channel=="SEA_brand_click",]
consumers_shapley <- consumers_shapley[consumers_shapley
$SEA_product_click==1,]
mean(consumers_shapley$Purchase)
# Get similar paths to purchase excluding "Banner impression"
consumers_shapley_ex1 <- consumers[consumers
$Amount_touchpoints==2,]
consumers_shapley_ex1 <- consumers_shapley_ex1
[consumers_shapley_ex1$First_channel=="SEA_product_click",]
consumers_shapley_ex1 <- consumers_shapley_ex1
[consumers_shapley_ex1$Last_channel=="SEA_brand_click",]
mean(consumers_shapley_ex1$Purchase)
# Get similar paths to purchase excluding "SEAR product click"
consumers_shapley_ex2 <- consumers[consumers
$Amount_touchpoints==2,]
consumers_shapley_ex2 <- consumers_shapley_ex2
[consumers_shapley_ex2$First_channel=="Banner_impression",]
consumers_shapley_ex2 <- consumers_shapley_ex2
[consumers_shapley_ex2$Last_channel=="SEA_brand_click",]
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mean(consumers_shapley_ex2$Purchase)
# Get similar paths to purchase excluding "SEA brand click"
consumers_shapley_ex3 <- consumers[consumers
$Amount_touchpoints==2,]
consumers_shapley_ex3 <- consumers_shapley_ex3
[consumers_shapley_ex3$First_channel=="Banner_impression",]
consumers_shapley_ex3 <- consumers_shapley_ex3
[consumers_shapley_ex3$Last_channel=="SEA_product_click",]
mean(consumers_shapley_ex3$Purchase)
# Impact channel 1
mean(consumers_shapley$Purchase) - mean(consumers_shapley_ex1
$Purchase)
# Impact channel 2
mean(consumers_shapley$Purchase) - mean(consumers_shapley_ex2
$Purchase)
# Impact channel 3
mean(consumers_shapley$Purchase) - mean(consumers_shapley_ex3
$Purchase)

Figure 4 visualizes the output of the R-script above. We can see that the full path
to purchase discussed above occurs 86 times in our dataset, and in 16.28% of the
cases result in a conversion. When we leave out the banner impression, the reduced
path to purchase occurs 267 times in our dataset, and in 7.49% of the cases result in a
conversion, meaning that when the banner impression is left out, the conversion

Fig. 4 Shapley value–based attribution example
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probability drops 8.79% points. This difference is the credit the banner impression
should get. Similarly, Fig. 4 provides the value of the other two touchpoints, with
branded SEA getting the highest credit of a 10.32% points increase in the conversion
probability. It is important to note that we get a higher conversion rate when adding
up the value of each touchpoint than the observed conversion of 16.28%. There can
be multiple reasons for this, e.g., there could be a synergy effect, meaning that the
combination of touch points is responsible for the purchase, and dropping one thus
has a substantial effect. There could also be a time effect, e.g., a path to purchase
with three touchpoints generally has a higher conversion since a longer path to
purchase could indicate more interested consumers.

Of course, the example given can easily be applied to all kinds of paths to
purchase with different combinations of touchpoints. Doing so can provide infor-
mation in what situation which touchpoint has the largest impact on conversion.
Furthermore, the Shapley value procedure is appropriate to investigate the impact of
the order of channels, achievable by comparing similar paths to purchase, with a
difference that the order of the touch points differs. A challenge is that specific paths
to purchase might only occur a limited number of times in the dataset, making the
calculated conversion probability less reliable.

In general, the Shapley value approach is a more appropriate way of attribution
than touch-based or regression-based attribution. This Shapley value procedure
comes close to answer the attribution question “what would have happened if certain
(combinations of) touchpoints were not there,” i.e., “estimate the incremental pur-
chase probability achieved by a certain media intervention” from Hanssens (2021). It
does, however, not fully answer this question. First of all, the paths to purchase we
are comparing come from different consumers, and the characteristics of these
consumers might also (partly) explain the differences in the conversion probabilities.
Secondly, touchpoints do not occur at random, e.g., the branded SEA only occurs if
the consumer is actively looking for a brand using a search engine. If branded SEA
would have been off, the consumer would probably still have visited the website but
instead would have clicked on an organic search link to do so or would visit the
website directly. Shapely values thus still have some limitations, and we cannot be
sure the findings are causal. Because of that, we have to use more advanced
techniques and make use of certain features in the data (e.g., a field experiment or
other form of randomization), which can provide us with causal insights. The
following two sections discusses some of these techniques.

Attribution Modeling Process with Experimental Data

An ideal form of attribution is when there is data available, coming from a field
experiment where one (or multiple) channels are turned off for some groups of
customers. This “golden standard” is especially useful for individual-level attribu-
tion. To find the impact of a channel, consumers are randomly placed into two
groups: one group that can encounter the channel of interest (i.e., the treatment
group) and one group that cannot encounter this channel (i.e., the control group).
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Due to the random allocation of consumers in these two groups, we can assume that
consumers of the two groups only differ in terms of being targeted or not being
targeted via one specific channel (see for more details Landwehr (2019)). The dataset
generated in the “Dataset” section of this chapter includes a randomized field
experiment, similar to the experiments by Hoban and Bucklin (2015) and Li et al.
(2021). In this experiment, 80% of the consumers are in the group which can
encounter the banner ad from the firm (i.e., our treatment group). The other 20%
of the consumers are in the group which can encounter the banner ad from an
unrelated charity organization (i.e., our control group). The control group uses an
unrelated charity ad since this makes it possible to observe how many ads from
the firm the consumer would have seen if the consumer was in the treatment group.
The actual treatment (i.e., the firm ad) was thus not provided to the control group, but
the charity ad captures for the consumers in the control group if they would have
seen the firm ad (and also, how many times) or if they would have been in the
treatment group. This method assumes that the targeting of the charity ad in the
control group is set up the same as the targeting of the firm’s ad in the treatment
group. For more details on this method, see Hoban and Bucklin (2015).

Since the charity ad is unrelated to the firm, the causal effect of this ad on firm
performance and customer behavior should be zero. The number of exposures to the
charity ad might, however, correlate with the conversion probability. This correlation
might occur since someone who sees the ad more often might (1) be online more
often and (2) visit the website where the campaign is running more often, which both
relate to the conversion probability. The charity ad captures these confounding
effects, and the difference between the treatment group (containing both the causal
and confounding effects) and the control group (containing only the confounding
effects) thus captures the causal effect of the firm’s ad.

Next to banner advertising, the dataset also contains a second random experiment.
The firm distributed a flyer in some randomly selected regions (e.g., based on postal
code), while this was not the case in other regions. This setup leads to a random 50%
of the consumers in the dataset receiving a flyer from the firm. Since we have
information in which region the consumers live (e.g., based on sign-up information
from the customer or their IP address information), we know which individual
consumers did get the flyer. This setup thus allows us to investigate the effectiveness
of this offline advertising form at the individual consumer level. We can furthermore
investigate if there are synergy effects between the banner ads and the flyer, i.e., if
being exposed to both advertising forms increases the purchase likelihood beyond
the two individual effects (i.e., positive synergy) or if they weaken each other since
they might be substitutes (i.e., negative synergy). This setup of distributing flyers is
somewhat in line with the study by Wiesel et al. (2011), although they have
conducted and analyzed their experiment at a higher level of aggregation, namely
at the regional level instead of the individual consumer level.

A good thing to inspect first is if consumers in the firm’s banner group and who
have received a flyer indeed have a higher likelihood of purchasing. Furthermore, we
can explore if there is a synergy effect between the two channels.
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# Plot of banner ad and purchase likelihood
library(ggplot2)
myData <- aggregate(consumers$Purchase,

by = list(Firm_banner = consumers$Firm_banner),
FUN = function(x) c(mean = mean(x), sd = sd(x),

n = length(x)))
myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Firm_banner", "mean", "sd", "n", "se")
myData$names <- c(paste(myData$Firm_banner, "Firm_banner"))
p <- ggplot(data = myData, aes(x = factor(Firm_banner), y = mean))
p + geom_bar(stat = "identity",

position = position_dodge(0.9), fill="steelblue") +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

width = 0.25) +
labs(x = "Firm_banner", y = "Conversion rate") +
ggtitle("Conversion rate by firm_banner") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%",
sep = "")), size = 4, vjust = 5)
# Plot of flyer and purchase likelihood
myData <- aggregate(consumers$Purchase,

by = list(Flyer_region = consumers
$Flyer_region),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Flyer_region", "mean", "sd", "n", "se")
myData$names <- c(paste(myData$Flyer_region, "Flyer_region"))
p <- ggplot(data = myData, aes(x = factor(Flyer_region), y = mean))
p + geom_bar(stat = "identity",

position = position_dodge(0.9), fill="steelblue") +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

width = 0.25) +
labs(x = "Flyer_region", y = "Conversion rate") +
ggtitle("Conversion rate by Flyer_region") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%",
sep = "")), size = 4, vjust = 5)
# Plot of banner ad + flyer and purchase likelihood
myData <- aggregate(consumers$Purchase,

by = list(Firm_banner = consumers$Firm_banner,
Flyer_region = consumers$Flyer_region),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
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myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Firm_banner", "Flyer_region", "mean", "sd",
"n", "se")
myData$names <- c(paste(myData$Firm_banner, "Firm_banner /",

myData$Flyer_region, " Flyer_region"))
p <- ggplot(data = myData, aes(x = factor(Firm_banner), y = mean,

fill = factor(Flyer_region)))
p + geom_bar(stat = "identity",

position = position_dodge(0.9)) +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

width = 0.25) +
labs(x = "Firm_banner", y = "Conversion rate") +
ggtitle("Conversion rate by firm_banner and flyer_region") +
scale_fill_discrete(name = "Flyer region") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 5)

The left plot of Fig. 5 shows for banner advertising the difference between
consumers in the treatment group (i.e., those in the firm ad group) versus the control
group (i.e., those in the charity ad group). We can see that the conversion rate is
27.77% for the treatment group, which is significantly higher than the control
group’s 16.88% conversion rate. Banner advertising does thus seem to be very
effective, increasing the purchase likelihood with 10.89% points. This value can
be used as an input to perform ROI calculations for banner advertising. If we assume
the average consumer gets 2.16 banner impressions (based on the mean number of
banner impressions with and without a click, see Table 1), the cost per mile (CPM,
i.e., the costs of 1,000 banner impressions) is $10, and the value of a conversion (i.e.,
profit before marketing costs) is $1, then the ROI would be:

Fig. 5 Banner and flyer effectiveness visualized
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ROI ¼ Δcoversion∙profit � impressions∙ CPM1000

impressions∙ CPM1000

∙100%

¼ 0:1089∙1� 2:16∙ 10
1000

2:16∙
10

1000∙100%¼404:17%

ð1Þ

Where “impressions∙ CPM
1000

” are the costs per consumer for targeting him or her
with banner advertising, while “Δcoversion ∙ profit” is the improvement in profit-
ability before taking the marketing costs into account. In this case, we can see that
the ROI is 404.17%, i.e., banner advertising is very profitable on average. Note that
this is a generated dataset and that in reality the effectiveness of banner advertising is
usually much smaller compared to this example. Hoban and Bucklin (2015) have
found an uplift of between 0.065 and 0.985% points in the purchase likelihood,
depending on the user segment.

The right-hand graph of Fig. 5 shows that receiving a flyer also significantly
increases the purchase likelihood from 18.47% to 32.80%. The effect of receiving a
flyer is thus even stronger compared to the effectiveness of banner advertising,
although a flyer might also be much more expensive than banner impressions.
When we know the cost of distributing a flyer, we can again use this to calculate
the ROI of flyers and decide to invest in it.

Figure 6 shows the synergy effect of banner advertising and the flyer. When the
firm does not distribute a flyer, being in the firm’s banner group increases the
purchase likelihood from 13.61–20.26%, i.e., an increase in conversion of 6.65%
points. When the firm distributes a flyer, being in the firm’s banner group increases
the purchase likelihood from 19.70–35.91%, i.e., an increase in conversion of
16.21% points. In other words, when the firm distributes a flyer, the banner becomes
more effective. Such positive synergy between on- and offline advertising is in line
with some studies, e.g., Lesscher et al. (2021) and Pauwels et al. (2016a).

To formally test the direct and synergy effects, we can also use a logistic
regression model, as done with the following R-script.

Fig. 6 Banner and flyer synergy visualized
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# Load package to make an output table of all models
library(sjPlot)
library(sjmisc)
library(sjlabelled)
# Logistic regression model of banner ad treatment + flyer and
purchase likelihood
model1 <- glm(Purchase ~ Firm_banner + Flyer_region,
data=consumers, family=binomial)
model2 <- glm(Purchase ~ Firm_banner*Flyer_region, data=consumers,
family=binomial)
tab_model(model1, model2, transform = NULL, collapse.ci = TRUE,
p.style = "stars")

The first two columns of Table 4, i.e., Model 3 and 4, show the output of these
models. Model 3 shows that being in the firm’s banner group and living in a flyer
region significantly impact the purchase likelihood. We can also see that the param-
eter for “flyer region” is larger in value, i.e., we can conclude that the flyer is most
effective in increasing the purchase likelihood. These findings are all in line with
what we could see in Fig. 5.

When we look at Model 4 from Table 4, we can also see the interaction effect. The
interaction, i.e., the parameter for “Firm_banner * Flyer_region,” is statistically
significant and positive, meaning that there is indeed a positive synergy, i.e., the
combined effect of the two channels is larger than the sum of the two channels’
individual effects. This finding is in line with what we have observed in Fig. 6.

To interpret these parameters and the synergy effect, let us take an example. By
looking at Model 4 in Table 4, we can observe that being in the firm banner (i.e.,
treatment) group positively impacts purchase. The parameter of 0.44 indicates that
the odds of purchasing are ([exp(0.44)-1]*100%) 55.3% higher for consumers in the
firm ad group than consumers in the charity ad group, provided that they did not
receive a flyer. If they did receive a flyer, then the log-odds increases with 0.35 (i.e.,
the parameter for the interaction effect), meaning that the odds of purchasing are
([exp(0.44 + 0.35)-1]*100%) 120.3% higher for consumers in the firm ad group than
consumers in the charity ad group, provided that they do receive a flyer. For more
details on interpreting the parameters of a logistic regression model and how to
recalculate this to probabilities, please check Chapter 8 of Leeflang et al. (2015).

We can easily extend the estimated models, for instance, to find out in which
situations a marketing instrument is more or less effective. Let us, for this part, only
focus on banner advertising. One assumption would be that the higher purchase
likelihood due to the banner ad will only occur for consumers who have actually
seen the banner, i.e., the number of impressions should be above zero to have an
effect. For consumers who have not seen the banner, being randomly allocated in the
firm ad group or charity ad group should not make a difference in the purchase
likelihood. We can test this assumption with the following R-script.

# Create some new variables
consumers$Banner_exposures <- consumers$Banner_no_click +
consumers$Banner_click

Attribution Modeling 21



Ta
b
le

4
L
og

is
tic

re
gr
es
si
on

ou
tp
ut

ba
se
d
on

ra
nd

om
iz
ed

fi
el
d
ex
pe
ri
m
en
ts

M
od

el
3

M
od

el
4

M
od

el
5

M
od

el
6

M
od

el
7

P
ur
ch
as
e

P
ur
ch
as
e

P
ur
ch
as
e

P
ur
ch
as
e

P
ur
ch
as
e

P
re
di
ct
or
s

L
og

-O
dd

s
L
og

-O
dd

s
L
og

-O
dd

s
L
og

-O
dd

s
L
og

-O
dd

s

(I
nt
er
ce
pt
)

�2
.0
2

*
*
*
(�

2.
08

–
�1

.9
7)

�1
.8
5

*
*
*
(�

1.
93

–
�1

.7
7)

�1
.5
4

*
*
*
(�

1.
64

–
�1

.4
5)

�3
.7
9

*
*
*
(�

4.
20

–
�3

.4
2)

�1
.6
5

*
*
*
(�

1.
73

–
�1

.5
7)

F
ir
m
_b

an
ne
r

0.
65

*
*
*
(0
.5
9–
0.
71

)
0.
44

*
*
*
(0
.3
6–
0.
53

)
�0

.0
1(
�0

.1
2–
0.
09

)
�0

.0
1(
�0

.4
3–

0.
44

)
�0

.0
4(
�0

.1
3–

0.
05

)

F
ly
er
_r
eg
io
n

0.
77

*
*
*
(0
.7
3–
0.
82

)
0.
48

*
*
*
(0
.3
7–
0.
58

)

F
ir
m
_b

an
ne
r
*

F
ly
er
_r
eg
io
n

0.
35

*
*
*
(0
.2
3–
0.
46

)

B
an
ne
r_
se
en

�0
.0
7(
�0

.1
9–
0.
04

)
0.
29

(�
0.
13

–0
.7
4)

F
ir
m
_b

an
ne
r
*

B
an
ne
r_
se
en

0.
90

*
*
*
(0
.7
7–
1.
02

)
2.
12

*
*
*
(1
.6
2–
2.
58

)

E
xi
st
in
g_

cu
st
om

er
2.
80

*
*
*
(2
.4
2–
3.
23

)

F
ir
m
_b

an
ne
r
*

E
xi
st
in
g_

cu
st
om

er
�0

.0
3(
�0

.5
0–

0.
40

)

B
an
ne
r_
se
en

*
E
xi
st
in
g_

cu
st
om

er
0.
04

(�
0.
43

–0
.4
7)

(F
ir
m
_b

an
ne
r
*

B
an
ne
r_
se
en
)
*

E
xi
st
in
g_

cu
st
om

er

�1
.4
9

*
*
*
(�

1.
97

–
�0

.9
8)

B
an
ne
r_
ex
po

su
re
s
+
1

[l
og

]
0.
06

(�
0.
01

–0
.1
3)

F
ir
m
_b

an
ne
r
*

B
an
ne
r_
ex
po

su
re
s
+
1

[l
og

]

0.
70

*
*
*
(0
.6
2–
0.
78

)

O
bs
er
va
tio

ns
50

,0
00

50
,0
00

50
,0
00

50
,0
00

50
,0
00

R
2
T
ju
r

0.
03

8
0.
03

9
0.
03

0
0.
12

8
0.
06

2

*
p
<

0.
05

**
p
<

0.
01

**
*
p
<

0.
00

1

22 E. de Haan



consumers$Banner_seen <- ifelse(consumers$Banner_exposures==0,0,1)
# Plot of banner ad group + banner ad seen and purchase likelihood
myData <- aggregate(consumers$Purchase,

by = list(Banner_seen = consumers$Banner_seen,
Firm_banner = consumers$Firm_banner),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Banner_seen", "Firm_banner", "mean", "sd",
"n", "se")
myData$names <- c(paste(myData$Banner_seen, "Banner_seen /",

myData$Firm_banner, " Firm_banner"))
p <- ggplot(data = myData, aes(x = factor(Banner_seen), y = mean,

fill = factor(Firm_banner)))
p + geom_bar(stat = "identity",

position = position_dodge(0.9)) +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

width = 0.25) +
labs(x = "Banner_seen", y = "Conversion rate") +
ggtitle("Conversion rate by Banner_seen and Firm_banner") +
scale_fill_discrete(name = "Firm_banner") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 5)
# Logistic regression model of banner ad treatment + banner ad seen
and purchase likelihood
model3 <- glm(Purchase ~ Firm_banner + Banner_seen +
Firm_banner*Banner_seen, data=consumers, family=binomial)
tab_model(model1, model2, model3, transform = NULL, collapse.ci =
TRUE, p.style = "stars")

As the two bars on the left in Fig. 7 show, there is no substantial difference
between the control and treatment groups if there were no banner ad impressions. In
both cases, the purchase likelihood is just over 17%. This nonsignificant difference is
indeed in line with what we would expect; if there is no ad impression, there should
be no difference between the firm and charity ad groups. Investigating this is also a
good test if the randomization of the experiment worked; if the difference was
significant, this would indicate that something might have gone wrong with the
randomization.

The two bars on the right of Fig. 7 show a substantial difference between the two
groups, provided that there was at least one banner ad exposure. Consumers in the
control group who saw the charity banner at least once have a purchase likelihood of
16.56%. Consumers in the treatment group who saw the firm’s banner at least once
have a purchase likelihood of 32.46%. Being exposed to the banner at least once
does have a positive effect since it increases the purchase likelihood by 15.90%
points.
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The regression output, presented in Model 5 of Table 4, confirms what we see in
Fig. 7. The parameter “Firm_banner” is insignificant, which indicates that when the
number of ad exposures is zero, the treatment and control groups do not differ in
their purchase likelihood. The parameter for “Banner_seen” is also insignificant,
indicating no difference in the purchase likelihood between the consumers who did
or did not see the charity ad for the control group. This insignificance aligns with
what we might expect since the charity ad is irrelevant and should not cause sales at
the firm. However, this parameter could, in theory, be significant since it does
capture the difference between being more active online (on websites where the
campaign is running), i.e., it captures the confounding effects of being exposed to a
banner ad.

The parameter for the interaction effect between “Firm_banner” and
“Banner_seen” captures the causal effect of seeing the banner ad of the firm. In
Model 5 of Table 4, we can see that this interaction is significant and positive,
indicating that consumers who saw the firm’s banner ad are more likely to purchase
due to the exposure to the firm’s ad.

Now that we know that the banner ad is, on average, effective in generating
purchases, we might want to find out how the effects differ between consumers. For
this, we can add additional interaction effects to our regression equation. To illustrate
this, we can investigate if the banner works better for potential or existing customers
by running the following R-script.

# Plot of banner ad treatment + banner ad seen for new/potential
customers
myData <- consumers[consumers$Existing_customer==0,]
myData <- aggregate(myData$Purchase,

by = list(Banner_seen = myData$Banner_seen,
Firm_banner = myData$Firm_banner),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)

Fig. 7 Banner effectiveness when the banner is seen visualized
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colnames(myData) <- c("Banner_seen", "Firm_banner", "mean", "sd",
"n", "se")
myData$names <- c(paste(myData$Banner_seen, "Banner_seen /",

myData$Firm_banner, " Firm_banner"))
p <- ggplot(data = myData, aes(x = factor(Banner_seen), y = mean,

fill = factor(Firm_banner)))
p + geom_bar(stat = "identity",

position = position_dodge(0.9)) +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

width = 0.25) +
labs(x = "Banner_seen", y = "Conversion rate") +
ggtitle("Conversion rate by Banner_seen and Firm_banner for

potential/new customers") +
scale_fill_discrete(name = "Firm_banner") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 2)
# Plot of banner ad treatment + banner ad seen for existing
customers
myData <- consumers[consumers$Existing_customer==1,]
myData <- aggregate(myData$Purchase,

by = list(Banner_seen = myData$Banner_seen,
Firm_banner = myData$Firm_banner),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Banner_seen", "Firm_banner", "mean", "sd",
"n", "se")
myData$names <- c(paste(myData$Banner_seen, "Banner_seen /",

myData$Firm_banner, " Firm_banner"))
p <- ggplot(data = myData, aes(x = factor(Banner_seen), y = mean,

fill = factor(Firm_banner)))
p + geom_bar(stat = "identity",

position = position_dodge(0.9)) +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge(0.9),
width = 0.25) +

labs(x = "Banner_seen", y = "Conversion rate") +
ggtitle("Conversion rate by Banner_seen and Firm_banner for

existing customers") +
scale_fill_discrete(name = "Firm_banner") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 5)
# Logistic regression model of banner ad treatment + banner ad seen
and purchase likelihood
model4 <- glm(Purchase ~ Firm_banner*Banner_seen*Existing_customer,
data=consumers, family=binomial)
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tab_model(model1, model2, model3, model4, transform = NULL,
collapse.ci = TRUE, p.style = "stars")

The top graph of Fig. 8 shows the impact of banner advertising for new (i.e.,
potential) customers. What can be seen is that when there are no ad impressions (i.e.,
no treatment, the two left bars), the control and treatment group do not differ. This
makes sense, since the groups do not differ from each other. When the ad is seen, i.e.,
there is at least one ad impression, the two groups differ from each other. When the
new/potential customer sees the charity banner, the purchase likelihood is 2.93%,
and with the firm banner this is 19.85%. The causal impact of banner advertising is
thus 16.92% points increase in purchase likelihood.

The bottom graph of Fig. 8 shows the effects for existing customers. We can see
that they have a higher purchase likelihood than new customers, even when they do
not see the banner. This makes sense, since existing customers have already made a
purchase before and are more likely to come back compared to someone who has not
made a purchase before. We also can see that there is again no significant difference
between the control group and the treatment group when the banner ad is not seen,
which again is what we would expect. If the control group sees the charity banner,
the purchase likelihood goes up from 27.16% to 34.11%. This significant increase

Fig. 8 Banner effectiveness difference between potential and existing customers visualized
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can be explained by the fact that the ones seeing the charity ad are more online and
they visit the website where the campaign is running, i.e., because they are more
active, they might be more likely to purchase. This part of the effect is however not
driven by the ad itself. For the treatment group, we do however see that the growth in
the purchase likelihood is significantly larger when they see the banner ad at least
once. This extra increase of ([48.20–26.31%] – [34.11–27.16%]) 14.94% points is
the causal effect of the banner ad for existing customers. We can see that this effect of
the banner for existing customers is smaller (a bit smaller in percentage points, and a
lot smaller in percentages) than for new customers, where the purchase likelihood
jumps up when exposed to the firm’s banner.

To test the significance of the effects, we can look at Model 6 in Table 4. The
parameter for “Firm_banner” and its interaction with “Existing_customer” are both
insignificant, meaning that the randomization has no significant effect on the pur-
chase likelihood provided that there are no ad impressions. The parameter for
“Banner_seen” is insignificant, which indicates that seeing the charity banner does
not increase the purchase likelihood. The parameter for “Existing_customer” is
statistically significant, indicating that existing customers are more likely to conduct
a purchase.

The interaction between “Firm_banner” and “Banner_seen” is significant, as
expected, which in this case means that for potential customers, seeing the firm’s
banner at least once has a positive impact on the purchase likelihood. The three-way
interaction, which also includes “Existing_customer,” is significant and negative;
this means that, for existing customers, exposures to the firm’s banner are signifi-
cantly less effective than for potential customers. The banner is still effective for
existing customers since the two-way interaction minus the three-way interaction
remains positive (i.e., 2.12–1.49 ¼ 0.63) (One can also test the significance of
this.63, by changing the “Existing_customer” dummy in a “New_customer”
dummy in Model 6 (i.e., this dummy is the opposite of the “Existing_customer”
dummy).). This positive but smaller impact of banner advertising for existing
customers aligns with what we saw in Fig. 8. If the firm wants to target banners, it
is thus more effective to target the potential customers instead of the existing
customers.

Finally, with the following R-script, we can also test the impact of having more ad
exposures.

# Plot of banner ad treatment + number of exposures and purchase
likelihood
myData <- consumers
myData$Banner_exposures <- ifelse(myData$Banner_exposures > 6, 6,
myData$Banner_exposures)
myData$Firm_banner <- as.factor(myData$Firm_banner)
myData <- aggregate(myData$Purchase,

by = list(Firm_banner = myData$Firm_banner,
Banner_exposures = myData$Banner_exposures),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
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myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Firm_banner", "Banner_exposures", "mean",
"sd", "n", "se")
myData$names <- c(paste(myData$Firm_banner, "Firm_banner /",

myData$Banner_exposures, " Banner_exposures"))
p <- ggplot(data = myData, aes(x = Banner_exposures, y = mean,

group = as.factor(Firm_banner), color =
Firm_banner))
p + geom_line() +

geom_point() +
geom_errorbar(aes(ymin=mean - 2*se, ymax=mean + 2*se), width=.2,

position=position_dodge(0.05)) +
labs(x = "Number of banner exposures", y = "Conversion rate") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
ggtitle("Conversion rate by number of ad exposures") +

geom_text(position = position_dodge(width= .9), aes(y = mean, label
= paste(format(mean*100, digits = 2, nsmall = 2), "%", sep = "")), size =
4, vjust = -1)
# Logistic regression model of banner ad treatment + number of
exposures and purchase likelihood
model5 <- glm(Purchase ~ Firm_banner*log(Banner_exposures+1),
data=consumers, family=binomial)
tab_model(model1, model2, model3, model4, model5, transform = NULL,
collapse.ci = TRUE, p.style = "stars")

The bottom (red) line in Fig. 9 shows the impact of zero (first bar) up to six-plus
(seventh bar, six and more ad impressions are aggregated due to the size of the graph
and the small amount of observations with many ad impressions) ad impressions for
the control group (i.e., those in the charity ad group). We do not see much change in
purchase likelihood here, e.g., the purchase likelihood is 17.60% with zero ad
impressions, and this increases to 19.00% with six or more impressions, all falling
within the same confidence interval.

Fig. 9 Banner effectiveness depending on the impression amount visualized

28 E. de Haan



The top (blue) line in Fig. 9 shows the impact of having more banner ad
exposures for consumers in the treatment group, i.e., those exposed to the firm’s
ad. Here we can see a clear positive impact of having more ad exposures on the
purchase likelihood. The difference between the treatment group and the control
group is the incremental effect of the firm’s banner ad. The incremental effect seems
to increase with the number of banners, indicating that a higher number of banner
ads increases conversion further. When the incremental effect would stabilize, this
would signal that an additional banner impression is not worthwhile. This kind of
analysis can help to investigate the optimal amount of banner impressions. For more
details, also see the study by Hoban and Bucklin (2015). The timing of advertising
can be determined similarly, as Braun and Moe (2013) demonstrate in their study.
Försch and De Haan (2018) study a combination of frequency and timing of
advertising.

Model 7 in Table 4 shows the parameter estimates of the frequency effect. Again,
the parameter for “Firm_banner” is insignificant, indicating that the treatment and
control groups do not differ in their purchase likelihood when there are zero ad
exposures, which aligns with what we expect. Furthermore, “log(Banner_exposures
+ 1)” is insignificant, indicating that a higher number of exposures to the charity ad
does not significantly impact the purchase likelihood. This parameter captures the
confounding effects. The interaction effect captures the causal impact of the firm’s
banner ad and is, therefore, the parameter of primary interest. This interaction effect
is statistically significant and positive, meaning that the higher number of exposures
to the firm’s banner causes an increase in the likelihood to purchase. These results are
again in line with Fig. 9.

The models discussed in this section are easily adaptable. It is, for instance,
possible to test if receiving a flyer also influences the impact of the number of ad
exposures or if the effects of the number of ad impressions are nonlinear. If there is
information on the websites where the campaign is running, it is also possible to
investigate if an ad exposure from website A has a different impact on the purchase
likelihood than an ad exposure from website B. Similarly, it is possible to test the
impact of different ad creatives by having different groups of people exposed to
different ad creatives. Such a setup is also called A/B testing. It is furthermore
possible to test other channels with a randomized experiment.

An advantage of a randomized field experiment is that we can be sure of the
causality, provided there is true randomization, and there are thus no other differ-
ences between the two groups. A downside is that a randomized field experiment at
the consumer level is not possible for all channels. Luckily this can be overcome by
conducting the experiment at a more aggregate level, e.g., varying between regions
or conducting changes over time, as explained in the section “Attribution with
Aggregate-Level (Quasi-)Experimental Data” of this chapter. Randomization is
impossible for some other channels since consumers decide which channel to use,
i.e., the channel exposure cannot be randomized. In such cases, other techniques
have to be applied, as discussed in the next section. Another downside of conducting
field experiments is that it can be challenging and time consuming to do this for all
channels.
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Furthermore, when investigating the interaction effects between channels, e.g., if
online and offline advertising might make each other stronger, a more complicated
experimental design is needed. Such a design is doable for two channels (e.g., via a
two-by-two experimental design, as done in our example in this section), but this
will be practically impossible for a large number of channels. In such cases, different
methods are appropriate, as explained in the “Exploring Paths in Conversion (Mar-
kov Chain)” section of this chapter.

Additional Topics for Individual-Level Attribution

This section discusses some more advanced attribution methods suitable for
individual-level data. In some cases, conducting field experiments is not possible
or one is interested in the customer journey that is affected by a certain channel,
without all potential channels being the subject of an experiment. In these cases, it is
still possible to conduct attribution and find the causal impacts of specific (combi-
nations of) channels, although the methods become more complex and there might
be less certainty that all criteria of causality do indeed hold. We will start with
propensity score matching, which is suitable when the channel is not subject to an
experiment but one still wants to explore the impact as a quasi-experiment. The
second method uses Markov chains to explore how different channels affect the
journey, and the outcome of a journey, which provides more detailed insights
compared to looking at (combinations of) channels in isolation. We will end this
section with a discussion of other methods and further procedures for individual-
level attribution.

Attribution with Individual-Level Quasi-Experimental Data
(Propensity Score Matching)

In some cases, a random experiment is not possible, feasible, or desirable, but we
still want to draw causal conclusions. If we, for instance, observe that customers who
signed up for a loyalty program are buying more frequently, can we then conclude
that this is due to the loyalty program? Or are customers who purchase more also
more likely to join a loyalty program? Or is it a combination of the two? With a
loyalty program, it is impossible to randomly sign-up people since customers have to
give their consent to sign up, and it is undesirable to deny random customers’
membership to such a program. A random experiment is thus impossible, infeasible,
or undesirable to do in such a situation. For other channels, e.g., email, it is possible
to not send out an email to a random group of customers to test the effectiveness of
this channel, but this might be undesirable, for instance, because the customers
expect to receive the email for which they have signed up.

In the cases described above, a feasible alternative is to conduct a quasi-
experiment, which is possible via propensity score matching (PSM). With PSM,
we link consumers to each other who are equally likely to get exposed to a channel,
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but due to random chance, one did get exposed, and the other one did not get
exposed. If we do this for many pairs of consumers, we get two groups of which both
had an equal chance of exposure, but one had the exposure (i.e., the treatment group)
and the other did not (i.e., the control group). If we have these two groups, we can
then investigate the channel the same way as with a randomized field experiment, as
described in the previous section. We can thus test if the two groups differ in terms of
their outcome (e.g., purchase likelihood), which would provide us the causal impact
of the channel.

Multiple studies use PSM to conduct attribution. One example is the study by De
Haan et al. (2018), who have instigated what impacts device switching in an online
customer journey (e.g., a person starts looking for information on a smartphone and
then switches to a laptop). Since device usage and device switching is not a random
decision and is not randomizable with an experiment, De Haan et al. (2018) matched
sessions that were equally likely to have a specific device switch, but in some cases,
the switch did occur while in other cases this switch did not occur. De Haan et al.
(2018) find that switching from a mobile device to a nonmobile device increases the
conversion probability, especially if the product the customer is investigating is
riskier (e.g., the product category has a higher perceived risk, the customer has
less experience buying in the category, or the product is relatively expensive).

To conduct PSM, we have to go through the following five steps (see Chapter 1 of
Pan and Bai 2015 for more details):

1. Estimate the likelihood of being treated (e.g., subscribing to an email newsletter)
2. Check for the overlap in the propensity scores (e.g., likelihood of subscribing) of

treatment and control group
3. Match observations from the treatment group with observations from the control

group who have a similar propensity score
4. Verify the balance of covariates to check if the matching was successful
5. Conduct multivariate analysis based on the matched sample, similar as we have

done in the “Attribution Modeling Process with Experimental Data” section

A logistic regression model can estimate the treatment likelihood, with treatment
(e.g., receiving an email newsletter) as a dependent variable and the drivers of
treatment as independent variables. The independent variables should be exogenous,
which means that the treatment does not influence these variables. The number of
website visits might be a good predictor for email subscription, but the email
subscription might also drive website visits. Rubin (2001) recommends selecting
the independent variables based on theory and prior research.

Demographic variables might work in our case since this might be related to the
probability of signing up for the email service, and the email does not influence
people’s demographics. Unfortunately, however, we do not have demographic vari-
ables in our dataset. Since the email service started on the first of January (see
Table 1), and we have the relationship length and the CLV up until the first of
January, we can use these latter two variables as independent variables; since these
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two variables provide information before the email service’s introduction, the email
cannot have caused changes in the relationship length or CLV.

For the PSM, we will be using the “MatchIt” package in R (Ho et al. 2021). The
following R-script estimates the propensity scores and matches the consumers who
have a similar propensity to sign up for the email service.

# Load packages
library(MatchIt)
library(cobalt)
# Only include existing customers, since they are the only ones
signing up to the email (for potential customers, email sign up is
zero in our dataset)
existing_customers <- consumers[consumers$Existing_customer==1,]
# Log transform CLV, since it is highly skewed
existing_customers$Log_CLV <- log(existing_customers$CLV)
# Conduct matching of consumers who did and did not subscribe to the
email (i.e. step 1 and 3 of the PSM process). In this example, the
Email_group membership is predicted using the Relation_length and
the log of CLV. The matching is automatically performed with the
code.
m.out <- matchit(Email_group ~ Relation_length + Log_CLV,

data=existing_customers, caliper=0.05)
# Investigate the PSM outcome
summary(m.out, standardize = TRUE)
love.plot(m.out)

In the R-script, the term “caliper” indicates the number of standard deviations the
matched consumers’ propensity score can maximum be apart. If we set this value
higher, this would result in consumers who being less similar to each other can be
matched. This higher value does result in more matched consumers, but the differ-
ence between the matched consumers can get larger, which reduces the appropriate-
ness of PSM since we want to create comparable groups. If we set the value of
“caliper” to zero, only consumers with identical propensity scores are matched,
resulting in more similar samples, but this can substantially reduce the sample size
since there might be few (or sometimes even non) exact matches. Determining the
appropriate value for “caliper” can be achieved by trial and error, e.g., by checking
what happens to the outcome of step 4; if the samples are unbalanced, the value of
“caliper” should decrease; if the sample is very well balanced, but the sample sizes
are too small, one can test if a higher value of “caliper” also still works.

Figure 10 shows the output of the results of the matching. As shown at the bottom
of this Figure, we have 11,727 observations in the control group (i.e., those who do
not receive an email) and 13,304 consumers in the treatment group (i.e., those who
do receive an email). After matching, we have 10,257 observations in both groups.
At the top of Fig. 10, we see some descriptive statistics. The mean relationship
lengths before matching are 32.61 months and 28.04 months for the treatment and
control group, respectively, which is equal to a 0.27 standard deviation difference.
After matching, this difference drops to 0.02 standard deviations. A similar pattern is
visible for the logarithmic of CLVand the “distance” (i.e., the polarity score). As the
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“Percent Balance Improvement” section shows, the differences between the means
for distance, relation length, and the log of CLVof the two groups drop by 92.2%,
91.4%, and 92.6%, respectively. In other words, after matching, the groups are much
more balanced.

Figure 11 visualizes the standard mean differences, as presented in Fig. 10, which
clarifies that the matched (adjusted) sample is much more balanced than the
unmatched (unadjusted sample). As can be seen, the mean difference between the
two groups drops substantially when going from the unmatched sample (red dots on
the right-hand side in Fig. 11) to the matched sample (blue dots on the left-hand side
in Fig. 11). In the matched sample, the differences are close to zero, which is again
what we want to achieve.

Next, we want to investigate steps two and four of the PSM procedure, which we
can do with the following R-script.

# Plot balance diagnostics (i.e., step 4 of the PSM process)
plot(m.out, type = "jitter", interactive = FALSE)
plot(m.out, type = "qq", interactive = FALSE)
bal.plot(m.out, which = "both")
bal.plot(m.out, var.name = "Relation_length", which = "both")
bal.plot(m.out, var.name = "Log_CLV", which = "both")

Fig. 10 R-output of “MatchIt”
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Figure 12 shows the distribution of the propensity scores for the matched
treatment and control groups (i.e., the middle two groups) and the propensity scores
of the unmatched consumers (i.e., the top and bottom groups). By looking at this
Figure, there seems to be a very similar distribution and a good overlap in the
propensity scores of the two matched groups, i.e., we seem to meet the criterion
mentioned in the second step of the PSM procedure (“Check for the Overlap in the
Propensity Score”).

Figure 13 shows the Q-Q plot of the two variables which we used to match the
consumers. In this particular plot, we want the observations close to the diagonal
line, which indicates that the matched consumers in the treatment and control groups
are the same. As can be seen, if we use all consumers (i.e., matched and unmatched),
there is quite some deviation from the diagonal line, i.e., the consumers are not very
similar. After matching, the observations almost perfectly follow this diagonal line,
indicating that the matching worked, and we meet the fourth step of the PSM
procedure (“Verify the balance of covariates to check if the matching was
successful”).

Fig. 11 R-output of covariate balance

Fig. 12 R-output of propensity scores distribution for matched and unmatched groups
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Figure 14 is somewhat similar to the previous two figures but visualizes the
overlap in a density plot. Again, the distributions of the “distance” (i.e., the propen-
sity scores), relation length, and the logarithmic of CLV are not very well over-
lapping before matching (i.e., the graphs on the left), while after matching, they are
very nicely overlapping (i.e., the graphs on the right). Again, we thus seem to meet
the criteria of steps two and four of the PSM procedure.

Since the matching seems to have worked, we can use this new matched sample
similar to the randomized field experiment discussed in “Attribution Modeling
Process with Experimental Data” section of this chapter. For email, we can, for
instance, check if (after matching) there is a significant effect on the likelihood to
purchase and if this effect differs for different customers, e.g., those who were in the
firm’s ad group or the charity ad group.

# Get a dataframe with the matched data
matched_data <- match.data(m.out)
# Plot of email and purchase likelihood (unmatched)
myData <- aggregate(existing_customers$Purchase,

by = list(Email_group = existing_customers
$Email_group),

FUN = function(x) c(mean = mean(x), sd = sd(x),
n = length(x)))

myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Email_group", "mean", "sd", "n", "se")
myData$names <- c(paste(myData$Email_group, "Email_group"))
p <- ggplot(data = myData, aes(x = factor(Email_group), y = mean))
p + geom_bar(stat = "identity",

position = position_dodge(0.9), fill="steelblue") +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge
(0.9),

Fig. 13 R-output of QQ-plots for matched and all samples
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width = 0.25) +
labs(x = "Email_group", y = "Conversion rate") +
ggtitle("Conversion rate by Email_group (full sample)") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 5)
# Plot of email and purchase likelihood (matched)
myData <- aggregate(matched_data$Purchase,

by = list(Email_group =
matched_data$Email_group),
FUN = function(x) c(mean = mean(x), sd = sd(x),

n = length(x)))
myData <- do.call(data.frame, myData)
myData$se <- myData$x.sd / sqrt(myData$x.n)
colnames(myData) <- c("Email_group", "mean", "sd", "n", "se")

Fig. 14 Distribution balance of “distance” (top), “Relation_length” (middle), and “Log-CLV”
(bottom)
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myData$names <- c(paste(myData$Email_group, "Email_group"))
p <- ggplot(data = myData, aes(x = factor(Email_group), y = mean))
p + geom_bar(stat = "identity",

position = position_dodge(0.9), fill="steelblue") +
geom_errorbar(aes(ymax = mean + 2*se,

ymin = mean - 2*se), position = position_dodge(0.9),
width = 0.25) +

labs(x = "Email_group", y = "Conversion rate") +
ggtitle("Conversion rate by Email_group (matched sample)") +
scale_y_continuous(labels = function(x) paste0(x*100, "%")) +
geom_text(position = position_dodge(width= .9), aes(y = mean,

label = paste(format(mean*100, digits = 2, nsmall = 2), "%", sep =
"")), size = 4, vjust = 5)
# Load package to make an output table of all models
library(sjPlot)
library(sjmisc)
library(sjlabelled)
# Estimate logistic regression models
model1 <- glm(Purchase ~ Email_group, data=matched_data,
family=binomial)
model2 <- glm(Purchase ~ Email_group, data=existing_customers,
family=binomial)
model3 <- glm(Purchase ~ Email_group + Firm_banner +
Email_group*Firm_banner, data=matched_data, family=binomial)
model4 <- glm(Purchase ~ Email_group + Firm_banner +
Email_group*Firm_banner, data=existing_customers, family=binomial)
tab_model(model1, model2, model3, model4, transform = NULL,
collapse.ci = TRUE, p.style = "stars")

Figure 15 shows the purchase likelihood for the full sample (left graph) and the
matched sample (right graph). Before matching, the consumers who receive an email
have a purchase likelihood of 41.27%, while those who do not receive the email have
a purchase likelihood of 34.36%. There is thus a 6.91% point higher purchase
likelihood for the consumers who do receive an email. This 6.91% point difference
is a combination of the actual causal effect of the email and the confounding effects
(e.g., those signing up for an email are already more loyal and have a higher purchase
likelihood to begin with). If we look at the matched sample, the difference between

Fig. 15 Email effectiveness for unmatched (left) and matched (right) samples visualized
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the consumers who do and those who do not receive the email drops to 5.54% points.
This 5.54% point increase in the conversion likelihood is thus the true causal impact
of the email.

The output of the four logistic regression models, which replicate Fig. 15, can be
seen in Table 5. Model 8 and Model 10 in Table 5 are estimated on the matched
sample, while Model 9 and Model 11 use the full sample. Model 9 shows the effect
of email is significant and 0.29, meaning that people who receive an email have a
([exp(0.29)-1]*100%) 33.6% higher odds of purchasing than consumers who did not
receive an email. Since this second model uses the full sample, it does include some
confounds due to the self-selection to subscribe to the email; those who receive an
email might be more loyal customers and have a higher likelihood of purchasing.
Comparing the two groups is thus a bit comparing apple and oranges, and we cannot
interpret the parameter as a causal effect of email on purchase likelihood.

Model 8 in Table 5 uses the matched sample. The two groups are in this sample
comparable to each other and only differ in the subscription to the email service. The
parameter estimate is now still significant and has a value of 0.24, meaning that
people who receive an email have a ([exp(0.24)-1]*100%) 27.1% higher odds of
purchasing consumers who did not receive an email; due to the matching we can
assume that this effect is causal. Not controlling for the self-selection does thus
somewhat overestimate the impact of email on the purchase likelihood, which is in
line with what we could see in Fig. 15.

Model 10 and 11 from Table 5 test if there is a synergy effect between email and
exposure to the firm banner. Since the interaction effect is insignificant in both
models, we cannot conclude that there is a synergy effect.

PSM is a good way to find the effectiveness of a channel in situations where
conducting a randomized field experiment is not an option. A challenge here is that
the variables used for matching should be exogenous, i.e., the variables should

Table 5 Logistic regression output of matched (columns 1 and 3) and full (columns 2 and 4)
samples

Model 8 Model 9 Model 10 Model 11

Purchase Purchase Purchase Purchase

Predictors Log-Odds Log-Odds Log-Odds Log-Odds

(Intercept) �0.62
***(�0.66 –
�0.58)

�0.65
***(�0.69 –
�0.61)

�0.97
***(�1.06 –
�0.87)

�0.99
***(�1.08 –
�0.90)

Email_group 0.24 ***

(0.18–0.29)
0.29 ***

(0.24–0.35)
0.31 ***

(0.18–0.45)
0.38 ***

(0.26–0.50)

Firm_banner 0.42 ***

(0.32–0.53)
0.42 ***

(0.32–0.52)

Email_group *
Firm_banner

�0.09
(�0.24–0.06)

�0.10
(�0.24–0.03)

Observations 20,514 25,031 20,514 25,031

R2 Tjur 0.003 0.005 0.008 0.010

* p < 0.05 ** p < 0.01 *** p < 0.001
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correlate with, but not be influenced by, the channel choice. For more details on
PSM, including alternative matching procedures, check the book by Pan and Bai
(2015).

Exploring Paths in Conversion (Markov Chain)

Another method used for attribution is the Markov chain. With a Markov chain, we
can observe through which stages (i.e., channels or touchpoints) a consumer moves
in the path to purchase and what the final stage (i.e., conversion or not) is. We can use
this Markov chain to estimate the likelihood of encountering a specific touchpoint
and the likelihood that a particular path will convert. Anderl et al. (2016) used a
Markov approach to map the purchase journey and compare this method to basic
attribution methods like last-touch attribution.

Figure 16 provides a simple example of such a graphical Markov chain with three
channels. We can see that at the start of the path to purchase, the customer is most
likely to use channel 2 or 3, then switches between the three channels, and channel
2 is most likely to lead to a purchase (based on last touch). Such a visualization
nicely illustrates how the path to purchase looks like, i.e., how consumers switch
between touchpoints and how this leads to an outcome. Instead of visualizing, such a
Markov chain can also be represented with a transition matrix, as we will demon-
strate later in this section.

For attribution, we can turn off a channel in the Markov chain and simulate what
would happen to the path to purchase in terms of touchpoints that the consumer
encounters and the outcome of the path to purchase. This is a more sophisticated
procedure than touch-based attribution since we consider that the entire path to
purchase can change when a channel drops out and that there might be alternative
channels that pick up the role of the turned-off channel. Fig. 17 visualizes an
example of what happens when we turn off a channel, e.g., the traffic to the other
channels changes, and the impact on purchase is also affected.

Fig. 16 Simple example Markov chain with three channels
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Let us with the following R-script estimate the Markov chain on our dataset. For
this, we only use consumers who are in the group that could see the firm’s banner.
For estimating the Markov chain, we use the R-packages “msm” (Jackson 2019) and
“markovchain” (Spedicato 2021).

# Add start channel
consumers_journey2 <- consumers_journey[consumers_journey
$Channel_number==1,]
consumers_journey2$Channel_number <- 0
consumers_journey2$Channel_name <- "Start"
consumers_journey2$Channel <- 1
consumers_journey2 <- rbind(consumers_journey, consumers_journey2)
# Add final channel (i.e., conversion or not)
consumers_journey3 <- consumers_journey[consumers_journey
$Channel_number==1,]
touchpoints <- aggregate(consumers_journey2$Channel_number,by=list
(consumers_journey2$Consumer_ID),FUN=max)
consumers_journey3$Channel_number <- touchpoints$x + 1
consumers_journey3$Channel_name <- ifelse(consumers$Purchase==1,
"Purchase", "No Purchase")
consumers_journey3$Channel <- ifelse(consumers$Purchase==1,
10, 11)
consumers_journey2 <- rbind(consumers_journey2,
consumers_journey3)
consumers_journey2 <- consumers_journey2[order(consumers_journey2
$Consumer_ID, consumers_journey2$Channel_number),]
rm(consumers_journey3)
rm(touchpoints)
# Split data up in firm and charity banner group
consumers_journey2_firm <-
consumers_journey2[consumers_journey2$Firm_banner==1,]

consumers_journey2_charity <-
consumers_journey2[consumers_journey2$Firm_banner==0,]

# Estimate transition matrix
library(msm)

Fig. 17 Simple example Markov chain with one channel turned off
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markov_chain <- statetable.msm(Channel, Consumer_ID,
data=consumers_journey2_firm)
markov_chain <- prop.table(markov_chain, margin=1)
markov_chain <- as.data.frame(t(markov_chain))
markov_chain <- markov_chain[,3]
markov_chain[100:121] <- c(rep(0,9),1,0,rep(0,10),1)
library(markovchain)
mcjourney <- new("markovchain", states = c
("Start","Banner_impression","Banner_click",
"SEA_product_click","SEA_brand_click","Price_comp_click",

"Email_received", "Email_click",
"Direct_visit",

"Purchase", "No purchase"),
transitionMatrix = matrix(data=markov_chain,
byrow= TRUE, nrow = 11))

show(mcjourney)
plot(mcjourney, edge.arrow.size=0.25)

Figure 18 visualizes the Markov chain, and Fig. 19 provides the transition matrix;
both show the same information in a different format. We can observe that there is a
34.72% chance the consumer will first encounter a banner impression. When the
consumer in the current state sees a banner impression, there is a 20.74% chance that
the next phase will be a direct visit. A direct visit has a 6.80% chance to be followed
by a purchase (i.e., conversion) and a 13.04% chance of an unsuccessful end of the
path to purchase (and an 80.16% chance of continuing with one of the eight
touchpoints).

Such a transition matrix can thus show what the likely next touchpoint the
customer will encounter is and how likely the path to purchase will end successfully
or unsuccessfully. We can make a simulation based on the transition matrix to
investigate what happens after a certain number of stages. The following R-script
calculates what the path to purchase looks like after 5 and 50 stages.

# Estimate the stage consumers are in after 5 and 50 phases of the
path to purchase, the initial state is the start state
initialstate <- c(1,0,0,0,0,0,0,0,0,0,0)
after5touchpoints <- initialstate * (mcjourney ^ 5)
after5touchpoints
after50touchpoints <- initialstate * (mcjourney ^ 50)
after50touchpoints

When running this R-script, we can see that after five stages, i.e., five touchpoints
(including the start), there is a 13.28% chance of a conversion, a 35.04% chance of
the path to purchase ending with no purchase, and a 51.68% chance that the path to
purchase will continue. After 50 stages, there is a 27.76% chance of a conversion, a
72.21% chance of no conversion, and a 0.03% chance of the path to purchase to
continue. The 27.76% conversion is similar to the 27.77% conversion we saw for the
firm banner group in Fig. 5, i.e., this transition matrix nicely matches reality.
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We can estimate what would happen if banner advertising is off by setting off this
channel in the transition matrix. We can do this with the following R-script.

# Estimate transition matrix with banner impressions and clicks
dropped out
markov_chain_banner_off <- statetable.msm(Channel, Consumer_ID,
data=consumers_journey2_firm)
markov_chain_banner_off <- markov_chain_banner_off[c(1,4:9),c
(1,4:11)]
markov_chain_banner_off <- prop.table(markov_chain_banner_off,
margin=1)
markov_chain_banner_off <- as.data.frame(t
(markov_chain_banner_off))
markov_chain_banner_off <- markov_chain_banner_off[,3]
markov_chain_banner_off[64:81] <- c(rep(0,7),1,0,rep(0,8),1)
mcjourney_banner_off <- new("markovchain", states = c("Start",
"SEA_product_click","SEA_brand_click","Price_comp_click",

"Email_received",
"Email_click", "Direct_visit",

"Purchase", "No purchase"),
transitionMatrix = matrix

(data=markov_chain_banner_off,

Fig. 18 Markov chain plot path to purchase
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byrow= TRUE, nrow = 9))
show(mcjourney_banner_off)
plot(mcjourney_banner_off, edge.arrow.size=0.25)
# Estimate the stage consumers are in after 5 and 50 phases of the
path to purchase, the initial state is the start state
initialstate <- c(1,0,0,0,0,0,0,0,0)
after5touchpoints <- initialstate * (mcjourney_banner_off ^ 5)
after5touchpoints
after50touchpoints <- initialstate * (mcjourney_banner_off ^ 50)
after50touchpoints

When running this R-script, we can observe that when the banner channel is off,
the conversion rate after 50 stages is 33.39%, i.e., a substantial increase compared to
the 27.76% we found when banner advertising is on. We do, however, need to
remember that 34.72% of the journeys started with a banner impression and 1.51%
start with a banner click (see Fig. 19), and these journeys would now not have
occurred, leaving us with 63.77% of the journeys. If we take 63.77% of 33.39%, we
get to a conversion rate of 21.29%, which is substantially lower than the 27.76% we
have found earlier.

We can validate if this 21.29% conversion rate is close to the truth by investigat-
ing the transition matrix of the control group, i.e., the group where the firm’s banner
advertising was off in reality. We do this with the following R-script.

# Estimate transition matrix for the charity banner group
markov_chain <- statetable.msm(Channel, Consumer_ID,
data=consumers_journey2_charity)
markov_chain <- prop.table(markov_chain, margin=1)
markov_chain <- as.data.frame(t(markov_chain))
markov_chain <- markov_chain[,3]
markov_chain[100:121] <- c(rep(0,9),1,0,rep(0,10),1)
mcjourney <- new("markovchain", states = c
("Start","Banner_impression","Banner_click",
"SEA_product_click","SEA_brand_click","Price_comp_click",

"Email_received", "Email_click",
"Direct_visit",

"Purchase", "No purchase"),
transitionMatrix = matrix(data=markov_chain,

byrow= TRUE, nrow = 11))
show(mcjourney)
plot(mcjourney, edge.arrow.size=0.25)
# Estimate the stage consumers are in after 5 and 50 phases of the
path to purchase, the initial state is the start state
initialstate <- c(1,0,0,0,0,0,0,0,0,0,0)
after5touchpoints <- initialstate * (mcjourney ^ 5)
after5touchpoints
after50touchpoints <- initialstate * (mcjourney ^ 50)
after50touchpoints

Running this R-script, we find that the conversion after 50 stages is 16.88%, i.e.,
still somewhat lower than the 21.29% that we found in our previous analysis, but it is
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perfectly in line with what we observed in Fig. 5. Turning off one channel in the
Markov chain does thus seem to provide us a somewhat accurate estimate of the
conversion, but it is far from perfect. This is because turning off one channel will
also affect the transition matrix since some channels might be good alternatives.
Combining the Markov chain with experimental data, as we have done here, does
provide good insights. An advantage of this Markov chain, e.g., by comparing the
Markov chain of the firm’s banner group and the charity’s banner group, is that we
can explore how turning off one channel also impacts the usage of other channels in
the path to purchase. For more details, also have a look at Spedicato et al. (2016).

Further Methods of Individual-Level Attribution

In this section, we discussed some methods for individual-level attribution. The
provided R-scripts can be adopted and adjusted to be suitable for other, e.g., real-life
datasets. The discussed models can also be used to investigate other outcome vari-
ables. Retention, customer acquisition, and other forms of customer behavior are
examples of variables that can be valuable to investigate (e.g., Gupta et al. 2004;
Gupta and Zeithaml 2006).

Next to other outcome variables, also other techniques can be used to analyze the
data. Alternatives for the logistic regression model are causal trees and causal forests,
which are machine learning techniques that try to estimate the treatment effect (i.e.,
the difference between the treatment and control group) and explain in which
situations this treatment effect is larger or smaller. Such techniques can be conve-
nient to determine which consumers should get a treatment (i.e., be targeted). For
details on such techniques, see Hitsch and Misra (2018).

More advanced attribution techniques are available to investigate the impact of
the order in which touchpoints occur. This can be done by including carryover and
spillover effects in the models. Furthermore, the time between touchpoints can be
important, which can be captured by including parameters that capture decay and
restoration effects. Braun and Moe (2013) and Li and Kannan (2014) provide
information on models that incorporate such effects.

Attribution with Aggregate-Level (Quasi-)Experimental Data

In some cases, it is impossible to do attribution at the individual customer level, for
instance, when one wants to find out the impact of mass media advertising on
conversion, but it is unknown which individual consumers have come in contact
with this form of advertising. Furthermore, with stricter privacy laws, consumers
blocking and deleting cookies, and consumers switching between different browsers
and devices, tracking consumers across their path to purchase can become more
complicated and sometimes even impossible, not allowed, or undesired. In such
cases, attribution using experimental data is still achievable at a more aggregate
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level, e.g., instead of at the individual consumer level, one can conduct aggregate-
level experiments or look at variations in the data across regions or over time.

Similarly, as with attribution at the individual level, randomized field experiments
can be helpful for attribution at a more aggregate level. A challenge, in this case, is
that it is not possible to randomly allocate consumers in different (treatment and
control) groups. Instead, the randomization can, for instance, take place at the
product, category, or regional level, over time, or at a combination of these levels.
Two examples of studies conducting such experiments are Blake et al. (2015) and
Wiesel et al. (2011). This section discusses three examples of analysis coming from
data from such aggregate-level experiments. The first two forms of analysis, namely
the before-after analysis and the before-during-after analysis, focus on variations
over time. The third form of analysis focuses on variations over time and regions and
is called the difference-in-differences analysis. In the end, we will also discuss some
further methods when conducting aggregate-level attribution.

Before-After Analysis

To test the impact of a channel on the traffic to a website or a store, or any other
outcome variable, and an experiment at the individual level is not possible, not
desirable, or just impractical, an alternative solution is to turn off the channel for
some time to see what happens to the desired outcome variable. If turning off a
channel is too risky, an alternative is to decrease the expenditures for this channel
temporally or, if the expectation is that the channel has a positive impact on the
outcome variable, the expenditure can temporally be increased.

To give a simple example of this procedure, let us generate one dataset in line with
the data used by Blake et al. (2015). In this example, we look at the search engine
channel, and a firm decides to stop using SEA after 20 weekly observations. As one
might assume, when stopping SEA, the traffic to the website will decrease. However,
it might also be possible that some people who go to the website by clicking on a
SEA link would still visit the website when the firm does not conduct SEA; instead
of visiting the website through SEA, the consumer might in such case use an organic
(nonpaid) link on the search engine, or they might have visited the website directly.
Indeed, Blake et al. (2015) have shown that for eBay conducting SEA for branded
keywords (i.e., keywords or search phrases containing “eBay”) is not profitable;
when eBay stops bidding for these keywords, they still show up high on the organic
search results, and users still visit eBay’s website. In such a case, organic search is a
perfect alternative for paid search, and paid search should not get credit for the visits
and the resulting sale. If after turning off SEA the traffic decreases, i.e., it is not
(entirely) substituted by other channels, SEA should get credit for the lost traffic.

To investigate this, let us generate a dataset of 40 weekly observations. The firm
turns off SEA after week 20, and we have data on the traffic coming to a website via
SEA and organic search and the total traffic coming in via the search engine.
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# Load required packages --------------------------------------
library(ggplot2)
library(reshape2)
#Turn off scientific notation
options(scipen = 999)
# Generate dataset before-after analysis ------------------------
n=40 #has to be an even number for the later code to run correctly
set.seed(1234)
search_data <- data.frame(c(1:n), c(rep(1, times=n/2),rep(0,
times=n/2)))
names(search_data)[1] <- paste("Week")
names(search_data)[2] <- paste("SEA_on")
search_data$Paid_volume <- ifelse(search_data$SEA_on==1,

25000+sample(0:5000, n),
0)

search_data$Organic_volume <- ifelse(search_data$SEA_on==1,
search_data$Paid_volume*1.5 +

10000 + sample(0:5000, n),
67500 + sample(5000))

# Create total traffic variable
search_data$Total_volume <- search_data$Paid_volume + search_data
$Organic_volume
# Create plot of total, organic and paid traffic
dd = search_data[,c(1,3:5)]
dd = melt(dd, id=c("Week"))
colnames(dd)[3] <- "Volume"
ggplot(dd) + geom_line(aes(x=Week, y=Volume, colour=variable)) +
scale_colour_manual(values=c("red","green","blue"))

rm(dd)
rm(n)

After running this R-script, we have a dataset with 40 weekly observations.
Figure 20 shows the plotted data. As can be seen, in the first 20 weeks, both the
organic traffic and the paid traffic are relatively stable, but after week 20, the paid
traffic drops to zero, which makes sense since SEA is off for this period. We can also
see that after week 20, there is a substantial increase in organic traffic to the website.
The total traffic does go down somewhat, but not as much as the lost SEA traffic, i.e.,
it seems that organic search is partly capturing the lost traffic of SEA. Assuming that
everything else is stable over time, the explanation for the increase in organic search
is that some visitors who would otherwise have clicked on a SEA link now click on
the organic search link. This example nicely shows that last-click attribution would
have overestimated the impact of SEA since there is an alternative channel available
which browsers would use to go to the website if SEA is not available.

To see if SEA has a significant impact on the total traffic to the website, we can
run the following R-script to estimate some regression models.

# Load package to make an output table of all models
library(sjPlot)
library(sjmisc)
library(sjlabelled)
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#regression models before-after analysis
before_after_model1 <- lm(Total_volume ~ SEA_on, data=search_data)
before_after_model2 <- lm(Total_volume ~ SEA_on + Week,
data=search_data)
before_after_model3 <- lm(Organic_volume ~ SEA_on,
data=search_data)
before_after_model4 <- lm(Organic_volume ~ SEA_on + Week,
data=search_data)
tab_model(before_after_model1, before_after_model2,
before_after_model3,

before_after_model4, collapse.ci = TRUE, p.style =
"stars")

As we can see from the output in Table 6, Model 12 shows that when SEA is on,
the traffic coming in through the search engine is 11,178.78 visitors higher on
average (95% CI [9703.67, 12653.88]), which is highly significant. Controlling for
the trend variable “week,” which could capture a linear upward or downward trend
in the number of visitors over the 40 weeks, does not substantially change the
estimate and also does not improve the model, as is shown by Model 13. Model
14 shows that when SEA is on, organic search traffic to the website is a significant
16,432.58 units lower, or the other way round; when turning off SEA, organic search
traffic goes up 16,432.58 on average, which is the substation effect of this channel
for SEA. Controlling for the week again does not bring much change, as Model
15 shows.

We can use the parameter estimates also as a basis to find the return on investment
(ROI) of SEA. Let us assume a 10% conversion rate, a gross profit (before marketing
costs) of $20 per conversion, and SEA costs $0.50 per click on average. What we
furthermore need is the total traffic from SEAwhen SEA is on. For this, we can take
the mean amount of SEA clicks when SEA is on, which we can get with the
following R-script.

# Mean amount of Paid clicks (i.e. variable 3 in our dataset) when
SEA is on mean(search_data[search_data$SEA_on¼¼1,3])

Fig. 20 Data of before-after analysis visualized
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We find that there are 27,611.35 paid clicks on average when SEA is on. We can
now fill in the following ROI formula, based on the parameter from Model 12 from
Table 6 (The assumption here is that the 11,178.78 additional visitors is indeed
caused by SEA, i.e., without SEAwe would lose these visitors, in line with what the
model shows.):

Incremental gross profit if SEA is onð Þ ¼ 11, 178:78 additional visitors∙

10%conversion∙20=conversion ¼ 22, 357:56
ð2Þ

Incremental costs if SEA is onð Þ ¼ 27, 611:35 clicks∙0:50=click ¼ 13, 805:68

ð3Þ

ROI ¼ Gross profit�Costs
Costs

∙100% ¼ 22, 357:56� 13, 805:68

13, 805:68∙100% ¼ 61:94%

ð4Þ
So, the ROI of SEA is, in this case, 61.94%. We can also replace the 11,178.78 in

the formula with the upper and lower score of the confidence interval (i.e., the 95%
CI [9703.67, 12653.88]). If we do so, we find the 95% confidence interval of the ROI
to be 40.58% and 83.31%, which indicates SEA is, on average, an excellent
investment in this case. Note that this is a generated dataset. In reality, the effective-
ness and ROI of SEA can be much different. Blake et al. (2015) have for instance
found a very low effectiveness of SEA in their study, which might be explained by
the fact that they used data from a very well-known firm, namely eBay.

One can easily use this before-after analysis for other questions when investigat-
ing the impact of SEA:

• For search engine advertising, instead of looking at the visitors via SEA and
organic search, one can also directly investigate the total visitors of the website or
the total purchases per week. The advantage of this is that turning off SEA
might also impact other channels (e.g., direct website visit), and conversion
rates might differ per channel (e.g., the 10% conversion we used in the ROI
calculation might not hold for every channel), so looking at sales as a dependent
variable can be more appropriate to calculate the ROI.

• Instead of looking at the overall impact of SEA, one can also use this procedure
for different types of keywords; e.g., what happens when turning off SEA for
branded keywords? Or what happens when turning off SEA for keywords for a
specific product category?

• Furthermore, this procedure is helpful to investigate the impact of bids; e.g., what
happens when lowing the bids for a period by x%? Or what happens if the budget
is temporarily increased or decreased with y%? These kinds of experiments can
help to find more optimal bids and determine the budget allocation.

By conducting such experiments, one can thus find out if SEA is, on average, a
profitable channel, but it is also possible to improve the bids per keyword and the
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overall budget allocation. Next to SEA, before-after analyses are also helpful for
other channels, including offline mass media like TV and radio advertising.

A limitation of a before-after analysis is that we assume that all other factors
which influence traffic before and after the change (e.g., turning off the channel),
which we do not control for, are stable over time. Let us assume that the company
conducting the experiment is selling sunglasses, and the experiment starts in
October, and we do observe that the sales in the “after” period are lower than the
“before” period. Can we then conclude that this decrease in sales is due to turning
off SEA? Or could this decrease be (partly) due to seasonality, e.g., the “after” period
was less sunny, and the demand for sunglasses was lower than the “before” period?
Alternatively, if a company is growing over time, the after period is affected by the
experiment and the company’s growth, which might hide part of the effect estimated
with the model. Adding control variables in the regression model can (partly)
overcome these confounding effects; e.g., one can control for temperature and the
average hours of sunshine per day and a trend by adding a trend variable to the
model.

In practice, we cannot control for everything that might change over time and
impact our dependent variable of interest. With that, we cannot guarantee causality
since we cannot exclude all potential third variables. However, there are two ways
we can improve upon the before-after analysis. The following two sections discuss
these alternative analyses.

Before-During-aAfter Analysis

An extension of the before-after analysis is the before-during-after analysis in which
the turned-off channel (or changed in any other way) is turned back on after the
experimental period. An advantage with this is that we can now inspect if the
outcome variable (e.g., visitors or sales) goes back to the level as it was before;
this is what we would expect when the found impact is indeed causal and when there
is no long-term (positive or negative) impact of turning off or on a channel (e.g., via
carryover effects or other dynamic effects). This approach is also used by Blake et al.
(2015) when investigating the impact of SEA at eBay.

To conduct the before-during-after analysis, let us first generate some data to
make this clearer. We can do this with the following R-script.

# Generate dataset before-during-after analysis attribution ------
n=60 #has to be a multiple of 3 for the later code to run correctly
set.seed(1234)
search_data <- data.frame(c(1:n),

c(rep(1, times=n/3),rep(0, times=n/3),rep(1,
times=n/3)),

c(rep(0, times=n/3),rep(1, times=n/3),rep(0,
times=n/3)),

c(rep(0, times=n/3),rep(0, times=n/3),rep(1,
times=n/3)))
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names(search_data)[1] <- paste("Week")
names(search_data)[2] <- paste("SEA_on")
names(search_data)[3] <- paste("During")
names(search_data)[4] <- paste("After")
search_data$Paid_volume <- ifelse(search_data$SEA_on==1,

25000+sample(0:5000, n),
0)

search_data$Organic_volume <- ifelse(search_data$SEA_on==1,
search_data$Paid_volume*1.5 + 10000 +
sample(0:5000, n),
67500 + sample(5000))

# Create total traffic variable
search_data$Total_volume <- search_data$Paid_volume + search_data
$Organic_volume
# Create plot of total, organic and paid traffic
##Subset the necessary columns
dd = search_data[,c(1,5:7)]
dd = melt(dd, id=c("Week"))
colnames(dd)[3] <- "Volume"
ggplot(dd) + geom_line(aes(x=Week, y=Volume, colour=variable)) +
scale_colour_manual(values=c("red","green","blue"))

rm(dd)
rm(n)

After running this R-script, we have a dataset similar to the before-after study in
the previous section, but with 20 additional weekly observations, i.e., the period in
which SEA is back on. Figure 21 plots these data. For the first 40 weekly observa-
tions, we can see a similar pattern as with the before-after study visualized in Fig. 20,
and in the last 20 weeks, when SEA is back on, we can see that everything goes back
to a similar situation as in the first 20 weeks. This last period is interesting since if
there were other changes over time (e.g., seasonality, an overall change in the
website traffic), we would expect that the after period is different from the before
period. If the before and after periods are similar, and the period during the
experiment is different, we have some more certainty that the change is due to
turning off SEA and not (also) due to other factors.

To see if turning off SEA has a significant impact, and if this impact is gone when
turning SEA back on, we can run the following R-script to estimate the necessary
regression models.

#regression models before-during-after analysis
before_during_after_model1 <- lm(Total_volume ~ During + After,
data=search_data)
before_during_after_model2 <- lm(Total_volume ~ During + After +
Week, data=search_data)
tab_model(before_during_after_model1, before_during_after_model2,

collapse.ci = TRUE, p.style = "stars")

As we can see from the output in Table 7, in the “during” period (i.e., when SEA
is off), the total traffic coming in through the search engine is significantly
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decreasing compared to the “before” period. This finding is in line with the before-
after analysis. The “after” period parameter is insignificant; since the “before” period
is our reference case, this means that there is no significant difference in the number
of website visits before the experiment took place and after the experiment has
finished. When SEA is back on, the situation does thus goes back to normal. If the
“after” period would significantly deviate from the “before” period in the before-
during-after analysis, it would signal that there is also something else changing over
time, or there might be dynamic effects of turning off and on SEAwhich the model
does not fully capture. As a result, in the case of a significant “after” period, we
should be cautious when interpreting the “during” period. If we find the reason for a
significant “after” period, e.g., seasonality, we can control for these factors in the
model and investigate if controlling for this indeed leads to a nonsignificant “after”
period.

An even more robust approach to exclude other factors is the difference-in-
differences analysis, discussed in the next section.

Table 7 Regression output for before-during-after analyses

Model 16 Model 17

Total_volume Total_volume

Predictors Estimates Estimates

(Intercept) 81233.12 *** (79856.18–82610.07) 80331.76 *** (78343.03–82320.50)

During �10961.42 ***(�12908.72 –
�9014.13)

�12678.30 ***(�16038.48 –
�9318.12)

After 471.80(�1475.50–2419.10) �2961.95(�8783.57–2859.66)

Week 85.84(�51.39–223.08)

Observations 60 60

R2/R2

adjusted
0.756/0.748 0.763/0.750

* p < 0.05 ** p < 0.01 *** p < 0.001

Fig. 21 Data of before-during-after analysis visualized
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Difference-in-Differences Analysis

With the before-after analysis, there could be confounding factors that change over
time and influence the results. The before-during-after analysis is somewhat more
robust since one can compare the before and after periods to see if everything goes
back to normal when the experimental period is over. There might still have been
some other factors influencing the results, e.g., a holiday during the experimental
period or activities by a competitor. To be even more confident that the effects are
indeed causal, one can make the change (or treatment) only in some regions (the
treatment regions) and not make this change in other (similar) regions (the control
regions). If the regions are randomly assigned, and there is no difference observed
between the regions before the experiment, then the deviations during the experi-
ment show us the impact of the experiment (e.g., turning off a channel in the
treatment regions). Multiple studies use this approach of conducting changes in
only some regions; examples include Blake et al. (2015) and Wiesel et al. (2011).

To give an example of a difference-in-differences analysis, let us generate some
data with the following R-script.

# Generate dataset dif-in-dif analysis attribution --------------
n=40 #has to be an even number for the later code to run correctly
set.seed(1234)
search_data <- data.frame(c(1:n), c(rep(1, times=n/2),rep(0,
times=n/2)))
names(search_data)[1] <- paste("Week")
names(search_data)[2] <- paste("SEA_on")
search_data$Total_traffic_region1 <- ifelse(search_data$SEA_on==1,

75000+sample(0:3000, n),
70000+sample(0:3000, n))

search_data$Total_traffic_region2 <- 75000+sample(0:3000, n)
# Create plot of traffic per region
dd = search_data[,c(1,3:4)]
library(reshape2)
dd = melt(dd, id=c("Week"))
colnames(dd)[3] <- "Volume"
ggplot(dd) + geom_line(aes(x=Week, y=Volume, colour=variable)) +
scale_colour_manual(values=c("red","blue"))

# Create some additional variables
dd$treatment_region <- c(rep(1, times=n),rep(0, times=n))
dd$SEA_off <- c(rep(0, times=n/2),rep(1, times=n/2),rep(0,
times=n/2),rep(1, times=n/2))
rm(n)

As shown in Fig. 22, the traffic to the website is for the control region (region 2)
relatively stable over the 40 weeks. For the treatment region (region 1), the traffic
volume is similar to the control region in the first 20 weeks (i.e., when in both
regions SEAwas on), but the traffic volume starts to deviate when SEA is off in the
treatment region. Assuming that the regions are indeed similar, and thus also that
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seasonality and trends similarly affect both regions, we can assume that the deviation
between the two regions is indeed due to the treatment (i.e., turning off SEA).

To test the significance, we can estimate a difference-in-differences model. This
model looks as follows:

Yit ¼ β0 þ β1∙Treatmenti þ β2∙Aftert þ β3∙Treatmenti∙Aftert þ eit ð5Þ
Where Treatmenti indicates if the observation is from the treatment group (1) or

control group (0), Aftert indicates if the period was after (1) or before (0) the
treatment has taken place. The parameter β1 indicates if the treatment group differs
from the control group in the period before the experiment took place; if the
treatment region is similar to the control region, this parameter should be insignif-
icant. The parameter β2 indicates if the control group differs in the after period
compared to the before period; if there are no changes over time, this should be
insignificant. If there are changes over time, which are not due to the experiment,
these changes are captured by β2. The main parameter of interest is β3, which
captures the deviation of the treatment group from the control group after the
treatment; if the two groups are indeed the same over time, with the only difference
being the treatment, then β3 captures the causal effect of the treatment.

To estimate the difference-in-differences model, the following R-script can be
used.

# Regression model difference-in-differences analysis
dif_dif_model1 <- lm(Volume ~ treatment_region + SEA_off +
treatment_region*SEA_off, data=dd)
dif_dif_model2 <- lm(Volume ~ treatment_region + SEA_off +
treatment_region*SEA_off + Week, data=dd)
tab_model(dif_dif_model1, dif_dif_model2,

collapse.ci = TRUE, p.style = "stars")

As can be seen in Table 8, the parameter for “treatment region” is insignificant in
both Models 18 and 19. In line with the explanation of the parameter β1 of Eq. (5),

Fig. 22 Data of difference-in-differences analysis visualized
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this insignificance indicates that the treatment group does not differ significantly
from the control group in the period before the experiment took place. If the regions
are assigned randomly to the control and treatment condition, an insignificant
parameter is thus indeed what we would expect. If the parameter is significant, it
signals that there is already a difference between the two groups before the exper-
iment took place. The parameter of “SEA_off,” i.e., our treatment, is also insignif-
icant. Given the interaction in the model, this parameter indicates that the traffic
volume is not significantly different for the control group in the “after” period. The
interaction is highly significant; this parameter is the effect of the treatment (i.e.,
turning off SEA) in the treatment region and tells us that turning off SEA does
significantly decrease the traffic to the website. We can conclude that turning off
SEA results in a visitor drop of 5,525.40 (i.e., the difference-in-differences effect).

We can also investigate the difference-in-differences by simply using a cross-
table, which can sometimes be easier to understand and communicate the results than
a somewhat more complicated regression model.

# Create crosstable of difference-in-differences
with(dd, tapply(Volume,
list(treatment_region=treatment_region,SEA_off=SEA_off), mean) )

Table 9 shows the cross-table with the difference-in-differences effect, i.e., taking
the difference between the before and after periods for the control group and the
treatment group and then taking the difference between these two differences (hence
“difference-in-differences”), is the same as the parameter estimate from Table 8. An
advantage of using a regression model instead of a cross-table is that we can observe
if the difference is statistically significant, and we can include control variables in the
regression model.

For a difference-in-differences analysis, it is essential that the treatment and the
control groups are comparable. In their study, Blake et al. (2015) have assured this

Table 8 Regression output for difference-in-differences analyses

Model 18 Model 19

Volume Volume

Predictors Estimates Estimates

(Intercept) 76327.15 ***

(75901.70–76752.60)
76381.41 ***

(75802.38–76960.43)

treatment_region 532.20(�69.48–1133.88) 532.20(�73.30–1137.70)

SEA_off 150.55(�451.13–752.23) 253.90(�704.20–1211.99)

treatment_region *
SEA_off

�5525.40 ***(�6376.30 –
�4674.50)

�5525.40 ***(�6381.70 –
�4669.10)

Week �5.17(�42.29–31.96)

Observations 80 80

R2/R2 adjusted 0.849/0.843 0.849/0.841

* p < 0.05 ** p < 0.01 *** p < 0.001
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by matching regions to each other, which are similar in their historical sales patterns
over time. Wiesel et al. (2011) did match regions that were similar in consumer
expenditure, the recency, frequency, and monetary value of the purchases, and the
number of new and existing customers.

If the control region is different in size compared to the treatment region, but
(apart from the treatment) there are no differences over time, this is still not a
problem; the size differences will be captured by β1 of Eq. (5), which would then
be statistically significant. Alternatively, weights can make the regions in the before
period comparable.

If there are differences in size between the groups, but these differences are not
absolute (e.g., region one has on average 1,000 more visitors, which stay similar over
time) but relative (e.g., region one has on average 10%more visitors, which stays similar
over time) in size, it is better to log transform the dependent variable of interest. By log
transforming the dependent variable, the model investigates the relative differences.

To give another example of a difference-in-differences analysis, now with some
of the challenges discussed above let us create a new dataset. In this new dataset, the
control region is ~75% larger than the treatment region, we have a holiday period in
weeks 25 and 26, which causes 10% additional sales in both the treatment and
control regions, and the traffic is increasing over time.

# Generate second dataset dif-in-dif analysis attribution
n=40 #has to be an even number for the later code to run correctly
set.seed(1234)
search_data <- data.frame(c(1:n), c(rep(1, times=n/2),rep(0,
times=n/2)))
names(search_data)[1] <- paste("Week")
names(search_data)[2] <- paste("SEA_on")
search_data$Holidays <- ifelse(search_data$Week>24 & search_data
$Week<27 , 1, 0)
search_data$Total_traffic_region1 <- (ifelse(search_data$SEA_on==1,

75000 + search_data$Week*300 +
sample(0:3000, n),

70000 + search_data$Week*300) +
sample(0:3000, n))*ifelse(search_data$Holidays==1, 1.1, 1)
search_data$Total_traffic_region2 <- (75000 + search_data$Week*300
+ sample(0:3000, n))* ifelse(search_data$Holidays==1, 1.1, 1)*1.75
# Create plot of traffic per region
dd = search_data[,c(1,4:5)]
library(reshape2)
dd = melt(dd, id=c("Week"))

Table 9 Difference-in-differences analyses in a cross-table

After (treatment period) Before (control period) Difference

Treatment group 71,484.50 76,859.35 �5,374.85

Control group 76,477.70 76,327.15 �150.55

Difference �4,993.20 532.20 �5,525.40
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colnames(dd)[3] <- "Volume"
ggplot(dd) + geom_line(aes(x=Week, y=Volume, colour=variable)) +
scale_colour_manual(values=c("red","blue"))

# Create some additional variables
dd$treatment_region <- c(rep(1, times=n),rep(0, times=n))
dd$SEA_off <- c(rep(0, times=n/2),rep(1, times=n/2),rep(0,
times=n/2),rep(1, times=n/2))
dd$Holidays <- ifelse(dd$Week>24 & dd$Week<27 , 1, 0)
rm(n)

As shown in Fig. 23, the control region (i.e., region 2, indicated with the blue line)
is indeed larger than the treatment region (i.e., region 1, indicated with the red line).
Furthermore, we can observe a drop in traffic to the website in the treatment region
directly after week 20. This drop is not visible in the treatment region. We do observe
in both groups the holiday peak in weeks 25 and 26. If we would just take the mean
value of traffic before and after turning off SEA in the treatment region, the number
of visitors before and after the treatment would be very similar because of the
upward trend and the holiday peak in weeks 25 and 26. Using a simple before-
after analysis would, in this case, not be appropriate, and a difference-in-differences
analysis is likely to show better the causal effect of turning off SEA.

To demonstrate this, let us estimate a series of difference-in-differences models
with the following R-script.

# Regression model difference-in-differences analysis
dif_dif_model3 <- lm(log(Volume) ~ treatment_region + SEA_off +
treatment_region*SEA_off, data=dd)
dif_dif_model4 <- lm(log(Volume) ~ treatment_region + SEA_off +
treatment_region*SEA_off + Week, data=dd)
dif_dif_model5 <- lm(log(Volume) ~ treatment_region + SEA_off +
treatment_region*SEA_off + Week + Holidays, data=dd)
tab_model(dif_dif_model3, dif_dif_model4, dif_dif_model5,

collapse.ci = TRUE, p.style = "stars")

Fig. 23 Data of trending difference-in-differences analysis visualized

58 E. de Haan



Table 10 shows that the parameter for “treatment region” and the difference-in-
differences effect (i.e., the interaction parameter) are consistent over the three
versions of the model. Since the changes over time (i.e., the trend and the holidays)
have the same relative effect size in both regions, the model is robust for these
changes. The confidence interval for the difference-in-differences parameter does
become smaller if we control for the trend and the holiday weeks because these
events result in more noise in the data.

The parameter for “treatment region” is 0.54, which means, due to the log
transformation of the dependent variable, the treatment region has about (exp
(�0.54)*100% – 1) 41.7% fewer visitors compared to the control region, or in
other words, the control region has (exp(0.54)*100% –1) 71.6% more visitors than
the treatment regional, comparable to the 75% which we have set it to be. The
holiday parameter is significant and has a value of 0.10, meaning that during the
holidays, the number of visitors is (exp(0.10)*100% – 1) 10.5% higher, in line with
the 10% we have set. Turning SEA off in the treatment region, i.e., the difference-in-
differences effect, leads to a (exp(�0.08)*100% – 1) 7.7% decrease in traffic to the
website. These figures can be the basis for ROI calculations of the SEA channel. For
more information on interpreting the parameters of a regression model when the
dependent variable is log transformed, please have a look at Chapter 2 of Leeflang
et al. (2015).

In Model 20 of Table 10, the parameter for “SEA_off” is significant. In line with
the discussion of eq. (5), a significant β2 means that there is a difference in the
“before” and the “after” period for the control region. This is true since there is an
upward trend and a holiday peak in the after period. When including the “week” and
“holiday” variables as control variables, as we do in Model 22, this effect disappears,
i.e., we have with the full model controlled for the differences over time.

Table 10 Regression output for trending difference-in-differences analyses

Model 20 Model 21 Model 22

log(Volume) log(Volume) log(Volume)

Predictors Estimates Estimates Estimates

(Intercept) 11.84 ***

(11.83–11.86)
11.81 ***

(11.80–11.83)
11.80 ***

(11.79–11.81)

treatment_region �0.54 ***(�0.56 –
�0.52)

�0.54 ***(�0.55 –
�0.52)

�0.54 ***(�0.54 –
�0.53)

SEA_off 0.08 *** (0.06–0.10) 0.02(�0.00–0.05) �0.00(�0.02–0.01)

treatment_region *
SEA_off

�0.08 ***(�0.11 –
�0.06)

�0.08 ***(�0.11 –
�0.06)

�0.08 ***(�0.09 –
�0.07)

Week 0.00 *** (0.00–0.00) 0.00 *** (0.00–0.00)

Holidays 0.10 *** (0.09–0.12)

Observations 80 80 80

R2/R2 adjusted 0.989/0.989 0.993/0.993 0.998/0.998

* p < 0.05 ** p < 0.01 *** p < 0.001
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Let us compare the results from Table 10 with what we would find if we would
only have information from the treatment region and, based on that, estimate a
before-after analysis. We do this with the following R-script.

# Regression model before-after analysis on difference-in-
differences data
before_after_model5 <- lm(log(Volume) ~ SEA_off, data=dd,
subset¼treatment_region¼¼1)
before_after_model6 <- lm(log(Volume) ~ SEA_off + Week, data=dd,
subset¼treatment_region¼¼1)
before_after_model7 <- lm(log(Volume) ~ SEA_off + Week + Holidays,
data=dd, subset¼treatment_region¼¼1)
tab_model(before_after_model5, before_after_model6,
before_after_model7,

collapse.ci = TRUE, p.style = "stars")

Indeed, Model 23 in Table 11 shows that when we do a simple before-after
analysis, without controlling for the time effects the parameter for turning SEA off is
precisely zero and insignificant, i.e., there is no difference between the before and
after periods. This is indeed in line with what we see when we look at the total traffic
from region 1 in Fig. 23; due to the upward trend, the before and after periods look
very similar, although it is clear that the traffic drops immediately when SEA is off,
but it recovers due to the (unrelated to SEA) upward trend. When controlling for this
upward trend by including a trend variable, as is done in Model 24 in Table 11, we
get much closer to the actual effect of SEA as shown by the difference-in-differences
analyses in Table 10. We are still somewhat off because the traffic in the after period
is higher for two weeks due to the holiday peak, which is unrelated to turning SEA
off and thus hides part of the drop in the number of visitors. When also controlling
for this holiday peak, as is done in Model 25 in Table 11, we get the same (i.e.,
accurate) parameter estimate for turning off SEA as in the difference-in-differences
models from Table 10. The results from Table 11 do thus show that a before-after
analysis is sensitive for other variations over time. When we control for these
changes, as we do in Model 25 in Table 11, we get a pretty accurate parameter
estimate, but if we do not control for all variables, we might get the wrong estimate
(as shown in Model 23 of Table 11). With this, we thus show the superiority of a
difference-in-differences analysis over the before-after analysis.

The difference-in-differences analysis still has some drawbacks, namely that it
needs an experiment to run this analysis, which is in practice not always possible, or
it might be too time consuming or too risky to conduct. Furthermore, with a
difference-in-differences analysis and the before(�during)-after analyses, it is hard
to capture long-term effects. When, for instance, turning off TVadvertising, it might
be that this does not directly lead to significantly lower visitors or sales since it might
take some time before the effect takes place (i.e., wear-in and wear-out effects). In
order to capture this, the model needs to include dynamic effects. Including dynam-
ics is possible with lag terms or stock variables (Hanssens 2021). Other methods
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which capture dynamic effects, and do not rely on experimental data, will be
discussed in the next section.

For more information on exploiting data from field experiments and applied time
series analysis, see Artz and Doering (2021) and Wang and Yildirim (2021).

Further Methods of Aggregate-Level Attribution

In some cases, it is not possible, or it might be too time consuming or too risky, to
conduct an experiment. Because of this, managers might not be willing to set up an
experiment or have the time to wait for the results. Firms typically have historical
data on their advertising expenditures per channel and data on other marketing mix
components like pricing and distribution and performance data like sales. These data
are typically available over time, and the changes over time in the marketing vari-
ables can thus be related to changes over time in firm performance.

One challenge is that decisions on changes in the marketing mix are not set in
isolation; e.g., (past) firm performance might drive current pricing and advertising
expenditure. A drop in sales might make managers decide to lower the price to
recover market share, while higher sales in the previous period might lead to higher
budgets for advertising in the current period, as the advertising budget is often a
function of (previous and expected) revenue. A standard regression model does not
take these kinds of reversed causality and endogeneity into account.

Another challenge is that the effects can be dynamic, e.g., spending more on
advertising in the current period might not only affect current firm performance, but
it might also still have an impact in the next period(s). These carryover effects are not
taken into account in a standard regression model unless explicitly included via, for
instance, (multiple) lag terms or ad stock variables (see Hanssens [2021] for more
details on this).

A model which can take reversed causality, (specific forms of) endogeneity, and
dynamics into account is the vector autoregressive (VAR) model. One example of an

Table 11 Regression output for trending difference-in-differences data using before-after analyses

Model 23 Model 24 Model 25

log(Volume) log(Volume) log(Volume)

Predictors Estimates Estimates Estimates

(Intercept) 11.31 ***

(11.29–11.32)
11.27 *** (11.25–11.29) 11.26 *** (11.25–11.27)

SEA_off 0.00(�0.02–0.02) -0.07 ***(�0.10 –
�0.03)

�0.09 ***(�0.11 –
�0.08)

Week 0.00 *** (0.00–0.00) 0.00 *** (0.00–0.00)

Holidays 0.10 *** (0.08–0.12)

Observations 40 40 40

R2/R2

adjusted
0.000/�0.026 0.395/0.362 0.851/0.839

* p < 0.05 ** p < 0.01 *** p < 0.001
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attribution paper that uses a VAR model is Wiesel et al. (2011), who investigate how
online and offline advertising affect the online and offline sales channel usage and
the profit of a B2B office furniture seller. Another attribution paper that uses a series
of VAR models is De Haan et al. (2016). They investigate how various online and
offline advertising channels impact website progression and sales revenue at an
online retailer for five different product categories. Both Wiesel et al. (2011) and
De Haan et al. (2016) demonstrate how the VAR models can be used to improve
advertising budget allocation. Other studies related to attribution which have used
VAR models include Trusov et al. (2009), Srinivasan et al. (2010), Pauwels et al.
(2016b), and Srinivasan et al. (2016), just to name a few. The book chapter from
Srinivasan (2021) discusses the VAR model in detail, and for the interested reader on
www.evertdehaan.com there is also a R-script available to conduct a simple VAR
model for attribution.

There are also more sophisticated methods capable of performing attribution at an
aggregate level. One R-package to highlight is “CausalImpact” (Brodersen and
Hauser 2021). This package is helpful to explore experiments, i.e., a random event
in which there is a sudden change in one marketing channel. The package tries to
estimate the value of the outcome variable if the event did not occur, i.e., the
so-called counterfactual scenario. This counterfactual scenario is exactly what we
want to have when conducting attribution, namely finding out what would have
happened if a channel or touchpoint was not active. For more details, see Brodersen
and Hauser (2021) and try out the example code, which can be downloaded at
www.evertdehaan.com.

The aggregate-level attribution methods can also be used with other dependent
variables similar to the individual-level attribution methods. Examples would be the
number of offline (i.e., brick-and-mortar) stores visits over time, revenue, profitabil-
ity, market share, and stock return. These variables indicate another advantage of
aggregate-level attribution, namely that one can use dependent variables not mea-
sured at the individual customer level or variables that are hard to link to an
individual’s online behavior or touchpoints. Also, variables related to perceptual
outcomes, e.g., customer mindset metrics like customer satisfaction and brand
awareness, are interesting as (intermediate) outcome variables. Srinivasan et al.
(2010) and De Haan et al. (2021) demonstrate the advantage of using such perceptual
outcomes instead of or next to using more transactional (financial and behavioral)
outcome variables.

Furthermore, it is possible to combine different techniques, e.g., start with a VAR
model, followed by an aggregate-level experiment, as Wiesel et al. (2011) did. Such
a setup can help overcome some of the challenges and risks, e.g., the data for a VAR
model is easier to collect and is a good way to get first insights, while an experiment
provides more certainty of finding causal effects. Also, other techniques to analyze
aggregate-level data are possible, including state-space models, structural models,
and Bayesian analysis. See the book by Leeflang et al. (2017) for details on these and
further methods.
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Conclusion

As introduced at the beginning of this chapter, attribution is the process to “allocate
appropriate credit for a desired customer action to each marketing touchpoint across
all online and off-line channels” (Kannan et al. 2016). With this it is essential to find
the incremental effect a specific touchpoint has on the outcome of a path to purchase.
Basic attribution methods, based purely on encountering a specific touchpoint (i.e.,
touch-based attribution), are not suited for this since they do not provide information
about what would have happened if the touchpoint was not there. In order to find this
out, Shapley values already provide better insights, but the best insights can be
retrieved by conducting (individual- or aggregate-level) field experiments.

In situations where individual-level field experiments are not possible, feasible, or
desirable, more elaborate attribution methods are available, including PSM, Markov
chain, and aggregate-level field experiments. All of these methods have their
advantages and disadvantages, as discussed in this chapter. Furthermore, there is a
wide range of other (simple and complicated) procedures and models for attribution.
However, the basic idea remains the same; finding out what would have happened
without a specific touchpoint gives a certain amount of credit to that touchpoint.

Therefore, this chapter introduces attribution modeling, which can help to criti-
cally evaluate current attribution methods used within an organization and give
directions on how this can be improved. We should also not consider attribution a
goal in itself, but it can help decide on budget allocations and decide how, when, and
where to target which customer. With this, attribution can help make marketing more
accountable and make better advertising and targeting decisions.
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