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EGFR-selective activation of
CD27 co-stimulatory signaling by
a bispecific antibody enhances
anti-tumor activity of T cells

Vinicio Melo1, Levi Collin Nelemans1, Martijn Vlaming1,
Harm Jan Lourens1, Valerie R. Wiersma1, Vrouyr Bilemjian1,
Gerwin Huls1, Marco de Bruyn2 and Edwin Bremer1*

1Department of Hematology, University Medical Center Groningen, University of Groningen,
Groningen, Netherlands, 2Department of Obstetrics & Gynecology, University Medical Center
Groningen, University of Groningen, Groningen, Netherlands
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor

microenvironment, particularly cytotoxic CD8+ T cells, is associated with

improved clinical outcome in various cancers. However, local inhibitory factors

can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from

various cancer types express the co-stimulatory Tumor Necrosis Factor receptor

CD27, making it a potential target for co-stimulation and re-activation of tumor-

infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on

exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical

responses remain limited. This is likely because current monoclonal antibodies

fail to effectively activate CD27 signaling, as this receptor requires higher-order

receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR,

that targets both CD27 and the tumor antigen, epidermal growth factor receptor

(EGFR). By targeting EGFR, which is commonly expressed on carcinomas,

CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27.

The design of CD27xEGFR includes an Fc-silent domain, which is designed to

minimize potential toxicity by reducing Fc gamma receptor-mediated binding

and activation of immune cells. CD27xEGFR bound to both of its targets

simultaneously and triggered EGFR-restricted co-stimulation of T cells as

measured by T cell proliferation, T cell activation markers, cytotoxicity and

IFN-g release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of

artificial antigen-presenting carcinoma cell line models, leading to Effector-to-

Target ratio-dependent elimination of cancer cells. Taken together, we present

the in vitro characterization of a novel bispecific antibody that re-activates T cell

immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
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1 Introduction

The re-activation of tumor-reactive T cells with so-called

immune checkpoint inhibitors (ICIs) has translated into

remarkable clinical breakthroughs. Specifically, antibodies

directed against CTLA-4 and PD-L1/PD-1 have improved

therapeutic outcomes, including complete remissions in many

solid as well as hematological cancers (as reviewed in (1–3)). ICIs

prevent negative feedback on tumor-reactive T cells and re-enable

the eradication of cancer cells upon binding of the T cell receptor

(TCR) complex to tumor-specific peptides presented in the major

histocompatibility complex (MHC). However, not all patients or

cancer types respond to current ICI therapies (as reviewed in (4–6)).

One possible explanation for the limited activity of ICI therapy

in certain patients and cancer types may be the absence of

additional co-stimulatory signals that stimulate tumor-reactive T

cells in the tumor microenvironment (TME) (7–9). For example,

the inhibition of the co-stimulatory CD40-CD40L axis diminished

the effects of PD-L1 checkpoint treatment on exhausted CD8+ T

cells (10). Moreover, the lack of CD28 co-stimulation has been

postulated to be a strong determinant of PD-1 blockade resistance

(as reviewed in (11)). In order to provide sufficient co-stimulation,

so-called immune co-stimulators (ICS) that target and activate

prominent co-stimulatory receptors (e.g., CD28, CD40, 4-1BB,

CD27, and OX40) have been developed and are currently

undergoing clinical evaluation (12–18).

A prominent co-stimulatory receptor family involved in T cell

activation is the Tumor Necrosis Factor Receptor Super Family

(TNFRSF). Within this superfamily, CD27 (TNFRSF7) has emerged

as a potential target for co-stimulatory therapy, yielding clinical

benefits in a select group of hematological and solid tumors (19–

22). CD27 is not only constitutively expressed on the majority of

both CD4+ and CD8+ T cells, but is also highly expressed on the

majority of tumor infiltrating lymphocytes (TILs). Therefore, the

activation of CD27 signaling is regarded as a potentially effective

therapeutic anti-cancer strategy (23–27).

When activated by its ligand CD70, CD27 promotes the

proliferation of T cells and their differentiation into effector and

memory T cells (28–31). Importantly, CD27 co-stimulatory

signaling is only efficiently activated upon the simultaneous

occurrence of two events: (1) TCR-mediated recognition of and

binding to tumor-specific peptides presented in the MHC of antigen

presenting cells; and (2) crosslinking of CD27 (13, 32, 33). For

instance, treatment with the CD27 agonistic antibody Varlilumab
Abbreviations: ADCC, Antibody-Dependent Cell-Mediated Cytotoxicity; bsAb,

Bispecific Antibody; DVD-Ig, Dual-Variable Domain Immunoglobulin; E:T ratio,

Effector: Target ratio; EGFR, Epidermal Growth Factor Receptor; FcR, Fc

Receptor; FcgR, Fc Gamma Receptor; ICI, Immune Checkpoint Inhibitor; ICS,

Immune Co-Stimulators; mAb, Monoclonal Antibody; MHC, Major

Histocompatibility Complex; NSCLC, Non-Small Cell Lung Cancer; PBMCs,

Peripheral Blood Mononuclear Cells; scFvCD3, UchtV1 anti-CD3 antibody

fragment; SD, Stable Disease; TCR, T Cell Receptor; TILs, Tumor Infiltrating

Lymphocytes; TME, Tumor Microenvironment; TNFRSF, Tumor Necrosis

Factor Receptor Superfamily; Tregs, Regulatory T cells.
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upregulated cytokine secretion upon continuous TCR-triggering,

whereas pre-activated T cells without continuous TCR-triggering

did not respond to Varlilumab (22, 33). Consequently,

immunotherapies targeting CD27 have resulted in safer

therapeutic outcomes than co-stimulatory approaches that can

also operate TCR-independently, such as CD28 co-stimulation

(34, 35). However, treatment with Varlilumab yielded only

one (1/10) complete response and one stable disease (SD) in

Hodgkin lymphoma and three (3/18) SD in B cell non-Hodgkin

lymphoma (21). Further, in a trial with 31 patients with

advanced solid tumors, Varlilumab yielded one partial response,

with eight patients experiencing SD (22). Thus, the therapeutic

effect of single CD27 targeting with Varlilumab in patients

is limited.

The disappointing clinical results with Varlilumab may be

attributable to suboptimal receptor crosslinking, as effective CD27

downstream signaling requires a hexameric ligand format and a

hexameric CD27 complex (32, 36). Furthermore, CD27 receptor

hexamerization and agonism is dependent on targeting specific

extracellular CD27 epitopes and the application of Fc-engineering

strategies that amplify affinity to Fc gamma receptors (FcgRs) (37).
Current CD27-agonistic monoclonal antibodies (mAbs) do not

efficiently promote CD27 hexamerization as single agents and

require a scaffold, such as Fc receptor (FcR)-expressing immune

cells. For instance, MK-5890, a novel CD27 agonistic antibody,

showed increased agonistic activity with the occurrence of Fc-FcgR
interactions (38). A potential approach to overcome this limitation

is selective receptor crosslinking using a bispecific antibody (bsAb).

Binding of a bsAb to a tumor-associated antigen can serve as a

cross-linking platform for CD27 on T cells (39). Indeed, in

preclinical studies, CDX-527, a tetravalent PD-L1 and CD27-

targeting bsAb, induced CD27-mediated T cell co-stimulation

through cross-linking by PD-L1 more effectively than the parental

antibodies combined (40).

In the current study, we aimed to evaluate whether CD27 co-

stimulation could be restricted to epidermal growth factor receptor

(EGFR)-positive cancer (EGFR+). While EGFR is ubiquitously

expressed, EGFR expression is upregulated in several carcinomas

and associates with tumor progression and angiogenesis (as

reviewed in (41–43)). Hereto, we created an ICS-bsAb in a Dual-

Variable Domain Immunoglobulin (DVD-Ig) format (44)

consisting of two antigen-binding fragments (scFv1F5 and

scFv425) targeting CD27 and EGFR, respectively. This antibody,

termed CD27xEGFR, features an Fc-domain with LALAPG point

mutations to yield an Fc-silent human IgG1, reducing FcR mediated

antibody effector functions. In this format, the bsAb CD27xEGFR is

designed to be minimally active ‘en route’. Once CD27xEGFR binds

to EGFR+ cancer cells, the CD27-targeting domain can provide

multivalent and tumor-localized crosslinking of CD27, potentially

reducing off-tumor side effects. Besides serving as a cross-linking

platform to facilitate CD27 co-stimulatory signaling, the EGFR

targeting moiety of CD27xEGFRmay also contribute through direct

EGFR blocking, which is already a well-established therapeutic

strategy for several epithelial tumors (45, 46). Hence,

CD27xEGFR is designed to re-activate anti-tumor immunity

safely and effectively in EGFR+ cancer cells.
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2 Materials and methods

2.1 The Cancer Genome Atlas
dataset analysis

A PanImmune Feature Matrix of Immune Characteristics as

described in (47) was used to obtain lymphocytic infiltrate signature

scores (based on the following 18 markers defined in (48): CCL5,

CD19, CD37, CD3D, CD3E, CD3G, CD3Z, CD79A, CD79B,

CD8A, CD8B1, IGHG3, IGJ, IGLC1, CD14, LCK, LTB, MS4A1)

across multiple tumor-samples, containing The Cancer Genome

Atlas (TCGA) Participant Barcodes. Batch effect normalized TCGA

PAN CANCER CD27 and EGFR expression levels were obtained

via Xena Hub (49), which consisted of TCGA data from broad

GDAC firehose, that was normalized by RSEM (RNA-seq by

Expectation-Maximization) and batch corrected via EB++

(Empirical Bayes++) (synapse ID: syn4976363). Expression levels

were matched with lymphocytic infiltrate signature scores based on

TCGA Participant Barcodes, and linear regressions were performed

in GraphPad Prism 8.0.2. To visualize EGFR expression across

multiple tumor-types, violin plots were generated.
2.2 Single cell mRNA sequencing
data analysis

The dataset from the Tumor Immune Cell Atlas study (50)

consisting of 13 different cancer types, 217 patients, and 526,261

cells was downloaded in the form of a RDS file containing the Seurat

object. The data was ingested into Seurat V4 in R language version

4.0.3. The integrated single-cell RNA sequencing (scRNA-seq) data

sets were collected as described before by Nieto et al. (50). In brief,

after integration, the cells were divided into 25 clusters representing

major immune cell types including 12 T cell types. To verify the

robustness of the clusters and the associated signatures, a random

forest classifier was used to assign cell annotations. A fivefold cross-

validation was performed to assess biases and variance (50). The

following T cell types were included in our study: Regulatory T cells,

T helper cells, Th17 cells, recently activated CD4+ T cells, Naïve-

memory CD4+ T cells, Transitional memory CD4+ T cells, Naïve T

cells, Proliferative T cells, Pre-exhausted CD8+ T cells, Cytotoxic

CD8+ T cells, Effector memory CD8+ T cells, and Terminally

exhausted CD8+ T cells (For the key markers per subtype, see

Supplementary Table 1). Differential expression was calculated by

using the FindMarkers function from Seurat with MAST as the

method of choice (51).
2.3 Antibodies

Polyclonal antibody (pAb) Goat anti-human Ig-PE (cat# 2040-

09, Southern Biotech, Birmingham, AL, USA), monoclonal

antibodies (mAb): anti-CD27-APC (cat# 302810, clone O323,

BioLegend, San Diego, CA, USA) (also used as CD27 mAb), anti-

EGFR-FITC (cat# sc-120 FITC, clone 528, Santa Cruz
Frontiers in Immunology 03
Biotechnology, Dallas, TX, USA), anti-CD25-APC (cat# 302610,

clone BC96, BioLegend), anti-CD4-FITC (cat# 300506, clone RPA-

T4, BioLegend), anti-CD8-Brilliant Violet 421 (cat# 344748, clone

SK1, BioLegend), mouse (IgG2A) (mAb 425) (Cat# EWI020,

Kerafast, Boston, MA, USA), anti-Myc mAb Alexa Fluor 647

(cat# 2233, clone 9B11, Cell Signaling, Danvers, MA, USA).

Atezolizumab was obtained from the pharmacy of the UMCG

(Groningen, the Netherlands).
2.4 Cell lines and transfectants

The following wild type (WT) cell lines were obtained from the

American Type Culture Collection (ATCC): A431, MDA-MB-231,

ES-2, DLD-1, FaDu, and OVCAR-3. OVCAR-3.EGFR knock-out

(KO) cells were a kind gift from prof. dr. Helfrich (UMCG/Dept of

Surgery, Groningen, the Netherlands). HT1080.CD27 is previously

described in (39) and is a kind gift from prof. dr. Harald Wajant

(University of Wuerzburg, Wuerzburg, Germany). An overview of

the cell lines, including tissue, cell type, cancer type, species, source

and transduced genes, can be found in Table 1. Cells were cultured

in RPMI-1640 (cat# 21875034, Gibco, Thermo Fisher Scientific,

Waltham, MA, USA) or DMEM (cat# 11965092, Gibco, Thermo

Fisher Scientific), supplemented with 10% fetal calf serum (FCS)

(cat# F7524, Thermo Fisher Scientific) at 37°C/5% CO2. The

artificial scFvCD3 (UchtV1 anti-CD3 antibody fragment)-

presenting cell lines MDA-MB-231scFvCD3, ES-2scFvCD3, DLD-

1scFvCD3, FaDuscFvCD3, OVCAR-3scFvCD3, and OVCAR-

3scFvCD3EGFRKO are based on the lentiviral synNotch receptor

construct pHR_PGK_antiCD19_ synNotch_Gal4VP64, which was

a gift from Wendell Lim (Addgene plasmid #79125; http://n2t.net/

addgene:79125; RRID : Addgene_79125) (52). The anti-CD19 scFv

was replaced with the scFvCD3 UCHT-1v9 using Gibson cloning

(cat# E5510S, New England BioLabs, Ipswich, MA, USA), yielding

pHR_PGK_scFvCD3_synNotch_Gal4VP64. Lentivirus was

produced by transient transfection of HEK293T cells with

transfer vector, psPAX2, and pCMV-VSV-G packaging system

using FuGENE (cat# E2312, Promega, Madison, WI, USA)

according to manufacturer’s recommendations. Viral supernatant

was collected and filtered through a 0.45 mm filter (cat#

SLHVR13SL, Millipore, Burlington, MA, USA). Transduction was

performed by adding 1.5 mL viral supernatant to 1.5 mL of RPMI

containing 2.5 × 105 pre-seeded cells in a 6 well tissue culture plate

(cat# 3516, Corning Inc., Corning, NY, USA) in the presence of

4 mg/mL polybrene (cat# TR-1003, Sigma-Aldrich, Saint Louis, MO,

USA). Transduced cells were sorted for expression of a Myc-tag

(present at the N-terminus of the CD3 scFv) with a cell sorter model

SH-800s (Sony Biotechnology, San Jose, CA, USA). Before each

experiment, ES-2scFvCD3, DLD-1scFvCD3, FaDuscFvCD3, OVCAR-

3scFvCD3 and OVCAR-3 scFvCD3.EGFRKO cells stably expressing

scFvCD3 were characterized for their expression of EGFR,

scFvCD3 and CD27, maintaining a consistent fold change from

the isotype (Supplementary Figure 3). Cells were also transduced

with lentivirus containing vector pLKO.1 mCherry, which was a gift

from Oskar Laur (Addgene plasmid #128073; http://n2t.net/
frontiersin.org
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addgene:128073; RRID : Addgene_128073), producing the

corresponding mCherry-expressing cells lines for visualization in

the cytotoxicity assays.
2.5 Construction of CD27xEGFR

The bsAb CD27xEGFR was constructed in an scFv-scFv-IgG1

format, containing the antigen-binding fragments scFv1F5,

targeting CD27, and scFv425, targeting EGFR. These two scFvs

were connected by a flexible glycine-serine (GS) linker, consisting of

a (GGGS)3 sequence. The Fc domain of the antibody was designed

with LALAPG mutations (L234A, L235A, and P329G) (53) in order

to create an effector silent IgG molecule. Another GS linker, with

the same (GGGGS)3 sequence, connects the scFv EGFR to the IgG1

Fc domain. The antibody was produced by Evitria (Schlieren,

Switzerland). Supernatant was harvested by centrifugation, filtered

(0.2 mm filter), whereupon antibody was purified using MabSelect

SuRe (cat# GE17-5438-01, Merck KGaA, Darmstadt, Germany).

Purity was evaluated by analytical size exclusion chromatography

with an AdvanceBio SEC column (300A 2.7 um 7.8 x 300 mm) (cat#

PL1180-5301, Agilent, Santa Clara, CA, USA) and Dulbecco’s

phosphate-buffered saline (DPBS) (cat# 14190144, Gibco, Thermo

Fisher Scientific) as running buffer at 0.8 mL/min. CD27xEGFR was

successfully purified up to 98.6% with only minor amounts of

degradation product (Supplementary Figure 1A). Endotoxin

content was measured with the Charles River Endosafe PTS

system (cat# PTS150K, Wilmington, MA, USA) and was < 1

EU/mg.
2.6 Biolayer interferometry assay

Binding of His-CD27 or His-EGFR to CD27xEGFR was

analyzed using the BLItz system from ForteBio (cat# 45-5000,

ForteBio, Menlo Park, CA, USA). His-CD27 (cat# 10039-H08B1,

SinoBiological, Beijing, China), produced using the Baculovirus-
Frontiers in Immunology 04
Insect Cell expression system, encodes for the extracellular domain

of human CD27 (Met1-Ile192) and included a C-terminal

polyhistidine (His) tag. His-EGFR (cat# Z03194, GenScript,

Rijswijk, the Netherlands), generated with the Sf9 insect cell

expression system, encodes for the extracellular domain of human

EGFR (Leu25-Ser645), and also featured a C-terminal His tag.

Octet protein A biosensors (cat# 18-5010, Satorius, Göttingen,

Germany) were wetted for at least 10 min before use in 100 mM Tris-

HCl pH 8 and all samples were diluted in the same buffer. In short, a

baseline was run for 30 sec, followed by loading of 8 μg/mL of

CD27xEGFR for 120 sec, baseline for 30 sec, association of either 125

nMHis-EGFR and/or 500 nMHis-CD27 for 120 sec, and dissociation

for 120 sec. Atezolizumab (50 μg/mL) was used as a control.

The same protocol was used for binding of CD27xEGFR to

immobilized His-CD27 and His-EGFR, with the following

exceptions: The use of Octet HIS1K biosensors (cat# 18-5120,

Sartorius), loading of 500 nM His-EGFR or His-CD27 and

association of CD27xEGFR (50 μg/mL). Step corrections were

applied to both the start of association and dissociation. Finally,

the individual experiments were aligned to the start of association

(x=y=0 for t=180 sec).
2.7 Isolation of peripheral blood
mononuclear cells and T cells

Buffy coats were purchased from Sanquin (nr. NVT0465), and

all donors gave informed consent (Sanquin Blood Supply,

Groningen, the Netherlands). Human peripheral blood

mononuclear cells (PBMCs) were isolated via density gradient

centrifugation using lymphoprep (cat# 07851/07861, STEMCELL

Technologies, Vancouver, Canada) and frozen until the day of the

assay. T cells were isolated from fresh PBMCs using an autoMACS

Pro Separator (Miltenyi Biotec, Bergisch Galdbach, Germany) and a

Pan T Cell Isolation Kit (cat# 130-096-535, Miltenyi Biotec)

following the manufacturer’s recommendations. After isolation, T

cells were frozen until the day of the assay.
TABLE 1 Characteristics of cell lines employed in this study.

Cell line Tissue Cell type Cancer type Species Source Transduced genes

A431 Skin Epithelial Epidermoid Carcinoma Human ATCC

HT1080 Connective tissue Epithelial Fibrosarcoma Human prof. dr. Harald Wajant* CD27

MDA-MB-231 Breast Epithelial Adenocarcinoma Human ATCC scFvCD3 synNotch

ES-2 Ovary Fibroblast Clear cell Carcinoma Human ATCC scFvCD3 synNotch, mCherry

DLD-1 Large intestine; Colon Epithelial Adenocarcinoma Human ATCC scFvCD3 synNotch, mCherry

FaDu Pharynx Epithelial Squamous Cell Carcinoma Human ATCC scFvCD3 synNotch, mCherry

OVCAR-3 Ovary Epithelial Adenocarcinoma Human ATCC scFvCD3 synNotch, mCherry

OVCAR-3.EGFRKO Ovary Epithelial Adenocarcinoma Human prof. dr. Helfrich** scFvCD3 synNotch, mCherry
*Provided by Prof. Dr. Harald Wajant, University of Wuerzburg, Wuerzburg, Germany.
**Provided by Prof. Dr. Helfrich, UMCG/Dept of Surgery, Groningen, the Netherlands.
Further details can be found in Materials and Methods (Section 2.4). ATCC, American Type Culture Collection.
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2.8 CD27xEGFR binding studies

Binding of CD27xEGFR to CD27 and EGFR was evaluated

using cell lines A431, HT1080.CD27, and primary human T cells. In

brief, 5x104 cells were incubated with CD27xEGFR (0.01–10 μg/mL,

45 min at 4°C) in a 96 well plate (cat# 3799, Corning Inc.) washed 3

times with DPBS (cat# 14190144, Gibco, Thermo Fisher Scientific),

and then incubated with anti-human-IgG-PE pAb (45 min at 4°C).

Following 3 washes with DPBS, cells were evaluated by flow

cytometry (Accuri C6 Plus Flow Cytometer, BD, Franklin Lakes,

NJ, USA). Binding to primary human T cells was performed

analogously, but in the presence of FcR blocking reagent (cat#

130-059-901, Miltenyi Biotec) in all incubation steps. To

demonstra te EGFR-spec ific binding of CD27xEGFR,

HT1080.CD27 cells were pre-incubated with a 10-fold molar

excess of mAb 425 for 15 min at 4°C. To demonstrate CD27-

specific binding of CD27xEGFR, HT1080.CD27 cells were pre-

incubated with a 10-fold molar excess of CD27 mAb for 15 min at

4°C. Binding of CD27xEGFR to HT1080.CD27 was blocked by pre-

incubation with a 10-fold molar excess of CD27 mAb and mAb 425.

The mean fluorescent intensity (MFI) was normalized to the highest

obtained MFI (which was set at 100%) with the 0 μg/mL

CD27xEGFR condition being set at 0%. Doublet formation

between A431 tumor cells and primary human T cells upon

addition of CD27xEGFR was analyzed by pre-labeling A431

cancer cells with Vybrant DiD Cell-Labeling Solution (cat#

V22887, Thermo Fisher Scientific) and primary human T cells

with CellTrace Violet reagent (cat# C34557, Thermo Fisher

Scientific) both according to manufacturer’s protocol). Cells were

subsequently mixed at a 1:1 ratio (2x105 cells) with or without the

addition of 10 mg/mL CD27xEGFR for 45 min at 4°C. Doublet

formation was analyzed by flow cytometry (CytoFLEX V5-B5-R3,

Beckman Coulter Life Sciences, Indianapolis, IN, USA).
2.9 Validation of scFvCD3 T cell
activation system

In a 96 well plate (cat# 167008, Thermo Fisher Scientific), 100

mL of media containing 1x104 primary PBMCs were added to 100

mL of media with or without CD27xEGFR (10 μg/mL) containing

MDA-MB-231WT or MDA-MB-231scFvCD3 cells previously

incubated overnight at Effector : Target (E:T) ratios of 1:1, 1:2

and 1:5. After a 24-hour incubation, images were taken at 5x

magnification using an EVOS FLoid Imaging System (cat#

4471136, Thermo Fisher Scientific) to visualize T cell clustering.

Furthermore, PBMC cells were collected, stained for CD3 and

CD25 and the CD25 expression of CD3+ cells was measured

using flow cytometry (CytoFLEX V5-B5-R3).
2.10 T cell proliferation assay

In a 96 well plate (cat# 167008, Thermo Fisher Scientific), 100

mL of media containing 4x104 primary human T cells labeled with
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CellTrace Violet reagent with or without CD27xEGFR (10 μg/mL)

were added to 100 mL of media containing 2x103 ES-2scFvCD3, DLD-

1scFvCD3 or FaDuscFvCD3 cells previously incubated overnight.

Proliferation was measured using flow cytometry (CytoFLEX V5-

B5-R3) on day 5 and quantified using FlowJo Software

version 10.8.1.
2.11 T cell activation assay

In a 96 well plate (cat# 167008, Thermo Fisher Scientific), 100

mL of media containing primary human T cells with or without

CD27xEGFR (10 μg/mL) were added to 100 mL of media containing

2x103 ES-2scFvCD3, DLD-1scFvCD3 or FaDuscFvCD3 cells previously

incubated overnight in the E:T ratios indicated (5:1, 10:1, 20:1).

After 4 days, T cells were collected from the co-culture and stained

for CD4, CD8, CD25, and Zombie NIR (cat# 423106, BioLegend)

(to distinguish between alive and dead cells) and analyzed by flow

cytometry (CytoFLEX V5-B5-R3). Supernatants were harvested and

IFN-g secretion was quantified using an IFN-g ELISA kit (cat#

31673539, ImmunoTools, Friesoythe, Germany).
2.12 Cytotoxicity assay

In a 96 well plate (cat# 167008, Thermo Fisher Scientific), 100

mL of media containing primary human T cells with or without

CD27xEGFR (10 μg/mL) were added to 100 mL of media containing

2x103 ES-2scFvCD3, DLD-1scFvCD3, FaDuscFvCD3, OVCAR-3scFvCD3,

or OVCAR-3scFvCD3EGFRKO cells incubated overnight in the E:T

ratios indicated (0:1, 1:1, 2:1, 5:1, 10:1, 20:1). Experiments were

imaged for mCherry fluorescence for up to 7 days using the

Incucyte S3 live-imaging system (Essen BioScience, Royston, UK)

and analyzed using Incucyte S3 software v2021A. Four pictures of

each well for each of three technical replicates were acquired and

analyzed based on the Top-Hat segmentation method (Radius 50

μm, Threshold 0.0950, Edge Split On, Edge Sensitivity 5, Hole Fill 0

μm2, Adjusted Size 7 pixels, Filters: min Area 210 μm2, min

Integrated Intensity 50). As a measure of cytotoxicity, cell survival

was calculated as the mCherry area (μm²/image) from the sample at

the indicated time point/mCherry area (μm²/image) from the

cancer cells only control at the indicated time point. To evaluate

direct EGFR-blocking anti-carcinoma activity of CD27xEGFR,

2x103 mCherry expressing FaDuscFvCD3 cells were seeded in a 96

well plate (cat# 167008, Thermo Fisher Scientific) and treated with

CD27xEGFR (10 μg/mL) or mAb425 (10 μg/mL) for 3 days.
2.13 Statistical analysis

Data are presented as mean + SD as stated in the figure legends.

For the before-after plots, each pair of observations represents

independent experiments with different T cell donors. Statistical

significance was determined as indicated in the figure legends, with

a p-value of < 0.05 considered statistically significant.
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For the proportions of CD27+ cells, a two-sample test for

equality of proportions with Bonferroni correction was applied

for comparing the proportions of CD27 among different T cell

types. The corresponding p-values are documented in

Supplementary Table 2.

For CD27xEGFR binding, binding blockade, doublet formation,

T cell proliferation, cytotoxicity, and IFN-g secretion, experiments

were performed with T cells from different donors on different days,

and each experiment was treated as independent. The normality of

flow cytometry data was assessed through visual inspection of flow

cytometry histograms. For the proliferation and IFN-g secretion

data, normal distribution was assumed. For the cytotoxicity

experiments, the Shapiro-Wilk test was employed to determine

the normality of the data on three independent experiments

consisting of three technical replicates.

For the relationship between EGFR or scFvCD3 expression and

difference of cancer cell survival between CD27xEGFR and medium

control, a simple linear regression was performed. Each data point

in the analysis represents the mean of all independent experiments

at the E:T 5:1, conducted for each cell line with different T

cell donors.
3 Results

3.1 CD27 is a target for re-activation of
tumor infiltrating cytotoxic and
exhausted lymphocytes

To delineate the potential applicability of EGFR-targeted

activation of CD27 agonism, the TCGA PAN CANCER dataset

was analyzed for concurrent CD27 and EGFR expression.

Compared to non-epithelial cancers, lymphoid neoplasm diffuse

large B-cell lymphoma (DLBC), and uveal melanoma (UVM), all 20

epithelial cancers expressed high levels of EGFR mRNA (Figure 1A,

black for epithelial and gray for non-epithelial cancers).

Furthermore, lymphocytic infiltrates across all 20 epithelial

cancers expressed CD27 mRNA, demonstrating a clear

correlation between lymphocyte infiltration score and CD27 (R2 =

0.6895) within the whole epithelial cancer set, confirming that the

strategy of EGFR-mediated crosslinking of CD27 could be

employed within epithelial cancers (Figure 1B, see Supplementary

Figure 2 for individual tumor types). In an established single-cell

tumor immune atlas from a range of cancer types, CD27 expression

was prominent in a subpopulation of regulatory T cells (Tregs),

terminally exhausted CD8+ T cells, as well as cytotoxic CD8+ T cells

(Figure 1C). Notably, tumor-reactive CD8+ T cells - inclusive of

cytotoxic, terminally exhausted, and pre-exhausted cells - present a

higher proportion of CD27+ cells in comparison to all CD4+ T cells,

Th17 cells, and naïve T cells (Figure 1D). Upon comparing CD27+

T cells proportions (Figure 1D, Supplementary Table 2), Tregs and

terminally exhausted CD8+ T cells have proportions of 63.25% and

51.14% that are significantly higher than those observed in other T

cell types. Notably, the proportions of CD27+ cells within cytotoxic

and pre-exhausted CD8+ T cells are similar, with no significant

difference observed between these two groups (Supplementary
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Table 2). Subsequent differential gene expression analysis in

terminally exhausted CD8+ and cytotoxic CD8+ T cell subsets

revealed that several exhaustion genes (GZMK, HAVCR2, TIGIT,

and LAG3) and cytotoxicity genes, (TNFRSF9, CST7, and CD28)

are significantly upregulated in the CD27+ fraction (Figures 1E, F).

In addition, expression of genes associated with tissue residency,

trafficking, adhesion, and migration (VCAM1, CXCR3, ITGA4,

CXCL13, and CCR7) are also elevated (Figures 1E, F). Therefore,

the concurrent expression of CD27 and EGFR in various epithelial

cancers, along with the gene expression signatures related to

exhaustion, cytotoxicity, and tissue residency of CD27-expressing

T cells, underscores the potential of EGFR-targeted activation of

CD27 agonism for enhancing the re-activation of tumor-infiltrated

and tumor-reactive T cells in EGFR-expressing cancers.
3.2 Bispecific antibody CD27xEGFR binds
selectively and simultaneously to EGFR
and CD27

To exploit the above-described concurrent expression of EGFR

and CD27 for targeted activation of CD27 signaling, the ICS-bsAb

CD27xEGFR was constructed. CD27xEGFR consists of an N-

terminal CD27 targeting antibody fragment (scFv1F5) fused via a

(GGGGS)3 linker to the EGFR-targeting antibody fragment

scFv425, with a silent human IgG1 containing LALAPG

mutations (Figure 2A), which prevent Fc-FcR mediated antibody

effector functions. The specific binding activity of CD27xEGFR to

soluble CD27 and EGFR individually was confirmed using biolayer

interferometry (Figure 2B). Moreover, the association rate (as

defined by the gradient of the initial association curve) increased

when both antigens were combined compared to a single antigen,

supporting the proposed mechanism of action of dual binding

(Figure 2B). Reversely, upon immobilization of CD27 or EGFR

onto the biosensor, CD27xEGFR also specifically bound to both

targets (Supplementary Figure 1B).

In a cell-based assay, CD27xEGFR dose-dependently bound to the

EGFR+ epidermoid carcinoma cell line A431 (Figure 2C). Similarly,

dose-dependent binding of CD27xEGFR was detected on CD27+

primary human T cells that expressed CD27 but not EGFR

(Figure 2D, Supplementary Figure 1C). Further, CD27xEGFR also

bound to the EGFR+ fibrosarcoma cell line HT1080, engineered to

ectopically express CD27, with binding only partly inhibited by pre-

incubation with mAb 425 (anti-EGFR mAb) or anti-CD27 mAb alone

(Figure 2E). However, CD27xEGFR binding was abrogated after a

combined pre-incubation with mAb 425 and anti-CD27 mAb

(Figure 2E), demonstrating that CD27xEGFR binds to both antigens

when they are present on the same cell surface. Moreover,

CD27xEGFR induced the formation of doublets between EGFR+ and

CD27+ target cells in a mixed culture of A431 and primary human T

cells. The percentage of doublets increased significantly from ~15% in

the medium control up to ~40% in the CD27xEGFR-treated condition

(Figure 2F), demonstrating CD27xEGFR simultaneously interacted

with EGFR and CD27 expressed on distinct cells. In conclusion, the

designed bsAb CD27xEGFR exhibited selective and simultaneous

binding to both targets (CD27 and EGFR).
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FIGURE 1

CD27 is a target for re-activation of tumor infiltrating cytotoxic and exhausted lymphocytes. (A) Normalized TCGA PAN CANCER epidermal growth
factor receptor (EGFR) expression levels from epithelial cancers (black): BLCA (Bladder urothelial carcinoma), ACC (Adrenocortical carcinoma), BRCA
(Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), CHOL (Cholangiocarcinoma), COAD
(Colon adenocarcinoma), ESCA (Esophageal carcinoma), HNSC (Head and Neck squamous cell carcinoma), KIRC (Kidney renal clear cell carcinoma),
KIRP (Kidney renal papillary cell carcinoma), LIHC (Liver hepatocellular carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell
carcinoma), OV (Ovarian serous cystadenocarcinoma), PAAD (Pancreatic adenocarcinoma), READ (Rectum adenocarcinoma), PRAD (Prostate
adenocarcinoma), STAD (Stomach adenocarcinoma), THCA (Thyroid carcinoma), UCEC (Uterine Corpus Endometrial Carcinoma), and non- epithelial
cancers (gray): DLBC (Diffuse large B-cell lymphoma) and UVM (Uveal melanoma) were plotted in violin plots to visualize their relative EGFR
expression. (B) Normalized CD27 expression levels from all 20 epithelial cancer types described in (A) were matched with lymphocytic infiltration
signature scores via TCGA participant barcodes and plotted against each other. A linear regression was performed to visualize the correlation
between CD27 expression and the lymphocytic infiltration signature score (R-squared = 0.6895, p < 0.0001). Statistical significance was determined
using an F-test. (C) Single-cell tumor immune atlas RNA sequencing dataset based on 526,261 cells from 217 patients and 13 cancer types, revealing
CD27 expression within different immune cell subtypes. (D) Proportion of CD27+ cells in each T cell type described in (C), statistical comparisons are
shown in Supplementary Table 2. (E) Volcano plots of the differential gene expression analysis in CD27+ vs CD27- terminally exhausted and (F)
cytotoxic CD8+ T cells calculated using the FindMarkers function from Seurat with MAST as the method of choice.
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FIGURE 2

CD27xEGFR selectively binds EGFR and CD27 on tumor cells and T cells. (A) CD27xEGFR is designed in a scFv-scFv-IgG1 format with binding
domains targeting CD27 (scFv1F5) and EGFR (scFv425) connected to an IgG1 tail containing LALAPG Fc mutations L234A, L235A, and P329G.
(B) Association and dissociation of His-CD27 (500 nM) and/or His-epidermal-growth-factor-receptor (EGFR) (125 nM) against surface bound
CD27xEGFR (8 µg/mL) as measured by biolayer interferometry (n = 3). (C) Flow cytometry plot displaying EGFR expression of stained (DiD)
A431 cells (left). Dose-dependent binding (represented as normalized mean fluorescent intensity (MFI) to the highest MFI value) of
CD27xEGFR on A431 tumor cells (n = 3) (right). (D) Flow cytometry plot displaying CD3 and CD27 expression on primary human T cells (left)
Dose-dependent binding (represented as normalized MFI to the highest MFI value) of CD27xEGFR on primary human T cells (n = 5) (right).
(E) Binding (represented as normalized MFI to the highest MFI value) of CD27xEGFR to HT1080 tumor cells ectopically expressing CD27 and
its (partial) binding abrogation by pre-incubation of excess amounts of mAb 425 (EGFR block), an anti-CD27 mAb (CD27 block) or both
(double block) (n = 3). Statistical significance was determined using one-way ANOVA test with Dunnett’s correction (F) Representative
doublet formation between EGFR+ A431 tumor cells and CD27+ primary human T cells upon incubation with CD27xEGFR with the
corresponding bar graph on the right (n = 3). Statistical analyses were done using a paired t-test. Data are presented as mean with shaded
areas and error bars denoting standard deviation. “**” indicates (p < 0.01), “*” indicates (p < 0.05).
Frontiers in Immunology frontiersin.org08

https://doi.org/10.3389/fimmu.2023.1191866
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Melo et al. 10.3389/fimmu.2023.1191866
3.3 CD27xEGFR enhances T cell
proliferation and activation upon
TCR stimulation

To evaluate the EGFR-restricted co-stimulation of T cells by

CD27xEGFR, the carcinoma cell lines MDA-MB-231, ES-2, DLD-

1, and FaDu were engineered to express a UchtV1 anti-CD3

antibody fragment (scFvCD3) on their surface, which enabled

activation of TCR signaling in allogeneic T cells independent of

MHC presentation (Figure 3A). The system was validated by

treating a culture of MDA-MB-231scFvCD3 with peripheral blood

mononuclear cells (PBMCs), which clearly activated T cells, as

evidenced by cluster formation in the MDA-MB-231scFvCD3 co-

culture (Figure 3A, bottom left). The addition of CD27xEGFR to

this co-culture increased cluster formation further (Figure 3A,

bottom right). Using flow cytometry, an increase in CD25

expression was observed in T cells within the PBMC population

upon treatment with CD27xEGFR compared to the medium

control (Supplementary Figure 1D). In contrast, no cluster

formation was detected in the co-culture of MDA-MB-231WT

with PBMCs with or without CD27xEGFR treatment (Figure 3A,

top left and right), validating that scFvCD3 can activate T cells

MHC-independently. To specifically study the effects of

CD27xEGFR on T cells, T cells were isolated from PBMCs in

further studies. In line with the cluster formation, a prominent

proliferation of T cells was detected in CD27xEGFR-treated mixed

cultures with ES-2scFvCD3 cells, with up to 5 proliferation peaks

detected (Figure 3B, bottom). In contrast, minimal proliferation

was detected in the mixed cultures of ES-2scFvCD3 and T cells in the

absence of CD27xEGFR (Figure 3B, top). Upon quantification, a

significant increase in T cell proliferation was detected in

CD27xEGFR treated ES-2scFvCD3 co-cultures, as evidenced by a

significantly reduced percentage of cells in the parental peak and

an increased percentage of cells in the proliferation peaks

compared to medium control co-cultures (Figure 3C). A similar

co-stimulatory activity of T cells by CD27xEGFR was detected in

mixed cultures with DLD-1scFvCD3 and FaDuscFvCD3, with a

significant increase in T cell proliferation in either culture upon

CD27xEGFR treatment (Figures 3D, E, respectively). Consistent

with this increase in proliferation, CD27xEGFR treatment of ES-

2scFvCD3, DLD-1scFvCD3, and FaDuscFvCD3 co-cultures increased

the expression of CD25 on T cells compared to medium control

co-cultures (Figures 3F–H, respectively), both on CD4+ and CD8+

T cells, and at different E:T ratios. The largest increase was

detected at an E:T ratio of 20:1, with a 20–25% increase. Finally,

CD27xEGFR treatment increased pro-inflammatory cytokine

IFN-g secretion in FaDuscFvCD3 co-cultures at 10:1 and 20:1 E:T

ratios compared to medium control co-cultures (Figure 3I). Taken

together, this data provides evidence that CD27xEGFR can

effectively co-stimulate T cells in co-cultures with a wide range

of EGFR+ cell lines.
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3.4 CD27xEGFR boosts T cell anti-tumor
cytotoxic potential and has EGFR blocking
anti-proliferative effects

In view of the clear co-stimulatory activity of CD27xEGFR,

potential anti-tumor T cell activity induced by CD27xEGFR was

evaluated next. As a measure of T cells cytotoxicity, cancer cell

survival was determined by using the fluorescence of mCherry

transduced cancer cells. After three days, treatment with

CD27xEGFR strongly reduced the survival of mCherry-

expressing ES-2scFvCD3 cells compared to medium control in co-

culture experiments with primary human T cells (Figure 4A). To

quantify this data, cell survival was measured over time. After

approximately 24 hours of co-culture of T cells with mCherry-

expressing ES-2scFvCD3 cells, T cell-mediated killing was observed,

which continued to near complete eradication of cancer cells after

160 hours of treatment with CD27xEGFR (Figure 4B). In contrast,

mCherry-expressing ES-2scFvCD3 started to grow back after

approximately 96 hours when co-cultured with medium control

and T cells (Figure 4B). Cell survival at this time point was

normalized to that of cancer cells only and measured at different

E:T ratios (0:1, 5:1, 10:1, and 20:1) (Figure 4C). An E:T ratio

dependent reduction of cancer cell survival was detected, in which

treatment with CD27xEGFR significantly reduced cancer cell

numbers, with a maximum decrease of ~40% at an E:T ratio of

5:1 (Figure 4C). A similar reduction in cancer cell numbers in

mCherry-expressing DLD-1scFvCD3 and mCherry-expressing

FaDuscFvCD3 cells upon CD27xEGFR treatment was detected,

with a maximum effect of ~20% and ~30% at a 2:1 E:T ratio for

mCherry-expressing DLD-1scFvCD3 and mCherry-expressing

FaDuscFvCD3 cells, respectively (Figures 4D, E). Of note,

treatment of a monoculture of mCherry-expressing cancer cells

(ES-2scFvCD3, DLD-1scFvCD3, and FaDuscFvCD3) with CD27xEGFR

slightly reduced the survival of the cancer cells compared to the

medium controls (Figures 4C–E, 0:1 E:T ratios, ~2-7%). This effect

is most likely caused by the EGFR-growth inhibitory activity of

CD27xEGFR, which proved to be reminiscent of EGFR blocking

with mAb 425 (Figure 4F). Notably, in a co-culture of T cells with

mCherry-expressing EGFR+ OVCAR-3scFvCD3, treatment with

CD27xEGFR increased cancer cell killing by T cells (Figure 4G,

~25% reduction at an E:T ratio of 5:1) whereas with the

corresponding EGFRKO cells, treatment with CD27xEGFR had

no effect on cancer cell survival when compared to medium

control (Figure 4H). The EGFR and scFvCD3 expression levels

varied between the cell lines (Supplementary Figure 3), with EGFR

expression having a significant, positive correlation with the

cytotoxicity of CD27xEGFR at an E:T ratio of 5:1 (Figure 4I).

No correlation was identified for scFvCD3 levels (Supplementary

Figure 4). Taken together, CD27xEGFR has anti-cancer activity

both by co-stimulation of T cells at the sites of EGFR expression as

well as by directly blocking EGFR on cancer cells.
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4 Discussion

In this study, we identified that cytotoxic and exhausted CD8+

TILs with a tumor-reactive phenotype express the co-stimulatory
Frontiers in Immunology 10
receptor CD27 across various EGFR+ cancer subtypes. Our findings

revealed that these CD27+CD8+ T cells display a cytotoxic,

exhausted, and tumor-reactive profile, closely matching the

reported dysfunctional profile of the tumor-reactive immune
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FIGURE 3

CD27xEGFR enhances T cell proliferation and activation upon TCR stimulation. (A) Schematic representation of the anti-CD3 (scFvCD3) T cell
activation system (left). Microscopy images of MDA-MB-231scFvCD3 or MDA-MB-231WT cells co-cultured with peripheral blood mononuclear cells
(PBMCs) with or without the addition of CD27xEGFR (10 µg/mL) at an Effector : Target (E:T) ratio of 1:1 for 24 hours (right). (B) An exemplary co-
culture and proliferation analysis of CellTrace Violet-labeled primary human T cells and ES-2scFvCD3 for 5 days with or without the addition of
CD27xEGFR (10 µg/mL). Quantification analysis of proliferation peaks in co-culture experiments of primary human T cells with (C) ES-2scFvCD3 (n =
6), (D) DLD-1scFvCD3 (n = 3), and (E) FaDuscFvCD3 (n = 3) with (red bars) or without (blue bars) CD27xEGFR (10 µg/mL). Analysis of CD25 expression on
CD4+ and CD8+ T cells after a 4-day co-culture experiment of (F) ES-2scFvCD3 (n = 3), (G) DLD-1scFvCD3 (n = 3), and (H) FaDuscFvCD3 (n = 4) with (red
squares) or without (blue circles) the addition of CD27xEGFR (10 µg/mL) at the indicated E:T ratios. (I) ELISA analysis of co-culture supernatants for
IFN-g secretion by primary human T cells after a 4-day co-culture of FaDuscFvCD3 cells with (red squares) or without (blue circles) CD27xEGFR (10
µg/mL) at the indicated E:T ratios (n = 3 or 4). Significance was determined using paired t-tests. Data are presented as mean with error bars
indicating standard deviation. “**” indicates (p < 0.01),”*” indicates (p < 0.05).
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FIGURE 4

CD27xEGFR enhances T cell anti-tumor cytotoxic potential. (A) Exemplary brightfield microscopy images of a co-culture of mCherry-expressing ES-
2scFvCD3 cells (overlayed in red) with primary human T cells for three days with or without the addition of CD27xEGFR (10 µg/mL) (B) ES-2scFvCD3

mCherry intensity (normalized to 0 h) over time using the IncuCyte S3 system (Essen BioScience) and analyzed at 96 h (red rectangle) using the
IncuCyte 2021A software. The cancer cell survival (relative to cancer cells only, black triangles) of mCherry-expressing (C) ES-2scFvCD3 (n=3),
(D) DLD-1scFvCD3 (n = 3), and (E) FaDuscFvCD3 (n = 3 or 4) after a 4 (ES-2scFvCD3), 4 (DLD-1scFvCD3), or 7 (FaDuscFvCD3) day co-culture with (red squares)
or without (blue circles) the addition of CD27xEGFR (10 µg/mL) at the indicated Effector : Target (E:T) ratios. For each plot, pairs of data points
represent independent experiments, each utilizing T cells from a unique donor. Statistical significance was determined using paired t-tests.
(F) mCherry-expressing FaDuscFvCD3 cancer cell survival (relative to cancer cells only) in a 3-day co-culture treated with CD27xEGFR (10 µg/mL) or
mAb 425 (10 µg/mL) (n = 4). Statistical significance was determined using a one-way ANOVA test with Tukey’s correction. (G, H) mCherry-
expressing OVCAR-3scFvCD3 (n = 3 or 4) or OVCAR-3scFvCD3EGFRKO (n = 3) cancer cell survival (% of cancer cells only) after a 3-day co-culture with
primary human T cells with (red squares) or without (blue circles) the addition of CD27xEGFR (10 µg/mL) at the indicated E:T ratios. Statistical
significance was determined using paired t-tests. (I) Linear regression depicting the positive correlation between higher EGFR expression levels and
increased delta values between CD27xEGFR and medium control (R-squared = 0.8705, p = 0.0206). Each point on the graph represents an
individual pair difference at the 5:1 E:T ratio. Statistical significance was determined using an F-test. Data are presented as mean with error bars
indicating standard deviation. “**” indicates (p < 0.01), “*” indicates (p < 0.05), “n.s.” indicates non-significant differences.
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repertoire (54, 55).This observation underscores their potential as a

target for immunotherapy and suggests that EGFR-targeted re-

activation of CD27 co-stimulatory signaling T cells may have a

broad applicability across a diverse range of carcinomas (54, 55). To

therapeutically exploit this observation, we developed an Fc-silent

ICS-bsAb that targets CD27 and EGFR. This bsAb was designed to

be minimally active ‘en route’, while providing multivalent and

tumor-localized crosslinking of CD27 when bound to EGFR+

cancer cells. Given the ubiquitous and abundant expression of

EGFR in epithelial cells, it is important to account for potential

toxicities that may arise from off-tumor targeting. Nevertheless, as

the associated toxicities with targeting EGFR have remained within

acceptable limits in the context of four clinically approved anti-

EGFR mAbs (56), it is expected that side effects of co-stimulating

CD27 through EGFR-targeting should not exceed these established

thresholds. Supporting this concept, studies using a similar

bispecific approach (CD28xEGFR), showed no independent

stimulation of the immune system in the absence of TCR

engagement with the MHC of cancer cells, as demonstrated in

both cynomolgus monkeys and genetically engineered triple-

humanized mice (57). In alignment with this data, our in vitro

studies demonstrated CD27xEGFR simultaneously bound to both

targets, enhanced T cell activation, increased T cell proliferation,

and selectively potentiated anti-cancer T cell cytotoxicity.

Additionally, based on the antagonistic properties of EGFR scFv,

it is plausible to hypothesize that CD27xEGFR may have the

potential to directly inhibit cell growth.

The tetravalent DVD-Ig antibody design of CD27xEGFR carries

two EGFR and two CD27 antibody fragment domains (scFv 425 and

scFv 1F5 targeting EGFR and CD27, respectively), facilitating bivalent

binding to both targets. These specific scFvs were chosen based on their

unique abilities to bind with and inhibit cell growth and trigger CD27

co-stimulation. Prior research by Murthy et al. established the efficacy

ofmurinemonoclonal antibody 425 in inhibiting the binding of EGF to

its receptor, EGFR (58). The scFv variant of this antibody demonstrated

moderate affinity to EGFR (200 nM < Kd < 400 nM) and exhibited

growth inhibitory activity, as reported in previous studies (59–61).

Similarly, the scFv 1F5, adapted from the agonistic mAb varlilumab

(1F5), has the ability to block binding of soluble human CD70. It has

exhibited significant preclinical activity, and is currently under

evaluation in clinical trials (NCT03038672, and NCT04081688) (38).

Therefore, although not formally investigated in this study,

CD27xEGFR is expected to competitively inhibit ligand binding to

the cognate receptors.

In the current study, CD27xEGFR was demonstrated to have

high-affinity binding to EGFR on EGFR+ tumor cells and to CD27

on CD27+ T cells. Since the carcinoma and T cell binding domains

are in-frame on either side, a potential concern could be that

binding of one domain to its target cell would preclude binding

to the second cell or domain. Although the two variable domains

are indeed linked in tandem, the high domain flexibility of the

DVD-Ig format was previously shown to allow for antigen binding

of the inner domain with minimal steric hindrance (62). In line with

this, CD27xEGFR demonstrated selective and simultaneous binding

to EGFR and CD27, with clear doublet formation of carcinoma and

T cells and inhibition of binding upon pre-incubation with excess
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amounts of mAb 425 and CD27 mAb. However, the possibility of T

cell-to-T cell doublet formation as a result of CD27 binding on two

different T cells has yet to be tested. Furthermore, CD27xEGFR had

an increased association rate when exposed to both antigens,

compared to a single antigen, as observed with biolayer

interferometry, confirming the ability of CD27xEGFR to bind

both targets simultaneously. This bsAb format is similar to

recently described bsAbs that restrict immune checkpoint

blockade of PD-1/PD-L1 or CD47 in an EGFR-restricted manner,

leading to enhanced selectivity and efficacy of PD-L1 or CD47

blockade (63, 64). Based on the data presented here, CD27xEGFR

may provide tumor-localized binding and crosslinking of CD27 on

T cells for EGFR+ carcinomas.

CD27xEGFR mediated T cell proliferation and activation upon

TCR stimulation occurred only in co-cultures with EGFR+ target cells,

as evidenced by the increase in proliferating T cell peaks, the

upregulation of CD25 expression in both CD4+ and CD8+ T cells,

and increase in IFN-g secretion. These results are consistent with

previous studies showing that the CD27-targeting antibody Varlilumab

upregulated T cell cytokine secretion (e.g., IFN-g) and induced T cell

proliferation at comparable levels in co-culture experiments (15, 33).

Similarly, a tetravalent PD-L1 and CD27-targeting bsAb (CDX-527)

induced IL-2 production upon TCR stimulation on a plate coated with

OKT3 mAb and soluble PD-L1 (40). The functional activity of CDX-

527 was further demonstrated using a CD27-NFkB reporter cell line,

revealing enhanced activity compared to parental antibodies and

further augmentation with the addition of recombinant soluble FcgR.
However, CDX-527 relied on both PD-L1 expression and FcR

interactions for CD27 crosslinking and activation, potentially

unleashing strong on-target but off-tumor activity (65).

CD27xEGFR’s FcR independence, relying on EGFR+ cancer cells to

provide a CD27 cross-linking platform, could avoid these unwanted

effects. Indeed, the combination of a T cell engager with the bsAb

CD28xEGFR has successfully demonstrated the safe triggering of CD28

co-stimulatory signaling via EGFR crosslinking of co-stimulatory

molecules, such as CD28 (57). Given that Varlilumab recently

yielded synergistic anti-tumor activity in multiple tumor models

when used in combination with PD-1/PD-L1 blockade (66), it would

be worthwhile to further examine the activity of CD27xEGFR in

combination with PD-1/PD-L1 blockade.

The antigen-dependent and tumor-selective cross-linking with

CD27 was previously reported to functionally replace the FcgR
dependent agonistic activity reported for several TNFRSF targeting

antibodies (13, 67, 68). However, in a study that combined an

EGFR-targeted bispecific T cell engager with several EpCAM-

targeted TNFRSF bsAbs (41BB, OX40, TL1A, and CD27), the

bsAb 41BBxEpCAM showed the highest activity (69). Therefore,

it would be valuable to develop additional bsAbs with the same

EGFR-selective tetravalent DVD-Ig antibody design but targeting

different TNFRSF receptors, as these may provide even higher co-

stimulatory activity than CD27.

CD27xEGFR-mediated cancer cell reduction was observed in

different carcinoma cell line settings across a range of E:T ratios.

The EGFR-dependent crosslinking of CD27 facilitated these effects,

as the Fc domain of CD27xEGFR was designed with LALAPG

mutations in order to create an effector silent IgG molecule to
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reduce off-target activity via FcgR-expressing cells. In line with the

CD27 crosslinking requirements, previous studies with syngeneic

mouse tumor models have shown that Varlilumab induces FcR-

engagement-dependent tumor regression and facilitates long-term

anti-tumor immunity (13). As silencing of the Fc domain in

CD27xEGFR also excludes effector functions such as antibody-

dependent cell-mediated cytotoxicity (ADCC) and complement-

dependent cytotoxicity effects, a side-by-side comparison of Fc-

silent CD27xEGFR to Fc-functional CD27xEGFR and their parental

antibodies in co-culture experiments with PBMC populations

should be conducted, next to experiments with isolated T cells.

These molecules should also be evaluated as mouse surrogate

molecules or in transgenic mice expressing human CD27 and

EGFR, to further characterize the functional characteristics and

safety profile of CD27xEGFR.

CD27xEGFR also had anti-proliferative effects, likely induced

by blocking EGFR-mediated signaling, which was the strongest in

3-day treatments and comparable to the effects induced by mAb

425. This is consistent with an earlier report where mAb 425 and

bsAb PD-L1xEGFR were compared for their ability to inhibit

EGFR-mediated cancer cell proliferation (63). The extent of

EGFR inhibitory effects varied among each of the carcinoma cell

lines, which is in line with the varying levels of sensitivity to EGFR-

inhibition reported for different tumor types (as reviewed in (56)).

Furthermore, the activity of CD27xEGFR directly correlated with

the EGFR expression in each cell line. This correlation could be

attributed to enhanced growth inhibitory effects induced by EGFR

blockade, or to heightened CD27 co-stimulation facilitated by

greater CD27xEGFR binding. Importantly, blocking EGFR

signaling can induce remodeling of the tumor microenvironment

(TME) towards an immunoresponsive phenotype in non-small cell

lung cancer (NSCLC) and inflammatory breast cancer (70–72).

Thus, the potential antiangiogenic activity of EGFR-restricted CD27

co-stimulation warrants further investigation.

In addition to CD27 being expressed in cytotoxic and exhausted

TILs, CD27 mRNA expression was also detected in tumor infiltrating

regulatory T cells (Tregs), suggesting possible unwanted co-stimulatory

effects on Tregs by CD27xEGFR. In this respect, the development of

Tregs and increased Tregs activity in the TME are linked to CD27

agonism by CD70+ tumor cells (73, 74). Upon prolonged Treg

stimulation, however, CD27 expression is downregulated and CD70

upregulated, leading to subsequent CD70-mediated T cell co-

stimulation (75). Notably, in NSCLC tumors that develop EGFR-TKI

refractory disease, CD70 is upregulated by refractory cancer cells (76).

In tumor-bearing mice, this CD70 interacts constitutively with CD27+

Tregs during tumor development, thereby promoting Treg expansion

and preventing cytotoxic T cell responses (77, 78). Therefore, it will be

important to study the specific effects of CD27 co-stimulation on Tregs

in the context of restricted co-stimulation to a tumor antigen such as

EGFR in relevant murine models and in combination with Treg

depleting strategies, including sorafenib treatment (79).

In clinical studies, the active Fc domain of Varlilumab induced

ADCC-mediated CD27+ Treg depletion, while providing co-

stimulation to effector T cells in both hematological and solid

tumors (21, 22). Indeed, in some patients, Varlilumab even

triggered the development of de novo CD8+ anti-tumor responses
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(22). Hence, as CD27xEGFR has an inactive Fc domain, the effector

function of Treg depletion and its subsequent effects, such as

possible de novo CD8+ responses, would be expected to be absent.

However, a study inducing transient and deliberate CD27 agonism

in CD27+ Tregs through dendritic cells demonstrated that Tregs

partially lost their suppressive function and converted into CD4+

Th1 cells (80). Furthermore, CD27 co-stimulation is critical for the

protection of CD8+ T cells against subsequent Treg suppression and

is necessary for the priming of new T cells (25, 80). Therefore, CD27

agonism is anticipated to be a beneficial intervention, even in

malignancies with Tregs. Moreover, CD27 agonism also enhances

NK cell activation and proliferation, suggesting that these two

additional anti-tumor mechanisms could also be explored in the

context of CD27xEGFR treatment in follow-up studies (81, 82).

In conclusion, CD27xEGFR is a novel DVD-Ig bsAb targeting

CD27 and EGFR, that has the potential to re-activate T cell immunity

in EGFR+ carcinomas through its interaction with tumor-reactive and

exhausted CD27+CD8+ TILs. Moreover, the Fc-silent format of

CD27xEGFR enables tumor-localized binding and crosslinking of

CD27 only at EGFR+ tumor sites, potentially enhancing its specificity

and safety profile. These unique features of CD27xEGFR offer a

compelling rationale for its further exploration in preclinical and

clinical settings as a promising immunotherapeutic agent for

EGFR+ tumors.
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