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A B S T R A C T 

The unprecedented number of gravitational lenses expected from new-generation facilities such as the ESA Euclid telescope 
and the Vera Rubin Observatory makes it crucial to rethink our classical approach to lens-modelling. In this paper, we present 
LEMON (Lens Modelling with Neural networks): a new machine-learning algorithm able to analyse hundreds of thousands of 
gravitational lenses in a reasonable amount of time. The algorithm is based on a Bayesian Neural Network : a new generation of 
neural networks able to associate a reliable confidence interval to each predicted parameter. We train the algorithm to predict the 
three main parameters of the singular isothermal ellipsoid model (the Einstein radius and the two components of the ellipticity) by 

emplo ying tw o simulated data sets built to resemble the imaging capabilities of the Hubble Space Telescope and the forthcoming 

Euclid satellite. In this work, we assess the accuracy of the algorithm and the reliability of the estimated uncertainties by applying 

the network to several simulated data sets of 10 

4 images each. We obtain accuracies comparable to previous studies present in 

the current literature and an average modelling time of just ∼0.5 s per lens. Finally, we apply the LEMON algorithm to a pilot 
data set of real lenses observed with HST during the SLACS program, obtaining unbiased estimates of their SIE parameters. 
The code is publicly available on GitHub ( https://github.com/f ab- gentile/LEMON ). 

Key words: gravitational lensing: strong – methods: data analysis – software: data analysis – galaxies: elliptical and lenticular, 
cD. 

1

I  

R  

d  

c  

i  

a  

e  

s  

c  

c  

o  

o  

t  

i  

S  

c  

�

a  

c  

g  

e  

e  

i  

t  

R  

l  

(  

2  

M  

e  

o  

a  

C
 

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/4/5442/7150691 by R
ijksuniversiteit G

roningen user on 21 August 2023
 I N T RO D U C T I O N  

nitially predicted by Albert Einstein as a consequence of his General
elativity (Einstein 1915 ), gravitational lensing consists in the
eflection of light caused by a gravitational field. This phenomenon
an be very intense when a massive object (e.g. a galaxy or a cluster)
s involved. In this case, lensing can produce multiple images of
 distant compact source (see e.g. Huchra et al. 1985 ; Napolitano
t al. 2020 ) or gravitational arcs can be formed in case of extended
ources (Zwicky 1937 ). In both these cases, the phenomenon is
alled ‘strong gravitational lensing’, while the composite systems
reated are generally known as ‘gravitational lenses’. The main
bservables related to this phenomenon (i.e. the position and shape
f the lensed images) mainly rely on the matter distribution inside
he lensing galaxy and on the relative angular-diameter distances
n volving the observer , the deflector , and the background source (e.g.
chneider, Ehlers & Falco 1992 ; Bartelmann 2010 ). An additional
ontribution (up to 15 per cent; see e.g. Schneider et al. 1992 ) can
 E-mail: fabrizio.gentile3@unibo.it 

o  

o  

o  

Pub
lso derive from the line-of-sight matter distribution. Strong lensing
an be successfully employed to study the dark matter distribution in
alaxies (e.g. Treu & Koopmans 2004 ; Covone et al. 2009 ; Tortora
t al. 2010 ; Auger et al. 2010b ; Spiniello et al. 2011 ; Sonnenfeld
t al. 2015 ; Shajib et al. 2021 ) and – since the distances involved
n lensing are sensitive to the cosmological parameters – to measure
he Hubble constant with the so-called ‘time-delay technique (e.g.
efsdal 1964 ; Wong et al. 2020 ). Further interesting applications of

ensing span from identifying dark matter substructures in galaxies
e.g. Mao & Schneider 1998 ; Dalal & K ochanek 2002 ; K oopmans
005 ; Vegetti et al. 2014 ) to studying the universality of the Initial
ass Function (e.g. Treu et al. 2010 ; Auger et al. 2010a ; Barnab ̀e

t al. 2013 ; Sonnenfeld et al. 2019 ). A more comprehensive review
f the possible scientific applications of strong lensing in modern
strophysics and cosmology can be found in Treu ( 2010 ) and
ongdon & Keeton ( 2018 ). 
For decades, ho we ver, the main limitation to the scientific poten-

ialities of strong lensing has been represented by the small number
f known and analysed gravitational lenses. The need for massive
bjects acting as lenses and an almost perfect alignment between
bserv er, fore ground lens, and background source make gravitational
© 2023 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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enses rare (e.g. Schneider et al. 1992 ). Several studies estimated that
ess than one galaxy out of 10 3 −4 shows detectable lensing features 
see e.g. Collett 2015 ). Therefore, the inspection of large samples of
stronomical sources is needed to identify a statistically significant 
ample of lenses. 

This scenario, ho we ver, is about to change dramatically in the
ear future. A new generation of telescopes such as the ESA
uclid satellite (Laureijs et al. 2011 ) and the Vera Rubin Ob-
ervatory (LSST Science Collaboration et al. 2009 ) will be soon
n the scene. Several forecasts claimed how these facilities will 
rovide data on more than one billion galaxies, allowing the 
dentification of ∼10 5 new homogeneously selected gravitational 
enses (see e.g. LSST Science Collaboration et al. 2009 ; Laureijs
t al. 2011 ; Serjeant 2014 ; Collett 2015 ). These newly disco v ered
ystems will increase by several orders of magnitude the number 
f known gravitational lenses, allowing many astrophysical studies 
o rely on a stronger statistics, and to explore a wider range of
edshifts and galaxy properties. Moreo v er, a whole new approach 
o lensing-based science – the so-called ‘statistical lensing’ –
ill be possible (e.g. Sonnenfeld & Cautun 2021 ; Sonnenfeld 
021a , b , c ). 
Although these are important advances, the massive amount 

f data produced by these instruments would to o v erwhelm our
bility to analyse them with classical techniques. For this reason, 
ignificant effort has been afforded in the last years to rapidly 
earch for gravitational lenses in vast data sets, mainly thanks to the
mployment of machine learning algorithms (see e.g. the noteworthy 
esults of the first strong gravitational lens finding challenge in 

etcalf et al. 2019 ). Several sky surveys have been systematically 
nalysed with these techniques, allowing the identification of an 
nprecedented number of likely lensed objects (see some examples 
n Petrillo et al. 2017 , 2019a , b ; Jacobs et al. 2019a , b ; Canameras
t al. 2020 ; He et al. 2020 ; Li et al. 2020 ; Gentile et al. 2022 ).
ever the less, our ability to model lenses – necessary to allow the

cientific exploitation of the retrieved systems – remained almost 
nchanged in the required compute time. Currently, most lens- 
odelling algorithms rely on Bayesian analysis, such as Monte 
arlo Mark o v Chains or nested sampling (see some noteworthy 
xamples in Jullo et al. 2007 ; Vegetti & Koopmans 2009 ; Birrer &
mara 2018 ; Nightingale, Dye & Massey 2018 ; Lefor, Futamase &
khlaghi 2013 for a comparison between the different methods). 
hese techniques are computationally e xpensiv e (the analysis of 
 single lens can require up to several hours) and often require
 non-trivial human intervention to select the lensing feature in 
he image. These properties make them less suitable to efficiently 
odel large samples of lenses. As it happened for the search for

trong lenses, an efficient approach to lens-modelling can come from 

achine-learning. Several algorithms have been proposed. These are 
ainly based on Convolutional Neural Networks (CNNs; see e.g. 
ezaveh, Perreault Le v asseur & Marshall 2017 ; Pearson, Li & Dye
019 ; Schuldt et al. 2021 ) or Bayesian Neural Networks (BNNs;
.g. Perreault Le v asseur, Hezaveh & Wechsler 2017 ; Bom et al.
019 ; Park et al. 2021 ; Pearson et al. 2021 ; Schuldt et al. 2023 ):
upervised-learning algorithms able to extract meaningful features 
rom images and to convert them into useful parameters (LeCun, 
engio & Hinton 2015 ; Charnock, Perreault-Le v asseur & Lanusse
020 ). In this work, we focus on BNNs. This new generation of
achine learning algorithms is able to account, in its predictions, for

he different sources of uncertainty that can affect the analysed data 
nd the algorithm itself, providing a full Bayesian treatment of them. 
hanks to this property, BNNs can associate reliable confidence 

ntervals to the estimated parameters, allowing a wide range of 
cientific applications (see some astrophysical examples in Cobb 
t al. 2019 ; Escamilla-Ri vera, Carv ajal Quintero & Capozziello 2020 ;
ort ́ua et al. 2020 ; Wagner-Carena et al. 2021 ). 
In this paper, we propose a new lens-modelling algorithm called 

 LEMON ’. 1 (LEns MOdelling with Neural Networks). Based on a
NN, it can efficiently model large samples of lenses in a reasonable
mount of time. This work – the first of the LEMON series –
resents the algorithm and its training, assessing its performances 
n modelling both simulations and a pilot sample of real lenses.
he paper is structured as follows: Section 2 presents the data sets
mployed to train and test the algorithm. Section 3 introduces BNNs,
nd the architecture implemented in the LEMON algorithm. In 
ection 4 , we assess the algorithm’s performance on a simulated
ata set and on a small set of real lenses from the Sloan Lens
 CS Surve y (SLACS; Bolton et al. 2006 ). Section 5 discusses the

esults obtained on all the data sets and measures the performance
n the estimation of different lens parameters. Finally, in Section 
 , we draw our conclusions and list the future perspective of this
ork. 

 BU ILD IN G  T H E  T R A I N I N G  SET  

raining a supervised-learning algorithm, such as a BNN, consists in 
assing large numbers of ‘labelled’ examples (i.e. images for which 
he ground truth is known) to the network. When dealing with strong
ravitational lensing, this task is particularly challenging because of 
he small number of known and modelled gravitational lenses. The 
argest homogeneously selected collections of confirmed lenses (e.g. 
olton et al. 2006 ; Gavazzi et al. 2012 ; Sonnenfeld et al. 2015 ; Shu
t al. 2017 ) contain only a few hundreds objects: at least two orders
f magnitude less than the number of examples required to find the
ptimal value for the millions of free parameters inside a BNN (see
.g. the sizes of the data sets employed by Perreault Le v asseur et al.
017 or Bom et al. 2019 ). In addition, these samples do not homo-
eneously co v er all possible lensing configurations, being generally 
iased towards systems with more prominent lensing features. Since 
upervised-learning algorithms mainly act as interpolators (i.e. they 
re sensitive only in the range of parameters well-co v ered by the
raining set; see e.g. Goodfellow, Bengio & Courville 2016 ), often
hese samples are not well suited as training sets. For the above
easons, most studies focused on the search and modelling of grav-
tational lenses with machine-learning methods rely on simulated 
ata. 
In this work, we simulate two different training sets. The first one

s composed by Euclid mocks : it is built to resemble the observational
haracteristics expected from the Euclid ’s VIS imager as forecasted 
y Laureijs et al. ( 2011 ) and Cropper et al. ( 2018 ). The second
raining set (composed by the HST mocks ) mimics the imaging
apabilities of the Advanced Camera for Surveys (ACS; Ryon 2022 )
ounted on the Hubble Space Telescope (HST). Both the data sets

re composed by 40 000 simulated images each. Some examples of
hese images are reported in Fig. 1 . We underline that in this work
e assume that is possible to retrieve a completely pure sample of

trong lenses (without any contaminant, quite common in samples 
elected through visual inspection or machine-learning techniques; 
ee, e.g. Petrillo et al. 2017 , 2019a , b ; Metcalf et al. 2019 ; Gentile
t al. 2022 ). The impact of contaminants on the algorithm’s accuracy
ill be investigated in the forthcoming papers of the LEMON 

eries. 
MNRAS 522, 5442–5455 (2023) 
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Figure 1. Some examples of the mock lenses employed in this work. The 
images in the top row are HST mocks and are simulated to recall the imaging 
capabilities of the ACS mounted on the HST. The images in the bottom row 

are Euclid mocks and mimic the observational characteristics of the systems 
observed with the forthcoming VIS imager of the Euclid telescope. Further 
details in Section 2 . 

Table 1. Distribution employed in Section 2 to randomly sample the 
parameters used during the simulations of the different training sets. All the 
parameters are uniformly sampled, except where indicated. Further details in 
Section 2 . 

Parameter Range Units 

Lens (SIE) 

Einstein radius ( a ) 0.5–3.0 arcsec 
Axial ratio 0.3–1.0 −
Major-axis angle −90–90 degrees 

Source (S ́ersic) 

Ef fecti ve radius ( R Eff ) 0.2–0.6 (log 10 ) arcsec 
Axial ratio 0.3–1.0 −
Major-axis angle −90–90 degree 
S ́ersic index 0.5–5.0 −

S ́ersic Blobs (1 up to 5) 

Ef fecti ve radius (1% to 10%) R Eff arcsec 
Axial ratio 1.0 −
Major-axis angle 0 degrees 
S ́ersic index 0.5–5.0 −
Note. ( a ) The Einstein radii for the HST-like data sets are sampled from a 
smaller distribution with maximum value 2 arcsec to account for the different 
resolution of the instrument and a v oid gra vitational arcs escaping from the 
cutouts. 
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.1 Simulating gravitational arcs 

oth simulation procedures start with a set of mock gravitational
rcs. These are generated from scratch through the simulation code
resented in Chatterjee ( 2019 ) and previously employed in several
tudies on strong lensing (Petrillo et al. 2017 , 2019a , b ; Gentile et al.
022 ). The code first simulates a high- z galaxy through a S ́ersic
rofile (S ́ersic 1963 ), whose parameters are randomly sampled from
he distributions reported in Table 1 . Uniform sampling is adopted
or three parameters (axial ratio, position angle, and S ́ersic index),
hile the ef fecti ve radius is sampled from a logarithmic distribution.
his choice is necessary to account for the likely smaller size of
igh- z sources, as discussed in Petrillo et al. ( 2017 ). The code
lso adds a random number of S ́ersic components (up to five) to
he main light distribution to crudely mimic star-forming regions
n the lensed galaxy (Petrillo et al. 2019a ). The parameters of
hese components are sampled from the distributions reported in 
able 1 . 
NRAS 522, 5442–5455 (2023) 

2

Once the background source is generated, the code simulates
he foreground deflector’s matter distribution through a singular
sothermal ellipsoid model (SIE; Kormann, Schneider & Bartelmann
994 ). All the model parameters are uniformly sampled from the dis-
ributions in Table 1 . It is important to underline that, in order to save
emory during the training phase, we sample the Einstein radii for

he HST mocks from a smaller distribution than for the Euclid mocks .
his step is crucial to prevent the most asymmetrical arcs from being
ut out from the stamp due to the better resolution of the HST detector.
o increase the complexity of the lensing galaxy and to account for

he likely presence of a matter distribution along the line of sight,
he code also adds a Gaussian Random Field to the gravitational
eld generated by the SIE model. More details on this step and the
arameters employed in the simulation (i.e. the form of the power-
pectrum and the variance of the field) can be found in Hezaveh et al.
 2016 ) and Petrillo et al. ( 2019a ). Accounting for the line-of-sight
atter distribution can substantially contribute to the realism of the

imulations and produce a significant change in the accuracy of the
ens-modelling algorithms (see e.g. Pearson et al. 2021 ). 

Once simulated both the background source and the foreground
eflector, the code performs the ray-tracing and generates the
ravitational arc. For doing so, the software randomly poses the
ensed source within a distance given by the tangential caustics of
he SIE plus one ef fecti ve radius of the source S ́ersic profile from
he centre of the model. This step is needed to populate the training
et with a higher percentage of highly-magnified arcs with respect
o lensed systems with less-magnified two or four lensed images.
imulations are performed on a 121 × 121 pixel grid for the Euclid
ocks (corresponding to a 12 arcsec side at the 0.1 arcsec pixel −1 

esolution expected from the Euclid VIS imager; Cropper et al. 2018 ).
imilarly, the simulations of HST mocks are performed on a 131 ×
31 grid (corresponding to a 3.9 arcsec side at the 0.03 arcsec pixel −1 

esolution of the ACS camera; Ryon 2022 ). 
The final step of our simulation procedure consists of a convolution

ith a Gaussian 2D-kernel. This step produces more realistic images
y accounting for the PSF blurring. The full width at half maximum
FWHM) values of the kernels are chosen as 0.16 and 0.08 arcsec
o mimic the PSF expected from the Euclid and HST images,
espectively (Cropper et al. 2018 ; Ryon 2022 ). 

.2 Simulating the lens light 

 realistic image of a gravitational lens must include the light
istribution of the foreground deflector. Moreover, since the possible
lending between the arc and the central galaxy can make it harder
o detect the lensing features, it can sensibly affect the modelling
ccuracy of our algorithm. In the current literature, two different
trate gies hav e been followed to simulate the deflectors. In some
tudies (e.g. Pourrahmani, Nayyeri & Cooray 2018 ; Metcalf et al.
019 ), the deflector is generated from scratch through an analytical
rightness profile. In others, mock gravitational arcs are stacked on
eal galaxy images employed as likely deflectors (e.g. Petrillo et al.
017 ; Gentile et al. 2022 ). In this work, we employ both strategies. 

.2.1 HST mocks 

or the HST mocks , we employ as deflectors real galaxies observed
n the Cosmic Evolution Survey (COSMOS) field by the HST
Koekemoer et al. 2007 ; Massey et al. 2010 ). First, we select the
rightest galaxies in the COSMOS2020 catalogue 2 (Weaver et al.
 ht tps://cosmos2020.calet .org/

art/stad1325_f1.eps
https://cosmos2020.calet.org/
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022 ), collecting all the sources with a F814W magnitude brighter 
han 21.5 (Gentile et al. 2022 ). Among these sources, we select the
arly-type galaxies, which are known to represent the majority of the 
ravitational lenses (e.g. Eisenstein et al. 2001 ; Oguri et al. 2006 ).
e employ the ‘ FARMER ’ version of the COSMOS2020 catalogue 

o perform this second selection. Since this version contains the 
hotometry extracted through the profile-fitting code ‘ THE FARMER ’ 
Weaver et al, in preparation), it also includes a value named 
 SOLUTION MODEL ’ describing the best-fitting brightness profile 
or each source. We select all the galaxies with SOLUTION MODEL 

qual to ‘ DevGalaxy ’ (i.e. galaxies with a de Vaucouleurs brightness
rofile; de Vaucouleurs 1948 ) or ‘ SimpleGalaxy ’ (partially resolved 
alaxies with a circular exponential profile). In doing so, we collect 
 sample of ∼4000 likely early-type galaxies and retrieve HST 

maging for these sources from the public COSMOS archive. 3 A 

isual inspection of a significant fraction of these sources confirmed 
 contamination rate (i.e. a fraction of spirals and irregular galaxies) 
ower than 10 per cent. Since this tiny percentage of contaminants 
s not expected to sensibly affect the training, these images are not
emo v ed from the data set. 

To finally simulate HST mocks , we follow a slightly modified 
ersion of the strategy employed in Petrillo et al. ( 2017 , 2019a , b )
nd Gentile et al. ( 2022 ): 

(i) We simulate a gravitational arc, as described in Section 2.1 ; 
(ii) We randomly select a galaxy from the aforementioned sample 

f likely deflectors. To a v oid e xcessiv e contamination from the
entral galaxy light, we choose only galaxies with an FWHM 

4 in 
he range [0.1, 1.1] θE . These values are broadly consistent with the
ndings by Bolton et al. ( 2008 ); 
(iii) We randomly rotate the deflector image by an angle in the 

ange [0,360] degrees and flip it on the horizontal axis with a
robability of 50 per cent. Moreo v er, to account for the possible
ffset between the center of the SIE and that of the deflector’s light,
e shift the image by an amount of pixels randomly sampled in the

ange [ −2,2] in both the x - and y -axis. 
(iv) We stack the two images and rescale the brightness of the 

ravitational arc to αB , where B is the maximum brightness of the
entral galaxy and the α-factor is uniformly sampled in the range 
0.03,0.2]. The α-factor accounts for the typical brightness ratio 
etween lenses and arcs (e.g. Petrillo et al. 2017 ). 

(v) We perform a square-root stretching of the co-added image to 
nhance the low-brightness lensing features; 

We underline that – by employing real galaxies as deflectors –
e do not need to simulate the background noise or add additional

ources in the lens environment to account for the likely presence of
earby galaxies. 

.2.2 Euclid mocks 

he procedure exposed in the previous paragraph cannot be em- 
loyed to simulate Euclid mocks . Since – at the moment – we do
ot have data on real galaxies observed by the Euclid satellite, 
e simulate from scratch the light distribution of the deflector by 

mploying a S ́ersic profile (S ́ersic 1963 ). The forthcoming papers of
he LEMON series will use a more accurate method by employing 

ore realistic deflectors. The brightness profile’s axial ratio and 
osition angle are uniformly sampled from the same distributions 
 ht tps://irsa.ipac.calt ech.edu/data/COSMOS/
 The value of the FWHM is the FWHM F814W entry in the COSMOS2020 
atalogue, obtained from the HST imaging. 

3

T  

f  

t  
mployed in Section 2.1 and summarized in Table 1 . The S ́ersic index
s fixed to the value n = 4 to account for the typical elliptical galaxies
n the gravitational lenses population (e.g. Eisenstein et al. 2001 ;
guri et al. 2006 ). The ef fecti ve radius is uniformly sampled from the
istribution [0.1, 1.1] θE to obtain images similar to those produced 
or the HST mocks . As for the HST mocks , we allow a small offset in
he range [ −2,2] pixels between the deflector center and the SIE. 

Differently from the HST mocks , since the deflectors are generated
rom scratch, we also need to simulate the background noise. This is
one through a Gaussian random-number generator: the mean value 
nd the standard deviation of this normal distribution are computed 
tarting from the average sky brightness (22.2 mag) and exposure 
ime (1.610 s) expected from the Euclid wide survey (Laureijs et al.
011 ; Scaramella et al. 2021 ). Once a noise map is simulated, we
escale the brightness of the arc to obtain an integrated SNR in the
ange [5,20] and rescale the brightness of the central galaxy to get
n α-factor in the same range employed in the previous paragraph. 

 B N N S  

n a computational perspective, the problem of lens-modelling can 
e reduced to assigning a set of continuous values (i.e. the set of
arameters describing the mass distribution in the lensing galaxy) 
o an image. From a machine-learning point of view, this task is a
egression problem and – therefore – it can be successfully addressed 
ith supervised-learning algorithms such as CNNs (e.g. LeCun et al. 
015 ). These algorithms can extract the most rele v ant features from
n image and – once provided a proper training set – can approximate
he complex relationship between the input images and the target 
alues. For this reason, CNNs are nowadays employed in many 
strophysical studies spanning from the morphological classification 
f galaxies (e.g. Dieleman, Willett & Dambre 2015 ; Aniyan & Thorat
017 ; Dom ́ınguez S ́anchez et al. 2018 ) to cosmological studies (e.g.
luri et al. 2019 ; Canameras et al. 2020 ). Never the less, in the

ast years, some studies started to highlight several limits in the use
f CNNs (see a re vie w of the main ones in Kendall & Gal 2017
nd Charnock et al. 2020 ). Among these, the difficulty to associate a
onfidence interval to the predicted parameters has probably the most 
ignificant impact on the scientific potentialities of these algorithms. 
stimating the uncertainties affecting the scientific quantities is 
enerally required to compare them with the theoretical predictions. 
oreo v er, a confidence interval is generally useful in order to exclude 

tatistical outliers (in our case, the systems for which the lens
odelling is not reliable). A possible way to o v ercome this problem

nd obtain an estimation of the uncertainties is represented by BNNs
e.g. Charnock et al. 2020 ). This new generation of machine-learning 
lgorithms is built by starting from a classical neural network (or a
NN when the analysis of images is needed) but it can also provide
 fully Bayesian treatment of the different sources of uncertainty 
ffecting the input data and the algorithm itself. Even though the
oncept itself of uncertainty is quite debated, especially in the 
eld of machine-learning, there is an almost unanimous consensus 
bout what a BNN is required to account for in its predictions. It
ainly consists in what the algorithm ‘does not know’ (the so-called

pistemic uncertainty ) and what it ‘cannot know’ (i.e. the aleatoric
ncertainty ). 

.1 Epistemic uncertainty 

he first kind of uncertainty that we have to model concerns all the
eatures that a BNN cannot recognize because of a lack of proper
raining. Since – as discussed in Section 2 – we do not expect our
MNRAS 522, 5442–5455 (2023) 
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lgorithm to be sensitive on ranges of parameters insufficiently well-
o v ered by our training set, we expect the predictions on images ‘too
ifferent’ from those on which we trained the algorithm to be ‘more
ncertain’. To translate this qualitative concept into a confidence
nterval, we have to pose the problem of uncertainty into a Bayesian
ramework. 

It can be done by representing a ‘standard’ (convolutional) neural
etwork as a highly complex parametric function 

 = f ( x , ω) , (1) 

roviding a set of output values ( y ) for each input datum ( x ), once
rovided the weights ( ω). Moreover, since the weights are adjusted
uring the training, they can be expressed as an (unknown) function
f the data in the training set ( X ) and their target values ( Y ): 

 = ω( X , Y ) . (2) 

n a Bayesian probabilistic framework, the uncertainty on the
utput values can be e v aluated through their posterior probability
istribution: 

( y ) = p( y | x , ω) . (3) 

n principle, this term could be e v aluated by marginalizing o v er all
he possible values of the weights. 

( y | x , X , Y ) = 

∫ 
�

p( y | x , ω ) p( ω | X , Y ) dω. (4) 

o we ver, due to the high dimensionality of the weights space � and
he lack of knowledge about the posterior probability of the weights
 ( ω| X , Y ), equation ( 4 ) cannot be e v aluated in a computationally
ffordable way. A possible solution to this problem can reside
n variational inference (e.g. Jordan et al. 1999 ). This technique
onsists of approximating the unknown posterior with an analytic
nd parametric function q θ ( ω) with θ variational parameters by
inimizing the difference between these distributions through the
 ullback–Leibler (KL) div ergence (K ullback & Leibler 1951 ). In

his way, equation ( 4 ) can be rewritten as 

( y | x ) ≈
∫ 

p( y | x , ω ) q θ ( ω ) dω, (5) 

llowing a more straightforward evaluation of the probability distri-
ution on the output value. It can be shown (see e.g. Gal & Ghahra-
ani 2015a , b ) that minimizing the KL divergence is equivalent

o maximizing the log-evidence lower bound with respect to the
ariational parameters θ : 

 V I = 

∫ 
q θ ( ω ) log p( Y | X , ω ) dω − KL ( q θ ( ω ) || p( ω )) . (6) 

 possible choice for the variational function q θ ( ω) is the one
mployed in the so-called ‘ Monte Carlo dropout ’ technique (Gal &
hahramani 2015a ): {
ω i = θi · diag ( { s ij } i −1 

j = 1 ) 
s ij = Bernoulli (p i ) 

, (7) 

here s ij are Bernoulli-distributed random variables with probability
 i . With this choice, the first term in equation ( 6 ) becomes the log-
ikelihood of the network’s predictions, while the second term can be
pproximated with an L 2 regularization with a λ parameter (Gal &
hahramani 2015b ): 

 V I ∼
N ∑ 

i= 1 

L ( y i , y � i ( x i , ω)) − λ
∑ 

j 

|| ω j || 2 , (8) 
NRAS 522, 5442–5455 (2023) 
where L is the log-likelihood for the network’s predictions y � i 
n the input datum x i with real values y i and weights ω randomly
ampled from the variational distribution q θ ( ω). Moreo v er, the choice
n equation ( 7 ) allows us to e v aluate the integral in equation ( 5 )
ith a simple Monte Carlo integration. Specifically, it can be easily

mplemented with the ‘ dropout ’ technique (Sri v astav a et al. 2014 )
onsisting of randomly switching off some connections between the
eurons in the neural network with a ‘ p ’ probability (1 −p is the
o-called keep-rate ). The dropout is implemented both at training
ime and at testing time. In doing so, each prediction made on the
ame input datum with some connections randomly dropped out is
qui v alent to a sampling from the posterior probability presented in
quation ( 3 ). With a sufficiently high number of predictions, we can
econstruct the probability distribution and, therefore, e v aluate its
epistemic’ uncertainty by measuring its standard deviation. 

.2 Aleatoric uncertainty 

 second kind of uncertainty that is crucial to e v aluate properly is
he so-called ‘aleatoric uncertainty’. This value is mainly related
o the intrinsic quality of the data analysed by the algorithm.
orruptions in the images (e.g. the presence of a masked region),
SF blurring, source blending and a low value of the SNR are among

he most common sources of aleatoric uncertainty. It is noteworthy
o underline that – differently from the epistemic uncertainty that, in
rinciple, could be decreased by employing a more complete training
et – the aleatoric uncertainty only depends on the quality of the
nalysed data (see e.g. Kendall & Gal 2017 ; Charnock et al. 2020 ).
ince it is a function of the only input data, aleatoric uncertainty must
e e v aluated for each input image separately. This task is ho we ver
hallenging, since these values are not available for the images in the
raining set. Therefore, aleatoric uncertainties must be e v aluated in
n unsupervised framework. A common choice (but not the only one;
ee e.g. Fagin et al. in preparation) to estimate this quantity consists
n employing a Gaussian negative-log-likelihood as the loss function
o be minimized during the training (equation 8 ): 

log L ( y i , y � i ( x i , ω)) = 

N P ∑ 

j= 1 

[ 

− 1 

2 σ 2 
i,j 

|| y i,j − y � i,j || −
1 

2 
log ( σ 2 

i,j ) 

] 

, (9) 

here σ i , j is the aleatoric uncertainty predicted for the j th parameter
f the i th image. We underline that the second term in equation ( 9 )
revents the algorithm to predict an infinite uncertainty for all the
mages, regardless of the input. 

.3 LEMON ar chitectur e 

n this paper, we present LEMON (LEns MOdelling with Neural
etworks): a lens-modelling algorithm based on the BNN described
n the previous subsection. Our network is able to model both
he aleatoric and epistemic uncertainties affecting the data and the
raining process and to combine them into a single confidence interval
or each predicted parameter. 

We implement our BNN starting from a standard CNN with a
esNet-34 architecture (He et al. 2015 ). The whole code is written

n PYTHON 3.9 , employing the open-source library KERAS (Chollet
t al. 2015 ) with a TENSORFLOW back-end (Abadi et al. 2015 ). As
escribed in the previous sections, we modify the architecture of the
NN by adding a dropout layer after each weight layer both in the
onvolutional blocks and in the final fully connected layer. While
he first layer is designed to take as input a single-band image of
 gravitational lens, the last layer of the network (i.e. the one that
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erforms the regression) is composed of six nodes. Three of them 

ill predict the three parameters of the SIE model (Section 2 ) while
he others will predict the relative logarithmic aleatoric uncertainties 
Section 3.2 ). We decide to train our network to predict the Einstein
adius ( θE ) and the two components of the complex ellipticity ( εx 

nd εy ; see e.g. Kormann et al. 1994 ) instead of the more common
xial ratio and position angle: 

x = 

1 − q 2 

1 + q 2 
cos (2 ϕ) εy = 

1 − q 2 

1 + q 2 
sin (2 ϕ) . (10) 

s discussed in Perreault Le v asseur et al. ( 2017 ) and Hezaveh et al.
 2017 ), this choice increases the algorithm’s accurac y. Moreo v er, as
hown in Perreault Levasseur et al. ( 2017 ) and Kendall & Gal ( 2017 ),
e train the algorithm to predict log ( σ 2 ) instead of directly σ : this

hoice impro v es the numerical stability of the algorithm and prev ents
t from predicting ne gativ e variances. A schematic representation of
he LEMON architecture is reported in Fig. A1 in the Appendix. 

Finally, a reliable confidence interval should consider both the 
pistemic and aleatoric uncertainties. In this work, we combine 
he two sources of uncertainty through the procedure previously 
mployed in Perreault Le v asseur et al. ( 2017 ): 

(i) For each input image, we predict the mean value ( μi ) and the
elative aleatoric uncertainty ( σA 

i ) for the generic parameter p ( θ e ,
x , or εy ); 

(ii) For each parameter p , we randomly sample a ne w v alue p i 
rom a Gaussian distribution centred on the predicted value μ and 
ith a standard deviation equal to σA 

i . We assume that the Gaussian
orm better describes the statistical distribution of the aleatoric 
ncertainties since these were obtained by minimizing a Gaussian 
egative lo g-lik elihood (Section 3.2 ); 
(iii) We repeat the first two steps a thousand times for each image.

n doing so, we sample the posterior probability of the parameters 
or each image; 

(iv) Finally, we compute the mean ( ̄p ) and standard deviation ( δp )
f the distribution given by the p i , obtaining the final value for the
onsidered parameter and its combined uncertainties. 

In the following – for the sake of brevity – we will employ the
ymbols p and δp to refer to the mean value of the p i distribution and
he combined uncertainties for each parameter. 

.4 Training the algorithm 

e perform two different trainings of the LEMON algorithm: one 
or each training set discussed in Section 2 . We train the algorithm
n 75 per cent of each training set, saving the lasting 25 per cent for
ross-validation. We perform the training with the stochastic gradient 
escent technique, with a batch size of 32 images randomly chosen 
rom the whole data set. During the training, the algorithm minimizes 
he Gaussian negative-lo g-lik elihood introduced in equation ( 9 )
hrough the ADAM optimizer (Kingma & Ba 2014 ). We start the
raining with an initial learning rate of 10 −3 . We gradually update the
earning rate during the training employing the REDUCEONPLATEAU 

allback provided by KERAS with a patience parameter concerning 
he validation loss of five epochs up to 10 −5 . An L 2 regularization is
lso employed to prevent overfitting and to account for the second 
erm present in equation ( 8 ). Finally, during this phase, we employ
ata augmentation: a common choice in regression and classification 
roblems involving images. It consists of feeding several times the 
ame image to the network, realizing a different transformation 
very time. In this work, each image is translated in the up–
own and left–right directions by an integer number of pixels in 
he range [ −4,4]. This step reduces the risk of o v erfitting since it
rtificially increases the size of the training set and allows the BNN
o learn the translational invariance of the lensing configurations. 
t is worth underlining that, differently from previous applications 
e.g. Petrillo et al. 2017 , 2019a , b ; Gentile et al. 2022 ), we do
ot employ any augmentation involving rotations, flipping, and 
caling of the analysed images. This choice is necessary since the
redicted parameters are not invariant under these transformations. 
s discussed in the previous section, dropout layers are employed at
oth training and testing time, with a keep-rate of 0.97. 
The whole trainings require on average 75 epochs and take ∼2.5

 each when performed on a single Tesla-K200 GPU freely offered
y the cloud-computing platform GOOGLE COLAB. 5 

 RESULTS  

n this section, we assess the performances of the LEMON algorithm
y applying the BNN to several data sets. After a brief introduction
n the metrics employed to e v aluate the accuracy of the algorithm and
he reliability of the estimated uncertainties, we apply the network to
wo data sets of simulated images. The results obtained on the Euclid
ocks , in particular, will be useful to forecast the performances
f the LEMON algorithm when applied to the real data from the
orthcoming Euclid satellite. These forecasts – ho we ver – strongly 
ely on the hypothesis that the simulations reasonably resemble the 
haracteristics of real lenses. To test this assumption, we also apply
he BNN to a data set of real lenses observed by the HST and compare
he results obtained on these systems with those attained on the
ST-like simulations. Finally, we perform additional tests about the 

elationship between the accuracy of the algorithm and the employed 
raining sets. 

.1 Useful metrics 

hroughout the following sections, we will define an ‘ideal’ lens- 
odeller as an algorithm able to supply the exact set of SIE

arameters for each analysed lens. To compare our results with those
xpected from such an algorithm, we must introduce some statistical 
ndices (or ‘metrics’ in the following). The choice of these quantities
s not unique or trivial and can sensibly affect our description of the
esults or our ability to compare them with earlier studies present in
he current literature. Since our algorithm can supply both a point
stimate of the predicted parameters and their confidence intervals, 
e need more metrics to e v aluate these aspects. 

.1.1 Over all accur acy 

he first property to e v aluate is the distance between the mean
alues predicted by the algorithm and the real ones. In a graphical
erspectiv e, the accurac y of a lens-modeller can be assessed through
he scatter plots shown in Fig. 2 . The accuracy can also be assessed
y measuring the difference � p between each predicted parameter 
nd its real value for each analysed image. Hence, we define the
bias’ ( μ) as the mean value of the � p distribution computed on
he whole data set and the ‘standard deviation’ ( σ ) as the minimum
 � p | having a 68 per cent statistical co v erage of the analysed data
et. In addition, we can consider non-symmetrical distributions by 
omputing σ+ and σ− as the 16th and 84th percentile of the � p
MNRAS 522, 5442–5455 (2023) 
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M

Figure 2. Comparison between the predictions of the LEMON algorithm and the real values of the SIE parameters for the simulated Euclid-like (top row) and 
HST-like (bottom row) data sets. For each plot, we also report in the yellow box the bias ( μ) and the 16th and 84th percentiles of the error distribution ( σ+ and 
σ−, respectively). Further details in Section 4.3 . 
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.1.2 Confidence intervals 

valuating the reliability of the estimated confidence intervals is
 more challenging task. Since these values are predicted in an
nsupervised framework (see the discussion in Section 3 ), we
o not have any reference value to compare our results with. In
he hypothesis that the uncertainties affecting our algorithm and
ata can be described with a Gaussian distribution (a reasonable
ssumption, given the likelihood introduced in Section 3.2 ), we
xpect that an ideal modeller would provide confidence intervals
roducing a Gaussian statistical co v erage. Therefore, we e xpect
hat ∼ 68 per cent of the predicted values lie within one estimated
p from their actual value, ∼ 95 per cent within 2 δp and ∼99
er cent within 3 δp . In most of the earlier studies concerning BNN-
ased lens-modellers, the reliability of the confidence intervals has
een assessed by comparing the statistical co v erage at 1, 2, and
 σ computed on the data set with that expected from a Gaussian
istribution. In this work, we employ a more sophisticated method
elying on the so-called ‘ reliability plots ’ (Fig. 3 ). These graphs are
uilt by computing the cumulative statistical co v erage P ( x ) defined 
s 

 ( x) = 

N ( | p i − p 

� 
i | < xδp i ) 

N Tot 
, (11) 

here the numerator is the number of systems for which the � p is
maller than x times the related uncertainty δp . P ( x ) is e v aluated for
n ideal Gaussian distribution (on the x -axis) and for the analysed
ata set (on the y -axis) for x in the range [0,5]. With this definition,
NRAS 522, 5442–5455 (2023) 
n ideally calibrated algorithm would provide a graph with all the
ata points lying on the bisector. Similarly, a graph lying in the
pper (lower) semiplane would represent a systematic o v erestimation
underestimation) of the uncertainties. 

.2 Calibrating the uncertainties 

he choice to employ the reliability plots also allows us to perform
 more efficient uncertainties calibration with respect to previous
tudies. BNNs, indeed, are generally not able to provide well-
alibrated uncertainties, being affected by a systematic o v er or un-
erestimation of the confidence intervals (see Guo et al. 2017 and ref-
rences therein for some possible explanations of this phenomenon).
herefore, a successive ‘calibration step’ is often required. This can
e performed following different methods (e.g. Zadrozny & Elkan
001 , 2002 ; Gal, Hron & Kendall 2017 ; Perreault Levasseur et al.
017 ). 
In this work, we employ a slightly modified version of the so-

alled platt-scaling method (Kull, Filho & Flach 2017 ) employed in
ort ́ua et al. ( 2020 ). This method consists in re-scaling the predicted
ncertainties by a factor ‘ s ’ ( σ → s σ ), in order to minimize the
ifference between the uncalibrated reliability plot and the ideal one.
he procedure is the following: 

(i) We divide the validation set in two parts: 30 per cent for
calibration’ and 70 per cent for ‘test’; 

(ii) We build the reliability plot for the calibration set, employing
he original uncertainties estimated by the BNN; 

art/stad1325_f2.eps
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Figure 3. Reliability plots generated for the HST-like (a) and for the Euclid-like (b) validation sets before and after the calibration procedure described in 
Section 4.2 . It is evident how the calibration impro v es the reliability of the estimated uncertainties and how these are able to reproduce a Gaussian statistical 
co v erage of the analysed data sets. Further details in Section 4 . 
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(iii) We fit the uncalibrated reliability plot with a β-function 
efined as 

( x, a, b, c) = 

1 

1 + 

(
e c x a 

(1 −x) b 

)−1 , (12) 

ith a , b , c ∈ R free parameters fixed during the fitting; 
(iv) We find the value s by minimizing 6 the difference between 

he β-function and the bisector of the reliability plot ; 
(v) We rescale the uncertainties of the test set predicted by the 

NN by the found s -factor and build a new ‘calibrated’ reliability
lot 

Fig. 3 shows the difference between the uncalibrated reliability plot 
nd the calibrated one for the parameters estimated by the LEMON
lgorithm. It is clear the impro v ement in the statistical co v erage
chieved by this method. 

.3 Application to simulated data 

he first assessment of the LEMON algorithm’s abilities to model 
ast samples of lenses is performed on two simulated validation sets.
e assemble them following the same strategy discussed in Section 
 , employing the same division between HST and Euclid mocks . To
 v oid possible biases and perform totally blind cross-validation, we 
eseed all the random generators used in the procedure: both those 
mployed in the parameters’ sampling and in the background noise 
enerators. Since we are interested in the application to vast data 
ets, we simulate 10 000 lenses for each data set. The predictions
re performed on the same hardware introduced in Section 3.4 and 
ake ∼1.5 h for each data set, with an average modelling time of less
han 0.5 s for each image. The scatter and reliability plots obtained
n these data sets are reported in Figs 2 and 3 . 

.4 Further analysis 

he results achieved on these simulated data sets make it interesting 
o investigate the impact of the simulations employed to train the 
lgorithm on its accuracy. We further investigate this point by 
imulating four additional data sets (two with Euclid-like properties 
 The minimum is found numerically through the PYTHON SCIPY library 
Virtanen et al. 2020 ). 

m
2
w
s

nd two with HST-like ones). Two of these data sets are generated
ollowing the same procedure described in Section 2 , but without
dding the light distributions of the deflectors. The importance of 
hese ‘ arcs-only data sets ’ is two-fold. On the one hand, these
imulated lenses can help us to quantify the loss of accuracy due
o the presence of the lens light and the possible impro v ement in
he performances of our algorithm if we employed lens-subtracted 
ystems. On the other hand, the results achieved on these systems
an be compared with those obtained by previous studies based on
nalogous techniques but using lens-subtracted lenses (e.g. Hezaveh 
t al. 2017 ; Pearson et al. 2019 ) limiting the possible biases due to
he different analysed objects. 

The other two additional data sets explore the possible impact 
f the correlation between the light and mass distribution of the
eflector. As highlighted by several studies, we do not expect the
arameters of the brightness profile of the lens and its matter
istribution to be independent. In particular, Koopmans et al. ( 2006 )
ound an interestingly tight correlation between the parameters of 
he S ́ersic model of the lens and its SIE model: 7 {
q SIE = (0 . 99 ± 0 . 11) q L 
�θ = θSIE − θL = (0 ± 3) ◦

. (13) 

Inserting these correlations in the simulated data sets might – in 
rinciple – impro v e the accurac y of our algorithm by augmenting the
umber of features available to predict the SIE parameters. To further
nvestigate this possibility, we simulate these additional ‘ correlated- 
enses data sets ’ through a slightly modified version of the procedure
escribed in Section 2.2 : 

(i) Euclid-like lenses: the parameters of the S ́ersic profile are 
ot randomly sampled from the distribution in Table 1 . Once the
ravitational arc is simulated, the deflector’s axial ratio and position 
ngle are sampled from a Gaussian distribution centred on the 
ame parameters of the SIE model and with the standard deviations
eported in equation ( 13 ). 

(ii) HST-like lenses: the deflector is not randomly chosen from 

he sample of likely deflectors described in Section 2.2 . Once the
MNRAS 522, 5442–5455 (2023) 

Actually, this correlation has been verified for galaxies with q > 0.5, for 
ore elliptical galaxies some studies found different results (e.g. Treu et al. 

011 ). Since in this study we are discussing the role of a correlation in itself, 
e employ the result by Koopmans et al. ( 2006 ) for all the lenses in the data 

et. 
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Table 2. Mean accuracies achieved by the LEMON algorithm when applied 
to the several data sets introduced in Section 4.4 . All the values reported in 
the table are the standard deviation of the error distribution computed as the 
68% statistical co v erage of the analysed data sets. Further details are given 
in Section 4.4 . 

Standard data sets Arcs-only ‘Correlated’ lenses 

Euclid HST Euclid HST Euclid HST 

mocks mocks mocks mocks mocks mocks 
θE ( 

′′ 
) 0.04 0.03 0.02 0.02 0.04 0.03 

εX 0.03 0.04 0.02 0.02 0.03 0.04 
εY 0.03 0.04 0.02 0.02 0.03 0.04 
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ravitational arc is simulated, the q L and ϕ L values for the axial ratio
nd position angle of the deflector, respectively, are sampled from the
ame Gaussian distribution mentioned abo v e. Therefore, the galaxy
ith the closest q value in the deflector sample is employed as lens.
nalogously, the deflector is rotated to match its original position

ngle with the new one. 

Once these new data sets are simulated (composed of 40 000
mages each, as described in Section 2 ), we perform four ad-
itional trainings of the LEMON algorithm (one for each data
et). Therefore, we apply each network to a corresponding vali-
ation set of 10 000 images, simulated following the same pre-
criptions described before and with a different random seed.
he results of these additional cross-validations are reported in
able 2 . 

.5 Application to real data 

o independently assess the accuracy of the LEMON algorithm in
odelling lenses, we apply the BNN trained on the HST mocks to a

ample of real lenses disco v ered in the SLACS programme (Bolton
t al. 2006 , 2008 ; Shu et al. 2017 ). Since we do not expect our
lgorithm to be accurate out of the range of parameters co v ered
y the training set, we only select the systems encompassing these
haracteristics: 

(i) An elliptical central galaxy, as those employed in Section 2.2 ; 
(ii) The SIE parameters estimated from lens-modelling (as re-

orted in Shu et al. 2017 ; Bolton et al. 2008 ) within the range
ummarized in Table 1 ; 

(iii) An SNR integrated on the full arc larger than 5; 
(iv) A brightness ratio between the arc and the central galaxy (i.e.

he α-factor defined in Section 2.2 ) in the range [0.03,0.2]. 

We retrieve HST imaging in the F814W band for a pilot sample
f 42 SLACS lenses having all the abo v e characteristics 8 (our ‘ real-
enses sample ’ in the following; see some examples in Fig. 4 ). We
xtract stamps of these systems with a 131-pixel side, apply a square-
oot stretch and pass these images to the algorithm. The results
btained by this algorithm application and their comparison with
he estimates of the SLACS collaboration are reported in Figs 6
nd 7 . We underline that the calibration of the uncertainties is
erformed in a totally blind w ay, emplo ying the same ‘s’ factor
btained during the validation step on the simulated HST mocks (see
ection 4.2 ). 
NRAS 522, 5442–5455 (2023) 

 The HST images are retrieved from the Hubble Legacy Archive: https: 
/ hla.stsci.edu/ . 
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 DI SCUSSI ON  

his section discusses the main scientific findings obtained through
he results described in Section 4 . 

(i) Modelling time: the first noteworthy result achieved by the
EMON algorithm resides in the time employed to model a vast
ample of 10 000 simulated lenses. Pearson et al. ( 2021 ) reported –
or a blind application of the PYAUTOLENS lens-modelling algorithm
Nightingale et al. 2018 ) – a mean modelling time of 30 min, with
everal outliers requiring up to 2 h to be modelled correctly. Our
lgorithm achieves an average modelling time of 0.5 s, independently
f the morphology of the analysed system. The impro v ement of
everal orders of magnitude in the computational cost of lens
odelling between traditional and machine-learning techniques is

vident (also thanks to the possibility to train and test the latter
lgorithms on GPUs, much faster than CPUs). In addition, we
nderline that the whole procedure employed in this paper to train the
lgorithm and model the lensed systems is entirely automated, not
equiring any human intervention. These results make BNN-based
lgorithms particularly suitable to model vast data sets of lenses in a
omputationally efficient way. 

(ii) Ov erall accurac y: we applied the LEMON algorithm to two
ifferent simulated sets of 10 000 lenses each, retrieving the accuracy
ummarized in Section 4.3 . These results are perfectly comparable
ith other studies present in the current literature and based on

imilar techniques (CNN or BNN-based lens-modeller, see e.g.
ezaveh et al. 2017 ; Perreault Le v asseur et al. 2017 ; Pearson

t al. 2019 ; Schuldt et al. 2021 ). It is noteworthy to underline how
he scatter achieved on the HST-mocks is slightly larger than that
btained on the Euclid-mocks , albeit the higher resolution of the
rst simulations. This result is probably due to the more realistic
eflector employed in the simulation procedure of the HST-mocks .
urthermore, as expected, machine learning algorithms are still not
ble to outperform or even achieve the same accuracy as classical
ayesian techniques (see Pearson et al. 2021 for a quantitative
omparison between machine-learning and classical methods). Never
he less, CNN- or BNN-based algorithms can still be employed to
rovide a first fast modelling of vast samples of lenses to identify
he most interesting systems for future follow-up or more accurate

odelling with standard techniques. Moreo v er, as highlighted by
earson et al. ( 2021 ), machine-learning predictions can be employed
s priors for classical Bayesian methods, significantly improving the
odelling time with respect to a completely ‘blind’ analysis based

n uninformative flat priors. 
(iii) Calibrated uncertainties: as highlighted in Section 4.2 , the

alibration procedure followed to obtain reliable uncertainties is quite
f fecti ve, producing a Gaussian statistical coverage of the analysed
amples (Fig. 3 ). The goodness of the procedure is also independently
ssessed with the blind cross-validation performed in Sections 4.2
nd 4.5 . The possibility to predict consistent uncertainties is crucial
o allow most of the scientific applications of lensing, where it
s fundamental to compare the observ ational e vidence with the
heoretical predictions. In addition, high values of the uncertainties
an also allow a selection of the contaminants (i.e. the systems
or which the modelling procedure failed). Finally, once verified
he Gaussian statistical co v erage, the estimated uncertainties can
e employed in classical Bayesian techniques as Gaussian priors,
dditionally improving the computation time with respect to flat
riors. 
(iv) Different data sets: the results achieved on the additional

ata sets employed in Section 4.4 translate into several findings
oncerning the relationship between the employed training sets and

https://hla.stsci.edu/
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Figure 4. Some examples of the real lenses employed to test the accuracy of the LEMON algorithm. All the systems were observed by the HST during the 
Sloan Lens ACS Survey (SLACS; Bolton et al. 2006 ; Shu et al. 2017 ). Further details in Section 4.5 . 

Figure 5. Median fractional accuracy achieved by the LEMON algorithm 

on the modelling of simulated lenses as a function of the ratio between the 
ef fecti ve radius of the deflector and the Einstein radius of the lensed arc. 
As expected, the accuracy of the algorithm decreases with more significant 
blending between the central galaxy and the arc. 
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he algorithm’s accuracy. First, as expected, the subtraction of the lens 
ight increases the accuracy of the modelling (up to 100 per cent;
ee Table 2 ). This result is not surprising, since the presence of the
entral galaxy makes the identification of the lensing features more 
hallenging for the algorithm. A confirmation of this hypothesis can 
e found in the analysis of the modelling accuracy as a function of the
atio between the R Eff of the deflector and the Einstein radius of the
ensed arc (Fig. 5 ). As expected, the median fractional error on the
hree predicted parameters increases when the blending between the 
wo components is more significant. We underline, ho we ver, that the
ubtraction of the lens light is problematic for two main reasons. First,
his process generally relies on parametric modelling of the deflector: 
rong modelling can produce a severe bias in the deblending 
rocedure and the inferred shape of the gravitational arc. Secondly, 
his procedure is not completely automatic but often requires a non- 
rivial human intervention to select the lensing features. The latter 
eason, in particular, strongly affects the possibility of modelling 
ast samples of lenses automatically. It is also worth noting that the
ifferent image quality achieved by the two instruments does not 
ffect the accuracy of the algorithm when no lens light is included in
he images. 
 second – more counter-intuitive – finding consists in the identical 

ccuracy obtained by the LEMON algorithm when applied to the 
orrelated and uncorrelated lens data sets. A possible explanation 
f this result could reside in the ability of our algorithm to well
iscriminate between the gravitational arc and the lensing galaxy, 
asing its prediction only on the feature belonging to the first one
nd ignoring the shape and orientation of the latter. To study in
etail this result, we perform a cross-study. Training the algorithm 

n the correlated data set and testing it on the uncorrelated one (and
ice-versa) we obtain no significant changes in the accuracy of the
redicted parameters. This result strengthens the hypothesis that the 
odelling performed by the LEMON algorithm is mainly driven by 

he gravitational arc. 
(v) Real lenses: when applied to the set of real lenses from the

LACS sample (Section 4.5 ), the algorithm achieves the results 
ummarized in Figs 6 and 7 . We underline that – even though
he bias is al w ays consistent with zero – the algorithm produces a
igher scatter between predicted and real values when passing from 

imulated to real data. This phenomenon is not new, as discussed
n several studies concerning lens-finding with machine-learning 
lgorithms (e.g. Petrillo et al. 2017 , 2019a , b ; Gentile et al. 2022 ).
ur interpretation of this result resides in the still-not-sufficient 

ealism of our simulations. To confirm our hypothesis, we perform 

n additional test on simulated data. We simulate an extra data
et following the procedure discussed in Section 2 , but without
ncluding the matter distribution on the line-of-sight. In doing so, we
btained a ‘less-realistic’ data set of simulated lenses. By training 
he LEMON algorithm on this new data set and by applying it to
he original data set with ‘more realistic lenses’, we obtain – as
xpected – a small decrease in the accuracy of the algorithm ( ∼5
er cent on all the predicted parameters). This result agrees with that
eported by Pearson et al. 2021 in an analogous test. Moreo v er, we
btain a correspondent increase in the predicted uncertainties (that, 
n principle, should be due to a higher epistemic uncertainty, see
ection 3.1 ). Even though the calibration step described in Section
.2 reproduces again a good Gaussian statistical co v erage of the
ample, this test clearly suggests that the realism of the simulations
mployed in during the training is crucial to achieve better accuracies
ith machine-learning based lens-modeller like LEMON . In the near 

uture, it is possible to think of a training set composed only of
eal lenses observed in a wide surv e y such as those performed with
uclid or the Vera Rubin Observatory . At the moment, ho we ver, the
nly alternative consists in generating more reliable simulations. A 

ossible impro v ement could be the employment of real galaxies as
ensed sources (e.g. Pearson et al. 2021 ) or the increasing of the
omplexity of the deflector by employing more complex lens models 
e.g. adding an external shear component, e.g. Keeton, Kochanek & 

eljak 1997 ), or a better accounting for the matter distribution on
he line-of-sight of the lens (e.g. Fleury, Larena & Uzan 2021 )
nd likely perturbation to the lensing potential (e.g. Galan et al.
022 ; Vernardos & Koopmans 2022 ). These impro v ements will
e addressed in detail in the forthcoming papers of the LEMON 

eries. 
MNRAS 522, 5442–5455 (2023) 
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Figure 6. Comparison between the SIE parameters predicted by the LEMON algorithm and the values obtained by the SLACS collaboration through classical 
modelling (Bolton et al. 2008 ; Shu et al. 2017 ). The uncertainties included in the plot are calibrated as discussed in Section 4.2 . For each plot we also report in 
the yellow box the bias ( μ) and the 16th and 84th percentiles of the error distribution ( σ+ and σ−, respectively). Further details in Section 4.5 . 

Figure 7. Reliability plots generated by applying the LEMON algorithm to 
the pilot sample of real lenses observed by the HST in the SLACS surv e y 
(Bolton et al. 2006 ; Shu et al. 2017 ). The plots are shown before and after the 
blind-calibration procedure. It is possible to observe the significant increase 
in the reliability of the estimated uncertainties. Further details are given in 
Section 4.5 . 
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.1 Comparison with the literature 

he unprecedented number of lenses expected by next-generation
acilities will represent a significant challenge to our analysis capa-
ilities. The urgency of this issue justifies the presence, in the current
iterature, of at least two groups of studies aiming to automatize the
ens-modelling procedure. The first of these is focused on existing
classical’ algorithms, trying to reduce their computational cost
e.g. Gu et al. 2022 ) or to decrease the needed human intervention
e.g. Etherington et al. 2022 ). A second group (also including this
aper) tries to change the paradigm by involving machine learning
lgorithms in the task. This section focuses on comparing our
ode LEMON with the algorithms proposed by this second group.
o we ver, it is crucial to underline how a fair comparison between the
ifferent codes should consider the difference between the data sets
mployed to train and test the various algorithms. For instance, some
tudies (Hezaveh et al. 2017 ; Perreault Le v asseur et al. 2017 ; Fagin
t al., in preparation) focused on HST- or Euclid- like simulations,
hile others used ground-based simulated images (Bom et al. 2019 ;
chuldt et al. 2021 ). It is evident how the better image quality
btained by space-based facilities allows a more accurate lens-
odelling (see e.g. the result by Pearson et al. 2019 employing both

inds of simulations). Similar effects are expected by the employment
f more realistic simulations. Using real galaxies as deflectors and
NRAS 522, 5442–5455 (2023) 
ensed sources (Hezaveh et al. 2017 ; Pearson et al. 2021 ; Schuldt et al.
021 ) increases the realism of the simulations but also decreases the
ccuracy of the lens-modelling, as shown by Pearson et al. ( 2021 ).
nalogously, the subtraction of the lens light generally produces
igher accuracies with respect to studies employing the complete
mages (see e.g. Hezaveh et al. 2017 ; Pearson et al. 2019 ). Finally,
t is worthwhile to underline that, in this study, we employed an
niform sampling of the Einstein radius for our validation set to
ssess the accuracy of the LEMON algorithm on all the possible
ensing configurations. On the contrary, most of the aforementioned
tudies preferred a ‘realistically sampled’ data set, with a higher
ercentage of lenses with smaller Einstein radii (that represent the
ajority of the existing lenses, see e.g. Collett 2015 ). This choice

an produce significant differences in the accuracy of the algorithms
hen these are measured through the 68th percentile of the scatter
istribution commonly employed in this kind of studies. Since all
hese issues could be o v ercome only by training and testing all the
odes on the same data set, we will neglect the likely effects due to
he data sets to focus on other important differences. 

(i) The first of these concerns the kind of algorithm employed.
ezaveh et al. ( 2017 ); Pearson et al. ( 2019 ), and Schuldt et al. ( 2021 )
sed CNN-based lens-modeller. The most significant difference
etween these codes and LEMON is the possibility for our algorithm
o estimate accurate uncertainties for the predicted parameters.
urthermore, the broad consistency of the accuracies reported by the
ifferent codes suggests that the estimation of the uncertainties does
ot sensibly affects the accuracy of the algorithm’s point estimates. 
(ii) For the algorithms based on a BNN (Perreault Le v asseur et al.

017 ; Bom et al. 2019 ; Pearson et al. 2021 ; Schuldt et al. 2023 ), one of
he main differences is the calibration performed on the uncertainties
redicted by the network. While the other codes changed the keep-
ate of the dropout layers to achieve a Gaussian co v erage of the test-
et, the LEMON algorithm is the only one to employ the a posteriori
rocedure discussed in Section 4.2 . As shown in Figs 3 and 7 , our
rocedure allows an effective calibration of the uncertainties both on
imulated and real data. 

(iii) A further consideration concerns the kind of architecture
mployed by the different codes. While Pearson et al. ( 2019 ), Schuldt
t al. ( 2021 ), and Pearson et al. ( 2021 ) used a ‘classic’ CNN, other
tudies employed a ResNet (i.e. the same architecture of LEMON ,
ut with different amounts of layers) and others much more complex
rchitectures (Hezaveh et al. 2017 ; Perreault Le v asseur et al. 2017 ;
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om et al. 2019 ; Schuldt et al. 2023 ). These differences strongly
mpact the dimension of the data sets required to successfully train 
he algorithms and – therefore – the possibility of training them only 
y employing the first data provided by Euclid or LSST. The slight
ifferences in the accuracies achieved by these codes could suggest 
 minor role of the employed architecture in the ef fecti veness of the
ens modelling. 

(iv) Finally, it is noteworthy to underline how – among the 
forementioned studies – only Hezaveh et al. ( 2017 ) validated the 
ccuracies achieved on the simulations with an application to a 
ilot sample of nine real lenses observed in the SL2S program 

Sonnenfeld et al. 2013 ). As discussed in Section 4.5 , this procedure
an highlight a significant difference between the accuracies, giving 
recious insights about the realism of the simulations employed in 
he training and test phases. 

 C O N C L U S I O N  

n this work, we presented LEMON : a new machine learning 
lgorithm able to perform the fast automated analysis of strong 
ravitational lenses. The algorithm is based on a BNN: a new 

eneration of machine learning algorithms able to associate reliable 
onfidence intervals to the predicted parameters. This paper is the 
rst of the LEMON series and is focused on the training of the
lgorithm and its first blind application to several data sets of both
imulated and a pilot sample of real gravitational lenses observed 
ith HST as a part of the SLACS program (Bolton et al. 2006 ; Shu

t al. 2017 ). LEMON has been trained on two simulated data sets
enerated to resemble the imaging capabilities of the HST and the 
orthcoming ESA Euclid satellite. The main task of the algorithm 

s to estimate the three parameters of the SIE model ( θE , εx , and
y ) and the related uncertainties. After the training, the algorithm 

as been applied to two simulated data sets generated following the 
ame simulation procedure, to independently assess the accuracy of 
he estimates and the reliability of the modelled uncertainties. 

The main scientific result consists in the modelling time of just
.5 s for each image, at least two orders of magnitudes lower than
lassical techniques. Moreo v er, the results obtained on these data 
ets are perfectly comparable with the previous studies based on 
nalogous machine-learning algorithms and present in the current 
iterature. Finally, since the estimated uncertainties are able to 
roduce a Gaussian statistical co v erage of the analysed data set, we
oncluded that the confidence intervals are perfectly reliable and able 
o allow a vast set of scientific application. To provide an additional
onfirmation of the efficiency and accuracy of our algorithm, we 
pplied the LEMON network to a pilot sample of real lenses
isco v ered in the SLACS surv e y. We found that the algorithm is able
o predict the parameters of each lens without any significant bias and
o provide well-calibrated uncertainties. Ho we ver, the application to 
eal data provided a higher scatter between the real and predicted 
alues when compared to the results obtained on the simulated data 
ets. This issue – most likely explainable with the not-sufficient 
ealism of the simulations in the training set – will be afforded in
etail in the forthcoming papers of the LEMON series. 
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2007, New J. Phys. , 9, 447 

eeton C. R. , Kochanek C. S., Seljak U., 1997, ApJ , 482, 604 
endall A. , Gal Y., 2017, preprint ( arXiv:1703.04977 ) 
ingma D. P. , Ba J., 2014, preprint ( arXiv:1412.6980 ) 
oekemoer A. M. et al., 2007, ApJS , 172, 196 
oopmans L. V. E. , 2005, MNRAS , 363, 1136 
oopmans L. V. E. , Treu T., Bolton A. S., Burles S., Moustakas L. A., 2006,

ApJ , 649, 599 
ormann R. , Schneider P., Bartelmann M., 1994, A&A, 284, 285 
ull M. , Filho T. S., Flach P., 2017, in Singh A., Zhu J., eds, Proc. 20th

International Conference on Artificial Intelligence and Statistics. Vol. 54,
PMLR, Lauderdale, p. 623 

ullback S. , Leibler R. A., 1951, Ann. Math. Stat. , 22, 79 
SST Science Collaboration et al., 2009, preprint ( arXiv:0912.0201 ) 
aureijs R. et al., 2011, preprint ( arXiv:1110.3193 ) 
eCun Y. , Bengio Y., Hinton G., 2015, Nature , 521, 436 
efor A. T. , Futamase T., Akhlaghi M., 2013, New A Rev. , 57, 1 
i R. et al., 2020, ApJ , 899, 30 
ao S. , Schneider P., 1998, MNRAS , 295, 587 
assey R. , Stoughton C., Leauthaud A., Rhodes J., Koekemoer A., Ellis R.,

Shaghoulian E., 2010, MNRAS , 401, 371 
etcalf R. B. et al., 2019, A&A , 625, A119 
apolitano N. R. et al., 2020, ApJ , 904, L31 
ightingale J. W. , Dye S., Massey R. J., 2018, MNRAS , 478, 4738 
guri M. et al., 2006, AJ , 132, 999 
ark J. W. , Wagner-Carena S., Birrer S., Marshall P. J., Lin J. Y .-Y ., Roodman

A., LSST Dark Energy Science Collaboration , 2021, ApJ , 910, 39 
earson J. , Li N., Dye S., 2019, MNRAS , 488, 991 
earson J. , Maresca J., Li N., Dye S., 2021, MNRAS , 505, 4362 
erreault Le v asseur L. , Hezaveh Y. D., Wechsler R. H., 2017, ApJL , 850, L7
etrillo C. E. et al., 2017, MNRAS , 472, 1129 
etrillo C. E. et al., 2019a, MNRAS , 482, 807 
etrillo C. E. et al., 2019b, MNRAS , 484, 3879 
ourrahmani M. , Nayyeri H., Cooray A., 2018, ApJ , 856, 68 
NRAS 522, 5442–5455 (2023) 
efsdal S. , 1964, MNRAS , 128, 307 
yon J. E. , 2022, ACS Instrument Handbook for Cycle 30 v. 21.0. Vol. 21,

p. 21 
caramella R. et al., 2021, A&A , 662, A112 
chneider P. , Ehlers J., Falco E. E., 1992, Gravitational Lenses. Springer,

New York 
chuldt S. , Suyu S. H., Meinhardt T., Leal-Taix ́e L., Ca ̃ nameras R., Tauben-

berger S., Halkola A., 2021, A&A , 646, A126 
chuldt S. , Ca ̃ nameras R., Shu Y., Suyu S. H., Taubenberger S., Meinhardt

T., Leal-Taix ́e L., 2023, A&A , 671, A147 
erjeant S. , 2014, ApJL , 793, L10 
 ́ersic J. L. , 1963, Boletin de la Asociacion Argentina de Astronomia La Plata

Argentina, 6, 41 
hajib A. J. , Treu T., Birrer S., Sonnenfeld A., 2021, MNRAS , 503, 2380 
hu Y. et al., 2017, ApJ , 851, 48 
onnenfeld A. , 2021a, A&A, 659, 11 
onnenfeld A. , 2021b, A&A, 659, 9 
onnenfeld A. , 2021c, A&A , 656, A153 
onnenfeld A. , Cautun M., 2021, A&A , 651, A18 
onnenfeld A. , Gavazzi R., Suyu S. H., Treu T., Marshall P. J., 2013, ApJ ,

777, 97 
onnenfeld A. , Treu T., Marshall P. J., Suyu S. H., Gavazzi R., Auger M. W.,

Nipoti C., 2015, ApJ , 800, 94 
onnenfeld A. , Jaelani A. T., Chan J., More A., Suyu S. H., Wong K. C.,

Oguri M., Lee C.-H., 2019, A&A , 630, A71 
piniello C. , Koopmans L. V. E., Trager S. C., Czoske O., Treu T., 2011,

MNRAS , 417, 3000 
ri v astav a N. , Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.,

2014, J. Mach. Learn. Res., 15, 1929 
ortora C. , Napolitano N. R., Romanowsky A. J., Jetzer P., 2010, ApJL , 721,

L1 
reu T. , 2010, ARA&A , 48, 87 
reu T. , Koopmans L. V. E., 2004, ApJ , 611, 739 
reu T. , Auger M. W., Koopmans L. V. E., Gavazzi R., Marshall P. J., Bolton

A. S., 2010, ApJ , 709, 1195 
reu T. , Dutton A. A., Auger M. W., Marshall P. J., Bolton A. S., Brewer B.

J., Koo D. C., Koopmans L. V. E., 2011, MNRAS , 417, 1601 
egetti S. , Koopmans L. V. E., 2009, MNRAS , 392, 945 
egetti S. , Koopmans L. V. E., Auger M. W., Treu T., Bolton A. S., 2014,

MNRAS , 442, 2017 
ernardos G. , Koopmans L. V. E., 2022, MNRAS , 516, 1347 
irtanen P. et al., 2020, Nat. Methods , 17, 261 
agner-Carena S. , Park J. W., Birrer S., Marshall P. J., Roodman A., Wechsler

R. H., LSST Dark Energy Science Collaboration , 2021, ApJ , 909, 
187 

eaver J. R. et al., 2022, ApJS , 258, 11 
ong K. C. et al., 2020, MNRAS , 498, 1420 

adrozny B. , Elkan C., 2001, in Proc. Eighteenth International Conference
on Machine Learning. ICML’01. Morgan Kaufmann Publishers Inc., San
Francisco, p. 609 

adrozny B. , Elkan C., 2002, in Proc. Eighth ACM SIGKDD International
Conference on Knowledge Disco v ery and Data Mining. KDD ’02.
Association for Computing Machinery, New York, p. 694 

wicky F. , 1937, Phys. Rev. , 51, 290 
e Vaucouleurs G. , 1948, Annales d’Astrophysique, 11, 247 

PPENDI X:  A R C H I T E C T U R E  

he architecture of the LEMON algorithm is reported in Fig. A1 . 

http://arxiv.org/abs/1705.07832
http://dx.doi.org/ 10.1051/0004-6361/202244464 
http://dx.doi.org/10.1088/0004-637X/761/2/170
http://dx.doi.org/10.1093/mnras/stab3386
http://dx.doi.org/10.3847/1538-4357/ac6de4
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1093/mnras/staa1917
http://dx.doi.org/10.1088/1475-7516/2016/11/048
http://dx.doi.org/10.1038/nature23463
http://dx.doi.org/10.1103/PhysRevD.102.103509
http://dx.doi.org/10.1086/113777
http://dx.doi.org/10.3847/1538-4365/ab26b6
http://dx.doi.org/10.1093/mnras/stz272
http://dx.doi.org/10.1088/1367-2630/9/12/447
http://dx.doi.org/10.1086/304172
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1086/520086
http://dx.doi.org/10.1111/j.1365-2966.2005.09523.x
http://dx.doi.org/10.1086/505696
http://dx.doi.org/10.1214/aoms/1177729694
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/1110.3193
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.newar.2013.05.001
http://dx.doi.org/10.3847/1538-4357/ab9dfa
http://dx.doi.org/10.1046/j.1365-8711.1998.01319.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15638.x
http://dx.doi.org/10.1051/0004-6361/201832797
http://dx.doi.org/10.3847/2041-8213/abc95b
http://dx.doi.org/10.1093/mnras/sty1264
http://dx.doi.org/10.1086/506019
http://dx.doi.org/10.3847/1538-4357/abdfc4
http://dx.doi.org/10.1093/mnras/stz1750
http://dx.doi.org/ 10.1093/mnras/stab1547
http://dx.doi.org/10.3847/2041-8213/aa9704
http://dx.doi.org/10.1093/mnras/stx2052
http://dx.doi.org/10.1093/mnras/sty2683
http://dx.doi.org/10.1093/mnras/stz189
http://dx.doi.org/10.3847/1538-4357/aaae6a
http://dx.doi.org/10.1093/mnras/128.4.307
http://dx.doi.org/10.1051/0004-6361/202141938 
http://dx.doi.org/10.1051/0004-6361/202039574
http://dx.doi.org/10.1051/0004-6361/202244325 
http://dx.doi.org/10.1088/2041-8205/793/1/L10
http://dx.doi.org/10.1093/mnras/stab536
http://dx.doi.org/10.3847/1538-4357/aa9794
http://dx.doi.org/10.1051/0004-6361/202142062
http://dx.doi.org/10.1051/0004-6361/202140549
http://dx.doi.org/10.1088/0004-637X/777/2/97
http://dx.doi.org/10.1088/0004-637X/800/2/94
http://dx.doi.org/10.1051/0004-6361/201935743
http://dx.doi.org/10.1111/j.1365-2966.2011.19458.x
http://dx.doi.org/10.1088/2041-8205/721/1/L1
http://dx.doi.org/10.1146/annurev-astro-081309-130924
http://dx.doi.org/10.1086/422245
http://dx.doi.org/10.1088/0004-637X/709/2/1195
http://dx.doi.org/10.1111/j.1365-2966.2011.19378.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14005.x
http://dx.doi.org/10.1093/mnras/stu943
http://dx.doi.org/10.1093/mnras/stac1924
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.3847/1538-4357/abdf59
http://dx.doi.org/10.3847/1538-4365/ac3078
http://dx.doi.org/10.1093/mnras/stz3094
http://dx.doi.org/10.1103/PhysRev.51.290


LEMON 5455 

MNRAS 522, 5442–5455 (2023) 

Figure A1. Schematic representation of the architecture employed in the 
LEMON algorithm. The number of feature maps ‘N’ doubles in each 
convolutional/residual block, while the shape of the input image ‘n’ is 
different for the Euclid and HST mocks. 
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