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26 Abstract

27 Background

28 Type 2 diabetes disproportionately affects individuals of non-white ethnicity through a 

29 complex interaction of multiple factors. Early disease prediction and detection is therefore 

30 essential and requires tools that can be deployed at large scale. We aimed to tackle this problem 

31 by developing questionnaire-based prediction models for type 2 diabetes for multiple 

32 ethnicities.

33 Methods

34 Logistic regression models, using questionnaire-only features, were trained on the White 

35 population of the UK Biobank, and validated in five other ethnicities and externally in 

36 Lifelines. In total, 631,748 individuals were included for prevalence prediction and 67,083 

37 individuals for the eight-year incidence prediction. Predictive accuracy was assessed and a 

38 detailed sensitivity analysis was conducted to assess potential clinical utility. Furthermore, we 

39 compared the questionnaire algorithms to clinical non-laboratory type 2 diabetes risk tools.

40 Findings

41 Our algorithms accurately predicted type 2 diabetes prevalence (AUC=0·901) and eight-year 

42 incidence (AUC=0·873) in the White UK Biobank population. Both models replicate well in 

43 Lifelines, with AUCs of 0·917 and 0·817 for prevalence and incidence. Both models performed 

44 consistently well across ethnicities, with AUCs of 0·855 to 0·894 for prevalence and from 

45 0·819 to 0·883 for incidence. These models generally outperformed two clinically validated 

46 non-laboratory tools and correctly reclassified >3,000 type 2 diabetes cases. Model 

47 performance improved with the addition of blood biomarkers, but not with the addition of 

48 physical measurements.

49 Interpretation

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4476201

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



3

50 Easy-to-implement, questionnaire-based models can predict prevalent and incident type 2 

51 diabetes with high accuracy across all ethnicities, providing a highly-scalable solution for 

52 population-wide risk stratification.

53 Funding

54 This project was funded by the UMCG under project number: PPP-2019_023. The funder had 

55 no role in study design, data collection, and analysis, decision to publish, or preparation of the 

56 manuscript.
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57 Introduction

58 The number of individuals living with type 2 diabetes mellitus (T2D) is rapidly increasing 

59 globally, driven by factors such as aging, urbanization, sedentarism, and the increasing 

60 prevalence of obesity (1). In 2019, diabetes accounted for 66·3 million disability-adjusted life 

61 years (DALYs) and 4·2 million deaths among adults worldwide (2), with disproportionately 

62 steep prevalence and complications among non-white ethnic minorities in low-income and 

63 middle-income countries (3).

64

65 Populations of non-white ethnic backgrounds are disproportionately affected by diabetes, with 

66 a three to five times higher prevalence of T2D than people of White-European background (4). 

67 South Asians, for instance, usually develop T2D five to ten years earlier and experience a two- 

68 to six-fold increased risk of developing T2D compared to White European individuals (5). 

69 Likewise, 23% of Black African-Caribbean individuals with T2D are diagnosed under the age 

70 of 40 years in comparison to only 9% of White Europeans (6). Among the predominantly Arab 

71 population of the Gulf Cooperation Council countries, T2D prevalence has been suggested to 

72 be as high as 25% to 36% when undiagnosed case estimates are included and occurs at a 

73 younger age (7). A previous study in the United Arab Emirates showed a prevalence rate of 

74 adult T2D and undiagnosed diabetes at 25% and 14·8%, respectively (8). Despite the greater 

75 incidence and prevalence of T2D and associated comorbidities in these populations, publicly 

76 available diabetic registries and, validated prediction models for screening or early diagnosis 

77 remain scarce (9). Existing risk prediction tools in these populations have shown only moderate 

78 sensitivity and specificity and are not widely used in clinical practice (10).  

79

80 The clinical value of non-laboratory incident T2D prediction tools is well established; however, 

81 they lack extensive validation in a wide variety of ethnicities (11, 12). Data science and 
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82 specifically Machine Learning (ML), has shown high potential to further improve risk 

83 stratification across a range of clinical applications, including early disease prediction in 

84 diabetes (13). More importantly, ML-based technologies can accommodate population-wide 

85 non-invasive screening, allowing for initial assessments and subsequent referrals (14). Large 

86 population cohorts, such as the UK Biobank (UKB) and Lifelines (LL), constitute a suitable 

87 platform for developing and validating data-driven population risk stratification algorithms. 

88 These biobanks comprise rich anthropometric, lifestyle, and medical information data, as well 

89 as long-term follow-up on disease outcomes of almost 700,000 individuals in total. Of the UKB 

90 participants, circa 82% self-identified as “White” and almost 18% self-identified as having a 

91 different ethnic background, henceforth referred to as “non-white”, such as “East Asian or 

92 South Asian” ancestry, “Black, African, Caribbean, or other Black” ancestries, “Mixed” 

93 ancestries, and “Other” ancestries.

94

95 In this context, we aimed to develop ML models to predict the prevalence and an eight-year 

96 incidence of T2D that could be easily and widely implemented for population screening across 

97 multiple ethnicities. We trained questionnaire-based algorithms in the White population of the 

98 UKB and validated them internally within the non-white ethnic groups and externally in LL. 

99 Finally, we assessed the algorithms’ potential clinical utility against two other ML-based 

100 models and two gold-standard clinical risk models. Herewith, we showcase significantly 

101 enhanced prediction models that can transform primary diabetes care.

102

103
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104 Methods

105 Setting

106 The UKB is the largest longitudinal population-based cohort, consisting of 502,507 

107 participants aged between 37–73 years old, recruited between 2006 and 2010 (15). For the 

108 UKB, ethical procedures are controlled by a dedicated Ethics and Guidance Council 

109 (http://www.ukbiobank.ac.uk/ethics). All participants provided written informed consent prior 

110 to enrollment. The validation cohort, LL, is a comprehensive and prospective White-European-

111 based population cohort from the northern Netherlands. LL contains data from 168,205 

112 participants collected between 2006 and 2013 (16). Similarly, all participants provided written 

113 informed consent prior to enrollment. For a complete overview of the collected data, please see 

114 https://www.ukbiobank.ac.uk/register-apply/ and https://catalogue.lifelines.nl/.

115

116 Type 2 Diabetes Classification

117 In the UKB, T2D diagnoses were assigned based on self-reported T2D, diabetes diagnosed by 

118 a doctor and T2D hospital record annotation based on the International Classification of 

119 Diseases (ICD-9 codes 250.X0, 250.X2, and ICD-10 codes E11.X). Supplementary Table S1A 

120 demonstrates the data fields associated with the age of diagnosis that were employed to 

121 calculate the years until diagnosis from the initial assessment. In cases where more than one 

122 age of diagnosis was reported, the lowest reported age was used. All cases diagnosed before 

123 their assessment center visit were then annotated as prevalent cases, while cases diagnosed 

124 after their assessment were annotated as incident cases.

125

126 In LL, prevalent and incident T2D were annotated based on self-reported T2D (Supplementary 

127 Table S1B). Ages of diagnosis were not asked for during follow-up, and T2D follow-up was 

128 only asked for some assessments (2A, 3A and 3B), while general diabetes follow-up was asked 
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129 for all assessments (1B, 1C, 2A, 3A and 3B). Therefore, we estimated the age of T2D diagnosis 

130 for every incident case by taking the mean of the age the participant had at the assessment 

131 reporting a T2D diagnosis and the age at the previous assessment. To calculate more specific 

132 ages of T2D diagnosis, if an incident case had reported a general diabetes follow-up diagnosis 

133 before their T2D diagnosis, the mean of the age during that assessment and the previous 

134 assessment was used instead to determine the age of T2D diagnosis.

135

136 Both in the UKB and LL, all participants with glucose >7 mmol/L or HbA1c >48 mmol/L but 

137 without diagnosis were annotated as having undiagnosed T2D.

138

139 Input features

140 All categorical features were transformed to one-hot encoding, and the original categorical 

141 feature in numerical format was also kept. Due to the large number of candidate features in the 

142 questionnaire, we performed feature selection: we started with an initial list containing all 

143 features and sub-selected those with an absolute correlation greater than 0·02 to the target 

144 outcome. We then reduced this list to ten features by iteratively extracting the top correlated 

145 feature and regressing this feature from the rest of the features. To allow for external validation, 

146 we mapped the input features from the UKB to their associated or closest available LL feature 

147 (Supplementary Table S2). During feature selection, missing values were imputed using the 

148 mean. To investigate whether adding basic measurement and biomarker features improved 

149 model performance, we added these features to the questionnaire feature pool and performed 

150 feature selection and model training again (Supplementary Table S4). 

151

152 Data preparation
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153 For the prevalence analyses, everyone with glucose >7 mmol/L or HbA1c >48 mmol/L without 

154 a T2D diagnosis was removed from the dataset in an attempt to remove possible undiagnosed 

155 cases. For the incidence analyses, we first removed anyone with diagnosed T2D at baseline 

156 and participants with glucose >7 mmol/L or HbA1c >48 mmol/L. Additionally, we removed 

157 all incident T2D cases with more than eight years until diagnosis and all persons not developing 

158 T2D but not returning to the assessment center after eight years. Because the different inclusion 

159 criteria result in an under-representation of controls, we corrected the incidence in every 

160 ethnicity subset by oversampling the controls to obtain the incidence we observed when 

161 including remeasured participants only.

162

163 Model Training and Testing

164 We set out to predict prevalent and incident T2D across all ethnic groups of the UKB and in 

165 LL using questionnaire-based ML models. Self-reported ethnicity was extracted from the UKB, 

166 and participants were divided into six different ethnicity groups (Supplementary Table S3). We 

167 used Sklearn’s LogisticRegression with default settings for model training on the White ethnic 

168 population group using ten-fold cross-validation (17). The model’s performance was internally 

169 validated in the five other ethnicity categories of the UKB and externally validated in the 

170 independent LL cohort. All input features were normalized by fitting Sklearn’s StandardScaler 

171 on the train set, then using this scaler to scale the features in both the train and test sets.

172

173 Moreover, we validated the non-laboratory clinical concise Finnish Diabetes Risk Score 

174 (FINDRISC) and the clinical Australian Type 2 Diabetes Risk Assessment Tool (AUSDRISK), 

175 which employ 9 and 13 features, respectively, spanning medical history, demographics, 

176 lifestyle, and anthropometrics, to predict incident T2D (11, 12).

177
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178 Statistical Analysis and Risk Stratification

179 The Area Under the Receiver Operating Characteristics (AUC) values and associated CI were 

180 calculated using DeLong’s method from the R pROC package (18). Additionally, AUC curves 

181 were compared to test for significant differences using the DeLong ROC test from the same 

182 package (18). To assess the potential clinical utility of the models across different populations, 

183 we took a two-step approach to risk stratification. First, we compared the ability of all models 

184 to identify individuals at high risk in the general population (including those with and without 

185 diabetes for prevalence, and those who did and did not develop diabetes for incidence). 

186 Youden’s method was used to find the risk threshold yielding the best sensitivity/specificity 

187 balance. In addition to sensitivity and specificity, Positive Predictive Value (PPV) and 

188 Negative Predictive Value (NPV) and the respective Confidence Interval (CI) were calculated 

189 using the R epiR package (19). Then, we simulated another potential application of the 

190 incidence models across the different study populations. We stratified the population into three 

191 risk groups, each with exactly one-third of the incident T2D cases, aiming to identify the 

192 greatest number of individuals that eventually developed T2D during the follow-up period by 

193 screening the smallest possible population. Ultimately, to evaluate the improvement in risk 

194 prediction provided by our models compared to the abovementioned clinical tools we 

195 conducted reclassification analysis by calculating the categorical Net Reclassification 

196 Improvement (NRI) using the R Hmisc package (20). To ensure fair comparisons between 

197 models, we matched the sizes of the risk groups in the clinical models with our own risk groups, 

198 which were determined based on the maximum Youden's index.

199

200 Data and Resource Availability
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201 Study data are available from UKB and LL but were used under license for the current study, 

202 which restricts their public availability. Data are, however, available from the authors upon 

203 reasonable request and when granted permission by the UKB and LL. 

204

205 Code Availability

206 The underlying code for this study is not publicly available but may be made available to 

207 qualified researchers on reasonable request from the corresponding author.

208

209 Results

210 Baseline Characteristics

211 We set out to predict prevalent and incident T2D across all ethnic groups of the UKB and in 

212 LL using questionnaire-based ML models (Fig. 1). The included total group size for prevalent 

213 and incident T2D prediction models was 631,748 and 67,083 individuals, respectively. 

214 Baseline characteristics of the six ethnicity groups and LL are briefly presented in Figure 1 and 

215 in more detail in Supplementary table S4. Of note, the prevalence and incidence rates of T2D 

216 differed greatly between White and non-white populations, with non-white populations having 

217 between two- to almost four-fold higher prevalence (12·2-23·3%) and from half to as high as 

218 three-fold higher incidence (1·4-8·2%), than the White population of the UKB (6% and 2·8%, 

219 respectively). In contrast, LL had a lower prevalence (1·9%) and incidence (1·8%) of T2D 

220 compared to White UKB, in part explained by the age differences between these two 

221 populations.
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222 Figure 1. Workflow showing the steps taken to prepare the data and to create questionnaire-based prediction 
223 models for prevalent and incident T2D. The lower panel shows the means of percentages of some essential 
224 demographic features for the ethnic populations within the UK Biobank and Lifelines (LL).
225

226 Contribution of Questionnaire Features

227 The correlation between different questionnaire features pertaining to nutrition, smoking, 

228 physical activity, medication, and medical history and prevalent or incident T2D for each 

229 population are presented in detail in Supplementary Figures S2A and S2B. The contribution of 

230 each feature to the prevalence and incidence model is shown in Fig. 2A and 2B. Both 

231 prevalence and incidence models put high importance on BMI and the number of medications 

232 taken, positioning them in the top three features of both models. Furthermore, incidence 

233 includes a feature representing to sedentarism (time spent watching television (TV)). We 

234 observe an evident performance saturation with five to six input variables, particularly for 

235 prevalence prediction.
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236 Figure 2. List of features in the prevalence (A) and incidence (B) prediction models and their contribution to the 
237 models’ performance. Below, the performance of different models across populations for prevalence (C) and 
238 incidence (D) is shown. Each color-symbol combination refers to a specific model and population, explained in 
239 detail in the bottom panel. The AUC and 95% CI are shown for all models.
240

241 Performance of Type 2 Diabetes Prediction Models

242 With ten questionnaire features, the performance of prevalence prediction models measured by 

243 their AUC ranged from 0·855 to 0·901 (Fig. 2C and Supplementary Fig. 3A) within the UKB 

244 populations and an AUC of 0·917 in the independent validation cohort LL. For models 

245 predicting incident diabetes in the UKB, AUCs ranged from 0·819 to 0·883 (Fig. 2D and 

246 Supplementary Fig. 3B), while in LL the AUC was 0·817. The detailed performance metrics 

247 of the questionnaire-only models are shown in Supplementary Tables S5A and S5B. 

248

249 Additionally, we performed an exploratory analysis of the potential added benefit of two other 

250 types of models: one including basic physical measurements and one including blood 

251 biomarkers (Supplementary Fig. S4A, S4B, S5A, S5B, S7A, S7B, S8A, S8B). For prevalence 
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252 prediction, including basic measurements significantly improved the performance of 

253 questionnaire-only models for all UKB populations, except for Other, yet lowered the AUC of 

254 LL (Supplementary Table S8A, Supplementary Fig. S10). In contrast, for incidence prediction, 

255 adding basic measurements significantly increased the performance of only two populations, 

256 UKB White and LL, though all populations showed higher AUCs. Including biomarkers led to 

257 a significant improvement in all instances except for incidence prediction among the Black 

258 population, where the Questionnaire-only models seem to yield a marginally higher 

259 performance (Supplementary Fig. S10 and Supplementary Tables S8A, S8B). The feature 

260 importance of these models is shown in Supplementary Fig. S4A, S4B, S7A, S7B. 

261

262 Comparison with non-laboratory clinical risk models

263 We then also compared the questionnaire-only models to two clinically validated non-

264 laboratory risk scores. First, we tested the performance of the concise FINDRISC, developed 

265 as a simple screening tool for individuals at high-risk of developing T2D. We observed that the 

266 questionnaire-based models significantly outperformed FINDRISC for prevalence prediction 

267 in all populations, and they significantly outperformed FINDRISC in four out of seven 

268 populations for predicting incidence (Fig. 2C, 2D, and Supplementary Tables S9A, S9B). 

269 Similarly, the questionnaire-based models significantly outperformed the AUSDRISK models 

270 in all prevalence predictions as well as in three out of seven populations for incidence 

271 prediction (Fig. 2C, 2D, and Supplementary Tables S9A, S9B). In all other instances, there 

272 were no significant differences, however our models yielded overall higher AUCs.

273

274 Sensitivity analysis and clinical utility of risk stratification

275 Finally, we conducted an in-depth sensitivity analysis of the risk stratification for all models to 

276 assess their potential clinical utility (Supplementary Tables S5A, S5B, S6A, S6B, S7A, and 
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277 S7B). Based on the thresholds provided by the Youden index, the questionnaire-only models 

278 obtained very high sensitivity-specificity balance, PPV, and NPV. Both sensitivity and 

279 specificity were consistently high (above 74% and 83% for prevalence, and 75% and 68% for 

280 incidence, respectively) for all populations. The corresponding NPVs for all models were 

281 above 93% and 98% for prevalence and incidence, respectively. For the models including 

282 biomarkers, further improvement in the sensitivity-specificity balance was seen, with a lower 

283 proportion of individuals identified as high risk also translating to higher PPV across the 

284 populations for prevalence and incidence. All corresponding NPVs were above 97% and 99% 

285 for prevalence and incidence, respectively. 

286
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287 In the second step of the analysis, we observed that the questionnaire-only models can identify 

288 small groups of very high risk individuals who eventually developed diabetes during follow-

289 up (Fig. 3). By screening as little as 0·47% to 7·6% of different populations, the questionnaire-

290 only models identified 33% of all individuals who developed T2D. In these high-risk groups, 

291 the average incidence of T2D was at least ten-fold higher compared to the lowest-risk group. 

292 The models also identify 66% of all individuals who developed T2D while screening only 

293 between 11·5% to 23·1% of all individuals across different populations. These slightly larger 

294 groups also show at least a six-fold higher risk across all populations, compared to lowest risk 

295 population. For the two other types of models (with additional physical measurements and the 

296 ones with the addition of biomarkers), the highest risk groups generally showed even higher 

297 average incidence despite the similar size (Supplementary Fig. S6 and S9). For all ethnicities, 

298 66% of incident T2D cases could be identified by screening less than 10% of each population 

299 using the model, including biomarkers.

300 Figure 3. Risk identification for developing T2D. The x-axis represents the interval of years between the biobank 
301 entry and the moment of receiving a diagnosis of T2D. The y-axis represents the incidence of T2D. The stronger-
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302 colored lines represent the group sizes, and the lighter-colored lines show the 95% CI. The bottom-right panel 
303 conceptualizes the risk groups (green, yellow, and red areas), while each group contains 33% of all T2D incident 
304 cases (area under the orange curve).
305

306 Reclassification Analysis

307 Ultimately, the reclassification analysis demonstrates that in almost all cases our models 

308 correctly reclassify more cases than the clinical tools FINDRISC and AUSDRISK. Notably, 

309 for the White, Caribbean, Other, and South Asian populations our models correctly reclassify 

310 more events reaching statistical significance compared to FINDRISC. Compared to 

311 AUSDRISK, our models reach statistical significance among the Whit and Other populations 

312 in correctly reclassifying T2D cases, along with statistically significant NRI values (Table 1, 

313 Supplementary Table S10A). The addition of physical measurements overall reclassifies more 

314 events correctly and seems to perform better in LL, compared to the Questionnaire Models 

315 (Supplementary Table S10B). The models also including biomarkers, outperform the clinical 

316 tools and reach clinical significance in almost all instances (Supplementary Table S10C). The 

317 high/low risk reclassifications, along with NRIs, and reclassification of non-event percentages 

318 are demonstrated in detail in the Supplementary Tables 10A-C.

319

320 Table 1. Reclassification analysis comparing our questionnaire-based models to FINDRISC and AUSDRISK. 
321 Positive reclassification events indicate that our models correctly reclassify more cases than the other two models, 
322 whereas negative events indicate the opposite. Reclassification percentages (%) are represented along with the CI, 
323 as well as the reclassification of events per 10,000 individuals with CI.

Risk model Ethnicity Reclassification events % Reclassification events N per 10,000 P-value

FINDRISC White 6·4 (5·2 – 7·6) 637 (519 – 756) <0·001

FINDRISC Black 2·2 (-5·2 – 9·5) 217 (-518 – 953) 0·6

FINDRISC Caribbean 12·6 (3·7 – 21·5) 1,264 (374 – 2,154) 0·005

FINDRISC East Asian 9·8 (-2·8 – 22·4) 984 (-278 – 2,245) 0·1

FINDRISC Other 14·8 (6·4 – 23·3) 1,481 (637 – 2,326) <0·001

FINDRISC South Asian 12·7 (6·1 – 19·3) 1,269 (610 – 1,928) <0·001

FINDRISC Lifelines -2·8 (-6·3 – 0·7) -279 (-627 – 69) 0·1

AUSDRISK White 5·9 (4·4 – 7·4) 591 (441 – 741) <0·001

AUSDRISK Black 3·4 (-8·2 – 15·1) 345 (-819 – 1,509) 0·6

AUSDRISK Caribbean 5·7 (-3·9 – 15·3) 571 (-389 – 1,532) 0·2
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AUSDRISK East Asian 0 (-16·6 – 16·6) 0 (-1,656 – 1,656) 1

AUSDRISK Other 25·6 (14·7 – 36·6) 2,564 (1,472 – 3,656) <0·001

AUSDRISK South Asian 7·8 (-0·9 – 16·4) 776 (-91 – 1,642) 0·08

AUSDRISK Lifelines 0·4 (-3·7 – 4·4) 38 (-365 – 441) 0·9

324

325 Discussion

326 In this study of over 600,000 individuals, we showed for the first time that questionnaire-based 

327 ML models can accurately predict T2D prevalence and eight-year incidence across all 

328 ethnicities present within the UKB, as well as the LL external validation cohort. For almost all 

329 ethnicities, these models outperformed two established clinically validated T2D risk 

330 assessment tools. Despite the improvement in performance verified with the addition of blood 

331 biomarkers, the questionnaire-only models showed clinical utility for the detection of prevalent 

332 and incident T2D.

333

334 Previous research on the performance of prediction models for incident T2D has shown 

335 substantial differences across ethnicities. A re-estimation of the Atherosclerosis Risk in 

336 Communities (ARIC) model for the prediction of five-year diabetes risk in the Coronary Artery 

337 Risk Development Study in Young Adults (CARDIA) cohort showed significant differences 

338 in performance between White and African Americans (AUC 0·902 vs 0·816) (21). Another 

339 study of 12,043 Black and White individuals focusing on T2D prediction using anthropometric 

340 features and lipid levels reported an AUC of 0·79 (22). In this study, we observed less variation 

341 in the model performances between White and Black individuals for both prevalent and 

342 incident T2D prediction. The models developed herein outperform what has been previously 

343 demonstrated in Black populations, even without glucose as an input feature, and contradict 

344 the results of previous analyses that suggested that risk scores trained in European-descent 

345 population are not applicable to other ethnic groups (22, 23). Additionally, our questionnaire-

346 based models significantly outperformed FINDRISC and AUSDRISK across all seven 
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347 populations for prevalent T2D detection. For incidence, our models outperformed the above-

348 mentioned tools in four populations compared to FINDRISC and three populations compared 

349 to AUSDRISK. This is especially relevant since both FINDRISC and AUSDRISK have been 

350 shown to perform only moderately well in several non-white populations (24, 25), despite 

351 AUSDRISK including ethnicity as an input feature and being intended to be used in the 

352 ethnically diverse Australian population (26). As expected, the addition of blood biomarkers 

353 to the models resulted in further improvements in predictive performance with AUCs generally 

354 above 0·90, mainly due to high correlations conferred by these features (Supplementary Fig. 

355 S7A, S7B, S10). Despite being significant, these improvements in AUC were not substantial 

356 enough to unequivocally justify their deployment over the questionnaire-only models 

357 considering the practical challenges discussed further in detail below.

358

359 As such, the goal of population-level risk stratification is not merely to predict individual risk 

360 accurately but to clearly distinguish groups with different levels of risk (27). To assess the 

361 potential stratification utility of our models, we first optimized their sensitivity-specificity 

362 balance with the Youden index. We found that all models achieved high to very high sensitivity 

363 and specificity for both prevalence and incidence prediction across all ethnicities. Given the 

364 low prevalence and incidence of T2D in White populations, a high specificity and NPV were 

365 expected for the White UKB population and LL. However, specificity and NPV remained high 

366 even in other ethnicities with higher prevalence and incidence rates (Supplementary Tables 

367 S5A, S5B, S6A, S6B, S7A, and S7B). The main difference with the addition of biomarkers 

368 was the increase in PPV, stemming from the lower number of individuals identified as high 

369 risk (between 20% and 29% for questionnaire-only predictions and generally around 18% when 

370 biomarkers were included). However, we also aimed to assess the usefulness of the models in 

371 settings where resources are limited, or population health data is lacking and where it is 
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372 essential to accurately identify as many high-risk individuals as possible while minimizing the 

373 number of screened individuals. In such instances, screening more than a quarter of the 

374 population might be prohibitive from a cost and logistics perspective, hampering the model’s 

375 clinical utility. Herein, we demonstrated that all models can also be applied to identify smaller 

376 groups of individuals at very high risk and that 33% and 66% of all incident diabetes cases can 

377 be identified by screening less than 10% and 23% of the population using the questionnaire-

378 only models, respectively. 

379

380 The data from these two simulated scenarios suggests that while there is a benefit from 

381 including additional measurements in risk stratification models, questionnaire-only models 

382 predict prevalent and incident diabetes with high accuracy and clinical utility. By not being 

383 subject to the practical limitations associated with collecting physical measurements or 

384 biomarkers, a questionnaire-based tool comprises the first step towards identifying an initial 

385 high-risk population that could be referred for subsequent diagnostic or prognostic assessment 

386 in a primary care setting. At a sensitivity and specificity as high as 80%, we see that 

387 questionnaire-only models applied to the largest population we studied, with almost 180,000 

388 White individuals in the UKB training set, would recommend follow-up for less than 40 

389 thousand individuals based on their eight-year risk, and around 65,000 of the more than 

390 300,000 individuals potentially undiagnosed with T2D. In the context of population health 

391 prevention programs, deploying more selective models brings about two advantages. On the 

392 one hand, it requires considerably fewer individuals to be screened to detect a substantial 

393 portion of high-risk individuals. On the other hand, in line with previous research, it has been 

394 shown that such programs are most effective when targeted at a specific outcome, such as T2D 

395 risk reduction, and when including high-risk individuals, as opposed to a non-stratified 

396 population (28). Based on our reclassification analyses, all models developed herein, can 
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397 correctly reclassify predicted T2D cases and in many instances outperform the currently 

398 available models. Of note, our models have demonstrated significantly better net 

399 reclassification improvements and correctly reclassify more events when compared to available 

400 clinical tools. Specifically, when compared to FINDRISC, there is an additional 3,387 positive 

401 cases that are correctly reclassified using our models, per 10,000 events, reaching statistical 

402 significance. Likewise, for the comparisons with AUSDRISK the respective amount of positive 

403 cases that are correctly and significantly reclassified using our models is 3,155 per 10,000 

404 cases.

405

406 Eventually, translating the models presented in this study into population health risk 

407 stratification tools for primary diabetes care is not without challenges. In fact, most digital 

408 health innovations fail to advance into clinical practice or fall short of their anticipated impact 

409 (29). This lack of adoption is often the result of a poor understanding of end-user needs and 

410 inability to integrate the solution into current care frameworks (29). We built questionnaire-

411 only models with the intent that individuals could complete them, potentially digitally, without 

412 requiring invasive biomarker collection or a visit to primary care facilities. While not replacing 

413 a trained clinician's evaluation, a patient-centered tool would facilitate timely screening and 

414 reach a larger audience by eliminating the need for primary care visits in the first phase. 

415 Policymakers have been encouraged to focus on prevention and innovating to enable large-

416 scale diabetes awareness programs (30).

417

418 Overall, our study has several strengths and certain inherent limitations. First, this study 

419 represents the largest hitherto reporting on the performance and potential clinical utility of a 

420 questionnaire-based risk stratification model for prevalent and incident T2D in two biobanks 

421 and across multiple ethnicities. From a modeling perspective, this minimizes the chances of 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4476201

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



21

422 overfitting and provides evidence of the model's validity. Second, we applied strict inclusion 

423 and exclusion criteria, thereby minimizing the risk of including individuals with undiagnosed 

424 T2D. Third, we validated two widely non-laboratory clinical tools, FINDRISC and 

425 AUSDRISK, in all ethnic groups of the UKB and externally in LL, which provides a 

426 comprehensive benchmark for the performance of our models. On the other hand, as with all 

427 self-reported biobank data, ethnicity data may only be partially accurate. Specifically, self-

428 reported ethnic background can be influenced by individual perceptions, cultural and social 

429 factors, and may not always accurately reflect an individual's ancestry and levels of admixture. 

430 Additionally, the categories used to describe ethnicity can differ between countries, making it 

431 difficult to compare results across studies. Lastly, due to the observational nature of this study, 

432 we cannot identify causal relationships between the features included in the models and the 

433 predicted outcomes.

434

435 In conclusion, questionnaire-based ML models predict prevalent and incident T2D in multiple 

436 ethnicities with high accuracy and have the potential to enhance early diagnosis if deployed for 

437 population health screening in primary diabetes care. While biomarker-based models achieved 

438 enhanced performance, the questionnaire-only models produced significantly high and 

439 clinically useful predictions to be considered a valid alternative to these models and the 

440 challenges their large-scale deployment can pose. This is particularly important for populations 

441 of non-white ethnicity who are disproportionately impacted by T2D and for regions with 

442 limited resources and access to primary diabetes care. 
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