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ABSTRACT: A method for analyzing long-term demographic data on
density-dependent stage-structured populations in a stochastic envi-
ronment is derived to facilitate comparison of populations and spe-
cies with different life histories. We assume that a weighted sum of
stage abundances, N, exerts density dependence on stage-specific vital
rates of survival and reproduction and that N has a small or moderate
coefficient of variation. The dynamics of N are approximated as a
univariate stochastic process governed by three key parameters: the
density-independent growth rate, the net density dependence, and en-
vironmental variance in the life history. We show how to estimate the
relative weighs of stages in N and the key parameters. Life history evo-
lution represents a stochastic maximization of a simple function of
the key parameters. The long-term selection gradient on the life his-
tory can be expressed as a vector of sensitivities of this function with
respect to density-independent, density-dependent, and stochastic
components of the vital rates. To illustrate the method, we analyze
38 years of demographic data on a great tit population, estimating
the key parameters, which accurately predict the observed mean, co-
efficient of variation, and fluctuation rate of N; we also evaluate the
long-term selection gradient on the life history.

Keywords: demography, density dependence, environmental vari-
ance, great tit, selection, sensitivity.

Introduction

Following the classical debate on the occurrence of density
dependence in natural populations (Turchin 1995), a vari-
ety of ad hoc statistical methods were developed to detect
density dependence and assess its prevalence among spe-
cies from univariate time series of population size (Bulmer
1975; Pollard 1987; Holyoak 1993; Dennis and Taper
1994). These methods generally have low statistical power
to detect density dependence, producing frequent type I
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and II errors, even for long time series of accurately esti-
mated population sizes (Murdoch 1994; Shenk et al. 1998;
Brook and Bradshaw 2006; Freckleton et al. 2006).

Initial attempts to develop more realistic methods incor-
porated time delays implicitly caused by life history and in-
terspecific interactions (Turchin 1990, 1995; Royama 1992;
Turchin and Taylor 1992; Woiwood and Hanski 1992). A
basic stage-structured life history was incorporated in a
time-delay autoregression to analyze univariate time series
of adult population size for several vertebrate species (Lande
et al. 20024, 2002b, 2003), revealing that interpreting time-
delay coefficients as caused solely by density dependence is
erroneous because they are created by developmental delays
in the life history (Lande et al. 20024, 20025, 2003).

Fluctuations in total population size are driven by envi-
ronmental stochasticity and density dependence in stage-
specific vital rates of reproduction and survival (op. cit.)
but also are influenced by transient fluctuations in stage
structure (Caswell 2001; Lande et al. 2003; Engen et al.
2009). Accurate analysis of the interaction of density depen-
dence and environmental stochasticity therefore requires
the use of stage-structured demographic models. How-
ever, current theory and application of stochastic stage-
structured population dynamics generally ignores density
dependence (Tuljapurkar 1990; Caswell 2001), which then
becomes unrealistically conflated with environmental sto-
chasticity. A wide variety of stage-structured demographic
models including both density dependence and environ-
mental stochasticity have been fitted to particular popula-
tions or life histories, making it difficult to compare them
(Constantino and Desharnais 1991; Takada and Naka-
shizuka 1996; Grant and Benton 2000; Coulson et al. 2001,
2008; Lande et al. 2006; Gamelon et al. 2016, 2019).

Here, we analyze a density-dependent stage-structured
population in a stochastic environment, assuming that all
density dependence in the vital rates is exerted by a func-
tion, g(N), of a weighted sum of stage abundances, N,
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undergoing small or moderate fluctuations around a de-
terministically stable equilibrium, the carrying capacity,
K. We outline statistical methods for estimating the re-
lative weights of stage abundances contributing to N and
density-independent, density-dependent, and stochastic
parameters of the stage-specific vital rates. The numerous
parameters of the vital rates are summarized in three key
demographic parameters governing a univariate approx-
imation for the stochastic dynamics of N. These are the
density-independent population growth rate, « — 1, and
the net density dependence, v, and environmental variance,
02, in the life history. These key parameters facilitate com-
parison among populations and species that differ in life
history and also have a fundamental connection to life his-
tory evolution.

For a density-dependent population in a constant envi-
ronment, MacArthur (1962) showed that evolution maxi-
mizes the population carrying capacity, K. This was extended
to density-dependent age- and stage-structured populations
by Charlesworth (1973, 1994) and Takada and Nakajima
(1992, 1998), revealing that evolution maximizes the equi-
librium abundance of the critical age or stage class(es), a lin-
ear combination of stage abundances that causes density
dependence in the vital rates.

We show here that in a stochastic environment, life
history evolution maximizes the expected value of the
density dependence function affecting the vital rates, ex-
pressed using the key demographic parameters, E[g(N)] =
s/, where s = a — 1 — 02 /2 is the density-independent
stochastic growth rate of the population and + is the net
density dependence in the life history. This reveals that
evolution tends to maximize the stochastic growth rate
and minimize the net density dependence, constrained by
ecological and genetic trade-offs. The long-term selection
gradient on the life history has elements proportional to
derivatives of s/ with respect to density-independent,
density-dependent, and stochastic parameters of the vital
rates. Selection gradient elements can be expressed as a sum
of contributions from sensitivities of the three key demo-
graphic parameters with respect to components of the vi-
tal rates.

To illustrate these concepts, we apply the theory to esti-
mate the net density dependence, environmental variance,
and long-term selection gradient on a great tit life history,
using 38 years of demographic data on fluctuations in the
vital rates.

Stochastic Demography of a Density-Dependent
Stage-Structured Life History

We first show how the stochastic demography of a density-
dependent stage-structured population in a fluctuating en-
vironment can be approximated by a one-dimensional pro-

cess for the weighted population size, N, that exerts density
dependence on the vital rates.

The dynamics of abundances in the column vector of
stage classes, n, are

n(t + 1) = L(g(N), Hn(t), (1a)

where L(g(N),t) = [l;(g(N)) + &;(t)]. The projection
matrix L(g(N), t) has nonnegative elements, the vital rates
of stage-specific annual survival and reproduction, and is
assumed to be irreducible, with distinct nonzero eigen-
values. The expected projection matrix, I(g(N)), has ele-
ments [;(g(N)) involving a density-dependent function
g(N), where N = 5 ,b;n; is a linear combination of stage
abundances with nonnegative weights contained in the
row vector b = (b, b,,...), governing competition for a
limiting resource. The largest weight may be set to 1, or
the sum of the weights could be scaled to a given number,
such as the number of stage classes; if all coefficients are
unity, then N is the actual total population size.

The density dependence function g(N) is assumed to in-
crease monotonically with N, so that an Allee effect, or un-
stable equilibrium at small population size, either does not
exist or can be neglected by assuming that the population
size remains well above the unstable equilibrium popula-
tion size. Thus, we suppose that g(0) — 0 as N — 0 and
that density-dependent elements of I(g(N)) typically de-
crease with increasing N.

We analyze a population subject to an environment
with a stationary distribution and no serial autocorrelation.
Environmental stochasticity in the vital rates has means
E[£;(1)] = 0 and covariances C;;;; = E[£;(t)£/;(t)]. The
population size is assumed to remain large enough (usually
at least a few hundred individuals) that demographic sto-
chasticity, due to random independent events of individual
births and deaths, can be neglected in comparison to envi-
ronmental stochasticity, which affects all genotypes (or
phenotypes) in the same or similar way (Lande et al. 2003).

The carrying capacity of the population, K, is set by the
deterministic equilibrium projection matrix, I(g(K)), such
that its leading eigenvalue is unity, A(g(K)) = 1. The sta-
ble stage distribution and reproductive values are the cor-
responding right (column) eigenvector, u, and the left
(row) eigenvector, v, normalized so that Y ,u; = 1 and
vu = 1, which solve the eigenvalue equations

I(g(K))u = u and vI(g(K)) = v. (1b)

Further analysis of stochastic population dynamics
and evolution is based on linearization of the expected
projection matrix to separate density-independent and
density-dependent components of the vital rates by Taylor
expansion in powers of g(N):



al;
ag (N) |n=k .
(2a)
Substituting the linearized vital rates (eq. [2a]) into the first

eigenvalue equation (1b) and premultiplying both sides by
v yields A(g(K)) = o —vg(K) = 1, so

li(g(N)) = oy — v;g(N)  withy; = —

-1
g(K) = %~ wherea = vAuand v = vI'u, (2b)
Y

with A = (o;) and I' = (v;) representing matrices of
density-independent and density-dependent components
of the vital rates.

For an element of the deterministic equilibrium projec-
tion matrix, [;(g(K)), denote perturbations due to fluctu-
ating population size and environment as 6;(g(K)) =
v;[g(N) — g(K)] + £;(t). The sensitivity of A(g(K)) to
such perturbations is vu; (Caswell 2001, eq. [9.12]). Thus,
the leading eigenvalue of the stochastic projection matrix,
L(g(N),t), is approximately

Mg(N), 1) = A(g(K)) + > vl (g(K))

= o — vg(N) -1{- £(t), where £(t) = vE(t)u.
(3a)

The term £(f) is the environmental stochasticity in net
reproductive value, and E(t) = (&;(t)) represents the
matrix of environmental stochasticity in the vital rates
(eq. [1a]).

Premultiplying both sides of equation (1a) by v, the dy-
namics of fluctuations around the deterministic equilibrium
can be reduced to a stochastic process for net reproduc-
tive value, V(t) = vn(t), using the approximate eigen-
value equation vL(g(N), t) = A(g(N), t)v, givingV(t + 1) =
A(g(N),t)V(t), in which neglected terms are net second
order (Engen et al. 2009; Lion 2018). Transforming to a
log scale, denoting AlnV = InV(¢t + 1) — InV(¢), and ex-
panding InA(g(N), t) in a Taylor series around the deter-
ministic equilibrium, A(g(K)) = 1, produces

AlnV = InA(g(N),t)
=0+ Ag(N),t) — 1 —%[)\(g(N),t) -1+ -
(3b)

Assuming small fluctuations of N around K (so that
[ — vg(N) — 1] < 1 and E£*(t) = 02 < 1), this yields
a stochastic process with approximate moments
E[AInV|N] =a—1—02/2—vg(N), Var[AlnV|N]=o?
(3¢)
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where ¢ = Z Z vitivyuy Cpy. (3d)

iy

The term o7 is the environmental variance in the growth
rate of net reproductive value.

The expected change in equation (3c) differs in three ways
from the approximate stochastic growth rate of a density-
independent population, r — 02/2 (Tuljapurkar 1982,
1990; Caswell 2001), most importantly by the last term, the
product of the net density dependence in the life history, v,
and the density dependence function, g(N). The environ-
mental variance o7 (eq. [3d]) differs from that of Tulja-
purkar (1982, 1990), which includes a factor of 1/A* but
with density dependence A(g(K)) = 1, so this factor
vanishes. Finally, instead of r, the deterministic density-
independent growth rate here, « — 1 = vAu — 1,is for a
population in discrete time, corresponding to e — 1 =
r+r*/2 + -+ but with eigenvectors v and u of the ex-
pected projection matrix evaluated at N = K instead of
N <K

The corresponding stochastic difference equation is

AlnV = o — 1 — 02/2 — yg(N) + £(t), (3e)

with E[£(¢)] = 0 and Var[£(t)] = o?. This motivates the
statistical method described below for estimating the key
demographic parameters.

In the long run, the expected change in InV is zero, and
averaging both sides of equation (3e) through time gives
the expected value of the density dependence function:

_a—1—0/2

E[g(N)] (4)

Comparison with the deterministic equilibrium in a con-
stant environment (eq. [2b]) shows that environmental
stochasticity decreases the expected population size below
K, in agreement with previous theory (Lande et al. 2003,
2009, 2017; Engen et al. 2013).

Other statistics of the population distribution can be
derived by reducing the process to a single dimension.
Appendix A shows that the log of any positive linear
combination of stage abundances increases at the approx-
imate asymptotic rate of the log of the leading eigenvalue
of the stochastic projection matrix. Similarly, it was previ-
ously known for density-independent populations that
any positive linear combination of stages increases asymp-
totically at the density-independent stochastic growth rate
(Tuljapurkar 1982; Caswell 2001; Engen et al. 2007, 2009).
We can therefore replace V with N in equations (3b), (3¢),
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and (3e), rendering the process one dimensional while
maintaining the correct density dependence function:

E[AInN|N] =a—1—02/2—vg(N), Var[AInN|N] = 0.
(5a)

The stationary distribution of N and its moments can be
derived using a continuous-time diffusion approximation
(Karlin and Taylor 1981; Lande et al. 2003) with infinites-
imal mean and variance in equation (5a), as for the sto-
chastic theta-logistic model (Diserud and Engen 2000).
Simulations show that this approach accurately describes
the stationary distribution of N for r < 0.1 (Lande et al.
2017). The present theory using o — 1 instead of r should
remain accurate under higher density-independent growth
rates, o — 1 < 2, with the upper limit set by the require-
ment for deterministic stability of K. The diffusion ap-
proximation is not employed in equation (4) or in the sta-
tistical procedure below for estimating the demographic
parameters.

Neglecting demographic stochasticity and Allee effects
at small population sizes, the stationary distribution exists
when the density-independent stochastic growth rate is
positive, s = o — 1 — 02/2 > 0. With linear density de-
pendence, g(N) = N, the stationary distribution of N
has mean, variance, and coefficient of variation (Lande
et al. 2017)

E[N] = (1 — a)K,

| a o: (5b)
CVN = m, where a = m

The diffusion formula for E[N] agrees with the discrete-
time formula (eq. [4]) under linear density dependence with

K = (o = 1)/ (eq. [2b]).

oy = a(l — a)K?,

Statistics for Parameter Estimation

We outline a basic three-step procedure for estimating
parameters of the linearized density-dependent projec-
tion matrix (eq. [2a]).

Step 1: Establish net density dependence and estimate
relative weights. Before conducting a detailed analysis of
long-term demographic data, it is necessary to first estab-
lish that significant net density dependence exists in the life
history. A simple regression analysis based on the discrete-
time recursion (eq. [3e]) suffices to estimate the net density
dependence, v, and the relative weights, b;, of stages in the
weighted population size, N = > ,b;n,. Assuming the den-
sity dependence function is linear, g(N) = N, and writing
AlnV = InA(N, t), equation (3e) becomes a linear mul-

tiple regression of annual values of InA on the corre-
sponding stage abundances, 7;:

InA =s— 'yz bin; + €. (6a)

Annual values of InA in this regression should be calculated
from the dominant eigenvalue A of the projection matrix es-
timated from annual demographic data. The regression
constant, s, is the density-independent stochastic growth
rate, and € is a random residual with mean 0 that includes
both environmental and demographic variance. The partial
regression coefficient of n; is —yb;, and one of the weights, b;
(or their sum), can be chosen arbitrarily as a scaling factor,
determining +y and the relative weights from the estimated
partial regression coefficients. If the fraction of the variance
in InA among years explained by the regression, R, is sig-
nificant, then net density dependence exists in the life his-
tory, justifying a more detailed analysis. We emphasize that
this is not an autoregression of a population time series and
only uses stage abundances as independent variables to ex-
plain annual variation in In A from projection matrices con-
taining vital rates estimated separately each year.

Step 2: Estimate density dependence in stage-specific vi-
tal rates. The estimated relative weights, b;, canbe used ina
separate univariate regression of annual estimates for each
vital rate on annual values of N to estimate the density-
independent and density-dependent coefficients «; and
7;; using the linearized form (eqq. [1a], [2a]):

Ly = aj = v;N + € (6b)

where ¢; is a stage-specific residual with mean 0 that
includes environmental and demographic variance. The
stage-specific regressions must be checked to ensure that
they do not predict negative vital rates (or survival rates
exceeding 1) within the observed range of N.

The carrying capacity, K, is obtained from the leading ei-
genvalue of the expected projection matrix at equilibrium
I(g(K)) = A —I'g(K), solving A(g(K)) = 1usingg(K) =
K (eq. [2b]). The right and left eigenvectors of I(g(K)) are
respectively the stable stage distribution # and reproductive
values v, normalized so that > ,u; = 1 and vu = 1. The
net density dependence (eq. [2b]) is then y = vI'u, which
should agree closely with the initial estimate from step 1.

Nonlinear regression or generalized linear models with
nonlinear link functions (log reproduction and logit sur-
vival) could be employed to guarantee that fitted vital rates
are nonnegative (with survival not exceeding 1) across the
observed range of N. For example, Takada and Naka-
shizuka (1996) use log-linear regression to fit exponential
density dependence functions for the vital rates. Taylor ex-
pansion of the vital rates around the deterministic equilib-
rium at N = K as a linear function of g(N) would then



be necessary to estimate the coefficients «;, v;, and C;
(eqq. [1a], [2a], [3d]) required to calculate the key param-
eters, o — 1, v, and o?.

Step 3: Estimate environmental covariance matrix of
vital rates. For distinct vital rates [; and I, the estimated
environmental covariance is simply the observed covari-
ance of residuals from the regressions (eq. [6b]), assum-
ing that demographic stochasticity operates indepen-
dently among the vital rates (Engen et al. 1998; Lande
et al. 2003; Sether et al. 2004):

C;sy = Elezery]

ij,i'j

for ij # 7. (6¢)

The environmental variance of each vital rate, [;, can be
estimated from the variance of residuals in the regression
minus the average demographic stochasticity:

Cij,ij = E[Eé] - E[O'gl,ij/n}']' (6d)

The term 07, is the variance of individual survival or fecun-
dity for vital rate [; in each year, and n; is the corresponding
stage abundance. Because #; is in the denominator, large
sampling errors in the estimated environment variances
can be avoided by combining into a single terminal stage
the oldest, rarest age classes with age-specific abundances
too small to accurately estimate vital rates and density depen-
dence. This procedure is common in demographic models
of species with determinate growth, where stages are de-
fined by age and fecundity plateaus or declines at mature
ages, as in many birds and mammals (Caswell 2001). Exces-
sive condensation into fewer stages can, however, produce
inaccurate population dynamics because it ignores hetero-
geneity among ages combined in a single stage, particularly
for species with indeterminate growth, where stages are de-
fined by size and fecundity continually increases with size,
as in many plants (Maloney 1986; Rojas-Sandoval and
Meléndez-Ackerman 2013; Doak et al. 2021).

These ANOVA estimates are unbiased, but for life histo-
ries with more than a few vital rates this method is likely to
produce a physically impossible estimate of C, with some
negative eigenvalues (Hill and Thompson 1978). We there-
fore employed a maximum likelihood method using the
covariance matrix of residuals and the vector of demo-
graphic stochasticities, with Cholesky decomposition of
the environmental correlation matrix, to guarantee a pos-
itive semidefinite estimate of C (Chen and Dunson 2003;
Pourahmadi 2007).

Standardized Density Dependence

To compare populations or species with different carrying
capacity, Lande et al. (20024, 2002b, 2003, 2006) defined the
net density dependence per unit time as the negative elastic-
ity of the leading eigenvalue, A, to change in population size,
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N, at the deterministic demographic equilibrium. From the
eigenvalue of the projection matrix (eq. [3a]), this is

]

PR, _

_ dg(K)
oInN Iv=xa=1 — :

AN In=x -7 dK
(72)

Because our statistical method assumes a linear (or linear-
ized) density dependence function, the standardized net
density dependence is simply 4/ = K. The same stan-
dardized scaling can be applied to density dependence in
the vital rates, 7;; = Kr;. If the actual density dependence
function is nonlinear but linear regressions on N are used
in estimation (eq. [6b]), then the factor dg(K)/dK is im-
plicitly incorporated in the estimates of density depen-
dence coefficients and their standardized values.

Standardized net density dependence, v/, gives the ex-
pected rate of return of N to its equilibrium or average size
(Lande et al. 20024, 2002b, 2003, 2006). This entails a con-
dition for deterministic stability of K in discrete time,
Y = o — 1< 2 (eq. [5a]). Standardized density dependence
measures also have the advantage that whatever arbitrary
scaling is chosen for the relative weights, b, determining
N (after eq. [1a]), this cancels out after multiplying by K.

For interspecific comparisons of net density dependence,
when species differ in life history, further scaling by gener-
ation time, T, may be used to give the net density depen-
dence per generation, Ty' = TK+y (Lande et al. 20024,
2002b, 2003, 2006; Gaillard et al. 2005; Seether et al. 2005),
where T is the mean age of mothers of a newborn cohort
at the deterministic equilibrium. Caswell (2001, chap. 5)
summarizes how to calculate T for a general stage-structured
demography.

A simple expression for T can be derived for a commonly
used stage structure similar to the Leslie matrix, with age-
specific fecundities f, in the first row, annual survival prob-
abilities s, on the subdiagonal, and ages 7 > w combined in
a terminal stage with survival s, in the last row and column
(e.g.,eq. [8]). Using a prebreeding census, first-year survival
so implicitly multiplies all fecundities (avoiding for most
species the description of sibling competition), and the
probability of survival to age 7is [, = [[/=}s; for 7> 1, de-
fining I, = 1 (Caswell 2001). Since A = 1 at demographic
equilibrium, the generation time is

w—1

T=Zrl,f,+llwf“ (w+ S ) (7b)

— S, 1-—s,

T=1

Demographic Parameter Estimates for a
Great Tit Life History

Demographic data were collected over 38 years on a
population of great tits (Parus major L.) in Hoge Veluwe
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National Park in the Netherlands (Sather et al. 2016b;
Gamelon et al. 2016). The area consists of mixed pine-
deciduous woodland on poor sandy soils. To ensure that
availability of artificial nest sites did not limit population
size, a surplus of nest boxes was provided (Grotan et al.
2009). The adult survival rate of great tits in this population
is strongly dependent on the beech crop cycle (Perdeck
et al. 2000), and population fluctuations in this species
are caused by a combination of density dependence and
environmental stochasticity, especially due to variation in
beech crops and winter temperatures (Perrins 1965; Slag-
svold 1975; Seether et al. 2007). In this population there
is density-dependent selection on reproductive traits (See-
ther et al. 2016b), and immigrants strongly affect popula-
tion dynamics (Grotan et al. 2009).

The minimal sex dimorphism, as well as the similarity of
male and female mean life histories in great tits (Clobert
et al. 1988), justifies focusing on female life history as the
main determinant of population dynamics, as usual in
female-biased demography (Caswell 2001). The data were
analyzed using an annual prebreeding census common in
avian demography. The oldest ages were combined in a
terminal stage, producing a projection matrix with three
stages, for individuals aged 1, 2, and 3 or more years, with
the projection matrix

fi fr fs
L=<s1 0 0). (8)

0 s, s

Recruitment rates in the first row represent the product
of fecundity and survival to age 1 (Caswell 2001). Total
recruits of both sexes were counted and then multiplied
by 0.5 to produce female recruits per adult female in each
age class, assuming an even sex ratio at fledging and no sex
difference in survival. Observed recruitment rates across
all years were multiplied by a common immigration fac-
tor, m = 2.988024, to balance emigration of nearly three-
fourths of fledglings out of the study area, determined by
setting the long-run density-dependent growth rate of the
population to zero, EInA = 0, consistent with the ob-
served lack of trend in the time series of actual population
size for breeding females in figure 1. For statistical analysis
of the demographic data, we used a linear density depen-
dence function, g(N) = N, which is justified because the
observed fluctuations in actual population size were not
very large; moreover, the regressions of InA and the vital
rates on N in figures 2 and 3 appear to be approximately
linear.

Step 1: Net density dependence and relative weights.
Multiple regression of InA from annual projection matri-
ces on —'nyzlb,ni (eq. [6a]) for 38 years of data from
the great tit population showed that the initial estimate
vb; = —0.00396647 was slightly negative but far from sig-

250
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Figure 1: Weighted population size, N = Zlehin, (solid line),
and actual population size, N, = > i_,n; (dashed line), over 38 years
in the great tit population.

nificant (P = .64); because the initial estimate was negative,
which is biologically unrealistic, we set b; = 0 and reran
the regression, which only slightly changed the remain-
ing estimates: yb, = 0.01354864 (P = .00009) and vb, =
0.00886644 (P = .21). A maximum likelihood method
applied to In(yb,), constraining the weight coefficients to
be nonnegative, produced nearly the same results. We scaled
the relative weights so that their sum equaled 3 (the num-
ber of stages), giving the relative weights (b,,b,,b;) =
(1.813329, 1.186671,0).

Univariate regression of InA on weighted N, illustrated in
figure 2, was very highly significant (slope = —0.00747169,
P = .00004, adj. R* = 0.36), indicating substantial den-
sity dependence in the great tit life history, measured by
the estimated slope, v = 0.00747169 (95% confidence in-
terval: 0.00426-0.01069). This prompted us to complete
the demographic sensitivity analysis. The intercept of the
univariate regression estimating the density-independent
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Figure 2: Regression of InA from annual projection matrices on
weighted N for the great tit population. The gray area is the 95% con-
fidence region for the regression line.
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Figure 3: Regressions of recruitment and survival rates, f; and s;, on weighted N for the great tit population. Gray areas are 95% confidence

regions for the regression lines.

stochastic growth rate (eq. [6a]), s = 1.2191, also was very
highly significant (P = .00004). Figure 1 illustrates the time
series for actual population size, N,, and weighted popula-
tion size, N, over 38 years for the great tit population.

Step 2: Density dependence in stage-specific vital rates.
Univariate regressions of vital rates on weighted N all had
highly significant positive intercepts, the density-independent
components, o;. Estimated slopes, —v;, were all negative,
reflecting density dependence that in all but one case was
significant, with adjusted R* and P values in table 1. Den-
sity dependence of the vital rates is depicted in figure 3.
Density dependence in the stage-specific recruitments is
much stronger than in the survival rates.

The deterministic projection matrix [(g(K)) = A—
I'g(K) with leading eigenvalue A(g(K)) = 1 was used with
g(K) = K to determine the carrying capacity. Nonzero
elements of A and I' appear in table 1, and we obtain the

estimated carrying capacity K = 183.62. The right and left
eigenvectors of [(g(K)) are the stable stage distribution u
and reproductive values v, normalized so that > u, = 1
and vu = 1. These were estimated as the column vector
u = (0.601587,0.239026,0.159387)", where the super-
script T indicates transpose, and the row vector v =
(0.974525,1.15287,0.866898). The deterministic density-
independent growth rate and the net density dependence
(eq. [2b]) were then estimated as o — 1 = vAu — 1 =
1.39665 and y = vI['u = 0.00760619.

Step 3: Environmental variance-covariance matrix.
Initially, all demographic variances for stage-specific re-
cruitment (eq. [6d]) were multiplied by the square of the
immigration factor, m?, because up to this point only the
stage-specific mean recruitments in each year had been
corrected for immigration (see after eq. [8]). The envi-
ronmental covariance matrix, C, estimated by analysis

Table 1: Estimated density-independent and density-dependent parameters, o; and v, of
recruitment and survival rates, f; and s, from regressions on weighted N

Rate o ¥i P Adj. R
h 1.72366 .00650092 .0002 .306
f 1.83804 .00585470 .0116 141
f 1.64701 00553938 .0039 187
S 707262 .00168792 .0006 265
S, 742178 .00147056 .0169 125
S3 418691 .00069034 1779 .024
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of (co)variance (eqq. [6¢], [6d]), produced a matrix with
two small negative eigenvalues. The maximum likelihood
estimate using Cholesky decomposition produced a posi-
tive semidefinite estimate of C with two eigenvalues near
zero. Estimated environmental (co)variances of vital rates,
with corresponding correlations, are displayed in table 2.
Environmental variances in stage-specific recruitment are
considerably larger than variances in survival, which can
be partly, but not fully, explained as a scale effect because
the mean values of recruitment are larger than those of sur-
vival (fig. 3). Environmental correlations among the vital
rates are all substantially positive. The environmental co-
variance matrix produced an estimate of the environmen-
tal variance in population growth rate (eq. [3d]), ¢ =
0.199707.

Accuracy of the Theory and Parameter Estimates

As a check on the accuracy of the theory and adequacy of
the data, estimates of the net density dependence, v, and
the density-independent stochastic growth rate, s, obtained
in step 1 were compared with formulas using the density-
independent and density-dependent parameters of the
expected vital rates estimated in step 2 and their environ-
mental (co)variances estimated in step 3. We then estimated
from the theory the mean and coefficient of variation of N
and the expected rate of fluctuations around the mean and
compared these predictions with observed population sta-
tistics in the 38 years of observation.

The net density dependence in the life history was es-
timated from the univariate regression in step 1 as vy =
0.00747169. This agrees within 2% compared with the
v = vI'u = 0.00760619 estimated in step 2 (eq. [2b]).

The estimated carrying capacity, K = 183.62, was ob-
tained from the leading eigenvalue of the deterministic
equilibrium projection matrix, setting A(g(K)) = 1 using
linear density dependence g(K) = K. This necessarily
matches exactly the identity K = (o — 1)/ (eq. [2b]) us-
ing the estimates of o and 7y from step 2.

The density-independent stochastic growth rate, s, esti-
mated from the univariate regression in step 1 was s =

1.21906. This is about 6% smaller than s = o — 1 —
02/2 = 1.29679 estimated using o — 1 = 1.39665 from
step 2 and o7 = 0.199893 from step 3.

The standardized net density dependence (eq. [7a]), us-
ing the estimated +y from step 2,isy’ = Ky = 1.39665. In
a constant environment, values in the range 1 <4’ <2
predict damped oscillations in N with successive dimin-
ishing overshoot and undershoot of K, on a timescale for
expected return of N to its average value, 1/, less than
1 year. This strong net density dependence accords with
observed rapid fluctuations of N around its average value
(fig. 1).

The expected weighted population size, E[N], is less than
its deterministic equilibrium, K, because of environmental
and demographic stochasticity (Lande et al. 2003). Ac-
counting only for environmental stochasticity (eqq. [4],
[5b]), using o7 = 0.199707 estimated in step 3, the ex-
pected population size predicted by equation (4) is E[N] =
170.48. Including the demographic stochasticities with
the environmental variances (eqq. [6¢], [6d]; Lande et al.
2003; Seether et al. 2004; Engen et al. 2009) slightly reduced
the prediction to 168.86. These predictions of E[N] are
within about 4% of the observed mean weighted popula-
tion size, N = 163.16.

The coefficient of variation of N predicted from dif-
fusion theory (eq. [5b]), using the estimates of « and o7,
is CVy = 0.2776. The observed CVy = 0.2828 is within
2% of the estimate.

Life History Evolution in a Stochastic Environment

Evolution in fluctuating (st)age-structured populations is
generally described most accurately using reproductive-
value-weighted mean phenotype to remove transient ef-
fects of age structure fluctuations (Fisher 1958; Engen
et al. 2014; Lion 2018). This is precluded by defining the
mean life history phenotype in a population as the vector,
z, of stage-specific vital rate parameters, o, v, and C;y,
or the quantitative traits underlying them. Coupled to the
stochastic demographic process (eq. [5a]), the expected rate

Table 2: Estimated environmental (co)variances of vital rates, C;, in upper triangular matrix,

with two-digit correlations below the diagonal

Rate fi f f 5 S S3

h .149405 .151463 139466 .023770 .016787 .016061
£ .76 264974 140525 .027208 032312 .025764
f 97 .73 138002 .020572 .019900 .014642
S .67 .58 .60 .008413 .006604 .005870
S, 41 .60 51 .68 .010982 .006069
S3 .61 73 .58 94 .85 .004667




of evolution of the mean phenotype, z, is (Lande 1982, 2007;
Engen et al. 2013; Lande et al. 2017)

E[AZ|z,N] = gVEln)\. (9a)

The term G is the additive genetic covariance matrix of the
phenotypes, T is the generation time (average age of moth-
ers of newborns at the deterministic demographic equilib-
rium), V is the selection gradient operator (column vector
of partial derivatives with respect to elements of z), and
ElnA = o — 1 — 02/2 — yg(N) is the density-dependent sto-
chastic growth rate of the population (eqq. [3b], [3¢]). This
can be reexpressed using the density-independent stochas-
tic growth rates = o« — 1 — 02/2:

G
E[Az|z,N] = T [Vs — g(N)V~v]. (9b)

The first term in brackets, Vs, appears identical to the se-
lection gradient for fluctuating density-independent selec-
tion (Lande 2007) but with density-dependent selection
and stage structure; s contains eigenvectors u and v of the
deterministic equilibrium projection matrix, I(g(K)).

Assuming that evolution of the mean phenotype is slow
compared with the timescale for population fluctuations,
averaging the expected evolution over the stationary dis-
tribution of population size, and substituting E[g(N)] from
equation (4) produces the expected selection gradient gov-
erning long-term evolution of the life history, conditioned
only on z:

G s

E[AZ|z] = ?W(;)- (9¢)
This shows that the long-term average selection grad-
ient is yV(s/7). Because y must be positive, the expected
long-term evolution of a density-dependent population in
a fluctuating environment is a stochastic maximization of
E[g(N)] = s/v, as illustrated by simulations in Engen
et al. (2013). For theta-logistic density dependence, g(N) =
N, life history evolution maximizes E[N’], and for logis-
tic density dependence, § = 1, evolution maximizes E[N]
(Lande et al. 2017).

Under a stationary distribution of environments, the
long-term average growth rate of a density-dependent
population must be zero, which after an initial transient
period can be improved slowly if at all by evolution. The
long-term average rate of evolution (eq. [9¢]) also must
be near zero, but nevertheless there may be a substantial
long-term average selection gradient on the life history.
This can occur if the G matrix is singular, lacking additive
genetic variance in the prevailing direction of selection,
when G incorporates ecological trade-offs manifested in
genetic constraints among characters. A genetic correla-
tion between characters that opposes their directions of se-
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lection retards evolution and is known as antagonistic se-
lection. Genetic constraints for life history characters often
appear as negative genetic correlations between major com-
ponents of fitness selected in the same direction, such as
survival and reproduction, or early and late reproduction;
a positive genetic correlation constrains the evolution of
characters selected in opposite directions, such as intrinsic
rate of increase and environmental variance (Lande 1982;
Charlesworth 1994; Mueller 1997; Travis et al. 2013; Seether
et al. 2016b; Lande et al. 2009, 2017). Even in the absence of
additive genetic variance for a combination of characters in
the direction of the selection gradient, measurable natural
selection can occur based on nonheritable phenotypic vari-
ance caused by the environment and developmental noise
(Haldane 1954; Lande and Arnold 1983).

Demographic Sensitivities in the Long-Term
Selection Gradient

Sensitivity analysis is an important tool in demography,
describing how population growth rate responds to small
changes in age- or stage-specific vital rates of survival and
reproduction (Caswell 2001, 2019). Previous theory for
density-independent age-structured populations in a con-
stant environment established that evolution maximizes
the population growth rate, A, and that the selection gradi-
ent governing life history evolution is composed of demo-
graphic sensitivities of A to changes in the vital rates (Lande
1982; van Tienderen 2000). Here, we extend these evolu-
tionary interpretation of demographic sensitivities as selec-
tion coefficients to life history of a density-dependent pop-
ulation in a stochastic environment.

Long-Term Selection Gradient

For evolution of the life history, the elements in the long-
term average selection gradient yV(s/7y) are demographic
sensitivities to perturbations in the vital rate parameters
(eq. [9¢]). Focusing on a single element in the long-term
selection gradient and substituting « — 1 = g(K)y in s =
o — 1 — 02/2, the sensitivity to a vital rate parameter—
X = ay, ¥y or Cyyy—is

2 2
as/v) _ Yag(K) _ 1902 a9y (10)
o0x 0x 2 0x 2yox
Simple formulas are given below for the sensitivity of g(K)
to change in «; or 7; and for the sensitivity of o7 to change
in C;. Sensitivities of v and o2 to perturbation in «; or
7; are more complex, involving eigenvector sensitivities
(app. B). Numerical sensitivities also can be obtained by
perturbing x to x + 6x; recomputing perturbed values of



566 The American Naturalist

K, u, and v to find y + &v; and approximating the sensi-
tivity by &y/6x and similarly for 607 /6x.

Sensitivity of g(K) to oy and y;

The sensitivities of g(K) to perturbation in o or 7y, are
derived in appendix B:

ogK) _ vy 8K _

V:U;
—o(K) . 11a
doy; ¥ oy £ (11a)

y
The first formula agrees with the sensitivity of K de-
rived by Takada and Nakajima (1998) and Caswell (2001,
eq. [16.111]), who included a factor dg(K)/dK in v, (as
after eq. [7a]). They did not distinguish perturbations in
a; and y;. The sensitivity of g(K) to perturbation in -;
is —g(K) times the sensitivity to c;, as evident from equa-
tion (2a).

Sensitivity of % to Cyyy

The sensitivity of the environmental variance to a per-
turbation in the environmental (co)variance of vital rate(s),
Czj,i’j’; is

do:
= (2= Sy )viuviuy, (11b)
9C,07 i j Vit
where 6;;; = 1if ij = i'j and zero otherwise, which ac-

counts for the symmetry of the environmental covariance
matrix, C;y = Cyy; (Caswell 2001, eqq. [14.110], [14.111]).
The simplicity of this formula arises because the eigenvec-
tors, u and v, at the deterministic equilibrium do not depend

on environmental stochasticity.

Sensitivity Analysis of the Great Tit Life History

Using the estimated density-independent and density-
dependent coefficients of the vital rates, c; and v; in ta-
ble 1, we calculated elements in the long-term selection
gradient on the great tit life history, the sensitivities to
each these coefficients, and their component contributions
(eq. [10]), as shown in tables 3 and 4.

Table 5 displays sensitivities to environmental (co)var-
iances in the long-term selection gradient, yd(s/vy)/
dC;sy = —(1/2)00%/9C;;; (eq. [10]). Off-diagonal sensi-
tivities include a factor of 2, accounting for symmetry of C
including contributions from C,; and Cyy; (eq. [11b]); the
lower off-diagonal terms are not shown because they are
included in the upper off-diagonal terms.

The last column of tables 3 and 4 and the diagonal en-
tries in table 5 reveal that within each group of sensitivi-
ties, those to parameters of first-year survival and recruit-
ment are the largest. This occurs primarily because all
three age classes have similar reproductive values, but the
abundance of 1-year-olds far exceeds that of 2-year-olds
or the 3-year-and-older class (see step 2 of great tit param-
eter estimates).

For sensitivities to deterministic parameters of the vital
rates, o; and v;;, the largest contribution arises from the
sensitivity of carrying capacity, which in table 3 is simply
viu; and in table 4 is —Kvu; (eq. [11a]). Sensitivities to en-
vironmental (co)variances, C;, in table 5 for the variances
are —(v; uj)2 /2 and for the covariances are —vauviu;. Thus,
when the sensitivities for two environmental variances are
about equal, the sensitivity for their corresponding covari-
ance is about twice as large. This explains why in table 5
the largest sensitivity is that for the covariance of first-year
survival and recruitment.

Relative Sensitivities in the Long-Term
Selection Gradient

The sensitivity of g(K) to v; is larger than that to o; by a
factor of g(K) (eq. [11a]), and in tables 3-5 the sensitivities
to density dependence coefficients +y; dominate all the other
sensitivities. This occurs because y;; and the net density de-
pendence 7y are rather small when K is large.

To better compare the selection intensity acting on demo-
graphic parameters and to render them all dimensionless,
the long-term selection gradient acting on the logarithms
of demographic parameters can be employed. Instead of
the element of the long-term selection gradient yd(s/v)/
ox (eq. [10]), one would use yd(s/v)/dlnx = yxd(s/v)/
ox.

Table 3: Sensitivities to o; in the long-term selection gradient and their components (eq. [10])

h .58626 —.03913 .01801 56512
f 23294 .01255 —.00312 24236
f3 .15533 .03777 —.01566 17743
S, .69355 —.04031 .00402 .65726
S, 20721 .01130 —.00543 21309
S3 13817 .03369 —.01570 .15616
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Table 4: Sensitivities to v, in the long-term selection gradient and their components (eq. [10])

h —107.649 7.1887 4.3969 —96.064
f —42.772 —2.3045 3.6343 —41.442
fs —28.521 —6.9345 4.9166 —30.539
S —127.350 7.4021 8.3756 —111.572
S, —38.048 —2.0753 3.7192 —36.404
S —25.371 —6.1855 4.6979 —26.859

Logarithms are valid only for positive parameters. All
nonzero density-independent coefficients «; must be posi-
tive, but density-dependent coefficients v; can be negative
with social facilitation of reproduction or survival in highly
social species or because of Allee effects in small popula-
tions. Even if some 7; are negative, a stable deterministic
K > 0 still exists when the net density dependence is pos-
itive, y > 0. Environmental variances must be positive; en-
vironmental covariances usually will be positive (as in ta-
ble 2) but in some cases may be negative. A small increase
in an environmental covariance C;;; increases o, regard-
less of whether C;;; is positive or negative. For negative
demographic parameters, x < 0, the relative sensitivity mea-
sure that preserves the sign of the sensitivity is y|x|d(s/v)/
ox.

Elements in the long-term selection gradient are deriva-
tives of the density-dependent stochastic growth rate, EInA,
averaged over the stationary distribution of N (eqq. [9a]-
[9¢]). Thus, without further scale transformation, relative
sensitivities in the long-term selection gradient correspond
to traditional elasticities, dlnA/dlnx = (x/A)dA/dx (Cas-
well 2001, 2019; van Tienderen 2000; Hereford et al. 2004;
Matsumura et al. 2012).

Relative Sensitivities in the Great Tit Life History

For the great tit population, all of the demographic param-
eters in tables 1 and 2 are positive. We therefore compare
their relative sensitivities in the long-term selection gradi-
ent on their logarithms in tables 6 and 7. The relative sen-
sitivities for the density-independent parameters, the ele-
ments of the selection gradient on In e, are all positive and
of larger magnitude than those on the density-dependent

Table 5: Sensitivities to C;; in the long-term selection gradient, —(1/2)do?/0C

parameters In+y;, which are all negative. The relative sensi-
tivities on the environmental (co)variances are all negative
with yet-smaller magnitudes. Relative sensitivities for first-
year recruitment and survival have magnitudes larger than
those for age 2 or stage 3.

Discussion

We analyzed the dynamics of a density-dependent stage-
structured population, assuming a stationary distribution
of environments, with density dependence in the vital rates
exerted by a function g(N) of a weighted sum of stage
abundances, N = ) ;b;n;. The multivariate dynamics of
stage abundances, 1, can be approximated by a univariate
stochastic process for N governed by three key demographic
factors: the density-independent growth rate & — 1; the net
density dependence, +; and environmental variance, o7, in
the life history. Similar results were previously derived for
populations with small density-independent growth rate,
r £ 0.1, and weak density dependence and were shown by
simulation to be accurate for small or moderate fluctuations
in N (Lande et al. 2017). More generally, the present theory
allows any density-independent growth rate and strength of
density dependence, still assuming small or moderate fluc-
tuations around a deterministically stable equilibrium, with
coefficient of variation CVy 5 0.3.

These results motivate a novel statistical analysis for long-
term demographic data to estimate the relative weights of
stages in N; the density-independent and density-dependent
parameters, c; and 7;; and the environmental (co)variances,
Ci» of the vital rates. These coefficients determine the pop-
ulation carrying capacity, K; the stable age distribution and
reproductive values, u and v, at equilibrium when N = K;

i

Rate fi f f 5 S S3

il —.17185 —.13656 —.09106 —.40660 —.12148 —.08101
f —.02713 —.03618 —.16155 —.04827 —.03219
f —.01206 —.10773 —.03219 —.02146
S —.24051 —.14371 —.09583
S, —.02147 —.02863

S3

—.00955
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Table 6: Relative sensitivities to Inc; and Iny; in the
long-term selection gradient

Rate S(IST% S%j

f .97407 —.62450
£ 44548 —.24263
f 29223 —.16917
St 46485 —.18833
s, .15815 —.05353
S; .06538 —.01854

and the key demographic parameters. Estimation of the key
parameters facilitates quantitative comparison of popula-
tions and species with different carrying capacities and life
histories.

Most previous studies assuming that a weighted popu-
lation size, N, exerts density dependence on the vital rates
made a priori assumptions about the weights, b; (Takada
and Nakashizuka 1996; Grant and Benton 2000; Coulson
et al. 2001, 2008; Lande et al. 2002a, 2002b; Sather et al.
2005, 2016a). In contrast, our statistical analysis (step 1;
eq. [6a]) employs multiple regression of InA on stage
abundances to estimate the relative weights, vb,. If the re-
gression is significant, then net density dependence exists
and the relative weights can be determined by choosing
an arbitrary scale factor (e.g., fixing their sum), which be-
comes incorporated in N (step 2). The inverse of this scale
factor is absorbed in +y and in density-dependent coefficients
for the vital rates, v;. The arbitrary scale factor vanishes in
the standardized net density dependence, ¥ = K, giving
the expected rate of return of N to equilibrium after a small
perturbation (eq. [7a]).

For the great tit population, the estimated relative weights
of stages in N decrease strongly for the older stages, (b,
by, b;) = (1.813329,1.186671,0), indicating that 1-year-
olds exert the strongest density dependence on population
growth, 2-year-olds exert an intermediate density depen-
dence, and individuals three or more years old exert no
density dependence. Gamelon et al. (2016) analyzed the
same data divided into four life history stages, using Bayes-
ian methods and allowing all possible interclass density-

Table 7: Relative sensitivities to InC;;; in the long-term selection gradient, —(1/2)do?/01InC

ipij

dependent effects, and obtained similar results, which they
interpreted as being caused by young first-time breeders
competing most strongly for breeding territories, com-
pared with older individuals with established territories.
In contrast, our analysis assumes that a single linear com-
bination of stages exerts all the density dependence and
condenses the description of the stochastic dynamics of
N into a few key parameters, revealing additional informa-
tion on population dynamics and selection on the life his-
tory, discussed below. Our great tit data analysis employed
a linear density dependence function, g(N) = N, entailing
that @ — 1 = Ky (corresponding to r = + in the classical
logistic model; Lande et al. 2003). Thus, there are only two
independent key parameters describing the great tit popu-
lation dynamics, the standardized net density dependence,
v, and the environmental variance o?.

Previous analyses of stage-structured density depen-
dence (Takada and Nakashizuka 1996; Grant and Ben-
ton 2000; Coulson et al. 2001, 2008; Gamelon et al. 2016,
2019) did not estimate environmental (co)variance in the
vital rates separated from fluctuations caused by density
dependence and demographic stochasticity. The environ-
mental covariance matrix of vital rates estimated for the
great tit population (table 2) displays substantial environ-
mental variance in all of the vital rates, with moderate or
high correlations especially among stage-specific recruit-
ments and among stage-specific survival rates. We estimated
a large environmental variance in population growth rate,
with standard deviation o, = 0.447. We also found strong
standardized net density dependence, ¥/ = 1.397, corre-
sponding deterministically to damped oscillations around a
stable equilibrium, consistent with the observed rapid rate
of population fluctuations in figure 1. The great tit popu-
lation has a moderate coefficient of variation (observed
CVy = 0.2828) because strong net density dependence
limits the impact of high environmental variance in pop-
ulation growth rate (eq. [5b]).

Estimates of the key parameters predicted with remark-
able accuracy the observed mean and coefficient of variation
of the weighted population size of the great tits, given that
the population is not closed (and neglecting stochasticity

iiilf

Rate h £ f s S S5

h —.02568 —.02068 —.01270 —.00966 —.00204 —.00130
f —.00719 —.00508 —.00440 —.00156 —.00083
f —.00166 —.00222 —.00064 —.00031
S —.00202 —.00095 —.00056
S, —.00024 —.00017

S3

—.00004




in dispersal). These results reflect the high quality and long
time span of the data and help to confirm the accuracy of
the univariate approximation to the stage-structured dy-
namics, even for populations with a strong net density de-
pendence and large environmental stochasticity.

Life history evolution maximizes E[g(N)] = s/v, where
s = o — 1 — 02/2 is the density-independent stochastic
growth rate (eq. [9¢]). For the theta-logistic model of
density dependence, g(N) = N’ (Gilpin and Ayala 1973),
evolution maximizes E[N’]. For § = 1, the density depen-
dence is logistic (linear) and evolution maximizes E[N].
This extends to stochastic stage-structured populations
the finding of MacArthur (1962) that evolution in a con-
stant environment maximizes the population carrying ca-
pacity, K.

Long-term demographic data can be used to estimate de-
mographic sensitivities, which are elements in the long-
term selection gradient on the life history, yd(s/vy)/ox,
where x = a;, v;, or Cyy. Each of these elements is the
sum of component sensitivities for the key demographic
parameters (eqq. [2b], [10]).

In the great tit data, the dominant component of the sen-
sitivities to cy; or v, is contributed by the sensitivity of car-
rying capacity, K (tables 3, 4). The largest sensitivities are
those for first-year recruitment and survival, f, and s,. In
view of the simple formulas for sensitivities of K (eq. [11a]),
which are proportional to v, this occurs mainly because
the individual reproductive values at the three stages are
similar but the stable stage distribution has many more in-
dividuals of age 1 than age 2 or stage 3 (great tit parameter
estimates step 2). The largest sensitivities to C; in the great
tits are those for the variances and covariance in first-year
survival and recruitment (table 5), for the same reason
(eq. [11DB]).

Sensitivities to density-dependent parameters, vy;, have
much larger magnitude (and opposite sign) than those to
density-independent parameters, «; (tables 3, 4), primarily
because vy, is much smaller than ; for the great tits (table 1).
This must occur when the carrying capacity is large, as
evident in the main component of these sensitivities: the
sensitivity of K to vy, is —K times as large as that to o
(eq. [11a]). To compare sensitivities for parameters of dif-
ferent magnitude, we calculated relative sensitivities using
the logarithms, yd(s/7y)/dlnx (tables 6, 7). The largest rel-
ative sensitivities to Incy; and Invy; are still those for first-
year survival and recruitment. However, for every vital rate
the relative sensitivity to the density-independent param-
eter Inoy; is larger than that to the density-dependent pa-
rameter Invy;. Relative sensitivities to InC;;;; are generally
smaller than those to Ine; and Iny;;, but among the envi-
ronmental (co)variances the largest relative sensitivities
are to the variance of first-year recruitment and its covari-
ance with the other recruitments and first-year survival.
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These results show that for the great tits the density-
independent and density-dependent parameters of first-
year survival and recruitment, as well as the environmental
variance of first-year survival, are subject to the strongest
long-term selection in the life history, with density-
independent and density-dependent parameters of the vi-
tal rates more strongly selected than their environmental
(co)variances.

Extensions and limitations. Environmental stochas-
ticity parameterized as noise around a deterministic equi-
librium, interacting with nonlinear density dependence
(when g(N) has sufficient negative curvature), can increase
the means of vital rates, the long-run growth rate (Lande
et al. 2003), and mean population size. Environmental
stochasticity itself also may be density dependent (Lande
etal. 2003). However, when parameterized as noise around
the mean vital rates, even with nonlinear density depen-
dence, environmental stochasticity always decreases the
long-run growth rate compared with that of the average
projection matrix (eq. [3c]; Caswell 2001; Lande et al. 2003),
reducing the mean population size. In any case, the as-
sumption of linear density dependence in vital rates, ap-
proximated by Taylor expansion around their mean values,
estimated using linear regression (step 2) allows estimation
of a few key demographic parameters that accurately de-
scribe the dynamics of populations with a small or moder-
ate coefficient of variation.

We expect additional insights into population dynamics
and life history evolution to emerge from application of
our methods to comparative demography among species
with simple life cycles. When life history differs between
the sexes, with density dependence in their vital rates de-
pending on a single combination of female and male stage
abundances, the foregoing methods can be applied to a
two-sex projection matrix (Caswell 2001; Engen et al.
2005). The present theory is not applicable to species with
complex life cycles involving distinct density dependence
functions at different stages (e.g., Berven 2009), for which
the population dynamics cannot generally be approximated
as a univariate process.
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APPENDIX A

Asymptotic Growth Rate of InN

The stochastic projection matrix L(g(N),t) has eigen-
values denoted as A;(g(N), t), with associated right (col-
umn) eigenvectors 1 and left (row) eigenvectors v nor-
malized so that v?u? = 1if i = jand zero otherwise. The
Perron-Frobenius theorem for real matrices with nonneg-
ative elements guarantees that the leading eigenvalue with
the largest modulus, A(g(N),t) = A,(g(N), 1), is real and
positive, and the associated eigenvalues u = 4" and
v = v have real nonnegative elements. Some of the other
eigenvalues may be complex, occurring in complex conju-
gate pairs, with associated complex eigenvectors.

For small fluctuations in the weighted population size,
N, around its deterministic equilibrium, K, the eigenvec-
tors of L(g(N),t) can be approximated by those for the
deterministic equilibrium projection matrix, [(g(K)) =
A —T'g(K) (eq. [2a]), with deterministic eigenvalues or-
dered by decreasing modulus. A derivation analogous to
that for equation (3a) produces the approximation for the
associated eigenvalues,

M(g(N), 1) = o — y0g(N) + £°(t), where

o = yOAUD, 40 = yOTyo, £0(r) = vOE(Hu?. (Ala)
These eigenvalues satisty the approximate eigenvalue equa-

tions v?L(g(N), t) = A,(g(N), )v?, so premultiplying both
sides of the projection equation (1a) by v gives

VOt +1) = M(gN), )VO(t),  with VO(t) = vn(t).

(Alb)
The dynamics of any positive linear combination of

stage abundances, N, = cn, can derived by premulti-
plying both sides of equation (la) by the row vector

¢ = (¢1,6,-..), using the eigen decomposition of the pro-
jection matrix, L(g(N),t) = > _;A(g(N), t)u®v?, yielding

Nt +1) = > e L(g(N), HVO(1).
This with equation (A1b) produces

N() = cu ﬁ A(gN), 1)V (0),

7=0

where the weighted population size, N = bn, also implicitly
changes with time. Environmental stochasticity and fluctu-
ation in N (eqq. [1a], [2a]) can cause some of the eigenvalues
at any time to violate the usual ordering by decreasing
modulus, compared with the fixed order of eigenvectors
associated with eigenvalues of the deterministic equilib-
rium projection matrix. However, the stochastic eigenvalue
associated with the leading eigenvectors, u and v, must al-
ways have the largest modulus (with expectation 1), giving
the asymptotic result

lim N.(t) = cu H Ag(N), IV(0).  (A2)

7=0

Transforming this to a log scale yields the stochastic differ-
ence equation

[h_{r}o AlnN, = InA(g(N), 1). (A3)
Thus, in the long run, the growth rate of the log of any
positive linear combination of stage abundances approxi-
mately equals the log of the leading eigenvalue of the sto-
chastic projection matrix. We can then choose ¢ = b and
N. = N to produce a one-dimensional stochastic differ-
ence equation (5a) useful for analysis of the stationary dis-
tribution of N.

APPENDIX B

Sensitivities in the Long-Term Selection Gradient

Sensitivities of g(K), 07, and v to perturbations in param-
eters of the vital rates are components of elements in the
long-term selection gradient (eq. [10]), derived below.
Sensitivity of g(K). The deterministic projection matrix
at equilibrium, I(g(K)) = A — I'g(K) (eq. [2a]), has lead-
ing eigenvalue A(g(K)) = a — g(K)y = 1 (eq. [2b]), and
differentiating this with respect to o gives

ov ou

T Au+vAZ + v,

o0 u+v 5, an

ov ou 0g(K)
— o) Zru+ ) - =0
8 )<8a,j ey aa,-,-) ooy
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Rearranging and using the eigenvalue equations (1b)
produces

dg(K
—l(g(K))u + vl(g(K)) Y-y g((x ) _ o
1}
ov ou 0g(K)
Ut v—ty = 0.
and aa,,” Vaoz,-j " 0, doy;; =0

The first two terms are the derivative of v = 1, so they
sum to zero, yielding the first solution, and an analogous
derivation produces the second solution, as evident from
equation (2a):
0g(K) Vil

dg(K
= and =>— =
doy; ¥ 9v;

—g(K)%. (B1)

The first formula agrees with the sensitivity of K derived
by Takada and Nakajima (1998) and Caswell (2001,
eq. [16.111]), who included a factor dg(K)/dK iny; (as after
eq. [7a]). They did not distinguish perturbations in o;;;and ;.

Sensitivity of oZ. The sensitivity of the environmental
variance (eq. [3d]) to a perturbation in the environmental
(co)variance of vital rate(s), C;;, is given by equation (11b).

Perturbation of x = «,, or v, influences the envi-
ronmental variance through the eigenvector sensitivities

derived below (eqq. [B6a]-[B6c]):

aoe _ ZZ [av

Sensitivity of . The sensitivity of  to perturbations
in a component of a single vital rate, x = «,, or Y., can
be obtained from

V/urcl],/]/ (BZ)

a'y av Jdu
=—Tu+w'— B3
aauh aaah aaab ( a)
N oy du
=_—Tu+ F—+vu B3b
a’Yab a’Yab a’Yub " ( )

This requires eigenvector sensitivities du/dx and dv/ox,
accounting for density-dependent constraints among ele-
ments of [(g(K)), contained in the perturbation matrices
ol/ox (Caswell 2001, eqq. [9.131], [9.132]):

(B4)

These formulas involve A,,, the eigenvalues of [ ordered
by decreasing modulus. Associated left and right eigen-
vectors denoted by superscript (m) are scaled so that
vOu = 6, where 6; = 1 if i = j and zero otherwise.
We suppress the subscript for the leading eigenvalue
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and the superscript for the leading eigenvectors, writing
A=A =1, with v® = vand u® = u.

A change in a parameter of a vital rate, x = «,, or
Yar» perturbs not only that vital rate but also all other vital
rates that are density dependent. Using equations (2a) and
(B1), the perturbation matrices are

%lab = (6,7,,”, - %vauo and

where 6;,, = 1 if ij = ab and zero otherwise. Substi-
tuting dl/da,, into equations (B4) yields the eigenvector
sensitivities:

- vy
Vo Uy — V.U
ou _ Z Y M(m), (B6a)
aO{ub o 1-— )\m
o vIu™
ov Vol Y V.U
— = v, B6b
aO{ab 1- )\m ( )

m>1

A similar derivation using equations (B3b) and (B4) with
0l/9vy,, shows that

ou ov ov
= —9(K)— and — = —g(K)—.
a’Yuh ( ) aaah a’Yah g( )

These eigenvector sensitivities complete the solutions for
sensitivities of o7 (eq. [B2]) and v (eqq. [B3a], [B3b]).
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