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We propose a Bayesian model averaging (BMA) approach for inferring the structure of 
Gaussian Bayesian networks (BNs) from incomplete data, i.e. from data with missing 
values. Our method builds on the ‘Bayesian metric for Gaussian networks having score 
equivalence’ (BGe score) and we make the assumption that the unobserved data points 
are ‘missing completely at random’. We present a Markov Chain Monte Carlo sampling 
algorithm that allows for simultaneously sampling directed acyclic graphs (DAGs) as well 
as the values of the unobserved data points. We empirically cross-compare the network 
reconstruction accuracy of the new BMA approach with two non-Bayesian approaches for 
dealing with incomplete BN data, namely the classical structural Expectation Maximisation 
(EM) approach and the more recently proposed node average likelihood (NAL) method. For 
the empirical evaluation we use synthetic data from a benchmark Gaussian BN and real 
wet-lab protein phosphorylation data from the RAF signalling pathway.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Bayesian networks (BNs) are a flexible and powerful statistical tool, not only for describing but also for learning the 
dependence relations among interacting variables [1,2]. In BNs the variables are considered to be the nodes of a directed 
acyclic graph (DAG) whose edges encode the conditional dependency relations among them. Inferring the DAG from data, 
which is often referred to as ‘BN structure learning’, is a challenging task. This is, because the number of possible DAGs 
grows super-exponentially in the number of nodes [3], and the acyclicity constraint does not allow this task to be decom-
posed and to be solved in parallel. In the literature many different approaches for BN structure learning have been proposed. 
It can be distinguished between so called ‘constraint-based’ approaches (see e.g. [4–6]) and ‘score-based’ approaches. The 
latter group of score-based approaches features methods that search for the ‘best’ (highest scoring) DAG (see e.g. [7–10]) 
as well as Markov Chain Monte Carlo sampling methods that aim at Bayesian model averaging (BMA) by generating DAG 
posterior samples (see e.g. [11–15]). Also hybrid BN structure learning approaches have been proposed; see, e.g., the recent 
works by Scutari et al. [16] and Kuipers et al. [17] which combine constraint- and score-based approaches. For an impres-
sively exhaustive recent review of 61 different BN network structure learning algorithms we refer to the work by Kitson 
et al. [18].

The works cited above all have in common that they assume the data to be complete without any missing values. 
However, in practical applications the data might be incomplete what renders the above approaches inapplicable. The BN 
structure learning task gets much more challenging when data are incomplete. For incomplete data not only the network 
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structure but also the missing data points have to be inferred from the observed data points. A classical but still widely-
applied approach for learning Bayesian networks from incomplete data is the so called structural EM algorithm invented by 
Friedman [19]. The structural EM searches for the best DAG in terms of a penalized likelihood inside an Expectation Max-
imisation (EM) algorithm [20]. Another conceptually easier approach is to employ penalized node-average log-likelihoods 
(NALs) which can be computed from locally complete observations. In the context of discrete Bayesian networks the NAL 
approach has been invented by Balov [21] and recently been extended to Gaussian Bayesian networks by Bodewes and 
Scutari [22]. In particular, it has been shown [21,22] that the NAL approach is consistent and competitive to the structural 
EM. In Section 4 we briefly review the structural EM and the NAL approach. Over the years, of course, also many other 
BN structure learning methods for incomplete data have been proposed in the literature. An overview can be found in a 
work by Scutari [23]. Without any claim to completeness, we would like to mention here four more approaches, namely 
(i) the Bayesian structural EM from Friedman [24] that searches for the DAG that maximizes a Bayesian score rather than 
a penalized likelihood, (ii) the variational Bayesian EM approach from Beal and Ghahramani [25] which approximates the 
marginal likelihood in the presense of missing data, (iii) the auxiliary variable approach by Adel and de Campos [26], and 
(iv) the novel ‘anytime algorithm’ (k-MAX) from Scanagatta et al. [27]. Although a variety of approaches for BN structure 
learning from incomplete data has been proposed in the literature, to the best of our knowledge, all the proposed methods 
have in common that they search for one single ‘best’ (highest-scoring) DAG. In this paper we follow a different route and 
propose a Bayesian model averaging (BMA) approach for inferring Gaussian Bayesian networks from incomplete data. Our 
new Bayesian method builds on the well-known ‘Bayesian metric for Gaussian networks having score equivalence’ (BGe 
score) of Geiger and Heckerman [28] and we present a Markov Chain Monte Carlo (MCMC) sampling algorithm that extends 
the structure MCMC sampler [11,12], so as to allow for simultaneously sampling directed acyclic graphs (DAGs) as well as 
the values of the unobserved data points from the posterior distribution.

This paper is organized as follows: In Section 2 we review the Bayesian approach for learning the structure of Gaussian 
BNs using the classical structure Markov Chain Monte Carlo (MCMC) sampling technique. As the standard approach assumes 
that the data are complete, we show in Section 3 how to extend the Bayesian framework to incomplete data. The newly 
proposed BMA approach and its MCMC sampling scheme allows Gaussian BNs to be posterior sampled from incomplete 
data. In Section 4 we briefly review two competing non-Bayesian methods for handling missing data in BNs. In Section 5
we present the results of an empirical study in which we compare the performances of the competing approaches in terms 
of their network reconstruction accuracies. In Section 6 we conclude with a short discussion.1

2. Bayesian network (BN) learning from complete data

In this section we review Gaussian Bayesian networks (BNs) and the classical Bayesian model averaging (BMA) approach 
of learning BNs from data. We make the assumption that the data are complete; i.e. do not have any missing data points. 
In Section 3 we extend the Bayesian approach such that it can also be used for inferring BNs from incomplete data.

2.1. Bayesian networks (BNs) and directed acyclic graphs (DAGs)

BNs use directed acyclic graphs (DAGs) to describe the dependencies among random variables X1, . . . , Xn . Each variable 
Xi becomes a node of the DAG and the directed edges among the n nodes encode the conditional (in-)dependence relations. 
Xk is called a parent node of Xi if there is a directed edge Xk → Xi from Xk to Xi , and we let πG(i) denote the set of all 
parent nodes of Xi implied by the DAG G . Hence, we have Xk ∈ πG(i) if and only if Xk is a parent of Xi in G . Moreover, 
we call Xk an ancestor node of Xi if there is a directed path (i.e. a sequence of directed edges) leading from Xk to Xi , 
symbolically Xk → . . . → Xi . The acyclicity constraint bans directed paths of the form Xi → . . . → Xi , which are referred to 
as cycles. In an acyclic graph no node Xi can be its own ancestor.

In BNs any given DAG G implies conditional (in-)dependence relations such that the joint distribution factorizes into a 
product of n local conditional distributions of the form:

p(X1, . . . , Xn|G) =
n∏

i=1

p(Xi |πG(i)) (1)

We call a DAG complete if it possesses the maximal number of edges; i.e. n(n −1)/2 edges. A complete DAG GC encodes that 
the n random variables are pairwise mutually dependent, i.e. that there are no conditional independence relations. In the 
absence of conditional (in-)dependence relations, the probability chain rule implies that there are n! possible factorizations:

p(X1, . . . , Xn|GC
τ ) =

n∏
i=1

p(Xτ (i)|Xτ (1), . . . , Xτ (i−1)) (2)

1 The title of this work was inspired by the title of a work by Friedman and Koller [13].
2
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where τ (.) can be any of the n! permutations of the integers {1, . . . , n}. That is, there are n! complete DAGs and each can 
be identified with a permutation τ (.). The parent node sets are: πGC

τ
(τ (i)) = {Xτ (1), . . . , Xτ (i−1)}.

With regard to Section 3.2 we notice the following: For each possible local conditional distribution Xi |π (i), where π (i) ⊂
{X1, . . . , Xn}\{Xi} is an arbitrary parent set, we can find a permutation τ such that Xi |π (i) appears as local conditional 
distribution of the complete DAG GC

τ .2

2.1.1. Learning Bayesian networks (BNs) from data
The goal of BN structure learning is to infer DAGs from data. As different DAGs impose different conditional (in-)depen-

dence relations, and so different factorizations in Equation (1), the marginal likelihood P (D|G) of observed data D depends 
on the specific DAG G . We assume that the available data set D consists of N observations, D = {x1, . . . , xN }, where each 
observation x j ∈Rn is a realisation of the random vector X := (X1, . . . , Xn)T .

Following the Bayesian paradigm, we get for the DAG posterior distribution:

P (G|D) = P (D|G)P (G)

P (D)
(3)

where P (G) is the prior probability for DAG G and P (D) = ∑
G�

P (D|G�)P (G�) is a normalization constant with the sum 

being across all possible DAGs G� . Since P (D) does not depend on G , we have:

P (G|D) ∝ P (D|G)P (G)

In the absence of genuine prior knowledge about the DAG, we assume all DAGs to be equally likely apriori, symbolically 
P (G�) = c for all G� .

In Section 2.2 we briefly review the Gaussian BGe score from Geiger and Heckerman [28–31], which allows the marginal 
likelihood P (D|G) to be computed analytically. Markov Chain Monte Carlo (MCMC) sampling techniques can then be used 
to generate DAG samples from the posterior in Equation (3). From the sampled DAGs the marginal posterior probabilities 
of so called ‘edge features’ can be estimated. For example, an estimator for the marginal posterior probability that there is 
an edge connection between the nodes Xi and X j is the proportion of sampled DAGs that have these two nodes connected 
(either via the edge Xi → X j or via the edge Xi ← X j). For more details on the MCMC algorithm, edge features and their 
marginal posterior probabilities we refer to Section 2.3.

2.1.2. DAG equivalence classes and score equivalence
Different DAGs can impose the same conditional (in-)dependence relations among X1, . . . , Xn . Two DAGs G1 and G2 that 

impose the same conditional (in-)dependence relations are called equivalent, and we have:

p(X1, . . . , Xn|G1) =
n∏

i=1

p(Xi |πG1(i)) =
n∏

i=1

p(Xi |πG2(i)) = p(X1, . . . , Xn|G2)

DAGs therefore fall into equivalence classes, such that the DAGs within each equivalence class encode the same conditional 
(in-)dependence relations among the nodes [32]. For example, there are n! complete DAGs GC

τ . They are equivalent to each 
other, as each complete DAG implies that there are no conditional (in-)dependence relations among the nodes, i.e. that the 
n variables are pairwise mutually dependent.

The existence of DAG equivalence classes makes it challenging to statistically model BNs. As two equivalent DAGs G1
and G2 state the same about the conditional (in-)dependence relations, it is required that they yield the same (marginal) 
likelihood, P (D|G1) = P (D|G2). A modelling approach that fulfills this requirement is said to yield ‘score-equivalence’. To 
the best of our knowledge, there are only two Bayesian approaches that yield score equivalence: the discrete BDe score 
from Madigan and York [11] and the Gaussian BGe score from Geiger and Heckerman [28]. Our focus is on the Gaussian 
BGe score, and we briefly review it in Section 2.2.

Chickering [33] shows that two DAGs are equivalent if and only if they have the same skeleton and the same v-structures 
and that the DAG equivalence classes can be represented by ‘completed partially directed acyclic graphs’ (CPDAGs).3 The 
DAGs within one equivalence class and the corresponding CPDAG share the same skeleton. But unlike the DAGs, the CPDAG 
possesses a mixture of directed and undirected edges. A directed edge Xi → X j in a CPDAG indicates that all DAGs within 
the equivalence class agree on this edge direction, while an undirected edge Xi − X j in a CPDAG indicates that the DAGs 
within the equivalence class have the corresponding two nodes connected but disagree about the edge direction, i.e. some 
DAGs have the edge Xi → X j while others have the oppositely oriented edge Xi ← X j .

2 Let j := |π (i)| denote the cardinality of the parent set π(i), then select any permutation τ with: {Xτ (1), . . . , Xτ ( j)} = π (i), and Xτ ( j+1) = Xi .
3 The skeleton of a DAG G is obtained by replacing all directed edges by undirected edges. A v-structure is the constellation of two edges converging on 

a node Xk → Xi ← Xl without any edge between the parents Xk and Xl .
3
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2.2. The Gaussian BGe score

The ‘Bayesian metric for Gaussian networks having score equivalence’ (short: BGe score) from Geiger and Heckerman 
[28–31] can be used for modelling BNs among Gaussian distributed random variables. We briefly review the BGe score in 
this subsection. A more detailed exposition of the BGe score can be found in Section S1 of the supplementary paper.

2.2.1. Gaussian likelihood and parameter mapping
Given any DAG G , it is assumed that each observation x j ∈ Rn is a realisation of the random vector X = (X1, . . . , Xn)T , 

which has a multivariate Gaussian distribution whose parameters are coherent with G:

X|G ∼ Nn(μ
G,�G) (4)

where μG ∈ Rn is the expectation vector, and �G is the positive definite covariance matrix. The G upper scripts on the 
parameters indicate that the multivariate Gaussian in Equation (4) must imply the factorization given in Equation (1). The 
conditional distributions on the right hand side of Equation (1) then refer to univariate conditional Gaussians Xi |πG(i):

Xi|πG(i) ∼ N
(
μG

Xi |πG (i),�
G
Xi |πG (i)

)
(i = 1, . . . ,n)

where μG
Xi |πG (i) ∈R and �G

Xi |πG(i) > 0 are the expectation and the variance of the conditional Gaussian Xi |πG(i). There is 
a one-to-one mapping between the parameters of the conditional Gaussians and the parameters μG and �G of the joint 
Gaussian distribution; see Section S1 of the supplementary paper. In Section 3.2 we exploit this mapping when sampling 
covariance matrices �G and expectation vectors μG that are coherent with a DAG G .

2.2.2. Parameter prior distributions
Given N independent and complete realizations of the random vector X and any DAG G , we have for the likelihood:

X j|G ∼ Nn(μ
G,�G) ( j = 1, . . . , N) (5)

where the parameters μG and �G must be such that they imply the factorization from Equation (1). On the parameters μ
and � of any complete DAG GC

τ Geiger and Heckerman impose the fully conjugate normal-Wishart prior

μ|� ∼ Nn(μ0,α
−1
μ �)

�−1 ∼ Wn(αw ,R) (6)

where Wn(αw , R) denotes the n-dimensional Wishart distribution with αw > n − 1 degrees of freedom and positive def-
inite parametric matrix R. Geiger and Heckerman show that a sample (μ, �) from this normal-Wishart also determines 
the parameters (μG , �G) of all possible DAGs G and that the prior yields a marginal likelihood that is score-equivalent.4

Moreover, they show that two of the conditions for score equivalence, namely the likelihood modularity and the parameter 
modularity condition, imply that the conditional Gaussian distributions Xi |πG(i) do not depend on the overall DAG G . That 
is, if two DAGs imply the same parent set π (i) for Xi then their factorizations both feature the same conditional Gaussian 
distribution Xi |π (i) with the same prior (and posterior) parameters.

Although Geiger and Heckerman show that one sample (μ, �) determines the parameters (μG , �G) of all possible 
DAGs G , they do not provide an explicit algorithm for deriving (μG , �G) from (μ, �). This is because concrete parameter 
instantiations are not required for computing the marginal likelihood. In Section 3.2 we show how to extract (μG , �G) from 
(μ, �). We require the parameters (μG , �G) when dealing with incomplete data sets. Our algorithm exploits that two DAGs 
that imply the same parent set π (i) for Xi must have the same conditional Gaussian distribution Xi |π (i) with the same 
prior (and posterior) parameters. For more details we refer to Section 3.2.

2.2.3. Parameter posterior distributions and the marginal likelihood
The Gaussian likelihood from Equation (5) in combination with the conjugate normal-Wishart prior from Equation (6)

yields the following normal-Wishart posterior distribution for the parameters of any complete DAG GC
τ :

μ|(�,D) ∼ Nn
(
μ�, (αμ + N)−1�

)
�−1|D ∼ Wn(αw + N,T) (7)

where D = {x1, . . . , xN} is the data, μ� := αμμ0+Nx̄N
αμ+N , x̄N := 1

N

N∑
j=1

x j , and

4 For the Gaussian likelihood from Equation (5) Geiger and Heckerman even show that only the normal-Wishart prior from Equation (6) fulfills the 
assumptions that are required for score-equivalence; i.e. no other prior can yield a score-equivalent marginal likelihood.
4
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T := R +
N∑

j=1

(x j − x̄N)(x j − x̄N)T + αμN

αμ + N
(μ0 − x̄N)(μ0 − x̄N)T

Each posterior sample (μ, �) of the parameters of a complete DAG determines posterior parameters μG and �G of any DAG 
G . The marginal likelihood P (D|G) of any DAG G can be computed analytically and is called the BGe score of G [28–31]; 
cf. Section S1 of the supplementary paper.

2.3. Bayesian Model Averaging (BMA)

2.3.1. The structure MCMC sampler
For sampling DAGs from the posterior distribution in Equation (3), we use the ‘structure MCMC’ Metropolis-Hastings 

(MH) sampling scheme from Madigan and York [11] and we implement it using the efficient algorithms from Giudici and 
Castelo [12]. Let N(G) denote the ‘neighbourhood’ of G , i.e. the set of all DAGs that can be reached from G by adding, 
deleting or reversing one single edge. Given the current DAG G , we propose to move to a randomly selected neighbour DAG 
G� ∈ N(G). The acceptance probability of the move is:

A(G,G�) = min

{
1,

p(D|G�)

p(D|G)
· p(G�)

p(G)
· HR(G,G�)

}
(8)

where p(D|G�) and p(D|G�) are marginal likelihoods that can be computed analytically, p(G�) and p(G�) are the DAG prior 
probabilities, and the Hastings ratio is HR(G, G�) = |N(G)|

|N(G�)| with |.| denoting the cardinality of the DAG neighbourhood sets 
N(G) and N(G�), respectively.

If the move is accepted, we exchange G by G� , otherwise we keep G unchanged.

2.3.2. Marginal posterior probabilities of edge features
Given a DAG posterior sample G(1), . . . , G(R) , we estimate the marginal posterior probabilities of edge features. As DAGs 

fall into equivalence classes, we first replace each DAG G(r) by its CPDAG G(r)� , where the latter can also feature undirected 
edges Xi − X j . Since we later average across the sampled CPDAGs, we interpret Xi − X j as bidirectional edge Xi ↔ X j . We 
then estimate the marginal posterior probability of any directed edge Xi → X j by the proportion of sampled DAGs whose 
CPDAGs possess this edge:

p̂i, j := 1

R

R∑
r=1

IXi→X j (G
(r)� ) (9)

where the indicator function IXi→X j (.) is equal to 1 if the G(r)� has either the directed edge Xi → X j or the undirected edge 
Xi − X j , as we decided to interpret Xi − X j as bidirectional Xi ↔ X j , and IXi→X j (G

(r)� ) = 0 otherwise.

2.3.3. Network reconstruction accuracy
We assess and cross-compare the network reconstruction accuracy using two complementary approaches, namely AUROC 

scores and relative structural Hamming distance (rSHD) scores. Unlike for AUROC scores, for rSHD scores a theshold has to 
be imposed on the marginal edges posterior probabilities, so as to obtain a concrete network prediction. Here we employ 
the theshold ψ = 0.5. For detailed descriptions of our AUROC and rSHD scores we refer to Section S1 of the supplementary 
paper.

3. Network learning from incomplete data

We now extend the Bayesian approach from Section 2 such that Gaussian BNs can also be inferred from incomplete 
data. We assume that the individual data points are ‘missing completely at random’ (MCAR) and we introduce a new 
Markov Chain Monte Carlo (MCMC) algorithm that allows for sampling DAGs and the missing data points altogether from 
the posterior.

3.1. Sampling DAGs in the presence of missing data points

The Bayesian approach for learning BNs from Section 2 assumes that the data D are complete without missing values. 
To the best of our knowledge, no Bayesian modelling averaging (BMA) approach for learning BNs from incomplete data has 
been proposed yet. We here fill the gap by proposing a new MCMC sampling scheme for inferring BNs from incomplete 
data.

We recall that we have assumed that the data set is of the form D = {x1, . . . , xN}, where x j = (x1, j, . . . , xn, j)
T ∈ Rn is 

the j-th observation of the random vector X = (X1, . . . , Xn)T . We here assume that data points are ‘missing completely 
at random’ (MCAR) and we refer to Rubin [34] for the formal definitions of three different patterns of missingness. The 
5
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assumed MCAR mechanism implies that each individual xi, j has the same probability pmiss ∈ [0, 1] for being absent. The 
data D can then be thought of as consisting of two parts: the observed data Dobs and the missing data Dmiss and the 
posterior distribution is of the form P (G, Dmiss|Dobs). For generating posterior samples we propose the following MCMC 
sampling scheme, which consists of three consecutive steps:

1. Given any values for the missing data points from Dmiss , we can think of D := {Dmiss, Dobs} as a complete data set. 
Hence, we can perform the structure MCMC Metropolis Hastings sampling steps from Section 2.3.1 to sample DAGs G
from the posterior distribution P (G|D).

2. Conditional on complete data D := {Dmiss, Dobs} and the DAG G , we can posterior sample the model parameters from 
P (μG , �G |D, G). In Section 3.2 we propose a new algorithm for this sampling step.

3. Given the parameters μG and �G and the observed data Dobs , we can posterior sample the missing data from 
P (Dmiss|μG , �G , Dobs). In Section 3.3 we show that this refers to sampling from conditional Gaussian distributions.

The proposed MCMC algorithm can be classified as a ‘Metropolis-Hastings within Gibbs MCMC sampling scheme’. 
Metropolis Hastings (MH) moves are employed to sample graphs from P (G|D), where D := {Dmiss, Dobs}. The MH moves 
employ the marginal likelihood (BGe score), P (D|G), i.e. they are marginalized over all possible model parameters μG and 
�G . Then, the network parameters are sampled from P (μG , �G |D, G) via a partially collapsed Gibbs sampling step; cf. Sec-
tion 3.2. Finally, the missing data are sampled from the full conditional distribution P (Dmiss |μG , �G , Dobs); cf. Section 3.3.

3.2. Sampling posterior parameters given a DAG and complete data

Let D := {Dobs, Dmiss} be complete data, where the missing part Dmiss has been filled with sampled values (cf. Sec-
tion 3.3). For the complete DAGs posterior samples of the parameters can be generated by sampling from Equation (7). The 
parameters μ and � are then coherent with complete DAGs, but they are not coherent with the DAG G . However, we can 
extract the parameters μG and �G that are coherent with G . We proceed as follows:

(S1) Sample � and μ from the posterior distribution in Equation (7). These parameters are coherent with the complete 
DAGs. They do not imply the conditional (in-)dependence relations implied by the DAG G .

(S2) Recall that πG(i) denotes the parent set of variable Xi implied by G . Given μ and � from step (S1), we compute the 
n univariate conditional Gaussian distributions (cf. Section 2.2.1):

Xi |πG(i) ∼ N
(
μXi |πG (i),�Xi |πG (i)

)
(i = 1, . . . ,n)

(S3) Given the parameters of the n univariate conditional Gaussians Xi |πG(i), we use the recursive formula of Shachter and 
Kenley [35] to compute the parameters μG and �G which are coherent with G , i.e. which imply the factorization in 
Equation (1). We have the relationship μG = μ, but it holds �G 
= �, unless G is a complete DAG.

In Section S1 of the supplementary paper we provide more detailed explanations of why the algorithm generates posterior 
samples from P (μG , �G |D, G).

3.3. Sampling the missing data points

Given the parameters μG and �G , the random vector X = (X1, . . . , Xn)T has the multivariate Gaussian distribution 
X|G ∼ Nn(μG , �G). In case of missing data, X consists of two parts: the observed subvector Xobs and the complementary 
unobserved subvector Xmiss . Given Xobs = xobs , the missing values Xmiss have the following conditional Gaussian distribution:

Xmiss|(Xobs = xobs,μ
G,�G) ∼ N

(
μG

miss|obs,�
G
miss|obs

)
(10)

with

μG
miss|obs := μG

miss + �G
miss,obs

{
�G

obs,obs

}−1 (
xobs − μG

obs

)

�G
miss|obs := �G

miss,miss − �G
miss,obs

{
�G

obs,obs

}−1
�G

obs,miss

where the subscripts ‘obs’ and ‘miss’ refer to the subvectors and submatrices that only contain the rows and columns that 
belong to observed or missing data points.

More generally, the data D = {x1, . . . , xN } are a random sample of X. And each individual data vector x j consists of an 
observed subvector x j,obs and the complementary unobserved subvector x j,miss .5 Conditional on the parameters μG and �G , 

5 In each x j ∈Rn we assumed the i-th element xi, j to be missing with probability pmiss .
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Table 1
Pseudo code. MCMC algorithm to generate a posterior sample of DAGs when the data are incomplete. To allow for a burn-in period 
we remove the first samples (e.g. the first 50%) and we thin out the remaining samples (e.g. by the factor ξ = 2000 (‘ECOLI70’) or 
ξ = 1000 (‘RAF’)) to reduce the auto-correlation.

• Fix the tuning parameter q ∈ [0, 1].
q is the probability for re-sampling the missing data points.

• Initialization
– Initialize the DAG G[0] . E.g. start with a DAG without edges.
– Initialize the missing data D[0]

miss . E.g. for each Xi compute the empirical mean x̄i of the observed Xi values and set 
every missing value of Xi to x̄i . Then merge D[0] := {D[0]

miss, Dobs}
• MCMC iterations: For t = 1, . . . , T :

– Apply a structure MCMC move on the DAG, i.e. generate

G[t] ∼ P (G|D[t−1])

See Section 2.3.1 for the details of this Metropolis-Hastings move.
– Draw a random number u ∈ [0, 1]

∗ If u < q generate a parameter sample

μG
[�],�

G
[�] ∼ P (μG ,�G |D[t−1],G[t])

See Section 3.2 for the details of this MCMC move.
Use the parameters for re-sampling the missing data

D[t]
miss ∼ P (Dmiss|μG

[�],�
G
[�],Dobs)

See Section 3.3 for the details of this MCMC move.
Then update the data and set D[t] := {D[t]

miss, Dobs}
∗ If u > q, leave the data unchanged; i.e. set D[t] = D[t−1] .

• Output G[1], . . . , G[T ] .

the N data vectors are stochastically independent, so that the missing values x j,miss can be sampled separately for each j. 
That is, we sample from P (Dmiss|μG , �G , Dobs) by looping through the observations j = 1, . . . , N and sampling the missing 
values of the j-th observation x j,miss from the conditional Gaussian X j,miss|(X j,obs = x j,obs, μG , �G). The latter conditional 
Gaussian was defined in Equation (10). If a data vector x j features either only missing or only observed values, we skip it 
in the loop.

3.4. The MCMC sampling algorithm

To generate a posterior sample of DAGs from incomplete data we use the MCMC algorithm outlined in the pseudo code 
in Table 1. For the BGe score we use a weak uninformative parameter prior by setting the hyperparameters in Equation (6)
to: μ0 = 0, R = I, αμ = 1, and αw = n.

Since the structure MCMC sampler is based on single edge operations, the trajectory of DAGs is strongly auto-correlated. 
Before re-sampling the missing data points Dmiss , we would like the DAG to have changed ‘sufficiently’. Therefore, we 
implement the MCMC scheme such that it performs a structure MCMC move in every iteration, while the re-sampling of 
Dmiss is only performed with probability q ∈ [0, 1]. To allow for a burn-in period we withdraw the first 50% of the samples 
and we thin-out the remaining samples by the factor ξ by keeping only every ξ -th sample.

In a pre-study we performed convergence diagnoses on a few data sets. For different numbers of iterations T and 
different probabilities q we checked for convergence by running independent MCMC simulations on the same data set. 
Some example convergence diagnoses can be found in Section S2 of the supplementary paper. For the ECOLI70 data (see 
Section 5.1) we eventually ran MCMC simulations with T = 4, 000, 000 MCMC iterations and with q = 0.01. For the RAF 
data (see Section 5.2) we eventually ran MCMC simulations with T = 2, 000, 000 MCMC iterations and with q = 0.05. For 
both data types we withdrew the first 50% of the samples and thinned out the remaining samples such that we were left 
with R = 1000 posterior samples.

4. Competing methods

We compare the proposed Bayesian model averaging (BMA) approach with two non-Bayesian approaches that were 
recently cross-compared in a study by Bodewes and Scutari [22]. The classical approach for learning BNs from incomplete 
data has been introduced by Friedman [19] and is often referred to as ‘structural EM algorithm’. It makes use of the 
Expectation Maximization (EM) algorithm [20] which iterates between an expectation (E) and a maximization (M) step till 
convergence is reached. Loosely speaking, in the context of BN structure learning from incomplete data the structural EM 
algorithm proceeds as follows: Given the observed data and the current ‘best’ DAG, the E step employs belief propagation 
techniques [36,37] to approximate the expected sufficient statistics. These expected sufficient statistics can be thought of as 
7



if they would have computed from a complete (or completed) data set. Given the expected sufficient statistics from the E 
step, the M step makes use of network learning techniques (such as Tabu hill-climbing [38]) to find the ‘best’ DAG for the 
current expected sufficient statistic values. Another computationally more efficient EM approach is to avoid the computation 
of the expected sufficient statistics and instead to complete the data set by imputing the expected values of the missing 
values. Thereby the imputed expectations are conditional on the observed values in the same observation. In the literature 
these two approaches are often referred to as the ‘soft’ (work with the expected sufficient statistics) and the ‘hard’ (compute 
and assign expected values) structural EM algorithm. For more mathematical details we refer to Chapter 19 of the textbook 
by Koller and Friedman [39]. An empirical comparison and guidelines for when to use the ‘soft’ or ‘hard’ EM can be found 
in the work by Ruggieri et al. [40].

Another computational efficient non-Bayesian way to deal with missing data is to employ so called node-average like-
lihoods (NALs). For discrete BNs Balov [21] introduced NALs and showed that it is a consistent method for dealing with 
missing data. In a more recent work, Bodewes and Scutari [22] have proven that NALs are also consistent when applied in 
Gaussian and conditional Gaussian BNs. Basically the key idea of NALs is as follows: Every graph G implies the node-specific 
parent sets πG(i) and the joint distribution factorizes into a product of local conditional Gaussian distributions of Xi |πG(i)
(cf. Equation (1)). The Maximum Likelihood (ML) estimators θ̂i,πG (i) of the parameters of the conditional Gaussians can only 
be estimated based on that data subset Di,πG (i) ⊂ D for which the value of Xi and the parents in πG(i) are available. To 
take into account that the sample sizes vary with the node and its parent set, the log-likelihood is replaced by the node 
average log-likelihood (NAL):

l̄(G|D) :=
n∑

i=1

1

|Di,πG (i)|
∑

xi∈Di,πG (i)

log{p(xi |πG(i), θ̂i,πG (i))}

where |Di,πG(i)| ≤ N is the cardinality of the data subset Di,πG (i) .
The structural EM algorithm [19,24] as well as the NAL approach [22] both score DAGs in terms of penalized log-

likelihoods. For example, in terms of the node average log-likelihood the penalized likelihood of a DAG G is:

S P (G|D) = l̄(G|D) − λN,n · |θG |

where λN,n is the penalty per parameter, and |θG | =
n∑

i=1
|θ̂i,πG(i)| is the number of parameters implied by G . We follow [22]

and implement the two competing methods (EM and NAL) with four different penalty strengths λN,n = log(N)
2n , which refers 

to the BIC criterion [41] and λN,n = N−α

n with α ∈ {0.1, 0.25, 0.4}.
Both approaches (EM and NAL) have been implemented by Bodewes and Scutari [22]. In their R software a hill-climbing 

algorithm with tabu list [38] is used for finding the DAG that maximizes the penalized log-likelihood. For our evaluation 
study in Section 5 we make use of this software and we also re-use the tuning parameters from the earlier study by 
Bodewes and Scutari.

5. Empirical results

Our empirical evaluation and method comparison consists of two parts. In Section 5.1 we reconstruct a benchmark 
Gaussian BN from synthetic data, and in Section 5.2 we reconstruct the RAF protein signalling pathway from real protein 
phosphorylation data [42].

We generated data sets with different sample sizes N and we distinguished different average fractions pmiss of missing 
completely at random (MCAR) data by deleting each individual observation xi, j (= j-th observation of Xi ) with probability 
pmiss . For the structural EM algorithm and the NAL approach we employed the R software implementations from [22] and 
we used both with four different penalty parameters λn,N ; see Section 4 for more details. For the new BMA approach 
we generated posterior samples using the MCMC algorithm from Section 3.4 and we used the posterior sampled DAGs to 
compute the marginal edge posterior probabilities, cf. Equation (9). Our R implementation of the BMA approach is available 
from GitHub.6

5.1. Data from synthetic Gaussian network (‘ECOLI70’)

The ECOLI70 network is implemented in the ‘bnlearn’ R package [43–45] and it had already been used by Bodewes 
and Scutari [22] to cross-compare the performances of the structural EM and the NAL approach for Gaussian networks.7

The ECOLI70 network consists of n = 46 nodes and like its name suggests it features 70 directed edges among them. 
The advantage of this first study was that the true DAG is known, so that the network reconstruction accuracy could 

6 https://github .com /MarcoAndreas /BMA.
7 It has been adapted from the ‘GeneNet’ R package by Schäfer and Strimmer [46].
M. Grzegorczyk International Journal of Approximate Reasoning 160 (2023) 108954
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Table 2
Average AUROC scores for the ECOLI70 network. For each sample size N we generated 10 independent data sets. From each data set we then randomly 
removed data points, so as to achieve different average fractions of missing values pmiss . From the incomplete data sets we inferred the networks (CPDAGs) 
with the structural EM, the NAL approach and the new Bayesian model averaging (BMA) approach from Section 3. For EM and NAL we distinguish four 
different penalty parameters λn,N (cf. Section 4). The AUROC results for larger samples sizes N can be found in Table 3.

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

10 0 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.71
0.05 0.65 0.64 0.64 0.64 0.65 0.65 0.65 0.65 0.71
0.1 0.63 0.63 0.62 0.62 0.62 0.62 0.63 0.63 0.70
0.2 0.60 0.59 0.59 0.59 0.60 0.60 0.60 0.60 0.68
0.4 0.48 0.48 0.48 0.48 0.46 0.46 0.46 0.46 0.54

25 0 0.66 0.64 0.64 0.64 0.66 0.65 0.64 0.65 0.74
0.05 0.64 0.62 0.63 0.63 0.64 0.64 0.63 0.63 0.74
0.1 0.63 0.60 0.60 0.61 0.61 0.61 0.61 0.61 0.74
0.2 0.60 0.58 0.58 0.59 0.60 0.60 0.60 0.60 0.70
0.4 0.55 0.55 0.55 0.55 0.60 0.60 0.60 0.60 0.69

50 0 0.68 0.64 0.65 0.65 0.68 0.64 0.65 0.65 0.82
0.05 0.66 0.63 0.62 0.63 0.65 0.66 0.66 0.66 0.82
0.1 0.66 0.62 0.62 0.63 0.62 0.62 0.62 0.62 0.79
0.2 0.62 0.60 0.60 0.60 0.63 0.63 0.63 0.63 0.76
0.4 0.59 0.57 0.56 0.57 0.60 0.60 0.60 0.60 0.71

100 0 0.74 0.65 0.68 0.72 0.74 0.65 0.67 0.71 0.90
0.05 0.72 0.63 0.66 0.69 0.67 0.66 0.66 0.66 0.89
0.1 0.71 0.60 0.63 0.67 0.64 0.65 0.65 0.64 0.87
0.2 0.67 0.58 0.60 0.63 0.64 0.64 0.64 0.64 0.82
0.4 0.62 0.56 0.55 0.59 0.63 0.63 0.63 0.63 0.73

Table 3
Table 2 continued. Average AUROC scores for the ECOLI70 network for larger sample sizes. See caption of Table 2 for more information.

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

0.25k 0 0.78 0.71 0.75 0.79 0.79 0.69 0.74 0.79 0.93
0.05 0.76 0.69 0.74 0.79 0.65 0.63 0.63 0.66 0.93
0.1 0.75 0.66 0.72 0.76 0.65 0.65 0.65 0.65 0.92
0.2 0.73 0.62 0.68 0.73 0.65 0.65 0.65 0.65 0.90
0.4 0.67 0.56 0.63 0.68 0.64 0.64 0.64 0.64 0.84

0.5k 0 0.82 0.74 0.80 0.88 0.82 0.74 0.81 0.87 0.96
0.05 0.80 0.73 0.79 0.84 0.64 0.62 0.62 0.67 0.96
0.1 0.77 0.71 0.76 0.83 0.64 0.64 0.64 0.65 0.95
0.2 0.75 0.67 0.74 0.78 0.66 0.67 0.67 0.67 0.94
0.4 0.71 0.61 0.67 0.74 0.65 0.65 0.66 0.66 0.89

1k 0 0.83 0.78 0.85 0.87 0.82 0.78 0.85 0.87 0.97
0.05 0.83 0.77 0.84 0.86 0.61 0.59 0.59 0.72 0.97
0.1 0.81 0.76 0.82 0.84 0.63 0.63 0.63 0.66 0.97
0.2 0.77 0.71 0.79 0.84 0.66 0.66 0.66 0.66 0.97
0.4 0.72 0.64 0.73 0.78 0.66 0.66 0.66 0.66 0.95

2.5k 0 0.86 0.82 0.90 0.88 0.87 0.82 0.90 0.87 0.98
0.05 0.85 0.81 0.87 0.88 0.61 0.62 0.64 0.82 0.98
0.1 0.85 0.79 0.88 0.86 0.63 0.63 0.64 0.65 0.98
0.2 0.80 0.77 0.84 0.83 0.67 0.67 0.67 0.68 0.98
0.4 0.76 0.74 0.80 0.81 0.67 0.67 0.67 0.67 0.94

5k 0 0.90 0.91 0.90 0.90 0.89 0.88 0.88 0.89 0.98
0.05 0.90 0.84 0.89 0.88 0.64 0.65 0.71 0.87 0.98
0.1 0.89 0.85 0.89 0.88 0.61 0.61 0.61 0.72 0.99
0.2 0.83 0.84 0.88 0.88 0.64 0.64 0.64 0.67 0.98
0.4 0.78 0.75 0.82 0.82 0.69 0.69 0.69 0.69 0.96

10k 0 0.91 0.91 0.90 0.89 0.89 0.90 0.89 0.89 1.00
0.05 0.93 0.90 0.90 0.88 0.67 0.65 0.74 0.86 0.97
0.1 0.87 0.91 0.93 0.85 0.60 0.60 0.60 0.85 0.97
0.2 0.85 0.85 0.88 0.88 0.64 0.64 0.65 0.73 0.99
0.4 0.77 0.77 0.83 0.82 0.65 0.65 0.65 0.66 0.94
9
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Table 4
Average AUROC scores for the RAF pathway network. For each sample sizes N ∈ {100, 250, 500, 1000, 3530} we randomly sub-sampled 10 independent 
data sets. From each data set we then randomly removed data points, so as to achieve five different average fractions of missing values pmiss . From the 
incomplete data sets we inferred the networks (CPDAGs) with the structural EM, the NAL approach and the new Bayesian model averaging (BMA) approach 
from Section 3. For EM and NAL we distinguished four different penalty parameters λn,N (cf. Section 4).

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

100 0 0.60 0.60 0.60 0.60 0.60 0.60 0.61 0.61 0.65
0.05 0.59 0.57 0.60 0.60 0.54 0.54 0.55 0.57 0.64
0.1 0.60 0.60 0.61 0.61 0.55 0.55 0.55 0.57 0.65
0.2 0.58 0.56 0.60 0.59 0.54 0.52 0.53 0.54 0.64
0.4 0.57 0.57 0.58 0.58 0.54 0.56 0.53 0.55 0.62

250 0 0.63 0.62 0.63 0.60 0.62 0.61 0.62 0.60 0.69
0.05 0.63 0.62 0.63 0.60 0.56 0.57 0.60 0.56 0.68
0.1 0.62 0.62 0.62 0.60 0.55 0.54 0.54 0.55 0.68
0.2 0.62 0.59 0.62 0.59 0.54 0.54 0.54 0.53 0.64
0.4 0.61 0.61 0.62 0.58 0.51 0.51 0.54 0.51 0.65

500 0 0.64 0.64 0.65 0.60 0.62 0.63 0.65 0.60 0.70
0.05 0.63 0.64 0.64 0.60 0.58 0.58 0.58 0.57 0.69
0.1 0.64 0.64 0.63 0.61 0.52 0.52 0.54 0.56 0.70
0.2 0.64 0.64 0.65 0.61 0.51 0.52 0.52 0.53 0.71
0.4 0.61 0.63 0.63 0.59 0.52 0.52 0.55 0.53 0.66

1k 0 0.63 0.67 0.66 0.62 0.65 0.66 0.66 0.62 0.72
0.05 0.66 0.66 0.65 0.61 0.55 0.56 0.57 0.59 0.72
0.1 0.66 0.68 0.65 0.61 0.56 0.57 0.58 0.57 0.73
0.2 0.65 0.65 0.64 0.60 0.54 0.55 0.57 0.57 0.72
0.4 0.62 0.65 0.62 0.56 0.53 0.53 0.51 0.53 0.66

all 0 0.63 0.69 0.63 0.63 0.62 0.69 0.64 0.63 0.75
0.05 0.65 0.69 0.65 0.63 0.58 0.58 0.59 0.63 0.76
0.1 0.66 0.68 0.65 0.63 0.57 0.58 0.61 0.61 0.75
0.2 0.66 0.67 0.63 0.57 0.51 0.51 0.54 0.58 0.75
0.4 0.66 0.67 0.63 0.56 0.53 0.53 0.52 0.54 0.71

be objectively assessed and cross-compared. However, a disadvantage was that there is no mismatch between the data 
generating process and the methods that were used for inference, since both are Gaussian BNs. The network learning task 
might therefore not be representative for typical real-world applications.

For the empirical evaluation we generated data sets with 10 different sample sizes ranging from N = 10 to N = 10, 000
(10k) observations. By generating 10 data sets per sample size N , we obtained 100 data sets. For each we implemented five 
different average fractions of missing data pmiss ∈ {0, 0.05, 0.1, 0.2, 0.4}, yielding a total of 500 data sets. Table 2 provides 
the method-specific average AUROC scores for each of the 50 combinations of N and pmiss , with each average being across 
10 independent data sets. As expected the mean AUROC scores increase in the sample size N and they decrease in the 
average fraction of missing data pmiss . Most importantly, it can be seen that the new BMA method (last column) yields 
consistently the highest average AUROC scores. To assess the variability in the individual AUROC differences, we computed 
the p-values of two-sample t-tests for paired samples. When comparing the means of the 8 competing methods with the 
mean of the BMA method, all p-values were below 0.05, indicating that each individual AUROC difference has a clear sign 
in favour of BMA which does not only stem from random fluctuations. This shows the superiority of the BMA approach over 
the two classical methods for dealing with incomplete data.

In Appendix A we compare the models in terms of relative structural Hamming distance (rSHD) scores. The results can 
be found in Tables A.5 and A.6. It can be seen that the rSHD scores are in good agreement with the AUROC scores. However, 
it can also be seen that the small sample sizes (N ≤ 50) yield rSHD scores greater than 1, indicating that the predicted 
networks are even worse than predicting an empty network without any edges (with r S H D = 1). We refer to Appendix A
for more details.

5.2. Protein phosphorylation data from signalling pathway (RAF)

A potential disadvantage of our study from Section 5.1 was that Gaussian data perfectly match the assumption of Gaus-
sian data that is made by the network reconstruction methods. The results might thus not be representative for real-world 
applications. In particular, the BMA method re-samples the missing data points form conditional Gaussian distributions (cf. 
Section 3.3). This sampling step might be sensitive to deviations from Gaussianity, leading perhaps to erroneous results for 
non-Gaussian data. To this end, we performed a second study with real protein phosphorylation data from the RAF protein 
signalling pathway. By extensive flow cytometry experiments, Sachs et al. [42] measured the phosphorylation sites of n = 11
key proteins of the RAF signalling cascade. In our second study we focused on the Nall = 3530 observational data points 
10
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from [42]. That is, we ignored the measurements from intervention experiments, in which specific proteins were either 
inhibited of activated.

The advantage of real wet-lab measurements comes with the disadvantage that the true underlying DAG is not fully 
known. That is, there is some uncertainty about the true DAG. Hence, an objective evaluation of the network reconstruction 
accuracies was hindered. However, Sachs et al. [42] reported a gold-standard network of the RAF pathway, which we here 
used as proxy for the true DAG. The topology of this gold standard network can be found in Section S3 of the supplementary 
material.

We distinguished the sample sizes N ∈ {100, 250, 500, 1000, 3530} and crossed them with the five fractions of missing 
data pmiss ∈ {0, 0.05, 0.1, 0.2, 0.4}. Since we here could not generate independent data sets, we generated random sub-
samples of size N from the whole data set with Nall = 3530 observations. Table 4 shows the method-specific average 
AUROC scores for each of the 25 combinations of N and pmiss , with each average being again across 10 data sets. Like 
for the ECOLI70 data, the AUROC scores increase in N and they decrease in pmiss , and the BMA method (last column) 
consistently yields the largest AUROC scores. Again we computed the p-values of two sample t-tests for paired samples. 
Although a few individual p-values are rather high, the majority of p-values is lower than 0.05. In Appendix A we report 
the corresponding relative structural Hamming distance (rSHD) scores; see Table A.7. For the RAF pathway the rSHD scores 
deviate from the AUROC results. The structural EM algorithm and the new BMA approach achieve very similar rSHD scores. 
The differences tend to be non-significant in terms of t-tests for paired samples. Since the rSHD scores were generally 
rather high (r S H D ≥ 0.74), we conclude that the RAF pathway topology and in particular the edge types (‘undirected’ vs. 
‘directed’) can hardly be predicted from observational measurements. We note that the AUROC scores (of up to 0.75) seemed 
much more satisfactory. An important difference is that we interpreted undirected CPDAG edges as bidirectional edges when 
computing AUROC scores. This interpretation could explain the higher accuracy, since the CPDAG of the true gold standard 
RAF pathway contains 17 undirected and only 3 directed edges. Unlike for the rSHD scores, in the context of AUROC scores 
we interpret this as 17 bidirectional and 3 unidirectional edges; i.e. we interpret it as 47 directed edges in total.

5.3. Additional Bayesian Model Averaging (BMA) results

Additional results for the new BMA approach on the ECOLI70 data can be found in Section S2 of the supplementary 
paper. In particular, we computed the rSHD scores for different edge score thresholds ψ , and we ran additional MCMC 
simulations with a more restrictive graph prior as well as with a more restrictive model parameter prior. The results suggest 
that a larger edge score threshold can be advantageous for smaller sample sizes (N = 100), while for larger sample size 
(N = 1000) ψ = 0.5 seems a good choice. The different Bayesian network priors did not affect the convergence rates, but 
had an effect on the network reconstruction accuracy. While the more restrictive graph prior led to better AUROC scores for 
small sample sizes, the more restrictive model parameter prior leads to consistently worse AUROC scores. For more details 
and for interpretations of these results we refer to Section S2 of the supplementary material.

We also explored the computational costs of the proposed Bayesian Model Averaging (BMA) approach. The detailed 
results are provided in Section S2 of the supplementary material. Our main finding is that the MCMC simulation based 
model inference is computationally more expensive than the inference for the non-Bayesian approaches (NAL and EM). 
Our run time analyses suggest that the sampling of the missing values can become a computational bottleneck. For large 
networks with many nodes n and many observations N it has to be looped through the N observations, and for each 
observation j = 1, . . . , N a specific conditional Gaussian distribution of the large n-dimensional Gaussian distributions has 
to be computed, so as to sample the missing data points of observation j from it. Henceforth, up to N conditional Gaussians 
of n-dimensional Gaussians have to be computed for sampling the missing data.

6. Conclusions and discussion

In this paper we have proposed a new Bayesian model averaging (BMA) approach for learning Gaussian Bayesian net-
works (BNs) from incomplete data. To the best of our knowledge, this is the first work to propose a fully Bayesian approach 
for handling missing data in BNs. The new method builds on the Gaussian BGe score [28,29] and extends the classical 
structure MCMC sampler for posterior sampling DAGs [11,12] by two new MCMC moves that allow the missing data to be 
posterior sampled. Like earlier proposed methods for handling missing data in BNs [22], the new approach assumes that 
the data points are missing completely at random (MCAR). In two empirical evaluation studies we have compared the new 
BMA approach with two alternative non-Bayesian approaches, namely the classical structural EM [19] and the more recently 
developed NAL approach [22]. The two competing approaches had recently been cross-compared in a method comparison 
study by Bodewes and Scutari [22]. On benchmark Gaussian BN as well as for real protein phosphorylation data from the 
RAF protein signalling pathway the new BMA method led to higher network reconstruction accuracies than the two com-
petitors. A potential limitation of the BMA approach is that it would not be easy to adapt the method for discrete BNs (or 
for conditional Gaussian BNs). For sampling the missing values it is looped through the independent observations of the 
data set, and for each observation the missing values have to be sampled conditional on the available observed values. For 
the Gaussian BGe score and any given DAG this can easily be accomplished, because for any possible constellation of miss-
ing and available values the missing values can always be sampled from a multivariate conditional Gaussian distribution. 
From a conceptual perspective the same approach could also be followed for discrete BNs. But unlike for Gaussian BNs, the 
11



required conditional distributions would no longer be of well-known forms, rendering the approach numerically much less 
practical for discrete BNs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix A. Structural Hamming distances

In this appendix we assess and cross-compare the network learning methods in terms of the relative structural Hamming 
distance (rSHD). A description of rSHD scores can be found in Section S1 of the supplementary material. To extract a 
concrete network prediction from the marginal edges scores of the new Bayesian modelling averaging (BMA) approach, we 
employed the standard threshold ψ = 0.5. That is, only edges whose scores exceeded ψ = 0.5 were assumed to be present. 
If two oppositely oriented edges (e.g. A → B and A ← B) both had a score larger than ψ = 0.5, we concluded that there is 
an undirected edge between A and B . On the other hand, if only one of the two edges (i.e. either A → B or A ← B) had a 
score larger than ψ = 0.5, we concluded that the corresponding edge is unidirectional.

The rSHD results for the ECOLI70 data are in agreement with the corresponding AUROC results, i.e. the new Bayesian 
modelling approach (BMA) yields almost consistently the best (=lowest) rSHD scores; see Tables A.5–A.6. Only in 3 out of 
50 cases the BMA does not yield the lowest rSHD, and in these three cases the rSHD differences between BMA and the 
best non-Bayesian method seems almost neglectable. As an empty network (without any edges) would yield the rSHD score 
equal to 1, we conclude that rSHD scores higher than 1 indicate an ‘unsatisfactory’ learning performance. Since only very 
few of the rSHDs in Table A.5 are slightly below 1, we conclude that low sample sizes of up to N = 100 do not allow the 
true CPDAG of the ECOLI70 network to be properly inferred. However, it can be seen from Table A.6 that higher sample sizes 
N lead to better performances. As expected, the rSHD scores decrease in the sample size N and increase in the fraction of 
missing data point pmiss .

Table A.7 shows the rSHD scores for the RAF pathway data. Unlike for the AUROC scores in Table 4, we here do not 
see a clear trend in favour of the new Bayesian model averaging approach (BMA). However, as even the best rSHD scores 
are still rather high (rSHD≈ 0.75), we conclude that the CPDAG and in particular the edge types (‘directed’ vs. ‘undirected’) 
cannot be properly learned from the available observational protein phosphorylation data. This finding is in agreement with 

Table A.5
Average rSHD scores for the ECOLI70 network. This table refers to Table 2 but compares the methods in terms of the rSHD scores rather than AUROC 
scores. For each sample size N we generated 10 independent data sets. From each data set we then randomly removed data points, so as to achieve 
different average fractions of missing values pmiss . From the incomplete data sets we inferred the networks (CPDAGs) with the structural EM, the NAL
approach and the new Bayesian model averaging (BMA) approach. For EM and NAL we distinguished different penalty parameters λn,N . The rSHD scores 
for larger samples sizes N can be found in Table A.6.

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

10 0 1.14 1.14 1.14 1.14 1.14 1.15 1.14 1.15 1.30
0.05 1.20 1.20 1.21 1.20 1.21 1.21 1.21 1.21 1.22
0.1 1.25 1.26 1.26 1.26 1.24 1.24 1.24 1.24 1.21
0.2 1.33 1.33 1.34 1.31 1.30 1.30 1.30 1.30 1.09
0.4 1.49 1.49 1.49 1.49 1.24 1.29 1.19 1.29 1.04

25 0 1.93 2.59 2.57 2.52 1.93 2.57 2.57 2.50 1.63
0.05 2.14 2.69 2.62 2.63 2.18 2.29 2.28 2.28 1.64
0.1 2.32 2.79 2.73 2.71 1.92 2.01 2.00 2.00 1.51
0.2 2.43 2.86 2.87 2.80 1.66 1.68 1.68 1.68 1.42
0.4 2.73 2.99 2.99 2.97 1.33 1.34 1.34 1.34 1.42

50 0 1.65 4.70 4.37 3.53 1.93 4.62 4.26 3.58 1.17
0.05 1.97 4.78 4.52 4.10 3.15 3.55 3.52 3.45 1.26
0.1 2.30 4.90 4.67 4.31 2.75 2.89 2.89 2.86 1.29
0.2 3.15 5.03 4.88 4.66 2.13 2.17 2.16 2.17 1.39
0.4 3.75 5.36 5.21 4.98 1.62 1.63 1.63 1.63 1.46

100 0 1.26 6.17 3.85 1.91 1.34 6.54 4.83 2.65 0.85
0.05 1.44 7.12 5.08 2.47 4.59 5.34 5.24 4.98 0.89
0.1 1.57 7.62 6.05 3.07 3.91 4.11 4.09 4.03 0.96
0.2 2.42 8.24 6.99 4.56 2.82 2.87 2.87 2.85 1.07
0.4 3.99 8.73 7.98 6.16 1.81 1.82 1.81 1.81 1.47
M. Grzegorczyk International Journal of Approximate Reasoning 160 (2023) 108954
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Table A.6
Table A.5 continued. Average rSHD scores for the ECOLI70 network for larger sample sizes. See caption of Table A.5 for more information. This table refers 
to Table 2 but assesses the methods in terms of rSHD rather than AUROC scores.

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

0.25k 0 0.98 3.89 1.85 0.88 1.01 4.95 2.31 0.95 0.66
0.05 1.13 4.92 2.22 0.97 6.22 7.64 7.21 5.98 0.67
0.1 1.32 5.80 2.59 1.11 5.64 5.92 5.84 5.61 0.72
0.2 1.66 7.70 4.15 1.44 4.00 4.04 4.03 4.00 0.73
0.4 2.83 10.15 6.46 2.43 2.44 2.43 2.43 2.43 0.98

0.5k 0 0.79 2.56 1.08 0.49 0.82 3.31 1.07 0.53 0.50
0.05 0.95 3.21 1.19 0.59 7.69 9.01 8.18 5.95 0.49
0.1 1.16 3.71 1.55 0.61 6.85 7.15 6.97 6.25 0.56
0.2 1.44 5.59 1.91 1.04 4.82 4.87 4.84 4.75 0.61
0.4 2.24 8.32 3.52 1.19 2.85 2.86 2.85 2.84 0.79

1k 0 0.80 1.74 0.73 0.55 0.83 1.87 0.75 0.53 0.41
0.05 0.81 2.15 0.78 0.57 9.15 10.39 9.25 2.90 0.43
0.1 1.00 2.38 0.89 0.67 8.11 8.42 8.03 6.36 0.47
0.2 1.38 3.85 1.18 0.70 5.76 5.78 5.75 5.56 0.45
0.4 2.23 6.57 1.78 0.93 3.29 3.29 3.29 3.28 0.55

2.5k 0 0.70 1.08 0.51 0.52 0.72 1.08 0.55 0.55 0.34
0.05 0.91 1.24 0.61 0.50 9.15 9.68 7.52 0.89 0.34
0.1 0.85 1.58 0.65 0.56 9.40 9.41 8.83 6.77 0.33
0.2 1.43 2.12 0.96 0.73 6.81 6.85 6.75 6.01 0.39
0.4 2.02 3.66 1.04 0.99 4.01 4.01 4.00 3.98 0.51

5k 0 0.57 0.62 0.49 0.45 0.65 0.72 0.58 0.47 0.23
0.05 0.75 1.16 0.50 0.52 8.90 8.38 5.11 0.55 0.25
0.1 0.70 1.13 0.50 0.52 10.4 10.4 9.59 4.56 0.26
0.2 1.24 1.26 0.81 0.55 7.68 7.68 7.54 6.06 0.25
0.4 1.93 2.54 1.20 0.73 4.40 4.40 4.40 4.44 0.44

10k 0 0.53 0.53 0.49 0.50 0.70 0.68 0.59 0.49 0.17
0.05 0.44 0.63 0.47 0.48 8.58 8.44 3.75 0.57 0.24
0.1 1.15 0.70 0.36 0.57 11.0 11.1 10.1 1.10 0.28
0.2 1.45 1.37 0.73 0.48 8.37 8.36 8.15 4.21 0.21
0.4 2.21 1.98 1.27 0.77 4.98 4.98 4.95 4.82 0.44

Table A.7
Average rSHD scores for the RAF pathway network. This table refers to Table 4 but compares the methods in terms of the rSHD scores rather than AUROC 
scores. For each sample size N we randomly sub-sampled 10 independent data sets. From each data set we then randomly removed data points, so as to 
achieve different average fractions of missing values pmiss . From the incomplete data sets we inferred the networks (CPDAGs) with the structural EM, the
NAL approach and the new Bayesian model averaging (BMA) approach. For EM and NAL we distinguished four different penalty parameters λn,N .

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

100 0 1.06 1.15 0.98 0.89 1.08 1.24 1.02 0.92 0.91
0.05 1.01 1.17 0.95 0.91 1.51 1.67 1.46 1.29 0.90
0.1 1.00 1.16 1.00 0.88 1.77 1.87 1.71 1.48 0.94
0.2 0.97 1.10 0.93 0.85 1.89 1.83 1.80 1.77 0.88
0.4 1.12 1.22 0.91 0.91 1.40 1.43 1.49 1.39 0.95

250 0 0.93 0.95 0.81 0.86 0.99 1.02 0.82 0.87 0.82
0.05 0.95 0.95 0.85 0.87 1.56 1.59 1.34 1.10 0.83
0.1 0.98 1.01 0.85 0.87 1.79 1.79 1.55 1.27 0.84
0.2 0.97 0.99 0.85 0.87 2.09 2.12 2.04 1.83 0.86
0.4 0.93 1.00 0.83 0.88 1.74 0.75 1.72 1.72 0.90

500 0 0.87 0.81 0.80 0.85 0.89 0.84 0.81 0.85 0.82
0.05 0.88 0.85 0.80 0.86 1.54 1.51 1.32 1.03 0.82
0.1 0.97 0.86 0.79 0.85 1.75 1.73 1.42 1.10 0.78
0.2 0.86 0.85 0.83 0.90 2.11 2.01 1.90 1.58 0.82
0.4 0.99 0.89 0.86 0.88 1.85 1.86 1.84 1.90 0.90

1k 0 0.94 0.82 0.79 0.86 0.93 0.81 0.80 0.86 0.82
0.05 0.93 0.81 0.79 0.85 1.67 1.59 1.32 0.97 0.83
0.1 0.84 0.79 0.78 0.84 1.81 1.76 1.56 1.14 0.75
0.2 0.94 0.79 0.77 0.88 1.96 1.98 1.77 1.47 0.78
0.4 0.88 0.83 0.81 0.88 2.10 2.05 2.08 1.98 0.78

(continued on next page)
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Table A.7 (continued)

N pmiss EM 
BIC

EM 
0.4

EM 
0.25

EM 
0.1

NAL 
BIC

NAL 
0.4

NAL 
0.25

NAL 
0.1

BMA

all 0 1.10 0.76 0.80 0.80 1.05 0.77 0.80 0.80 0.75
0.05 1.01 0.75 0.78 0.80 1.69 1.58 1.23 0.97 0.79
0.1 1.00 0.75 0.78 0.82 1.90 1.73 1.40 0.92 0.80
0.2 0.91 0.76 0.79 0.87 1.95 1.91 1.84 1.16 0.74
0.4 0.86 0.76 0.78 0.89 2.13 2.11 2.11 1.98 0.81

the results reported in [47]. Given the unsatisfactory learning performance of all methods, we would argue that for the RAF 
data the cross-method comparison in terms of rSHD scores is only of limited informative value.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ijar.2023 .108954.
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