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Abstract
We discuss the generalized Newton–Cartan geometries that can serve as grav-
itational background fields for particles and strings. In order to enable us to
define affine connections that are invariant under all the symmetries of the
structure group, we describe torsionful geometries with independent torsion
tensors. A characteristic feature of the non-Lorentzian geometries we consider
is that some of the torsion tensors are so-called ‘intrinsic torsion’ tensors.
Setting some components of these intrinsic torsion tensors to zero leads to
constraints on the geometry. For both particles and strings, we discuss various
such constraints that can be imposed consistently with the structure group
symmetries. In this way, we reproduce several results in the literature.
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1. Introduction

One of the cornerstones of Einstein’s description of general relativity is its underlying semi-
Riemannian geometry giving a geometrical interpretation to the gravitational force. What is
less known is that also Newtonian gravity can be given a geometrical interpretation using a
degenerate foliated geometry. Its proper formulation was given eight years after Einstein’s
formulation by Élie Cartan [1, 2]. This generalization of Newtonian gravity is valid in any
coordinate system and is called Newton–Cartan (NC) gravity with an underlying geometry
that is called NC geometry. This is the correct geometry to describe the coupling of gravity to
massive non-relativistic particles and field theories.

Recently, there has been a growing interest in other non-Lorentzian7, gravity models and
corresponding geometries. One key example is an extension of Newtonian gravity including
so-called ‘twistless torsion’ that was shown to occur in Lifshitz holography where it was real-
ized as a background geometry of the boundary conformal field theory [3]. This is a natural
extension since the twistless torsion condition is invariant under (anisotropic) local dilatations,
as it should for a Lifshitz conformal field theory, whereas the zero torsion condition describ-
ing a Newtonian space-time is not. For a useful review on general non-Lorentzian holography,
see [4]. Another interesting non-Lorentzian geometry is Carroll geometry, which appears as
the natural geometry of null surfaces (see for instance [5]); see also the recent paper [6] and
references therein.

Another way to generalize NC geometry is to go beyond particles and consider the grav-
itational coupling to extended objects such as strings. Whereas any extended object can be
coupled to general relativity, in the non-Lorentzian case each extended object requires a dif-
ferent non-Lorentzian geometry with a foliation that is determined by the spatial extension of
the object: particles require a foliation with leaves of codimension one, but strings require a
foliated geometry where the leaves are submanifolds of codimension two, that describe the
dimensions transversal to the string. This geometry is not only relevant to describe the coup-
ling of non-Lorentzian gravity to a classical cosmic string but can also be used to formulate the
sigma model describing non-relativistic string theory in a general curved background8. Ori-
ginally, non-relativistic string theory was only formulated for a flat non-Lorentzian space-time
[7, 8] or special backgrounds [9]. Only recently a formulation for a generic background has
been given [10, 11]. This opens the way to study essential features of non-relativistic string
theory as a candidate theory of non-relativistic quantum gravity, independent of the relativ-
istic case. The geometry underlying non-relativistic string theory has natural torsion tensors

7 We will generically call any gravity theory with a structure group that differs from the Lorentz group ‘non-
Lorentzian’. However, for historic reasons we will instead sometimes use the denomination ‘non-relativistic’ for NC
gravity and its generalization to strings. In this context we will also use the wording ‘non-relativistic string theory’ as
a candidate theory of ‘non-relativistic quantum gravity’.
8 By a non-relativistic string we mean a string with a relativistic worldsheet that propagates in a non-relativistic target
space.
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that are constrained by requiring that the quantum effective action remains non-relativistic [12]
and/or requiring supersymmetry [13]. For recent reviews on non-relativistic string theory and
non-Lorentzian geometries with more references, see [14, 15].

An important feature of NC gravity and its generalization to strings is that its coupling
to particles and/or strings is described by additional fields beyond the usual (co)frame fields.
In the case of particles this extra field is a 1-form, called mµ.9 This 1-form field is needed
due to the fact that, unlike in the relativistic case, mass and energy are two distinct conserved
quantities in the non-relativistic case. It has a clear algebraic interpretation as the gauge field
associated with the central extension that distinguishes the Galilei from the Bargmann algebra.
It couples to a particle via a Wess–Zumino term. In the case of (bosonic) string theory these
extra fields are the non-relativistic Kalb–Ramond 2-form bµν and the dilaton ϕ. Like in the
particle case, the 2-form bµν couples to a non-relativistic string via aWess–Zumino term. Both
mµ and bµν have in common that they are part of the geometric fields in the sense that they
vary under boost transformations and, in fact, are needed to write down boost-invariant actions
describing the coupling to particles and/or strings.

When discussing torsionful geometries it is important to distinguish between the relativ-
istic and non-Lorentzian case. In the relativistic case, the torsion tensor of a metric-compatible
affine connection can be arbitrarily specified without imposing any constraints on the metric
structure; in particular one may always consider a torsion-free affine connection (the Levi–
Civita connection). This is no longer the case in non-Lorentzian geometry. There, part of the
torsion consists of so-called intrinsic torsion tensor components that form an obstruction to
defining a metric compatible and torsionless connection, without imposing differential con-
straints on the metric structure [17]. In the physics literature, these intrinsic torsion tensors
are sometimes introduced as dependent tensors that are expressed in terms of other (e.g. geo-
metric) fields of the model [18]. It is the purpose of this work to introduce torsion tensors as
independent fields in the spirit of [19–22] and demonstrate which of these tensors can be set
to zero consistently with the symmetries of the structure group. A benefit of this approach is
that in this way we are always able to define a proper affine connection that is invariant under
all the symmetries of the structure group. Only afterwards we will try to express some of the
torsion tensors as dependent tensors in terms of the other (geometric) fields of the model. Both
for particles and strings we will give explicit examples of such dependent intrinsic torsion
tensors.

This work is organized as follows. In section 2 we review, using the Cartan frame formula-
tion, standard NC geometry with torsion. In particular, we show how to introduce independent
torsion tensors and how these tensors can be used to define spin connections and an invariant
affine connection. We discuss various constraints that can be imposed on these torsion tensors
without breaking the symmetries of the structure group. We end this section by giving several
examples of dependent torsion tensors that have appeared in the literature. In section 3 we
extend all calculations of section 2 from particles to strings. Apart from getting slightly more

9 The addition of just this field applies to the standard NC geometry framework and suffices to write down the
equations of motion of NC gravity. An action principle for these equations of motion requires a departure from
standard NC geometry, in which extra geometric fields are introduced; see, e.g. [16]. A similar remark holds for
the generalization of NC geometry to strings, where the addition of bµν suffices to write down equations of motion
of the common sector of effective field theories of non-relativistic string theories, but is not sufficient to formulate
actions. In this paper, we will only concern ourselves with the standard NC geometry framework and its stringy
generalization.
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involved the structure of this section is very similar to that of section 2. Finally, in section 4
we give our conclusions and present an outlook for future extensions.

2. Torsionful NC geometry in a Cartan formulation

NC geometry refers to the geometry of D-dimensional manifolds, called NC manifolds, that
are equipped with a degenerate metric structure that reduces the local structure group to the
homogeneous Galilei group in D dimensions. The latter is given by the semi-direct product
SO(D− 1)⋉RD−1, where SO(D− 1) is physically interpreted as the group of local spatial
rotations and RD−1 as that of local Galilean boosts. A convenient way to introduce the met-
ric and metric compatible affine connection structures of NC geometry is in terms of frame,
‘extended coframe’ and structure group connection fields, all to be defined below, in analogy
to the Cartan formulation of Lorentzian geometry.

Such a Cartan formulation of NC geometry, for both torsionless and torsionful affine con-
nections, has been developed in a number of [3, 18, 19, 23–27]. Here, we will review it to facil-
itate generalization to the case of string NC (SNC) geometry. We will first introduce the frame
and extended coframe fields and ensuing metric structure in section 2.1. In section 2.2, we will
discuss how torsionful, metric compatible affine connections, that are completely determined
in terms of the frame, extended coframe and suitable torsion tensor fields, can be defined on a
NCmanifold. We will at first treat the torsion in a general manner, by introducing it as an extra,
independent ingredient. Special cases and examples of torsionful NC geometry that appear in
the context of e.g. Lifshitz holography [3, 18, 25–27], will be discussed in section 2.3.

2.1. Frame fields, extended coframe fields and metric structure

A local frame10 on a D-dimensional NC manifoldM, whose local coordinates are denoted by
xµ, is given by a collection {τµ,eaµ} of D vector fields, referred to as the frame fields. Here,
the index a takes values 1, . . . ,D− 1. In what follows, this ‘spatial index’ awill be freely raised
and lowered using Kronecker deltas δab and δab. The structure group SO(D− 1)⋉RD−1 acts
on the frame fields τµ and eaµ according to the following infinitesimal local transformation
rules:

δτµ =−λaeaµ, δea
µ =−λabebµ. (1)

Here, λab =−λba denote the parameters of SO(D− 1) spatial rotations, whereas λa refer to
the parameters ofRD−1 Galilean boosts. Given a local frame {τµ,eaµ}, a local coframe onM
is a collection {τµ,eµa} of D one-forms, called coframe fields, that are dual to the frame fields
in the sense that the following relations hold:

τµτµ = 1, τµeµ
a = 0, ea

µτµ = 0,

eµ
aeb

µ = δab , τµτ
ν + eµ

aea
ν = δνµ. (2)

10 The geometries of this paper can be aptly described in the language of principal fiber bundles. A frame is
then a section of the frame bundle of M, a principal fiber bundle, whose GL(D,R) structure group is reduced to
SO(D− 1)⋉RD−1 due to the presence of 2 invariant metric tensors of rank 1 and rank D− 1. We will not use this
language much in this paper, since we are only concerned with a local description of the geometries under considera-
tion. This terminology is however required when dealing with global issues, when it becomes imperative to know how
frames in different intersecting local patches are related to each other via structure group transformations on overlaps
of patches.
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In addition to the coframe fields τµ and eµa, NC geometry also includes an extra one-form
mµ as part of its geometric data11. The one-forms τµ, eµa and mµ

12 transform in a reducible,
indecomposable representation of the structure group, according to the following infinitesimal
local transformation rules:

δτµ = 0, δeµ
a =−λabeµb+λaτµ, δmµ = λaeµa. (3)

Wewill call this representation space, i.e. the collection of one-forms {τµ,eµa,mµ}, the ‘exten-
ded coframe’. In the following, we will refer to the extended coframe fields mµ, τµ and eµa as
the ‘mass form’, ‘time-like Vielbein’13 and ‘spatial Vielbein’ respectively. Since (2) expresses

that the square matrices
(
τµ eµa

)
and

(
τµ

eaµ

)
are each other’s inverse, we will then (with

slight abuse of terminology) refer to τµ as the ‘inverse time-like Vielbein’ and to eaµ as the
‘inverse spatial Vielbein’14.

Using the frame and coframe fields, one can construct two degenerate symmetric (covariant
and contravariant) two-tensors that are invariant under local rotations and boosts:

τµν ≡ τµτν , hµν ≡ ea
µeb

νδab. (4)

These define the degenerate metric structure on the NCmanifoldM. The covariant metric τµν
has rank 1 and is referred to as the ‘time-like metric’, whereas the contravariant metric hµν

has rank D− 1 and is often called the ‘spatial cometric’. Note that τµ is in the kernel of the
spatial cometric, i.e. hµντν = 0, as a consequence of (2).

The local causal structure of a NC manifold can be viewed as a limit of that of a Lorent-
zian manifold, in which the speed of light in a local inertial reference frame is sent to infin-
ity. In local Minkowskian coordinates {x0,xa}, this can be achieved by rescaling x0 with a
(dimensionless) parameter ω and taking the limit ω→∞. In this limit the local lightcone
ω2(x0)2 = xaxa flattens out and degenerates into the x0 = 0 hyperplane. With respect to such a
local inertial reference frame, vectors can be classified as time-like future-/past-directed, when
they have a strictly positive/negative x0-component and as spatial when their x0-component is
zero. This can be phrased covariantly, using the time-like Vielbein τµ, by saying that a vector
Xµ 15 is time-like future-directed when τµXµ > 0, time-like past-directed when τµXµ < 0 and
spatial when τµXµ = 0.

As their names suggest, the symmetric two-tensors τµν and hµν allow one to compute time
intervals and spatial distances in NC geometry in a way that is analogous to how the metric
is used to calculate lengths of curves in Riemannian geometry [28, 29]. Time intervals in
the NC manifold M are defined along any curve γ : t ∈ [0,1]→ xµ(t) ∈M, whose tangent

11 In approaches to define NC geometry as a gauging of the Bargmann algebra, i.e. the centrally extended Galilei
algebra, mµ corresponds to the gauge field associated with the central extension [23, 24]. For this reason, it is often
called the ‘central charge gauge field’ in the literature.
12 As will be seen in (19), mµ also acts as an abelian gauge field, i.e. as a connection on a principal U(1)-bundle. In
principle, the full structure group then contains an additional U(1) factor. In this paper, we will mostly be interested
in affine connections that are connections on the frame bundle of the manifold. We will then use the term ‘structure
group’ as shorthand for the structure group of the frame bundle of M (with sections {τµ, eaµ}), as this is the part of
the full structure group that is relevant for us. Our usage of the term ‘structure group’ thus does not include the extra
U(1) factor.
13 The time-like Vielbein τµ is also often called the ‘clock form’ in the literature.
14 In calling frame fields inverse Vielbeine and coframe fields Vielbeine, we conform to the physics literature. In the
mathematics literature, one usually reserves the term Vielbeine for a section of the frame bundle, i.e. for the frame
fields.
15 Here, it is understood that Xµ is such that τµXµ is invariant under the structure group.

5



Class. Quantum Grav. 40 (2023) 075010 E A Bergshoeff et al

vectors ẋµ(t)≡ dxµ(t)/dt are time-like future-directed for all t ∈ (0,1).16 Such a curve models
the motion of a non-relativistic physical particle or observer between two points with local
coordinates xµ(0) and xµ(1). Given the time-like metric τµν , the time interval measured by
the particle/observer to traverse the curve γ is then computed by the following integralˆ 1

0
dt
√
ẋµẋντµν =

ˆ 1

0
dt ẋµτµ =

ˆ
γ

dxµτµ. (5)

To define spatial distances in an analogous way, one needs an inverse of the spatial cometric
hµν . The latter is not invertible when viewed as a map from one-forms to vectors, since it has
a non-trivial kernel spanned by τµ. It does however give rise to a well-defined map between
the space of equivalence classes [αµ] = {αµ + fτµ|f ∈ C∞(M)} of one-forms that differ by
a multiple of τµ, i.e. fτµ, and the space of spatial vectors, where hµν maps [αν ] to hµν [αν ]≡
hµναν . When viewed like this, hµν is invertible and its inverse is given by

hµν = eµ
aeν

bδab. (6)

Here, hµν is interpreted as a map that assigns the equivalence class [hµνXν ] to each spatial
vector Xµ. Using (2), one sees that

hµρhρν = δµν − τµτν , (7)

from which it follows that hµρhρν and hνρhρµ act as the identity δµν on spatial vectors Xν , resp.
equivalence classes [αµ]. The two-tensors hµν and hµν are thus indeed each other’s inverse,
when viewed as maps between the space of equivalence classes of one-forms that are equal up
to a multiple of τµ and the space of spatial vectors. It is also worth mentioning that hµν (unlike
hµν) is not invariant under local boosts: δhµν = 2λaτ(µeν)a.17 It thus does not give a covariant
metric on the full space of vectors. Note however that XµYνhµν is boost invariant when Xµ

and Yν are spatial18, so that hµν constitutes a covariant metric (with Euclidean signature) on
the space of spatial vectors. With these remarks in mind, spatial distances can be defined along
any curve γ̃ : s ∈ [0,1]→ xµ(s), whose tangent vectors x ′µ(s)≡ dxµ(s)/ds are spatial for all
s ∈ (0,1). The length of such a curve is defined in terms of the metric hµν on spatial vectors
as: ˆ 1

0
ds

√
x ′µx ′νhµν . (8)

The notion that one can onlymeasure lengths between simultaneous events is formalized by the
fact that spatial distances can only be defined along curves whose tangent vectors are spatial.

The above discussion shows that the coframe fields τµ and eµa can be viewed as a non-
relativistic analogue of the Vielbein of Lorentzian geometry in the Cartan formulation. The
extended coframe fieldmµ has no analogue in Lorentzian geometry. It is not needed to specify
the metric structure of NC geometry. It however plays an important role in defining metric
compatible affine connections that are fully expressed in terms of frame, extended coframe
and torsion tensor fields, as we will review in the next section.

16 The restriction to curves whose tangent vectors are everywhere time-like future-directed is motivated by viewing
them as worldlines of particles that move at finite speed. The time interval (5) is however also well-defined for curves
that have sections where their tangent vectors are spatial. Such sections then do not contribute to the time interval
integral (5).
17 So, while hµν is not a well-defined boost invariant object, an equivalence class [hµν ] = {hµν + 2f(µτν)} with fµ
an arbitrary one-form, is boost invariant.
18 A slightly stronger statement is that the equivalence class [hµνXν ] is boost invariant, when Xµ is spatial.
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2.2. Torsionful, metric compatible connection

In the Cartan formulation of NC geometry, metric compatible affine connections are defined
by introducing a structure group connection one-form Ωµ that takes values in the Lie algebra
of the homogeneous Galilei group in D dimensions:

Ωµ =
1
2
ωµ

abJab+ωµ
aGa, (9)

where Jab =−Jba and Ga are generators of the Lie algebra of SO(D− 1) (spatial rotations)
and RD−1 (Galilean boosts). We will refer to ωµ

ab =−ωµ
ba and ωµ

a as the spin connections
for spatial rotations and Galilean boosts respectively. Their infinitesimal local structure group
transformations are given by

δωµ
ab = ∂µλ

ab− 2λ[a|c|ωµc
b], δωµ

a = ∂µλ
a+ωµ

abλb−λabωµb. (10)

To introduce an affine connection Γρ
µν that is compatible with the NC metric structure, one

then considers the following ‘Vielbein postulates’:

∂µτν −Γρ
µντρ = 0, ∂µeν

a+ωµ
abeνb−ωµ

aτν −Γρ
µνeρ

a = 0. (11)

These postulates immediately lead to the metric compatibility conditions

∇µτνρ ≡ ∂µτνρ −Γσ
µντσρ −Γσ

µρτνσ = 0, ∇µh
νρ ≡ ∂µh

νρ +Γν
µσh

σρ +Γρ
µσh

νσ = 0.

(12)

The form of the Vielbein postulates (11) is furthermore motivated by the requirement that the
affine connection Γρ

µν should be invariant under the local structure group for the above given
transformation rules of (extended co)frame fields and spin connections. Indeed, using (11) to
express Γρ

µν in terms of the spin connections ωµ
ab, ωµ

a and the time-like and spatial Vielbeine
τµ, eµa, one obtains:

Γρ
µν = τρ∂µτν + ea

ρ
(
∂µeν

a+ωµ
abeνb−ωµ

aτν
)
. (13)

One readily checks that this expression for Γρ
µν is invariant under the local rotation and boost

transformations (1), (3) and (10) (and that it has the appropriate transformation law under
general coordinate transformations).

So far, we have not imposed any restrictions on the torsion 2Γρ
[µν] of the affine connection

Γρ
µν . In this section, we will keep the torsion completely arbitrary and view it as an extra inde-

pendent geometric ingredient. It is then convenient to decompose it in two a priori independent
tensors Tµν and Tµνa as follows:

2Γρ
[µν] = τρTµν + ea

ρTµν
a ⇔ Tµν ≡ 2Γρ

[µν]τρ and Tµν
a = 2Γρ

[µν]eρ
a. (14)

We will refer to Tµν and Tµνa as the time-like and spatial torsion respectively. They transform
under infinitesimal local rotations and boosts as:

δTµν = 0, δTµν
a =−λabTµνb+λaTµν . (15)

By antisymmetrizing the Vielbein postulates (11), one obtains the following equations that
are covariant with respect to local spatial rotations and Galilean boosts:

2∂[µτν] = Tµν , (16a)

2∂[µeν]
a+ 2ω[µ

abeν]b− 2ω[µ
aτν] = Tµν

a. (16b)

The second of these should be viewed as an identity that exhibits that some components
of ωµ

ab and ωµ
a are not independent fields. Viewing it as a system of algebraic equations

for ωµ
ab and ωµ

a, one can solve it to express some of the spin connection components in

7
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terms of (co)frame fields and the torsion tensor Tµνa. Note however that this procedure does
not allow to express all components of ωµ

ab and ωµ
a in this way. Indeed, the fields ωµ

ab

and ωµ
a contain D(D− 1)(D− 2)/2+D(D− 1) = D2(D− 1)/2 components, whereas (16b)

only contains D(D− 1)2/2 equations. Consequently, D(D− 1)/2 spin connection compon-
ents cannot be solved in terms of (inverse) Vielbeine and Tµνa from (16b) alone.

Whereas in Lorentzian geometry all spin connection components are completely determ-
ined in terms of the (inverse) Vielbeine and torsion by the Lorentzian analogue of
equations (16), the preceding paragraph indicates that this is not the case in NC geometry.
It is however possible to express all NC spin connection components as functions of torsion
tensors, (inverse) Vielbeine and the mass form mµ. To do this, we introduce an extra inde-

pendent two-form T(m)µν that we call the ‘mass torsion tensor’ and equate it to the properly
covariantized (with respect to Galilean boosts) exterior derivative of the mass form field mµ:

2∂[µmν] − 2ω[µ
aeν]a = T(m)µν . (17)

Spatial rotations leave the left-hand side of this equation inert, while Galilean boosts transform
it to the left-hand side of (16b). The right-hand sides of (17) and (16b) should then have the
same transformation behavior to ensure that the set of equations (16) and (17) is invariant
under the structure group. This tells us that the mass torsion tensor is invariant under spatial
rotations and transforms under Galilean boosts as follows:

δT(m)µν = λaTµν
a. (18)

Note that the left-hand side of (17) is also invariant under an abelian gauge transformation
(with parameter σ) of mµ:

δmµ = ∂µσ. (19)

This transformation is often called the ‘central charge transformation’19. As we will allude to
at the end of this section, it plays an important role in physical applications of NC geometry,
where it is realized as a symmetry. Although it can be treated as part of the structure group,
we will use the latter term to only include transformations that act on the frame fields and we
thus do not view (19) as a structure group transformation (see also footnote 6).

The two equations (16b) and (17) constitute a system of D(D− 1)2/2+D(D− 1)/2=
D2(D− 1)/2 algebraic equations for as many components of ωµ

ab and ωµ
a. Solving these

equations then leads to the following expressions for the spin connections in terms of the
frame and extended coframe fields and torsion tensors Tµνa, T

(m)
µν :

ωµ
a = τµτ

νeaρ∂[νmρ] + eaν∂[µmν] + eµbe
aντρ∂[νeρ]

b+ τν∂[µeν]
a

− τµτ
νeaρT(m)νρ + eµbτ

νe(a|ρ|Tνρ
b) − 1

2
eµbe

bνeaρT(m)νρ ,

ωµ
ab = 2e[a|ν|∂[µeν]

b] − eµce
aνebρ∂[νeρ]

c+ τµe
aνebρ∂[νmρ]

− 1
2
τµe

aνebρT(m)νρ − e[a|ν|Tµν
b] +

1
2
eµce

aνebρTνρ
c. (20)

Plugging these expressions in (13), one can express Γρ
µν in terms of the NC metric structure,

mµ and torsion tensors:

19 The terminology stems from the approach in which Newton–Cartan geometry is defined via a gauging of the cent-
rally extended Galilei algebra. The transformation (19) then corresponds to the central extension.
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Γρ
µν = τρ∂µτν +

1
2
hρσ (∂µhσν + ∂νhµσ − ∂σhµν)+ hρστµ∂[σmν] + hρστν∂[σmµ]

+ hρστ(µT
(m)
ν)σ − hρσe(µ|a|Tν)σ

a+
1
2
ea

ρTµν
a. (21)

One can explicitly check that the structure group transformations of the right-hand sides
of (20), induced by (3), (1), (15) and (18), coincide with (10) and that the right-hand side
of (21) is similarly invariant under the structure group. For Galilean boosts, this invariance is
not manifest; one can however rewrite (21) in a form that exhibits manifest boost invariance
as follows:

Γρ
µν = τ̄ρ∂(µτν) +

1
2
hρσ

(
∂µh̄σν + ∂ν h̄µσ − ∂σh̄µν

)
+

1
2
τρTµν

+ hρσm(µTν)σ + hρστ(µT
(m)
ν)σ − hρσe(µ|a|Tν)σ

a+
1
2
ea

ρTµν
a, (22)

where

τ̄µ = τµ + hµνmν , h̄µν = hµν − 2m(µτν), (23)

are boost invariant expressions.
Note that the equations (16) and (17) are invariant under the central charge transforma-

tion (19), if the torsion tensors Tµν , Tµνa and T(m)µν are. As a consequence the spin and affine
connection expressions (20), (21) are then also invariant under (19). Note however that there
is no good a priori reason to expect that the connections are invariant under the central charge,
since we do not consider the latter to be part of the structure group. The torsion tensors Tµν ,

Tµνa and/or T(m)µν are thus allowed to have non-trivial central charge transformations, result-
ing in expressions for the spin and affine connections that are no longer obtained from central
charge invariant equations and thus are no longer central charge invariant20.

Taking the anti-symmetric part in [µν] of (21), one explicitly sees that Tµν and Tµνa consti-
tute the components of the torsion 2Γρ

[µν] of the affine connection, as in (14), with Tµν given

by 2∂[µτν] as in (16a). The mass torsion tensor T(m)µν has no Lorentzian analogue and does not
appear in the affine connection torsion. We nevertheless still view it as a torsion tensor in a
Cartan formulation sense, namely as a tensor that transforms covariantly under the structure
group and that measures the non-vanishing of the exterior covariant derivative of an extended
coframe field. As such, T(m)µν forms a reducible, indecomposable structure group representation
together with the affine connection torsion components Tµν and Tµνa and one can thus view
it as a component of a ‘torsion tensor multiplet’. Its presence in NC geometry is crucial in
ensuring that the transformation rule of the spin connection expressions (20), induced by (3),
(1), (15) and (18), is consistent with (10).

Apart from featuring an extra torsion tensor T(m)µν , the structure of the torsion in NC geo-
metry differs in another important way from its Lorentzian geometry counterpart. In Lorent-
zian geometry, all affine connection torsion components appear in the expressions for the spin
connection in terms of the (inverse) Vielbeine and torsion tensor components (i.e. in the Lorent-
zian analogue of (20)). Setting torsion tensor components equal to zero then only amounts to
choosing a particular connection (e.g. the Levi–Civita connection if all torsion components are

20 An analogous phenomenon occurs in supergravity, where the (supercovariant) Levi–Civita spin connection has
a non-trivial transformation rule under supersymmetry, because it is obtained by solving a set of equations that is

not invariant under supersymmetry. This also motivates the boost transformation rule (18) of T(m)µν , since with a dif-
ferent transformation rule the set of equations (16) and (17) would not be boost invariant and as a result the boost
transformation rules of the right-hand sides of (20) would no longer coincide with those given in (10).
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set to zero). By contrast, in NC geometry the explicit spin connection expressions (20) contain
only the spatial components Tµνa and not the time-like components Tµν of the affine connec-
tion torsion. Whereas setting the Tµνa components equal to zero only amounts to picking a
particular connection, setting components of Tµν equal to zero also leads to extra geometric
constraints on the exterior derivative of τµ, as is seen from (16a). For this reason, Tµν is also
called the ‘intrinsic torsion’ of NC geometry [17].

Starting from the affine connection (21) and (22), one can construct the Riemann and Ricci
tensors in the usual way. The metric structure (4) and affine connection (21) and (22) thus fully
specify torsionful NC geometry in terms of the frame and extended coframe fields and torsion
tensors Tµν , Tµνa, T

(m)
µν .

Before discussing various special cases and examples that have appeared in the recent lit-
erature, let us remark that NC geometry is the natural framework to describe the mechanics
of non-relativistic point particles. A point particle traces out a worldline in space-time and, as
remarked in section 2.1, time intervals along such a worldline and spatial distances to it can be
measuredwith themetrics τµν and hµν . Themass formmµ also has a natural particle interpreta-
tion. Unlike relativistic theories, non-relativistic theories exhibit mass conservation. The inclu-
sion ofmµ among the extended coframe fields and the extra central charge transformation (19)
then give an extra ingredient to implement the conservation of mass of a non-relativistic
particle. Given a particle with mass m that moves along a worldline γ : R ∋ t→ xµ(t) ∈M,
this can be done by introducing the following coupling to mµ

m
ˆ
γ

dxµmµ = m
ˆ
R
dt ẋµmµ. (24)

This coupling of mµ to the particle’s mass current is analogous to how an electrically charged
relativistic particle couples to the electromagnetic gauge potential. Gauge invariance of the
coupling (24) under the central charge transformation (19) then implies conservation of the
particle’s mass current, in analogy to how charge conservation is realized in electromagnet-
ism. In NC gravity, the diffeomorphism covariant reformulation of Newtonian gravity [1, 2],
one can choose adapted coordinates, in which only the time-like component of mµ is non-
vanishing. This time-like component then corresponds to the Newton potential and the coup-
ling (24) reduces to the coupling of a particle to the Newton potential. We thus see that the
presence of mµ in NC geometry is natural both from the mathematical and physical point of
view. Mathematically, mµ is needed because metric compatibility no longer completely fixes
the connection in terms of the metric and torsion, in case the metric structure is a degenerate
non-relativistic one. Physically, it plays the role of a gauge field that couples to the Noether
current that implements mass conservation and gives a diffeomorphism covariant generaliza-
tion of the Newton potential of Newtonian gravity.

2.3. Special cases and examples

In the previous section, we saw that the specification of a generic torsionful affine connection
that is compatible with the NC metric structure involves the introduction of time-like and
spatial torsion tensors Tµν and Tµνa, as well as an extra mass torsion tensor T(m)µν . While we
have thus far kept these tensors completely arbitrary, it is possible to consider special cases,
in which some of their components are equal to zero. To do this, we will use the following
notation to denote torsion tensor components:

T0a = τµea
νTµν , Tab = ea

µeb
νTµν , (25)

and similarly for components of Tµνa and T
(m)
µν .

10
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Figure 1. Classification of constraints on the torsion tensors (b) that are consistent with
the local structure group transformations (a).

Since the components of Tµν , Tµνa and T(m)µν transform non-trivially into each other under
Galilean boosts, in a way that is summarized in figure 1(a), one cannot set their compon-
ents equal to zero independently. Let us illustrate this by outlining several scenarios in which
components of the torsion tensors are set to zero consistently. These possible truncations are
displayed in figure 1(b). The cases displayed in figure 1(b) can be retrieved from figure 1(a) as
follows: every possible scenario (a rectangle in figure 1(b)) corresponds to setting the torsion
components whose color (indicated in figure 1(a)) is absent, to zero. For example, case 4 of
figure 1(b) corresponds to setting Tab equal to zero. For consistency, it is then required that tor-
sion components that are set to zero point towards torsion components that are also put equal
to zero in figure 1(a). E.g., since in case 2 of figure 1(b) Tµνa is set to zero, the components
T0a and Tab also have to vanish.

A useful way to divide the different cases of figure 1(b) is according to the following list.

• Cases 1 and 2 in figure 1(b) correspond to the cases in which the affine connection has zero
torsion (Tµν = 0= Tµνa). Case 1 is known as ‘torsionless NC geometry’ in the literature21.

• Cases 1, 2 and 3 in figure 1(b) have zero time-like/intrinsic torsion: Tµν = 0. Of these, case
3 has unconstrained (spatial) torsion of Γρ

µν (i.e. has unconstrained components of Tµνa).
The vanishing of Tµν means that the time-like Vielbein τµ is closed:

21 The existence of case 2 is related to a difference between NC and Lorentzian geometry, namely the fact that in
the former Γρ

µν is not uniquely specified by metric compatibility (12) and Γρ
[µν]

= 0, but only up to an ambiguity
parametrized by a two-form Kµν . In case 1, this two-form is taken to be exact and given by the exterior derivative of
mµ. The existence of case 2 indicates that Kµν can also be a generic two-form that does not even have to be closed.
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Figure 2. This figure depicts two events xi, xf in space-time that are connected by two
distinct future-directed time-like curves C, C ′.With τ = τµdxµ, Stokes’ theorem implies
that
´
C τ −

´
C ′ τ =

´
∂Σ

τ =
´
Σ
dτ , where Σ is a surface enclosed by C and C ′. In case

the time-like torsion Tµν and thus dτ are zero, one then finds that the time interval (5)
is path-independent:

´
C τ =

´
C ′ τ .

∂[µτν] = 0. (26)

As illustrated in figure 2, Stokes’ theorem then implies that the time interval (5) is independ-
ent of the curve that connects two particular events. Different physical observers that move
along different curves between the same initial and final events thus measure the same time
interval for their respective journeys. In other words, NC manifolds with vanishing intrinsic
torsion admit a notion of absolute time. Locally, (26) implies that τµ is exact, i.e. τµ = ∂µt,
and the function t can be identified as an absolute time function.

• Case 4 has Tab = 0 but T0a unconstrained. These conditions are equivalent to stating that τµ
is hypersurface orthogonal:

τ[µ∂ντρ] = 0, (27)

but not necessarily closed. This case is known as ‘twistless torsionful NC geometry’ [3, 25].
As can be seen from figure 1(b), consistency with Galilean boosts requires that both Tµνa

and T(m)µν cannot be set to zero in general. Unlike the previous cases, it is no longer possible
to define an absolute time in twistless torsionful NC geometry, since the time interval (5)
between two particular events now depends on the path that connects them. There however
still is a notion of absolute simultaneity. This follows from Frobenius’ theorem, accord-
ing to which a NC manifold on which the hypersurface orthogonality condition (27) holds,
can be foliated in (D− 1)-dimensional spatial hypersurfaces, i.e. hypersurfaces of simultan-
eous events. Locally, τµ is only exact after multiplication with an integrating factor e−ϕ,
i.e. one can write τµ = eϕ∂µt. The (D− 1)-dimensional leaves of the foliation are given by
the t= constant hypersurfaces. Twistless torsionful NC geometry then still has a notion of
Newtonian causality in the sense that, given a spatial hypersurface t= c0, one can distin-
guish its future, given by the collection of hypersurfaces t= c1 with c1 > c0, from its past,
given by the collection of hypersurfaces t= c2 with c2 < c0.

• Case 5 leaves both T0a and Tab unconstrained. Consistency with boosts then requires that all
torsion tensors are unconstrained. In this case, there is neither a notion of absolute time nor
of absolute simultaneity and Newtonian causality.

12
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Note that we have not given a complete classification of all possible scenarios in which the
torsion components can be set to zero consistently. One could for instance split the torsion
tensor T(m)µν up into a part that (partially) projects on the longitudinal Vielbein T(m)0a and a part

that does not, T(m)ab , which would lead to a finer classification. We have also not considered
cases, in which combinations of components of different torsion tensors are put equal to zero.

Torsionless NC geometry is the geometry underlying NC gravity [1, 2]. Torsionful NC
geometry has appeared in recent applications. Let us mention two examples. The first example
deals with supergravity versions of NC gravity, that have thus far only been constructed in three
space-time dimensions [30–41]. These theories are based on torsionful NC geometry, where
the torsion tensors Tµν , Tµνa and T

(m)
µν are built out of fermionic gravitino fields. For example,

the three-dimensional NC supergravity theory with four supercharges of [30] contains two
gravitino fields ψµ+ and ψµ− that are both Majorana vector-spinors. Their transformation
rules under local spatial rotations and Galilean boosts are given by

δψµ+ =
1
4
λabγabψµ+, δψµ− =

1
4
λabγabψµ− − 1

2
λaγa0ψµ+. (28)

Here γab = γ[aγb], γa0 = γaγ0 and {γ0,γa|a= 1,2} constitute a set of three-dimensional
gamma matrices (for a Clifford algebra with signature (−++)). The NC geometry used in
[30] then belongs to case 5 of figure 1(b), with torsion tensors Tµν , Tµνa and T

(m)
µν constructed

out of ψµ± as follows:

Tµν =
1
2
ψ̄[µ+γ

0ψν]+, Tµν
a = ψ̄[µ+γ

aψν]−, T(m)µν = ψ̄[µ−γ
0ψν]−. (29)

Using the transformation rules (28) of ψµ±, one finds that these torsion tensors satisfy the
transformation rules (15) and (18) that ensure invariance of the affine connection Γρ

µν (21)
under local rotations and boosts. Note however that Γρ

µν is not invariant under supersymmetry.
Our second example concerns NC geometry as it occurs in attempts to extend the AdS/CFT

correspondence to describe non-relativistic conformal field theories (CFTs) [42–44]. In these
proposals, non-relativistic CFTs live on the boundary of so-called Schrödinger or Lifshitz
space-times that are vacuum solutions of matter coupled relativistic bulk gravity theories, and
whose isometries form a non-relativistic conformal symmetry group. CFT quantities are then
holographically encoded in bulk gravitational ones. While Schrödinger or Lifshitz space-times
are relativistic in the bulk, their boundaries have a non-relativistic causal structure and are thus
naturally described by NC geometry. It has in particular been shown that in holography around
Lifshitz space-times, the relevant boundary geometry is that of torsionful NC geometry [3, 25]
in which the intrinsic torsion is non-vanishing (as in cases 4 and 5 in figure 1(b)). The torsion
tensors Tµν , Tµνa and T(m)µν that occur are expressed in terms of the extended coframe fields
τµ, eµa and mµ and possible choices are given by [18]:

Tµν = 2∂[µτν], Tµν
a = 2eaρmρ∂[µτν], T(m)µν = eaρea

σmρmσ∂[µτν], (30)

and

Tµν = 2∂[µτν], Tµν
a = 2eaρmρ∂[µτν], T(m)µν =−2τρmρ∂[µτν]. (31)

Using the rules (3) and (1), one sees that these tensors indeed transform under the structure
group as in (15) and (18). Both torsion tensor choices of (30) and (31) are, however, not invari-
ant under the central charge transformation (19). Consequently, the affine connections con-
structed using them are invariant under local rotations and boosts, but not under the central
charge transformation. As a result, central charge invariance is usually only realized in a non-
manifest manner in holographic descriptions of non-relativistic CFTs.
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3. Torsionful SNC geometry in a Cartan formulation

In the previous section, we described NC geometry, which forms the natural differential geo-
metric arena for non-relativistic particle mechanics. The framework of NC geometry can be
generalized to manifolds, in which one can describe the movement of extended objects, such
as strings and branes, in a degenerate limit that is akin to a non-relativistic one. Here we
will focus on so-called non-relativistic strings [7, 8, 45] (see also [14] for a recent review).
These are obtained from relativistic strings by sending the speed of light in the directions
transversal to the strings to infinity, while leaving the relativistic character of the worldsheet
untouched. Upon quantization, one then finds that this limit only retains vibrational modes
with non-relativistic dispersion relations in the string spectrum. The target space-times that
non-relativistic strings move in are referred to as SNC manifolds and their geometry is like-
wise called SNC geometry.

Similar to NC geometry,D-dimensional SNC manifolds have a degenerate metric structure
that reduces the local structure group to

(SO(1,1)×SO(D− 2))⋉R2(D−2). (32)

The Minkowskian worldsheet of a non-relativistic string at rest divides up the tangent space
directions of a SNCmanifold in two ‘longitudinal’ directions andD− 2 ‘transversal’ ones. The
SO(1,1) and SO(D− 2) factors of the structure group then correspond to Lorentz transforma-
tions of the two longitudinal directions and rotations of the transversal directions, respectively.
The R2(D−2) factor represents boost transformations that can transform transversal directions
into longitudinal ones, but not vice versa. We will refer to these as ‘String Galilean boosts’. In
the Lie algebra of (32) the generators of R2(D−2) then transform in the (2,D − 2) representa-
tion under the adjoint action of the Lie algebras of SO(1,1) and SO(D− 2).

For the torsionless case, a Cartan formulation of SNC geometry was discussed from the
viewpoint of space-time symmetry algebra gaugings and a particular limit of the Cartan for-
mulation of Lorentzian geometry in [11, 46].22 Recently, the relevance of including non-trivial
torsion in SNC geometry has been pointed out in [13, 49–51]. In this section, we will present
the metric and affine connection structure of torsionful SNC geometry, in the same spirit as our
presentation of torsionful NC geometry of the previous section. We will first discuss the frame
and extended coframe fields and resulting metric structure in section 3.1. Next, in section 3.2,
we will discuss metric compatible affine connections by introducing suitable structure group
spin connections and Vielbein postulates. As in the previous section, we will at first leave the
torsion arbitrary and independent. We will see that, unlike what happens for NC geometry, the
affine connection of SNC geometry can (for our choice of extended coframe fields) no longer
be fully expressed in terms of frame, extended coframe and independent torsion tensor fields.
As in the NC case, it is possible to consider various special cases that are obtained by truncat-
ing torsion tensor components consistently. This will be treated in section 3.3, with particular
emphasis on cases that have appeared in the recent literature.

3.1. Frame fields, extended coframe fields and metric structure

In analogy to NC geometry, a local frame on a SNC manifold (with coordinates xµ) is a col-
lection of D frame fields {τAµ,eaµ} that are vector fields. Here, the ‘longitudinal flat’ index
A takes on the values 0 and 1 and can be freely raised and lowered with a two-dimensional

22 For earlier work on SNC geometry, see [9, 47, 48].
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Minkowski metric ηAB = diag(−1,1). The ‘transversal flat’ index a 23 on the other hand takes
on the values 2, . . . ,D− 1 and raising and lowering is done using a (D− 2)-dimensional Euc-
lidean metric δab. The infinitesimal local transformation rules, according to which the structure
group (SO(1,1)×SO(D− 2))⋉R2(D−2) acts on the frame fields τAµ and eaµ, are given by:

δτA
µ = λϵA

BτB
µ +λA

aea
µ, δea

µ = λa
beb

µ. (33)

Here, λ corresponds to the parameter of longitudinal SO(1,1) Lorentz transformations, λab =
−λba to that of transversal SO(D− 2) rotations, while the λAa are the 2(D− 2) string Galilean
boost parameters. The coframe that is dual to the frame {τAµ,eaµ} then consists of D coframe
fields {τµA,eµa} that are one-forms. The duality between frame and coframe fields is in the
following sense:

τA
µτµ

B = δBA , τA
µeµ

a = 0, ea
µτµ

A = 0,

eµ
aeb

µ = δab , τµ
AτA

ν + eµ
aea

ν = δνµ. (34)

As in NC geometry, SNC geometry features an extra field that is now a two-form bµν . The
fields τµA, eµa and bµν24 transform in a reducible, indecomposable manner under the structure
group, according to the following infinitesimal local transformation rules:

δτµ
A = λϵABτµ

B, δeµ
a = λabeµ

b−λA
aτµ

A,

δbµν =−2ϵABλ
A
aτ[µ

Beν]
a. (35)

Note that the string Galilean boosts act in a non-linear fashion on the two-form bµν .25 Similar
to NC geometry, we will collect the fields of the structure group representation (35) in an
extended coframe {τµA,eµa,bµν}. In what follows, the coframe fields τµA, eµa will be called
the ‘longitudinal Vielbein’ and ‘transversal Vielbein’ respectively. Since (34) expresses that

the matrices
(
τµ

A eµa
)
and

(
τA

µ

eaµ

)
are each other’s inverse, we will (with slight abuse of

terminology) use the terms ‘inverse longitudinal Vielbein’ and ‘inverse transversal Vielbein’
for the frame fields τAµ and eaµ respectively.

The longitudinal and inverse transversal Vielbeine can be ‘squared’ to obtain two degenerate
symmetric (covariant and contravariant) two-tensors that are invariant under local SO(1,1),
SO(D− 2) and string Galilean boost transformations:

τµν ≡ τµ
Aτν

BηAB, hµν ≡ ea
µeb

νδab. (36)

These two tensors constitute a degenerate metric structure on a SNC manifold. The covari-
ant metric τµν is referred to as the ‘longitudinal metric’. From (34) one sees that its kernel
is spanned by the D− 2 vectors eaµ and it thus has rank 2. The contravariant metric hµν

is called the ‘transversal metric’ and has rank D− 2, since its kernel is spanned by the two
one-forms τµA.

23 Many articles on SNC-type geometries use primed capital lettersA ′,B ′,C ′, · · · for the transversal directions instead
of the lowercase a,b,c, · · · used here.
24 Aswill be seen in (56), bµν also transforms under an extra abelian one-form gauge transformation and consequently
corresponds to a connection on aU(1) gerbe. Analogously to howwe dealt with the central charge (19) inNC geometry,
we will take the term ‘structure group’ to refer only to (SO(1,1)× SO(D− 2))⋉R2(D−2), not including the extra
transformation (56).
25 In an interesting recent proposal [51], the 2-form field bµν is represented as a dependent expression in terms of
1-form gauge fields. The non-linear string Galilean boost transformation of bµν is then induced by a linear one of the
vector fields.
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Figure 3. Local causal structure of an SNC manifold. The Lorentzian lightcone degen-
erates into a ‘lightwedge’, defined by the two hyperplanes x0 ± x1 = 0.

Similar to NC geometry, the local causal structure of a SNC manifold can be obtained as
a degenerate limit of that of a Lorentzian manifold. In this case, this limit consists of sending
the velocity of light in the transverse directions in a local inertial reference frame to infin-
ity. In local Minkowski coordinates xÂ = {xA,xa} (with Â= 0, · · · ,D− 1), this is achieved by
rescaling the longitudinal coordinates xA with a (dimensionless) parameter ω and taking the
limit ω→∞. The local lightcone ω2xAxA =−xaxa then flattens out along the transversal dir-
ections and degenerates into the two hyperplanes x0 = x1 and x0 =−x1; see figure 3. A vector
can be distinguished according to whether it lies in the (D− 2)-dimensional intersection of
these two hyperplanes or not. In the former case, we will call the vector ‘transversal’, while
in the latter case we will call it a ‘worldsheet vector’. Worldsheet vectors can be further clas-
sified as time-like, space-like or null vectors, according to whether their projections onto the
(x0,x1)-plane is time-like, space-like or null with respect to the two-dimensional Minkowski
metric ηAB. Put covariantly, a vector Xµ is transversal whenever τµAXµ = 0 for A= 0,1 and
a worldsheet vector whenever τµAXµ are not both zero. Distinguishing worldsheet vectors
into time-like, space-like or null ones is done using the longitudinal metric τµν . In partic-
ular, a worldsheet vector Xµ is time-like whenever τµνXµXν = τµ

AXµτνAXν < 0, space-like
whenever τµνXµXν > 0 and null whenever τµνXµXν = 0.

Given a SNC manifold M, the longitudinal metric τµν can be used to calculate a proper
time ˆ 1

0
dτ

√
−τµν ẋµẋν , (37)

along a curve segment γ : τ ∈ [0,1]→ xµ(τ) ∈M, for which ẋµ(τ)≡ dxµ(τ)/dτ is a time-
like (or null) worldsheet vector for all τ ∈ (0,1). Similarly, if γ̃ : σ ∈ [0,1]→ xµ(σ) ∈M is a
curve segment, for which x ′µ(σ)≡ dxµ(σ)/dσ is a space-like (or null) worldsheet vector for
all s ∈ (0,1), one can define its proper length as

ˆ 1

0
dσ

√
τµνx ′µx ′ν . (38)

Furthermore, τµν can also be used to give a notion of proper area of worldsheets, whose tan-
gent vectors are worldsheet vectors. In particular, the proper area of a worldsheet segment Σφ
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that is specified via an embedding map φ : (τ,σ) ∈ [0,1]× [0,2π]→ xµ(τ,σ) ∈M, such that
∂τxµ(τ,σ) and ∂σxµ(τ,σ) are time-like, resp. space-like worldsheet vectors, can be defined
as26: ˆ 1

0
dτ
ˆ 2π

0
dσ

√
−det(ταβ), with ταβ = τµν∂αx

µ∂βx
ν , (39)

where the indices α, β can stand for τ or σ. The proper area is thus defined as the integral of
the volume form of the induced metric ταβ that is the pull-back of the longitudinal metric τµν
along the embedding φ. Assuming that ϵABτµA∂τxµτνB∂σxν > 0 for all possible values of τ
and σ, where ϵAB is the two-dimensional Levi–Civita epsilon symbol, normalized as ϵ01 = 1,
the integral (39) can alternatively be written as the integral of the pullback of a two-form ℓµν
over Σφ:

2
ˆ 1

0
dτ
ˆ 2π

0
dσℓµν∂τx

µ∂σx
ν , with ℓµν =

1
2
ϵABτµ

Aτν
B. (40)

This is analogous to how the time interval (5) in NC geometry can be given by integrating the
pullback of the one-form τµ along a worldline. Note that this notion of proper worldsheet area
does not exist in NC geometry, since there the only metric that can act on time-like vectors is
of rank 1.

The rank D− 2 cometric hµν can be used to measure transversal distances to worldsheets.
To do this, one proceeds similarly as in NC geometry and one views hµν as a well-defined and
invertible map between the space of equivalence classes [αµ] = {αµ + fAτµA|fA ∈ C∞(M)}
of one-forms that differ by linear combinations of τµA and the space of transversal vectors,
where hµν maps [αν ] to hµν [αν ]≡ hµναν . In analogy to the NC geometry case, one can argue
that the inverse of this map is given by:

hµν = eµ
aeν

bδab, (41)

where one regards hµν as a map that assigns the equivalence class [hµνXν ] to each transversal
vector Xµ. Note that hµν cannot be viewed as a covariant metric on the full space of vectors,
since it is not invariant under local boosts: δhµν =−2λAaτ(µAeν)a.27 It does however form a
covariant metric (with Euclidean signature) on the space of transversal vectors, since XµYνhµν
is boost invariant when Xµ and Yµ are transversal.28 One can thus use it to define a transversal
distance notion along any curve s ∈ [0,1]→ xµ(s), whose tangent vectors x ′µ(s)≡ dxµ(s)/ds
are transversal for all s ∈ (0,1) as follows:ˆ 1

0
ds

√
x ′µx ′νhµν . (42)

The frame fields τµA and eµa are a natural generalization of the time-like and spatial Viel-
beine τµ and eµa of NC geometry. The frame field bµν plays a very similar role in SNC
geometry as the mass form mµ does in NC geometry. It is not needed to specify the metric

26 Similar to how the time interval (5) in NC can be defined along arbitrary curves, the definitions (39) and (40) can
sensibly be extended to arbitrary embedded worldsheets. Worldsheet segments, such that one or both of ∂τ xµ(τ,σ)
or ∂σxµ(τ,σ) is transversal, then do not contribute to the integrals (39) and (40). The proper time (37) and length (38)
can likewise be defined for curves with transversal tangent vectors.
27 While hµν is not a boost invariant object, an equivalence class [hµν ] = {hµν + 2fA(µτν)

A)}, with fAµ arbitrary
one-forms, is.
28 As in the NC case, a slightly stronger statement is that the equivalence class [hµνXν ] is boost invariant, when Xµ

is transversal.
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structure on the NC geometry, but it becomes part of the definition of a metric compatible
affine connection in terms of (extended co)frame fields and torsion tensors, as we will review
in the next section.

3.2. Torsionful, metric compatible connection

To define a metric compatible affine connection in SNC geometry, we proceed analogously as
in NC geometry and first introduce a structure group connection Ωµ that takes values in the
Lie algebra of (32)

Ωµ = ωµJ+
1
2
ωµ

abJab+ωµ
AaGAa, (43)

where J, Jab =−Jba and GAa are generators of the Lie algebras of SO(1,1), SO(D− 2) and
R2(D−2). We will refer to ωµ, ωµ

ab =−ωµ
ba and ωµ

Aa as spin connections for longitudinal
Lorentz transformations, transversal rotations and string Galilean boosts, respectively. They
transform as follows under infinitesimal SO(1,1), SO(D− 2) and string Galilean boosts:

δωµ = ∂µλ, δωµ
ab = ∂µλ

ab+ 2λ[a|c|ωµc
b],

δωµ
Aa = ∂µλ

Aa+λϵABωµ
Ba+λabωµ

Ab− ϵABλ
Baωµ +λAbωµb

a. (44)

An affine connection Γρ
µν can be introduced by imposing the following ‘Vielbein postulates’:

∂µτν
A− ϵABωµτν

B−Γρ
µντρ

A = 0,

∂µeν
a−ωµ

abeνb+ωµ
AaτνA−Γρ

µνeρ
a = 0. (45)

These postulates imply that Γρ
µν is compatible with the SNC metric structure (36):

∇µτνρ ≡ ∂µτνρ −Γσ
µντσρ −Γσ

µρτνσ = 0, ∇µh
νρ ≡ ∂µh

νρ +Γν
µσh

σρ +Γρ
µσh

νσ = 0.

(46)

Solving Γρ
µν in terms of the Vielbeine τµA, eµa, their inverses and the spin connections ωµ,

ωµ
ab, ωµ

Aa, one obtains:

Γρ
µν = τA

ρ∂µτν
A+ ea

ρ∂µeν
a− ϵABωµτν

BτA
ρ −ωµ

a
beν

bea
ρ +ωµ

AaτνAea
ρ. (47)

One can then check that (given the rules (33), (35) and (44)) this expression for the affine
connection is invariant under the structure group and has the appropriate transformation rule
under general coordinate transformations, providing further motivation for the form of the
Vielbein postulates (45).

As in the previous section, we will view the torsion 2Γρ
[µν] of the affine connection as an

independent and a priori arbitrary geometric ingredient. We will split it into ‘longitudinal
torsion’ components TµνA along τAρ and ‘transversal torsion’ components Tµνa along eaρ:

2Γρ
[µν] = τA

ρTµν
A+ ea

ρTµν
a i.e. Tµν

A ≡ 2Γρ
[µν]τρ

A and Tµν
a = 2Γρ

[µν]eρ
a. (48)

Under infinitesimal local SO(1,1), SO(D− 2) and string Galilean boosts, TµνA and Tµνa then
transform as follows

δTµν
A = λϵABTµν

B, δTµν
a = λabT

b
µν −λA

aTµν
A. (49)

By antisymmetrizing the Vielbein postulates (45), one obtains the following equations that are
covariant with respect to local structure group transformations:

2∂[µτν]
A− 2ϵABω[µτν]

B = Tµν
A, (50a)
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2∂[µeν]
a− 2ω[µ

abeν]b+ 2ω[µ
Aaτν]A = Tµν

a. (50b)

The first of these represents a set ofD(D− 1) equations. Of these,D equations contain theD
components of ωµ algebraically, while the remaining D(D− 2) ones do not contain compon-
ents of ωµ. One can thus useD of the equations (50a) to express ωµ in terms of (co)frame fields
and components of the longitudinal torsion TµνA. Doing this leads to the following expression
for ωµ:

ωµ = ϵABτA
ν∂[µτν]B−

1
2
ϵBCτµ

AτB
ντC

ρ∂[ντρ]A+
1
2
ϵBCτµAτB

ντC
ρTνρ

A

+
1
2
ϵABeµ

aτA
νea

ρTνρ
B. (51)

The remaining D(D− 2) equations, contained in (50a), are given by:

2τ(A|
µea

ν∂[µτν]|B) = τ(A|
µea

νTµν|B), 2ea
µeb

ν∂[µτν]
A = ea

µeb
νTµν

A. (52)

Equation (50b) can be used to express some components of ωµ
ab and ωµ

Aa in terms of
(co)frame fields and the transversal torsion tensor Tµνa. This can however not be done for
all components of these spin connections, since (50b) constitutes a set of D(D− 1)(D−
2)/2 equations, while there are D(D+ 1)(D− 2)/2 components in ωµ

ab and ωµ
Aa. One can

use (50b) to express the following D(D− 1)(D− 2)/2 spin connection components

τ[A|
µωµ|B]

a, τA
µωµ

ab, e(a|
µωµA|b), ec

µωµ
ab (53)

in terms of (co)frame fields, Tµνa and (some of) the remaining D(D− 2) components of ωµ
ab

and ωµ
Aa. Since bµν transforms to coframe fields under string Galilean boosts, it can be used to

solve some of these remaining spin connection components in terms of frame fields, extended
coframe fields and torsion, similar to howmµ is used to define the connection of NC geometry.

Paralleling the discussion around (17), we thus introduce an extra independent tensor T(b)µνρ and
set it equal to the exterior covariant derivative of the two-form bµν (where covariantization is
with respect to string Galilean boosts):

3∂[µbνρ] + 6ϵABω[µ
Abτν

Beρ]b = T(b)µνρ. (54)

The left-hand side of this equation transforms to a particular combination of the left-hand sides
of (50a) and (50b), while it is inert under the other structure group transformations. Requiring
that the equations (50a), (50b) and (54) form an invariant set under (35), (44), (49) and (55) then
leads one to conclude that T(b)µνρ is invariant under SO(1,1) and SO(D− 2) transformations and
transforms as follows under string Galilean boosts:

δT(b)µνρ =−3ϵABλ
A
aT[µν

Beρ]
a+ 3ϵABλ

A
aT[µν

aτρ]
B. (55)

Since T(b)µνρ belongs to a structure group multiplet with the affine connection torsion compon-
ents and corresponds to a tensor that measures the non-vanishing of the exterior covariant
derivative of an extended coframe field, we view it as an extra torsion tensor in a Cartan for-
mulation sense. Note that the left-hand side of (54) is invariant under the following one-form
gauge transformation, with parameter σµ:

δbµν = 2∂[µσν]. (56)

This can be viewed as the SNC analogue of the central charge transformation (19). Like the
central charge, we will not regard the gauge transformation (56) as part of the structure group
of SNC geometry, since it does not act on the frame fields τAµ and eaµ.
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Of the D(D− 1)(D− 2)/6 equations (54), (D− 2)2 equations can be used to express the
following spin connection components

τA
µωµ

Aa, e[a|
µωµA|b], (57)

in terms of (extended co)frame fields and T(b)µνρ. The remaining (D− 2)(D− 3)(D− 4)/6
equations take the form

ea
µeb

νec
ρT(b)µνρ = 3ea

µeb
νec

ρ∂[µbνρ]. (58)

Note that, even after the introduction of the extra torsion equation (54), we cannot express
all spin connection components in terms of (extended co)frame fields and torsion tensors. In
particular, the following 2(D− 2) components of ωµ

Aa

WAB
a ≡ τ{A|

µωµ|B}
a ≡ τ(A|

µωµ|B)
a− 1

2
ηABτC

µωµ
Ca, (59)

where we used {AB} to denote the symmetric traceless part of A and B, remain independent in
our formalism. For the choice of extended coframe fields τµA, eµa and bµν and torsion tensors

TµνA, Tµνa, T
(b)
µνρ, we thus obtain a class of torsionful and metric compatible connections

of SNC geometry that is parametrized by these independent components WAB
a.29 While the

presence of such components is unusual from the point of view of Lorentzian geometry, it is not
uncommon in non-Lorentzian geometry. It occurs for instance when discussing the Galilean
and Carrollian limits of Einstein gravity in the Palatini formulation [55].

The full expressions for ωµ
ab and ωµ

Aa that can be obtained from (50b) and (54) are given
by

ωµ
ab =−2e[a|ν|∂[µeν]

b] + eµce
aνebρ∂[νeρ]

c− 3
2
ϵABτµ

AτBνeaρebσ∂[νbρσ]

+ e[a|νTµν
|b] − 1

2
eµ

ceaνebρTνρc+
1
2
ϵABτµ

AτBνeaρebσT(b)νρσ,

ωµ
Aa =−τAν∂[µeν]a+ eµbτ

Aνeaρ∂[νeρ]
b+

3
2
ϵABτB

νeaρ∂[µbνρ] +
1
2
τµ

BτB
ντAρTνρ

a

− eµbτ
Aνe(a|ρTνρ

|b) − 1
4
τµ

AϵCDτ
CντDρeaσT(b)νρσ −

1
2
eµbϵ

A
Bτ

BνeaρebσT(b)νρσ

+ τµ
BWB

Aa. (60)

In order to give the explicit expression for the affine connection, we use a notation to denote
certain torsion components:

TAB
C = τA

µτB
νTµν

C, TAa
B = τA

µea
νTµν

B, Tab
A = ea

µeb
νTµν

A (61)

and similarly for components of Tµνa and T(b)µνρ. This is analogous to what we have used in
section 2.3. Plugging the expressions (51) and (60) for the spin connections ωµ, ωµ

Aa and ωµ
ab

into equation (47) leads to the following expression for the affine connection:

29 In this paper, we do not discuss how SNC geometry, as discussed here, appears in applications. In case such applic-
ations make use of a metric compatible connection, it will typically be a particular member of the class of connections
constructed here, in which the components WAB

a (as well as any possible torsion tensors) are not independent, but
instead composed of other independent fields of the theory, or are absent due to, e.g. the presence of an extra Stueckel-
berg symmetry. For instance, the effective gravitational field theories for non-relativistic string theory [13, 50, 52–54]
can be written entirely in terms of the (extended co)frame fields discussed in this paper and theWAB

a spin connection
components do not appear in their equations of motion.
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Γρ
µν =

1
2
τρσ(∂µτνσ + ∂ντµσ − ∂στµν)+

1
2
hρσ(∂µhνσ + ∂νhµσ − ∂σhµν)

− τµ
Aeν

aτBρTa(AB) +
1
2
eµ

aeν
bτC

ρTab
C

+ τµ
Aτν

Bec
ρWAB

c+ τν
BτAρ(τµCTAB

C+ eµ
cTc[AB])+

1
2
ea

ρTµν
a− eaρe(µ|b|Tν)a

b

+
1
4
τµνe

cρϵAB(3τA
ητB

ξec
σ∂[ηbξσ] −T(b)ABc)

− ϵABedρe(µ
cτν)A(3τB

ηec
ξed

σ∂[ηbξσ] −T(b)Bcd) . (62)

One can explicitly check that the structure group transformations of the right-hand sides of (51)
and (60) that are induced by (33), (35), (49) and (55), coincide with the rules given in (44).30

One similarly checks that the expression for Γµ
νρ given in (62) is invariant under the structure

group, although similar to the NC case, boost invariance is not manifest. We refrain from
giving an expression in similar vein as equation (22), as we cannot find a boost covariant
quantity that is analogous to h̄µν . Note furthermore that the spin connections (60) and the
affine connection (62) are invariant under the one-form gauge transformation (56) if all torsion
tensors TµνA, Tµνa and T(b)µνρ are, since in that case the equations (50a), (50b) and (54) are
invariant under (56). We stress however that there is no good a priori reason to expect that the
SNC connections are invariant under (56), since we do not view the latter transformation as
part of the structure group. The torsion tensors TµνA, Tµνa and T(b)µνρ are thus not required to
be invariant under the one-form gauge transformation.

From (51) and (60), we see that the torsion tensor components TabA, Ta(AB) and T(b)abc do
not appear in expressions for the SNC spin connections (while all other torsion components
do). We see moreover from (52) and (58) that setting these components equal to zero leads to
differential constraints on extended coframe fields. They thus correspond to intrinsic torsion
components in SNC geometry. Note that the term intrinsic torsion is normally used to refer to
components of the affine connection torsion. As seen in section 2.2, this is how the notion of
intrinsic torsion appears in NC geometry. Here however, the eaµebνecρT

(b)
µνρ components do

not contribute to the torsion of the affine connection and should therefore be viewed as intrinsic
torsion in a Cartan formulation sense that is more general than the one usually adopted.

In going from particles to strings, we see that effectively the central charge gauge field mµ

has been replaced by the 2-form field bµν which plays a very similar role as mµ. Both are
geometric fields that transform under boost transformations and both are needed to define a
dependent spin connection or affine connection that transforms in the correct way. Moreover,
bµν plays a similar physical role asmµ. Indeed, bµν acts as a gauge field for the one-form trans-
formation (56). One can thus couple it to an anti-symmetric two-tensor current that implements
conservation of the string tension via an appropriate Wess–Zumino term [51], in analogy to
how mµ couples to the Noether current corresponding to particle mass conservation.

30 For ωµ
Aa this check requires additionally that WAB

a transforms as follows under the structure group

δWAB
a = τ{A

µδω|µ|B}
a + δτ{A

µω|µ|B}
a, (63)

where δτAµ and δωµ
Aa are given in equations (33) and (44), respectively. Note that, unlike torsion tensors, theWAB

a

components transform non-covariantly, i.e. with derivatives of structure group parameters δWAB
a = τ{A

µ∂|µ|λB}
a +

· · · . For this reason one has to view WAB
a as connection components and not as torsion tensor components, even

though in our discussion both WAB
a and torsion tensors are left as independent fields.
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Figure 4. Classification of constraints on the torsion tensors (b) that are consistent with
the local structure group transformations (a).

3.3. Special cases and examples

Similarly as in the particle case in section 2.3, a generic torsionful affine connection that is
compatible with SNC geometry includes the torsion tensors TµνA, Tµνa and T

(b)
µνρ. Those tor-

sion tensors transform under Lorentz transformations, spatial rotations and string Galilean
boosts. Some components of the torsion tensors transform to other components, and hence,
those torsion tensors cannot be set to zero independently from other torsion components. All
possible scenarios in which components of the torsion tensors can be set to zero consistently
are displayed in figure 4(b). The structure of this figure is similar to figure 1(b).

In the following, we find it useful to define the following notation which separates the
intrinsic torsion components by defining:

ŤAµν = Tµν
A− 2e[µ

aτBν]ηBCTa
(AC) − eµ

aeν
bTab

A, (64a)

Ť(b)µνρ = T(b)µνρ − eµ
aeν

beρ
cT(b)abc. (64b)

The torsion components ŤAµν and Ť(b)µνρ, are the torsion components TµνA and T(b)µνρ but
with the intrinsic torsion projected out. These intrinsic torsion components are given by (52)
and (58).
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Figure 5. TwoworldsheetsΣ andΣ ′ stretching between two leaves of themanifold with
∂Σ= ∂Σ ′. For geometries with zero time-like torsion TAµν = 0, the volume two-form
ℓ= 1/2ℓµνdxµ ∧ dxν is closed. We can thus conclude that the proper area (40) traced
out by Σ and Σ ′ is the same, i.e.

´
Σ
ℓ=
´
Σ ′ ℓ.

Analogously to the particle in section 2.3, it is convenient to subdivide those cases. We will
do this in the following list.

• In cases 1, 2 and 3, we have that the anti-symmetrization of the affine connection, i.e. its
torsion, is zero. By (48), this is equivalent to setting TµνA = 0 and Tµνa = 0. Those cases
are commonly referred to as ‘torsionless String Newton-Cartan geometry’.

• Cases 1, 2, 3, 4 and 5 all have zero longitudinal torsion TµνA = 0. In case 4 and 5, we let
Tµν

a unconstrained. In all those cases, the two-form ℓµν as defined in (40) is closed, that
is 3∂[µℓνρ] = 0. By Stokes’ theorem, we obtain that the proper area (40) is independent of
the chosen worldsheet segment Σφ and only depends on the initial and final position of the
string, that is, on the curves φ(0, ·) = σi and φ(1, ·) = σf. This implies that the same amount
of proper area has been swept out by two strings starting and ending at the same position, irre-
spective of the worldsheet segment they have traced out throughout space-time. See figure 5.
This can be rephrased as the statement that SNC manifolds with zero longitudinal torsion
admit an absolute area function.

• Cases 6 and 7 correspond to setting Ta(AB) = 0 and TabA = 0 and letting Tµνa unconstrained.
• Cases 8 and 9 correspond to setting TabA = 0 and letting Tµνa and Ta(AB) unconstrained. This

situation has for instance been encountered in [56], where it occurs naturally in the string
1/c expansion of the Einstein equations (at leading order) in vacuum. In the cases 6, 7, 8 and
9, there does not exist an absolute area function anymore. This means that the area of the
worldsheet between two events does not only depend on the initial and final positions of the
string, but also on the worldsheet segment a string traces out. As TabA = 0, though, there is
still a notion of absolute transversal simultaneity. The condition TabA = 0 is, by Frobenius’
theorem, equivalent to stating that there is a foliation of (D− 2)-dimensional transversal
submanifolds, i.e. submanifolds of the space-time manifoldM such that the tangent vectors
to all curves on those submanifolds are transversal, as defined in section 3.1. A notion of
string causality that distinguishes between past and future can be defined as the following
statement: a string defined by the embedding σf : [0,1]→M is in the future with respect to
a string defined by an embedding σi : [0,1]→M if there exists a worldsheet segment Σφ

with φ(0, ·) = σi and φ(1, ·) = σf such that the integral in (40) is positive.
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• Case 10 is generic torsion. As we let TabA unconstrained, consistency with boost transform-
ations requires that all other torsion components are also unconstrained. There is no notion
of absolute area or absolute transversal simultaneity anymore.

The above classification needs a further refinement if we include the intrinsic torsion con-
straints that describe the DSNC− geometry underlying non-relativistic string theory with
N= 1 supersymmetry [13], since these constraints set part of the torsion tensors

Tab
A and TaA

B (65)

equal to zero without changing the basic structure of the classification. This proceeds in
two steps. First one picks out those intrinsic torsion components that are invariant under
local (anisotropic) dilatations δτµA = λDτµ

A, since they are an emerging symmetry in non-
relativistic string theory. One thus ends up with the components

Tab
A and Ta{AB}. (66)

Formally, these tensors can be obtained by discarding TaAA. Since it transforms as a (depend-
ent) dilatation gauge field, it should not be seen as part of the intrinsic torsion of the geometry.
In a second step, using light-cone notation A= (+,−), we set half of the intrinsic torsion
components given in (66) equal to zero:

Tab
− = Ta+

− = 0. (67)

One then obtains the DSNC− case by setting these torsion components together with TaAA to
zero in the above classification.

Let us now give an example of dependent torsion tensors, similar to what we considered
at the end of section 2.3. We assume that we are in a dimension where there exists a vector-
spinorψµ that satisfies theMajorana condition. A concrete example in ten dimensions has been
worked out in detail in [13]. The vector-spinor forms a representation of the local SO(1,1)×
SO(D− 2) transformations

δψµ =−1
2
λγ01ψµ +

1
4
λabγabψµ, (68)

where the gamma matrices (γA,γa) form a Clifford algebra with signature (−++ · · ·+). In
order to specify the boost representation, it is useful to split the spinor as ψµ = ψµ+ +ψµ−,
where the components are eigenspinors under γ01 = γ0γ1 as follows: γ01ψµ± =±ψµ±. Equi-
valently, one can define ψµ± = 1/2(1± γ01)ψµ. The transformation under String Galilean
boosts with parameters λAa is then given as

δψµ+ = 0, δψµ− =
1
2
λAaγAγaψµ+. (69)

The projectedMajorana spinors are also the natural building blocks for constructing independ-
ent spinor bilinears as follows:

Tµν
A =

1
2
ψ̄[µ+γ

Aψν]+, Tµν
a = ψ̄[µ+γ

aψν]−. (70)

Using the transformation rules (68) and (69), one can show that the two-forms TµνA and Tµνa

transform as given in equation (49). Due to the identity ϵABγB =−γAγ01 and the properties
of the projected spinors, we find that ϵABTµνB =−TµνA. This is equivalent to the statement
that Tµν− = 2−1/2(Tµν0 −Tµν1) = 0 identically. The three-form torsion can analogously be
defined as

T(b)µνρ = 3 ψ̄[µ−γ
Aψν−τρ]A− 3T[µν

aeρ]a. (71)
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It is straightforward to check that this three-form transforms under the local structure group as
in (55). The tensors given in equations (70) and (71) provide explicit examples of the dependent
torsion tensors. Consequently, they gives rise to an affine connection that is invariant under
string Galilean boosts.

4. Conclusions and outlook

In this work we gave an in-depth description of generalized NC geometries for particles and
strings using a frame formulation. In the case of particles, such a frame formulation stresses
the relation with the underlying structure group and makes it possible to derive several results
in an elegant way. An important feature of our discussion was the introduction of independ-
ent torsion tensors which makes it possible to define spin connections and affine connections
that transform in the right way under the symmetries of the structure group. We gave a rather
extensive set of solutions of different constraints that one can impose on the intrinsic torsion
tensors leading to different constrained geometries. Furthermore, we gave a physical interpret-
ation of the geometric fields at several places, thereby extending the notion of absolute time
to the string case.

One might wonder whether there is a natural interpretation of the 2-form field bµν similar to
the interpretation of the gauge field mµ as the one associated with the central extension of the
Galilei algebra. One interesting proposal, inspired by earlier work in supergravity, was recently
given in [51] where the 2-form field bµν was represented as a dependent expression in terms
of two 1-form gauge fields, at the expense of introducing extra Stueckelberg symmetries. An
alternative option is to go to loop space geometry, thereby replacing coordinates xµ by xµ(σ),
where the coordinate σ parametrizes a circle, and replacing fields ϕ(x) defined over ordinary
geometry by fields ϕ

(
x(σ)

)
defined over loop space geometry. Within such a geometry, it is

natural to define a loop space covariant derivative involving the 2-form bµν as follows [57]:

Dµ(σ) =
δ

δxµ(σ)
− bµνx

′ν . (72)

This naturally corresponds to a loop algebrawith generators T(σ). Although promising, it is not
yet clear how useful these approaches are. At the moment, perhaps a more practical approach
is to work immediately in terms of fields and ignore a possible relation with an underlying
algebra which is not needed at least for the purpose of this work.

In [17], the intrinsic torsion of non-Lorentzian geometric structures was systematically
studied and classified using cohomological techniques. The classification derived there agrees
with the one given in section 2. It would be interesting to see whether the analysis based
on Spencer cohomology can be extended to the study of SNC-type geometries as presented
in section 3. Furthermore, it would be natural to generalize that to G-structures with G =
(SO(1,p)×SO(D− p− 1))⋉R(p+1)(D−p−1)—that is, so-called p-brane geometries [22].

It is natural to consider the extension of our work to non-relativistic string theory withN= 2
supersymmetry and to M-theory or membranes. In the case of N= 2 string theory, one expects
more constraints than the ones characterizing the DSNC− geometry given in equation (67).
These will also include fermionic intrinsic torsion tensors. We expect the same to happen
for M-theory with the understanding that in that case one uses a membrane foliation [58,
59] with A= 0,1,2 and a= 3, . . . ,10. This suggests the existence of a degenerated super-
geometry whose proper formulation might require the use of superfields and superspace. The
non-relativistic torsion constraints we find are reminiscent of the superspace torsion constraints
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that one imposes in the relativistic case to define a relativistic supergravity theory. Once con-
structed, by consistency the non-relativistic M-theory geometry one finds should reduce to the
DSNC− geometry considered in this work by performing a double dimensional reduction over
a spatial membrane direction followed by a truncation. We hope to come back to these issues
in a forthcoming work.
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