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a b s t r a c t

Motivated by current sharing in power networks, we consider a class of output consensus (also called
agreement) problems for nonlinear systems, where the consensus value is determined by external
disturbances, e.g., power demand. This output consensus problem is solved by a simple distributed
output feedback controller if a system is either Krasovskii or shifted passive, which is the only essential
requirement. The effectiveness of the proposed controller is shown in simulation on an islanded DC
power network.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Steering some variables to a common value is called an
greement problem. Along with massive research attentions of
etwork systems, agreement problems have been studied in
arious contexts such as distributed optimization (Cenedese,
elgioioso, Kawano, Grammatico, & Cao, 2021; Chang, Nedić,
Scaglione, 2014; Hatanaka, Chopra, Ishizaki, & Li, 2018) and

ynchronization (Qin, Kawano, Anderson, & Cao, 2022; Qin,
awano, Portoles, & Cao, 2021) to name a few. Our interest in this
aper is output consensus (also called output agreement) under
xternal disturbances. This problem is motivated by current
haring for balancing demand and supply in power networks
Cucuzzella, Trip, et al., 2019; Ferguson, Cucuzzella, & Scherpen,
020), where currents and demands are modeled as outputs and
xternal disturbances, respectively.
Various physical systems including the aforementioned power

etworks possess passivity properties. Passivity and its variant
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direction of Editors Daniel Liberzon, Luca Zaccarian.
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ttps://doi.org/10.1016/j.automatica.2023.111167
005-1098/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
concepts have already been witnessed as useful tools for agree-
ment; see, e.g., Arcak (2007), Bürger and De Persis (2015), Bürger,
Zelazo, and Allgöwer (2014), Hatanaka et al. (2018), Monshizadeh
and De Persis (2017), Scardovi, Arcak, and Sontag (2010), van der
Schaft and Maschke (2013). In particular, Bürger and De Persis
(2015), Bürger et al. (2014), Monshizadeh and De Persis (2017)
have studied output consensus problems based on shifted pas-
sivity. The common problem formulation in these papers is that
passive node dynamics are interconnected by special edge dy-
namics such that the networked interconnection naturally pos-
sesses an output consensus property, and passivity is used as a
tool for the analysis. However, many physical systems such as DC
microgrids (Cucuzzella, Trip, et al., 2019; Ferguson et al., 2020)
do not have such edge dynamics.

Regarding control design, for linear DC microgrids, Cucuzzella,
Trip, et al. (2019) provides an output consensus controller with-
out explicitly utilizing passivity. A preliminary version (Feng,
Kawano, Cucuzzella, & Scherpen, 2022) of this paper proposes
a shifted passivity based output consensus controller for linear
port-Hamiltonian systems, but not for nonlinear systems. In sum-
mary, a passivity based control framework for output consensus
is still missing for general nonlinear network systems, including
nonlinear DC microgrids.

Contribution: In this paper, we employ passivity as a tool for out-
put consensus control under external disturbances. As passivity
concepts, we focus on Krasovskii passivity (Kawano, Kosaraju, &
Scherpen, 2021) (also called δ-passivity Schweidel & Arcak, 2021)
and shifted passivity (Jayawardhana, Ortega, Garcia-Canseco, &
Castanos, 2007; Kawano et al., 2021), which are different prop-

erties for nonlinear systems in general (Kawano et al., 2021).

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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s the main contributions, we design a simple distributed out-
ut feedback controller which achieves output consensus for the
ollowing two classes of systems:

(i) Krasovskii passive nonlinear time-invariant systems un-
der unknown constant disturbances without assuming the
existence of an equilibrium point;

(ii) Shifted passive nonlinear time-varying systems under un-
known time-varying disturbances by assuming the exis-
tence of an equilibrium trajectory.

or these systems, the proposed controller can also handle
eighted output consensus and partial output consensus prob-

ems.

iscussion: The main contributions of our results compared with
xisting works are summarized as follows.

(I) The main focus of Bürger and De Persis (2015), Bürger
et al. (2014) and Monshizadeh and De Persis (2017) is
consensus analysis under special edge dynamics. In con-
trast, we design an output consensus controller based on
Krasovskii or shifted passivity, regardless of the structure
of the edges dynamics. Namely, we reveal that imposing
special edge dynamics is not an essential requirement to
achieve output consensus when invoking control design.
In fact, the proposed approach can handle a wider class
of nonlinear network systems such as the DC microgrids
in Cucuzzella, Trip, et al. (2019), Ferguson et al. (2020),
and weighted output consensus has not been considered
in Bürger and De Persis (2015), Bürger et al. (2014) and
Monshizadeh and De Persis (2017).

(II) Krasovskii passivity has not been used before for output
consensus control or even analysis. The aforementioned
papers (Bürger & De Persis, 2015; Bürger et al., 2014;
Monshizadeh & De Persis, 2017) and a preliminary ver-
sion (Feng et al., 2022) for linear port-Hamiltonian systems
utilize shifted passivity, but not Krasovskii passivity. One of
the advantages of using Krasovskii passivity is that we do
not need to assume the existence of an equilibrium point
of the closed-loop system beforehand in contrast to shifted
passivity.

(III) Shifted passivity based output consensus control design
for nonlinear networks is also a new contribution of this
paper. One of the advantages of using shifted passivity is
the ease of dealing with time-varying disturbances. This
has been partly observed in Bürger and De Persis (2015),
Monshizadeh and De Persis (2017) for output consensus
analysis, under the assumption that disturbances are gen-
erated by Sylvester-type equations for output regulation.
In this paper, we do not assume this. Namely, we do not
require information of disturbances for control design.

ince Krasovskii and shifted passivity are different properties,
here is possibility to enlarge the class of systems for which the
esults in Bürger and De Persis (2015), Bürger et al. (2014) and
onshizadeh and De Persis (2017) are applicable by revisiting

hese results from the viewpoint of Krasovskii passivity. As a
elevant concept of Krasovskii passivity and shifted passivity,
ifferential passivity, see e.g. Forni, Sepulchre, and van der Schaft
2013) and van der Schaft (2013), and incremental passivity, see
.g. Camlibel and van der Schaft (2013) and Pavlov and Marconi
2008), are known. The proposed output consensus controller
s also applicable to differentially (resp. incrementally) passive
ystems because differential (resp. incremental) passivity implies
rasovskii (resp. shifted) passivity, see e.g. Kawano et al. (2021,
heorem 2.9 (resp. Proposition 2.15)).

rganization: The remainder of this paper is organized as follows.
n Section 2, we provide a motivating example. The goal is to
2

show that a current sharing problem for a nonlinear islanded DC
power network can be formulated as an output consensus control
problem. In Section 3, we propose a distributed output feedback
controller to solve the output consensus problem. As the main
results, we show that the proposed controller achieves output
consensus if a system is either Krasovskii or shifted passive. In
Section 4, we revisit the motivating example and confirm that the
DC power network is both Krasovskii and shifted passive. Then,
we illustrate the effectiveness of the proposed output consensus
controller by simulation on the DC network. Finally, Section 5
concludes this paper. All the proofs are given in the Appendix.

Notation. The set of real numbers is denoted by R. The n-
dimensional vector whose all components are 1 is denoted by
1n. The n × n identity matrix is denoted by In. For P ∈ Rn×n,

≻ 0 (P ⪰ 0) means that P is symmetric and positive (semi)
efinite. For x ∈ Rn, its Euclidean norm weighted by P ≻ 0 is
enoted by |x|P :=

√
x⊤Px. If P = In, this is simply described

y |x|. A continuous function α : [0, r) → [0, ∞) is said to be
of class K if α(0) = 0 and α is strictly increasing. Moreover,
this is said to be of class K∞ if r = ∞ and limr→∞ α(r) = ∞.
For a scalar-valued function V : Rn

→ R, the column vector-
valued function consisting of its partial derivatives is denoted by
∇V (x) := [∂V/∂x1 · · · ∂V/∂xn]⊤(x).

2. Motivating example

Consider an islanded DC power network model (Ferguson
et al., 2020) with ν nodes and µ edges, described by

ẋ = f (x) + gu + d (1)

x :=
[
ϕ⊤ q⊤ ϕ⊤

t

]⊤
f (x) := (J − R)∇H(x) −

⎡⎣ 0
I⋆L + diag(C−1q)−1P⋆

L
0

⎤⎦
J :=

[0 −Iν 0
Iν 0 D
0 −D⊤ 0

]
, R :=

[R 0 0
0 G⋆

L 0
0 0 Rt

]
, g :=

[Iν
0
0

]
H(x) :=

(
|ϕ|

2
L−1 + |q|2C−1 + |ϕt |

2
L−1
t

)
/2,

here ϕ, q ∈ Rν and ϕt ∈ Rµ are state variables denoting,
respectively, the flux and charge of the network nodes and the
flux associated with the transmission lines interconnecting the
nodes, while u ∈ Rν denotes the control input. The matrices
R, Rt , L, Lt , C ≻ 0 are diagonal and have appropriate dimensions,
while G⋆

L ∈ Rν×ν , I⋆L , P
⋆
L ∈ Rν , and d ∈ R2ν+µ are unknown;

see Fig. 1 and Table 1 for the meaning of the used symbols. The
incidence matrix D ∈ Rν×µ describes the network topology.

To improve the generation efficiency, it is generally desired in
DC microgrids that the total current demand is shared among all
the nodes (current sharing) (Cucuzzella, Trip, et al., 2019), i.e., for
some α ∈ R,

lim
t→∞

ϕi(t)
Li

= α, ∀i = 1, . . . , ν. (2)

Inspired by Trip, Cucuzzella, Cheng, and Scherpen (2019) and
based on the passivity properties of the DC network (1), we
will later reveal that (2) is achieved by the following simple
distributed output feedback controller:

u̇ = −EE⊤y (3)

y = g⊤
∇H(x) =

[ϕ1

L1
· · ·

ϕν

Lν

]⊤

, (4)

here E ∈ Rν×N (with an arbitrary natural number N ≥ ν − 1)
is such that rank E = ν − 1 and E⊤1 = 0. For example, E can
ν
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Fig. 1. Electrical scheme of node i ∈ V and transmission line k ∈ E , where
ILi(qi) := G⋆

Li
qi
Ci

+ I⋆Li +
Ci
qi
P⋆
Li .

Table 1
Description of the used symbols.
ϕ Flux (node) G⋆

L Load conductance
q Charge I⋆L Load current
ϕt Flux (power line) P⋆

L Load power
u Control input R, L, C Filter parameters
d Disturbance Rt , Lt Line parameters

be the incidence matrix and thus EE⊤ can be the Laplacian ma-
rix associated with a connected and undirected communication
raph.
We note that the DC network (1) is not a conventional port-

amiltonian system because of the term −I⋆L + diag(C−1q)−1P⋆
L

in f (x). However, we will show later that the system (1) pos-
sesses two different passivity properties: (I) Krasovskii passiv-
ity (Kawano et al., 2021) and (II) shifted passivity (Jayawardhana
et al., 2007; Kawano et al., 2021). In general, these two properties
are different for nonlinear systems (Kawano et al., 2021). In the
rest of this paper, we show that if a system is either Krasovskii or
shifted passive, then (3) is a controller achieving output consen-
sus with respect to the passive output. For the DC network (1),
the passive output for both Krasovskii and shifted passivity is y
n (4).

emark 2.1. For the DC network (1), the results in Bürger and
e Persis (2015), Bürger et al. (2014) and Monshizadeh and
e Persis (2017) for output consensus analysis are not directly
pplicable. These papers impose special edge dynamics such that
he interconnected system naturally possesses the output consen-
us property. However, in the DC network (1), the interconnection
tructure is determined by the physical couplings of the circuit
omponents, and the interconnected system (1) itself does not
ave the output consensus property (2) in general. Therefore,
e need to design the controller (3) in order to enforce output
onsensus. ◁

. Control design for output consensus

In this section, we develop passivity based control techniques
or output consensus. As passivity concepts, we employ
rasovskii passivity and shifted passivity. We first provide a dis-
ributed output feedback controller to achieve output consensus
or Krasovskii passive systems and then show that the same
ontroller works for shifted passive systems. When Krasovskii
assivity is used, we do not need to assume the existence of an
quilibrium. In contrast, to confirm shifted passivity, we need
nformation of an equilibrium. As an advantage of requiring
dditional information, the shifted passivity based approach can
andle time-varying systems and disturbances.
3

3.1. Krasovskii passivity based approach

Consider a nonlinear system{
ẋ = f (x, u, d)
y = h(x, d), (5)

where f : Rn
× Rm

× Rr
→ Rn and h : Rn

× Rr
→ Rm

are of class C1, and ∂ f (x, u, d)/∂u is of full column rank at each
(x, u, d) ∈ Rn

× Rm
× Rr . We recall that d ∈ Rr is a constant

disturbance, i.e., ḋ = 0.
To define Krasovskii passivity, we introduce the extended

system of (5):⎧⎪⎪⎨⎪⎪⎩
ẋ = f (x, u, d)

dẋ
dt

=
∂ f (x, u, d)

∂x
ẋ +

∂ f (x, u, d)
∂u

u̇

ẏ =
∂h(x, d)

∂x
ẋ.

(6)

This can be understood as a system with the state (x, ẋ, u), input
u̇, and output ẏ. Focusing on the dynamics of ẋ, we define strict
rasovskii passivity as a variant of the original definition (Kawano
t al., 2021, Definition 2.8).

efinition 3.1. Given d ∈ Rr , the system (5) is said to be strictly
rasovskii passive on DK ⊂ Rn

×Rm if for its extended system (6),
here exist SK : DK ×Rn

→ R of class C1 and WK : DK ×Rn
→ R

of class C0 such that

SK (x, u, ẋ) ≥ 0 (7a)

K (x, u, ẋ) ≥ 0 (7b)

K (x, u, ẋ) = 0 ⇐⇒ ẋ = 0 (7c)

ṠK (x, u, ẋ) ≤ −WK (x, u, ẋ) + ẏ⊤u̇ (7d)

or all (x, u) ∈ DK and (ẋ, u̇) ∈ Rn
× Rm. ◁

The controller (3) in the motivating example is a special case
M = I , K1 = 0, K2 = 0) of the following distributed output
eedback controller:{

u̇ = −M⊤E(E⊤My + K1E⊤Mẏ) − K2(ẏ − ρ̇)
ρ̇ = y − ρ,

(8)

ith the controller state u, ρ ∈ Rm, where M ∈ Rm×m is a weight
f the output, and E ∈ Rm×N (with an arbitrary natural number
≥ m − 1) is such that rank E = m − 1 and E⊤1m = 0, and 0 ⪯

1 ∈ RN×N and 0 ⪯ K2 ∈ Rm×m are tuning parameters (allowed
o be zero as in (3)). The ρ-dynamics play a role of dumping
ynamics, which is helpful to improve transient performances,
.g., reduction of settling time and oscillation amplitude.
Now, as the first main result of this paper, we show that

he distributed output feedback controller (8) achieves weighted
utput consensus for Krasovskii passive systems.

heorem 3.2. Given d ∈ Rr , suppose that the closed-loop system
onsisting of a strictly Krasovskii passive system (5) on DK and the
istributed output feedback controller (8) is positively invariant on a
ompact set ΩK ⊂ DK ×Rm. Then, for each (x(0), u(0), ρ(0)) ∈ ΩK ,
here exists αd : R → R such that

lim
t→∞

(My(t) − αd(t)1m) = 0. (9)

roof. The proof is in Appendix A. □

.2. Shifted passivity based approach

In this subsection, we confirm that (8) is an output consensus
ontroller also for shifted passive systems. As mentioned be-
ore, in the shifted passivity case, we can handle (input-affine)
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ime-varying nonlinear systems:{
ẋ = f (t, x, d) + g(t, x, d)u
y = h(t, x, d), (10)

ith a bounded uniformly continuous function d(t) on Rr , where
: R × Rn

× Rr
→ Rn, g : R × Rn

× Rr
→ Rn×m, and

: R × Rn
× Rr

→ Rm are uniformly continuous in (t, d) and
ocally Lipschitz in x on R×Rn

×Rr , and g(t, x, d) is of full column
ank at each (t, x, d) ∈ R × Rn

× Rr .
We assume that the system (10) admits an equilibrium trajec-

ory. Namely, given d(·), there exists a class C1 bounded trajectory
x∗

d(·), u
∗

d(·)) such that

˙
∗

d(·) = f (·, x∗

d(·), d(·)) + g(·, x∗

d(·), d(·))u
∗

d(·).

Accordingly, we define

y∗

d(·) := h(·, x∗

d(·), d(·)).

Note that the boundedness of (x∗

d(·), u
∗

d(·)) implies that ẋ∗

d(·) is
bounded also, and thus x∗

d(·) and y∗

d(·) are uniformly continuous.
In addition, ẋ∗

d(·) is uniformly continuous if u∗

d(·) is uniformly
continuous.

Under the assumption for the existence of (x∗

d(·), u
∗

d(·)), we
ntroduce the dynamics of the error ed := x − x∗

d:{ ėd = f (t, ed + x∗

d, d) + g(t, ed + x∗

d, d)u
− (f (t, x∗

d, d) + g(t, x∗

d, d)u
∗

d)
y = h(t, ed + x∗

d, d).
(11)

Using the error dynamics, we extend the concept of shifted pas-
sivity, e.g., Kawano et al. (2021, Definition 2.14) to the time-
varying case as follows.

Definition 3.3. The system (10) is said to be strictly shifted passive
along (x∗

d(·), u
∗

d(·)) on the error (ed) space DS ⊂ Rn if for its error
dynamics (11), there exist SS : R × DS → R of class C1 and
WS : DS → R of class C0 such that

SS(t, ed) ≥ 0 (12a)

WS(ed) ≥ 0 (12b)

WS(ed) = 0 ⇐⇒ ed = 0 (12c)

ṠS(t, ed) ≤ −WS(ed) + (y − y∗

d)
⊤(u − u∗

d) (12d)

for all (t, ed) ∈ R × DS and u ∈ Rm. When WS(·) = 0, we simply
say that the system is shifted passive. ◁

We show now that the same distributed output feedback
controller (8) achieves weighted output consensus also for shifted
passive systems. For the sake of analysis, we rewrite the con-
troller dynamics by introducing an intermediate variable ξ ∈ RN :⎧⎨⎩ ξ̇ = E⊤My

ρ̇ = y − ρ

u = −M⊤E(ξ + K1E⊤My) − K2(y − ρ),
(13)

where the controller state is (ξ, ρ) ∈ RN
× Rm. Computing u̇, we

recover the representation in (8).
In the shifted passivity case, we consider two scenarios: (i)

disturbance d has a convergence property, and K1 ⪰ 0 (see item
(IV) in Theorem 3.4); (ii) d does not have such a property, and
K1 ≻ 0 (see Corollary 3.5). In both cases, the distributed output
feedback controller (13) achieves output consensus.

Theorem 3.4. Given d(·), consider the closed-loop system consisting
of system (10) and the distributed output feedback controller (13).
Suppose that

(I) the closed-loop system admits a class C1 bounded trajectory
(x∗(·), ξ ∗(·), ρ∗(·)) such that E⊤My∗(·) = 0;
d d d d (

4

(II) the system (10) is strictly shifted passive along (x∗

d(·), u
∗

d(·))
on DS , where

u∗

d(·) := −M⊤E(ξ ∗

d (·) + K1E⊤My∗

d(·)) − K2ρ
∗

d (·);

(III) when rewriting the system (10) as the error dynamics (11),
the closed-loop system is positively invariant on a compact
set ΩS ⊂ DS × RN

× Rm (for any initial time t0 ∈ R), where
the projection of ΩS onto DS contains the origin;

(IV) limt→∞ f (t, x∗

d(t), d(t)) and limt→∞ g(t, x∗

d(t), d(t)) exist and
are finite.

Then, for each (ed(t0), ξ (t0), ρ(t0)) ∈ ΩS and every t0 ∈ R, there
exists αd : R → R such that (9) holds.

Proof. The proof is in Appendix B. □

Corollary 3.5. Given d(·), consider the closed-loop system consisting
of a system (10) and controller (13). If K1 ≻ 0 and items (I) – (III) in
Theorem 3.4 hold, then for each (ed(t0), ξ (t0), ρ(t0)) ∈ ΩS and every
t0 ∈ R, there exists αd : R → R such that (9) holds. Moreover, this
statement holds even if strict shifted passivity in item (II) is relaxed
into shifted passivity.

Proof. The proof is in Appendix C. □

Corollary 3.5 holds even for non-necessarily input-affine sys-
tems, which can be confirmed from its proof in Appendix C. In the
proofs of Theorem 3.4 and Corollary 3.5, we show limt→∞ ed(t) =

0, i.e., limt→∞(x(t) − x∗

d(t)) = 0. This implies that the consensus
value (more precisely, the valued-function):

αd(t) =
1⊤
mMh(t, x∗

d(t), d(t))
1⊤
m1m

oes not depend on the initial state (x(t0), ξ (t0), ρ(t0)) (or initial
ime t0 ∈ R). This further implies that αd(·) is constant if
x∗

d(·), d(·)) is constant, and h is time-invariant.

.3. Remarks

In this subsection, we provide several remarks for Krasovskii
nd shifted passivity based approaches.
First, the controller dynamics (8) (or equivalently (13)) look

imilar to the edge dynamics in Bürger and De Persis (2015),
ürger et al. (2014) and Monshizadeh and De Persis (2017).
hese references analyze networked interconnections of decou-
led shifted passive node dynamics

ẋi = fi(xi, wi, di)
yi = hi(xi, di)

nterconnected by the edge dynamics ẇ = −EE⊤y. In this pa-
er, we study a compact form of a network system (5) or (10)
ithout imposing assumptions for node or edge dynamics and
how that if a compact form is Krasovskii or shifted passive, (8)
s an output consensus controller. By viewing the edge dynamics
s the controller dynamics, the results in Bürger and De Persis
2015), Bürger et al. (2014) and Monshizadeh and De Persis
2017) can be understood as a special case of our results where
ode dynamics are decoupled. However, some physical systems
uch as the DC network (1), the motivating example in Section 2
oes not possess such a structure, since the edge dynamics are de-
ermined by the physical coupling. As shown in the next section,
e can achieve output consensus for the DC network by control
esign, which also improves transient performances. In Bürger
t al. (2014), the disturbances are assumed to be constant, while
n Bürger and De Persis (2015) and Monshizadeh and De Persis
2017), time-varying disturbances are assumed to be generated
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y exosystems. In contrast, we do not assume this in Theorem 3.4
nd Corollary 3.5, which is another aspect that our results are
ore general than those in Bürger and De Persis (2015), Bürger
t al. (2014) and Monshizadeh and De Persis (2017). In other
ords, we reveal that some restrictions in Bürger and De Persis
2015), Bürger et al. (2014) and Monshizadeh and De Persis
2017) can be relaxed by invoking control design.

Next, we are able to shift the consensus valued function αd(t)
in (9) by a simple modification of the controller (8):{

v̇ = −M⊤E(E⊤My + K1E⊤Mẏ) − K2(ẏ − ρ̇)
ρ̇ = y − ρ

u = v + ū,
(14)

here ū(t) ∈ Rm is an external input to shift αd(t). Similarly, (13)
can also be modified.

Also, our results can be generalized to achieve partial weighted
output consensus. To achieve consensus among yj, j = i1, . . . , im̂,
ˆ ≤ m, it suffices to replace (8) by{

˙̂u = −M̂⊤Ê(Ê⊤M̂ŷ + K̂1Ê⊤M̂ ˙̂y) − K̂2( ˙̂y − ˙̂ρ)
˙̂ρ = ŷ − ρ̂

ŷ :=
[
yi1 · · · yim̂

]⊤
, û :=

[
ui1 · · · uim̂

]⊤
,

with û, ŷ, ρ̂ ∈ Rm̂, where M̂ ∈ Rm̂×m̂, Ê ∈ Rm̂×N (with an arbitrary
natural number N ≥ m̂ − 1) is such that rank Ê = m̂ − 1 and
Ê⊤1m̂ = 0, and 0 ⪯ K̂1 ∈ RN×N and 0 ⪯ K̂2 ∈ Rm̂×m̂ are tuning
parameters (allowed to be zero). It is further possible to achieve
weighted consensus among some of the outputs yj, j ̸= i1, . . . , im̂.

Finally, for shifted passivity, the positive invariance assump-
ion, i.e., item (III), can be removed from Theorem 3.4 and Corol-
ary 3.5 if there exist class K functions α1, α2 such that

1(|ed|) ≤ SS(t, ed) ≤ α2(|ed|), ∀t ∈ R, ∀ed ∈ DS .

Furthermore, global output consensus can be achieved if DS =
n, and α1, α2 are class K∞ functions. These can be confirmed

from the proofs in Appendices B–C. Also for Krasovskii passivity,
the positive invariance can be verified by studying a sort of
Lyapunov candidate VK (x, u, ẋ, ρ) in Appendix A. In particular, if
VK (x, u, ẋ, ρ) is lower and upper bounded by class K functions of
(|x|, |u|, |ρ|), the positive invariance is guaranteed.

4. Motivating example revisited

In this section, we revisit the motivating example in Section 2
and show that the considered DC microgrid is both Krasovskii
and shifted passive. Then, numerical simulations illustrate the
effectiveness of the proposed output consensus controller.

4.1. Krasovskii passivity

We confirm that the DC microgrid (1) is Krasovskii passive.
Compute

dẋ
dt

= (J − R)∇2Hẋ +

⎡⎣ 0
diag{C1

q̇1
q21

, . . . , Cn
q̇n
q2n

}P⋆
L

0

⎤⎦
+ gu̇,

here note that the Hessian matrix ∇
2H is constant. Strict

rasovskii passivity can be shown with respect to the storage
5

function SK (ẋ) = |ẋ|2
∇2H/2. Indeed, it follows that

˙K (ẋ) =ẋ⊤
∇

2H(J − R)∇2Hẋ

+ ẋ⊤
∇

2H

⎡⎣ 0
diag{C1

q̇1
q21

, . . . , Cn
q̇n
q2n

}P⋆
L

0

⎤⎦
+ ẋ⊤

∇
2Hgu̇

= − WK (ẋ, q) + ẏ⊤u̇,

here y is defined in (4), and

K (ẋ, q) := ẋ⊤
∇

2HR∇
2Hẋ

− ẋ⊤
∇

2H

⎡⎣ 0
diag{C1

q̇1
q21

, . . . , Cn
q̇n
q2n

}P⋆
L

0

⎤⎦ .

Let DK ,q ⊂ Rν and Γ ≻ 0 be such that

G⋆
L − diag

(
C2
1 P

⋆
L,1

q21
, . . . ,

C2
n P

⋆
L,n

q2n

)
⪰ Γ , ∀q ∈ DK ,q.

Then, the DC microgrid (1) is strictly Krasovskii passive on DK =

Rν
× DK ,q × Rµ

× Rν .
From Theorem 3.2, the proposed distributed output feedback

controller (8) achieves weighted current sharing (9) under the
positive invariance assumption that is common in the literature
on DC microgrids with constant power loads; see, e.g. Ferguson
et al. (2020) and the references therein. We note that Krasovskii-
like passivity has been already used for the design and analysis of
voltage controllers for electric circuits and grids, e.g. Cucuzzella,
Lazzari, Kawano, Kosaraju, and Scherpen (2019), Kosaraju, Cu-
cuzzella, Scherpen, and Pasumarthy (2021) and Kawano et al.
(2021). However, to the best of our knowledge, Krasovskii passiv-
ity has never been exploited before for achieving current sharing
and, more generally, output consensus.

4.2. Shifted passivity

We confirm that the DC microgrid (1) is also shifted passive.
From the convexity of H(x) in (1), it follows that

HS(ed, x∗

d) := H(ed + x∗

d) − H(x∗

d) − ∇
⊤Hed ≥ 0

for any ed, x∗

d ∈ R2ν+µ; this is a standard technique for shifting
a storage function as found in Jayawardhana et al. (2007). Also,
HS(ed, x∗

d) = 0 if and only if ed = 0. Shifted passivity can be
shown with respect to the storage function HS(ed, x∗

d). Indeed, it
follows that

ḢS(ed, x∗

d) = (∇⊤H(ed + x∗

d) − ∇
⊤H(x∗

d))(ėd + ẋ∗

d)

− e⊤

d ∇
2Hẋ∗

d

= e⊤

d ∇
2Hėd

= e⊤

d ∇
2H(f (ed + x∗

d) − f (x∗

d) + g(u − u∗

d))

= −WS(ed, x∗

d) + (y − y∗

d)
⊤(u − u∗

d),

here y is defined in (4), and

S(ed, x∗

d)

:= −e⊤

d ∇
2H(f (ed + x∗

d) − f (x∗

d))

= e⊤

d ∇
2HR∇2Hed

+ e⊤

d ∇
2H

⎡⎣ 0
(diag(C−1q)−1

− diag(C−1q∗)−1)P⋆
L

0

⎤⎦
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Fig. 2. Scheme of the considered microgrid composed of 4 nodes. The black
olid arrows indicate the positive direction of the currents through the power
ines. The dashed blue lines represent the communication network.

Table 2
Load parameters.
Node 1 2 3 4

P⋆
Li (kW) 1 2.5 1.5 5

G⋆
Li (S) 0.08 0.04 0.02 0.08

I⋆Li (A) 12.5 7.5 5.0 15.0
∆P⋆

Li (kW) 4 1 1 −4

Let DS,q ⊂ Rν and Γ ≻ 0 be such that

⋆
L − diag

(
C2
1 P

⋆
L,1

(ed,q1 + q∗

1)q
∗

1
, . . . ,

C2
ν P

⋆
L,ν

(ed,qν + q∗
ν)q∗

ν

)
⪰ Γ

ed,q = q − q∗

d ∈ DS,q, ∀t ≥ t0, ∀t0 ∈ R.

hen, the DC microgrid (1) is strictly shifted passive on DS =
ν
× DS,q × Rµ.
From Theorem 3.4, the proposed controller (13) achieves

eighted current sharing under the positive invariance assump-
ion. When x∗

d is constant, output consensus is achieved on a
ositively invariant set contained in DK ∪ DS . In general, there is
o inclusion relation between DK and DS . Thus, a larger region of
utput consensus can be estimated by combining both Krasovskii
nd shifted passivity analysis.

.3. Simulations

In this section, the proposed distributed output feedback con-
roller (14) is verified in simulation. We consider an islanded DC
icrogrid composed of 4 nodes in ring topology as shown in
ig. 2, where the dashed blue lines represent the communication
etwork. As shown above, this system is both Krasovskii and
hifted passive. The values of the parameters of each node and
ine are mainly taken from Cucuzzella, Trip, et al. (2019, Tables
I, III), while those of the nominal loads are reported in Table 2.
ote that we consider also load variations, which are gathered
nto the disturbance d. For the sake of notational simplicity, let
i := qi/Ci and Ii := ϕi/Li denote respectively the voltage and the
enerated current associated with node i = 1, . . . , 4. The desired
oltage value at each node is chosen equal to V ∗

i = 380 [V] for
ll i. The controller parameters in (14) are chosen as M = 100I4,
1 = I3, and K2 = 0.2I4. Moreover, for the considered application,
e select ū in (14) as ū = C−1q∗

+RL−1ϕ. This simply allows us to
hift the system equilibrium such that the voltage average (Vav) is
qual to the voltage reference; see, e.g., Trip et al. (2019). Below,
e investigate three different scenarios: (1) output consensus
i.e., current sharing) and (2) weighted output consensus under
6

Fig. 3. Scenario 1: current sharing with constant loads. (Top) Time evolution
of the voltages and their average (dashed line) together with the corresponding
reference (cyan line). (Bottom) Time evolution of the currents. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)

constant disturbance; (3) output consensus under time-varying
disturbance.

Scenario 1 (output consensus under constant disturbance) In
this scenario, we show current sharing with constant loads. Let
the system initially be at the equilibrium. Then, at the time
instant t = 5 [s] a step variation equal to ∆P⋆

L (see Table 2) occurs
n the P loads. From Fig. 3, we can observe that both voltages and
urrents converge to a constant equilibrium, where the voltage
verage converges to the voltage reference, and output consensus
i.e., current sharing) is achieved. Specifically, we can observe that
ince the loads are constant, then the consensus value is also
onstant.

cenario 2 (weighted output consensus under constant dis-
urbance) In this scenario, we show weighted current sharing
ith constant loads. Consider Scenario I) with M33 = 80, which

implies that node 3 is required to generate a current that is 25%
higher than the current generated by each of the other nodes.
From Fig. 4, we can observe that both voltages and currents
converge to a constant equilibrium, where the voltage average
converges to the voltage reference, and weighted output consen-
sus (i.e., proportional current sharing) is achieved. Specifically, we
can observe that I1 = I2 = I4 and I3 = 1.25I1.

Scenario 3 (output consensus under time-varying disturbance)
In this scenario, we show current sharing with time-varying
loads. Consider Scenario 1. At the time instant t = 5 [s], we
add to the P load of node 3, a non-converging time-varying
component equal to 0.1 sin(4t) [kW]. From Fig. 5, we can observe
that both voltages and currents converge to an equilibrium trajec-
tory, where the voltage average is stabilized around the voltage
reference, and output consensus (i.e., current sharing) is achieved.
Specifically, we can observe that since the loads are time-varying,
the consensus value depends on time.

5. Conclusion

In this paper, we have studied an output consensus problem
for nonlinear systems under external disturbances. As the main
contribution, we have proposed a simple distributed output feed-
back controller that achieves output consensus for Krasovskii or
shifted passive systems. An advantage of the Krasovskii passivity

based approach is that we do not need to assume the existence of
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Fig. 4. Scenario 2: weighted current sharing with constant loads. (Top) Time
volution of the voltages and their average (dashed line) together with the
orresponding reference (cyan line). (Bottom) Time evolution of the currents.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 5. Scenario 3: current sharing with time-varying loads. (Top) Time evolution
f the voltages and their average (dashed line) together with the corresponding
eference (cyan line). (Bottom) Time evolution of the currents. (For interpreta-
ion of the references to color in this figure legend, the reader is referred to the
eb version of this article.)

n equilibrium point for the closed-loop system. An advantage of
he shifted passivity based approach is the ease of dealing with
ime-varying cases. The proposed controller has been validated
n simulation by achieving current sharing in an islanded DC
icrogrid, which is both Krasovskii and shifted passive.

ppendix A. Proof of Theorem 3.2

Define
K (x, u, ẋ, ρ) := SK (x, u, ẋ) +

1
2
(|E⊤My|

2
+ |y − ρ|

2
K2 ).

From (7d) and (8), its time-derivative along the closed-loop tra-
jectory satisfies

V̇K (x, u, ẋ, ρ) ≤ −WK (x, u, ẋ) + ẏ⊤u̇ + ẏ⊤M⊤EE⊤My

+ (y − ρ)⊤K (ẏ − ρ̇)
2 c

7

= −WK (x, u, ẋ) − |E⊤Mẏ|
2
K1

− ẏ⊤K2(ẏ − ρ̇) + ρ̇⊤K2(ẏ − ρ̇)

≤ −WK (x, u, ẋ) − |E⊤Mẏ|
2
K1 − |ẏ − ρ̇|

2
K2

or all (x, u, ρ) ∈ DK × Rm. Taking the time integration yields

K (x(t), u(t), ẋ(t), ρ(t))

+

∫ t

0
(WK (x(τ ), u(τ ), ẋ(τ ))

+ |E⊤Mẏ(τ )|
2
K1 + |ẏ(τ ) − ρ̇(τ )|2K2 )dτ

≤ VK (x(0), u(0), ẋ(0), ρ(0)), (A.1)

here ẋ(0) = f (x(0), u(0), d). Since the closed-loop system is
ositively invariant on the compact set ΩK , the integral term
xists for each (x(0), u(0), ρ(0)) ∈ ΩK . Also, this is upper bounded
nd increasing with respect to t ≥ 0, which implies that the
imit of the integral term at t → ∞ exists and is finite for each
x(0), u(0), ρ(0)) ∈ ΩK .

To use Barbalat’s lemma (Khalil, 1996, Lemma 8.2), we show
he uniform continuity of (x(·), u(·), ρ(·)), (ẋ(·), u̇(·), ρ̇(·)), and ẍ(·)
or each (x(0), u(0), ρ(0)) ∈ ΩK . Recall that ΩK is compact
nd positively invariant, and f and h in (5) are class C1 func-
ions of (x, u) ∈ Rn

× Rm at each d ∈ Rr . This implies that
x(·), u(·), ρ(·)) exists and is a bounded class C2 function of t ≥

for each (x(0), u(0), ρ(0)) ∈ ΩK . Consequently, f (x(·), u(·), d),
h(x(·), d), and ∂h(x(·), d)/∂x are bounded, and also (ẋ(·), u̇(·), ρ̇(·))
is bounded from (5) and (8). Namely, (x(·), u(·), ρ(·)) has bounded
derivative and thus is uniformly continuous for each (x(0), u(0),
ρ(0)) ∈ ΩK . Again from (5) and (8), (ẋ(·), u̇(·), ρ̇(·)) is uniformly
continuous for each (x(0), u(0), ρ(0)) ∈ ΩK .1 Similarly, the uni-
form continuity of ẍ(·) for each (x(0), u(0), ρ(0)) ∈ ΩK can be
shown from the dynamics of ẋ in (6) with the continuity of
∂ f /∂x and ∂ f /∂u and the uniform continuity and boundedness
of (x(·), u(·)) and (ẋ(·), u̇(·)).

Now, we are ready to apply Barbalat’s lemma to (A.1). It
follows from (7c) with the continuity of WK and the uniform
continuity of (x, u, ρ), (ẋ, u̇, ρ̇), and ẍ on ΩK that

lim
t→∞

WK (x(τ ), u(τ ), ẋ(τ )) = 0

⇐⇒ lim
t→∞

ẋ(t) = 0 H⇒ lim
t→∞

ẍ(t) = 0

and

lim
t→∞

K1E⊤Mẏ(t) = 0 and lim
t→∞

K2(ẏ(t) − ρ̇(t)) = 0

for each (x(0), u(0), ρ(0)) ∈ ΩK . Therefore, it holds from (6) with
∂ f /∂u of full column rank and (8) that

lim
t→∞

u̇(t) = 0 ⇐⇒ lim
t→∞

M⊤EE⊤My(t) = 0

for each (x(0), u(0), ρ(0)) ∈ ΩK . From the property of E, we have
weighted output consensus (9). □

Appendix B. Proof of Theorem 3.4

Define
VS(t, ed, ξ , ρ) := SS(t, ed) +

1
2
(|ξ − ξ ∗

d |
2
+ |ρ − ρ∗

d |
2
K2
).

rom (12d) and (13), its time-derivative along the closed-loop
rajectory satisfies

˙S(t, ed, ξ , ρ)

≤ −WS(ed) + (y − y∗

d)
⊤(u − u∗

d)

1 A continuous function is uniformly continuous on a compact subset, and the
omposition of uniformly continuous functions is again uniformly continuous.
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a

+ (y − y∗

d)
⊤M⊤E(ξ − ξ ∗

d ) + (ρ − ρ∗

d )
⊤K2(ρ̇ − ρ̇∗

d )

= −WS(ed) − |E⊤M(y − y∗

d)|
2
K1

− (y − y∗

d)
⊤K2(y − ρ − y∗

d + ρ∗

d )

+ (ρ − ρ∗

d )
⊤K2(y − ρ − y∗

d + ρ∗

d )

= −WS(ed) − |E⊤M(y − y∗

d)|
2
K1

− |y − ρ − y∗

d + ρ∗

d |
2
K2

for all (ed, ξ , ρ) ∈ DS . Taking the time integration yields

VS(t, ed(t), ξ (t), ρ(t))

+

∫ t

t0

(WS(ed(τ )) + |E⊤M(y(τ ) − y∗

d(τ ))|
2
K1

+ |y(τ ) − ρ(τ ) − y∗

d(τ ) + ρ∗

d (τ )|
2
K2
)dτ

≤ VS(t0, ed(t0), ξ (t0), ρ(t0)).

As in the proof of Theorem 3.2, it is possible to show that the
limit of the integral term at t → ∞ exists and is finite for each
(ed(t0), ξd(t0), ρ(t0)) ∈ ΩS and every t0 ∈ R. Also, the uniform
continuity of (ed(·), ξ (·), ρ(·)) and (ėd(·), ξ̇ (·), ρ̇(·)) can be shown
similarly starting from the positively invariance of the closed-loop
system on compact ΩS with the uniform continuity of d(·) and the
properties of f , g , and h in (10).

Applying Barbalat’s lemma, it follows from (12c) with the
continuity of WS and the uniform continuity of (ed(·), ξ (·), ρ(·))
nd ėd(·) on ΩS that

lim
t→∞

WS(ed(t)) = 0

⇐⇒ lim
t→∞

ed(t) = 0 H⇒ lim
t→∞

ėd(t) = 0 (B.1)

and

lim
t→∞

K1E⊤M(y(t) − y∗

d(t)) = 0 (B.2)

lim
t→∞

K2(y(t) − ρ(t) − y∗

d(t) + ρ∗

d (t)) = 0 (B.3)

for each (ed(t0), ξ (t0), ρ(t0)) ∈ ΩS and every t0 ∈ R, where recall
that the projection of ΩS onto the error space DS contains the
origin by item (III). Rewriting ėd with (11) and applying (B.1) lead
to

lim
t→∞

(f (t, ed(t) + x∗

d(t), d(t))

+ g(t, ed(t) + x∗

d(t), d(t))u(t)
− (f (t, x∗

d(t), d(t)) + g(t, x∗

d(t), d(t))u
∗

d(t)))
= lim

t→∞
g(t, x∗

d(t), d(t))(u(t) − u∗

d(t)) = 0,

where item (IV) and the continuity of f and g are utilized. Note
that g is of full column rank. Thus, it follows from (13), (B.2), (B.3),
and the uniform continuity of ξ̇ (·) and ξ̇ ∗

d (·) that

lim
t→∞

(u(t) − u∗

d(t)) = 0

⇐⇒ lim
t→∞

M⊤E(ξ (t) − ξ ∗

d (t)) = 0

H⇒ lim
t→∞

M⊤E(ξ̇ (t) − ξ̇ ∗

d (t)) = 0.

Finally, (8) and E⊤My∗

d(·) = 0 in item (I) imply

lim
t→∞

M⊤EE⊤M(y(t) − y∗

d(t))

= lim
t→∞

M⊤EE⊤My(t) = 0

for each (ed(t0), ξd(t0), ρ(t0)) ∈ ΩS and every t0 ∈ R. From the

property of E, we have weighted output consensus (9). □

8

Appendix C. Proof of Corollary 3.5

If K1 ≻ 0, then (B.2) and E⊤My∗

d(·) = 0 in item (I) imply
(9). Moreover, this discussion holds even if WS(·) = 0. Finally,
we remark that we do not use the input-affine structure of the
system (10) in this proof in contrast to the proof of Theorem 3.4
above. □
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