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ABSTRACT
Spiking Neural Networks (SNNs) are becoming increasingly pop-
ular for their application in Edge Artificial Intelligence (Edge-AI)
due to their sparse and low-latency computation. Among these
networks, analog hardware SNNs are chosen for their ability to
emulate complex dynamics in neurons and synapses, especially in
integrated Metal Oxide Semiconductor (MOS) technology. They
can form memories of external stimuli by modulating the strength
of synaptic weights. In this context, binary weights are a common
hardware design choice, due to their ease to program and store.
The use of binary weights in SNNs worsens the bias introduced by
the coding level of input stimuli (i.e. fraction of active input nodes),
where the network activity is highly correlated to the number of
excited neurons. In this paper, we present a Complementary Metal
Oxide Semiconductor (CMOS) solution for the coding level bias,
by proposing a novel circuit that employs synaptic normalisation
at the neuron level. This circuit modifies the gain of the neuron
depending on its input weights, with a small footprint and therefore
high scalability.

CCS CONCEPTS
• Hardware → Analog and mixed-signal circuits; Integrated
circuits; • Computing methodologies→ Neural networks; Bio-
inspired approaches.
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1 INTRODUCTION
The use of Application Specific Integrated Circuits (ASICs) for real-
ising edge Edge-AI solutions is gaining popularity in the Internet
of Things (IoT) community [5]. Among these solutions we can find
analog hardware Spiking Neural Networks (SNNs), where neurons
and synapses are designed to use the dynamics of transistors for
replicating complex behaviours observed in biology. Due to the
difficulties with implementing reliable programming for analog
memories for these networks, weights are often constrained to bi-
nary values [7]. The coding level of input patterns, defined as the
fraction of active input nodes, correlates heavily with the overall

Figure 1: Photograph of the realised die. The small white
rectangle indicates the area covered by the synaptic normal-
isation block, while the larger rectangle encompasses the
peripheral supporting circuitry too.
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Figure 2: Schematic of the realised circuit. The ASIC imple-
mentation is composed of 2 synapses with learning capabili-
ties and 1 neuron, all equipped with a synaptic normaliza-
tion circuit. All capacitors are realised as MOS Capacitors
(MOSCAPs).

network activity when using binary weights [2]. This results in
unbalanced responses for different patterns, which is detrimental to
learning and inference regimes. In fact, in the case where inference
relies on the most active output neuron identification, the neuron
tuned to the input stimuli with the largest coding level always dom-
inates. Furthermore, the neurons tuned to input stimuli with lower
coding level are constrained to exhibit a low activation. This can
also bias the convergence of a learning algorithm towards input
patterns with higher coding levels: the higher the coding scheme of
an input, the higher the number of synapses encoding that pattern
and therefore the chance of the pattern to be learnt, biasing the
learning algorithm [2].

In this paper, we present a CMOS (Fig 1) implementation of
synaptic normalisation, a method used to mitigate coding level
effects by modulating the current flowing to the neuron depending
on the number of active synapses.

2 METHODS
2.1 Circuit Description
As shown in Fig. 2, the realised circuit is composed of three distinct
parts: one neuron and two synapses equipped with learning circuits.
These components are inspired by circuits previously explored in
literature [3]. They are, however, modified to incorporate the synap-
tic normalisation addition proposed in this work. In this section,
the different circuit elements are briefly introduced in order to high-
light how the synaptic normalisation circuit interacts with them.
Note that the different voltage biases in the Fig. 2 are set by current
mirrors. Therefore, in the following we will refer to the currents
generating these voltages, rather than the voltages themselves (e.g.
𝐼w instead of𝑉w). The only exception to this is 𝐼gainsyn , which is the
virtual p-type subthreshold current biased by 𝑉gainsyn [1].

2.1.1 DPI Synapse. The Differential Pair Integrator (DPI) circuit for
implementing the synapses [1] exploits the trans-linear principle
to obtain linear current behaviour with transistors operating in the
sub-threshold regime. When a spike (i.e., a voltage pulse) arrives
at the input (labelled as pre_eventj in Fig. 2) the current, set by 𝐼𝑤
and gated by the digital signal 𝑤 , flows through the differential

pair and charges the capacitor (here realised as a n-type MOSCAP),
resulting in an output current linearly dependent on the input spike
frequency.

The current integrated by the capacitor depends on several biases:
𝐼w, that limits the current present at the input branch, 𝐼gainsyn , that
linearly increases the integrated current, 𝐼tau, that defines a negative
component of the integrated current which dominates in absence
of an input pulse, and lastly𝑤 , that switches the synapse on or off.
The average current sourced in response to an input spike train is
calculated in [1] as:〈

𝐼syn
〉
= 𝑤

(
𝐼gain_syn𝐼w

𝐼tau

)
⟨𝜆in⟩ Δ𝑡 (1)

where Δ𝑡 and
〈
𝜆in

〉
are the pulse duration and the average spike

frequency respectively.
The synapse block includes a circuit that performs Spike-Timing-
Dependent Plasticity (STDP) learning [6]. In these experiments the
circuit is biased to achieve a binary weight update. The variation of
the weight depends on the time difference between the pre-synaptic
(PRE) and post-synaptic (POST) spikes (if PRE before POST, 𝑤 is
driven to the power supply, if POST before PRE, 𝑤 is driven to
ground).

2.1.2 DPI Neuron. The neuron [3] takes advantage of the same
principle used for the DPI synapse to obtain a linear behaviour with
subthreshold transistors. The circuit is composed of a DPI block and
additional circuitry needed to generate the positive and negative
feedback necessary for the dynamics that are characteristic of a
spiking neuron. To implement the positive feedback, an inverter
detects the crossing of the threshold, activating the p-type MOS
(pMOS) branch that rapidly charges up the p-type MOSCAP. The
positive feedback is then followed by negative feedback, activated
by a second inverter that, through an n-typeMOS (nMOS) transistor,
discharges the 𝑉mem node.

The charging of the neuron’s membrane depends, similarly to the
DPI synapse, on the current reaching the capacitor. As suggested
in [3], the speed at which the membrane reaches the threshold
impacts the spiking rate (SR) at which it can fire spikes. We can
therefore deduce the following:

SR = 𝑓

(
𝐼in𝐼gain_neu

𝐼leak

)
(2)

where 𝐼in =
∑
𝐼syn.

2.1.3 Synapse Normalisation. The synapse normalisation circuit,
interfacing the synapses and neuron, can be seen in Fig. 2 with the
label “Normalisation”. The part included in the synapse comprises
two pMOS transistors. The upper transistor sets the intensity of the
normalisation current generated by every synapse, while the second
transistor defines digitally whether the normalisation branch of
that specific synapse is active or not. Each synapse will activate its
normalisation effect only if the weight𝑤 is low. The normalisation
circuits of every synapse converge into a single node which collects
all the currents. Due to this additional circuit, the DPI synapses and
DPI neuron are connected through two wires: one transferring the
synaptic current and the other one the normalisation current.

Within the neuron, the normalisation circuit is composed of
an nMOS branch and a PMOS branch. The nMOS branch collects
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Figure 3: Experimental measurements of on-chip synaptic normalisation. The experiment is divided into 7 phases, described in
Section 3.1. PRE0, PRE1 and POST are digital inputs from a microcontroller to the circuit. Weights𝑤0 and𝑤1 are digital outputs
measured using a logic analyser. 𝑉norm and 𝑉mem are analog voltages measured from the chip using an oscilloscope.

the normalisation current summed from each synapse. Then, due
to the diode connected configuration, the neuron gain is set by
the received current. The greater the current passing through the
normalisation nMOS, the higher the gain of the neuron, according
to Equation 2, where this normalisation current would be equivalent
to 𝐼gain_neu. The pMOS branch is instead an always-on current that
biases the gain transistor regardless of the weights. The nMOS
collects the contribution of 𝐼norm_step and 𝐼norm_offset.

Taking into account the circuit operation described above, we
can represent the output spike rate (SR) as a function of the 𝐼gain_neu
current, composed of:

𝐼gain_neu = 𝐼offset +
∑︁
𝑗

𝑤 𝑗 𝐼step (3)

Such that:

SRi = 𝑓

( [
𝐼offset +

∑
𝑗 𝑤 𝑗 𝐼step

]
· 𝐼𝑤

∑
𝑗 𝑤 𝑗

𝐼tau

)
(4)

In the case where all synapses are in the “off” state, the current
flowing in the gain transistor (i.e the transistor connected to the
normalisation circuit in the neuron in Fig. 2) is high, so the neuron
is easily excited. As synapses become active, their ability to drive
the neuron decreases. This produces an effective normalisation
of the neuron’s activity related to the number of active synapses.
Note that the input current increases proportionally with the active
weights while the synaptic normalisation decreases. There is also a
spurious term where the spiking rate increases proportionally to
Ioffset · 𝐼𝑤

∑
𝑗 𝑤 𝑗 . Note that the input value is binary, where low is

0 and high is 𝐼𝑤 .

2.2 Setup for Experimental Measurements
The proposed circuits have been fabricated using the XFAB® 180nm
technology. The ASIC comprises a subthreshold Digital to ana-
log Converter (DAC) with 30 channels, and several Operational
Transconductance Amplifiers (OTAs) to monitor the analog traces.

We designed a dedicated experimental setup to test the fabricated
chip. We used a Cypress FX3® microcontroller programmed with
custom firmware. Communication was performed using a custom
interface in Python. The program, along with the microcontroller,
was used to set the parameters on the chip through an on-chip
register chain. Additionally, the program was used to send spikes
to the circuits through specific input pads. Oscilloscopes and logic
analyzers were used to read out analog and digital signals from the
chip.

2.3 Network Simulation
The synaptic normalisation circuits included in the ASIC were de-
signed to test the basic functionality of the blocks. To show the
advantage of the synaptic normalization, we designed a software
simulation of a network composed of 2 neurons and 18 synapses
(9 for each neuron). The software simulation was performed on
Cadence Virtuoso®, a state-of-the-art Simulation Program with
Integrated Circuit Emphasis (SPICE) simulator with realistic tran-
sistor models.

The synapses receive input from a 3×3 matrix of pixels (Fig. 4).
Each pixel state is encoded by a single input spike when active
and no input spikes otherwise. Two patterns are formed using the
matrix of pixels, representing a “O” and a “C”; a large difference in
coding level is present between the input stimuli. The task of the
network is to learn how to discriminate the two patterns. Specif-
ically, neuron 0 (𝑁0) should respond when the “O” is presented
and neuron 1 (𝑁1) when the “C” is presented. Each neuron receives
the summed synaptic currents that integrate incoming spikes and
also the normalisation current that is continuously provided by the
synapses to the neuron, changing its gain.

3 RESULTS
3.1 Experimental Measurements
We designed an experimental protocol to demonstrate the ability
of the fabricated circuits to properly adapt the neuron’s gain in
response to changes of synaptic weights. As shown in Fig. 3, the
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Figure 4: SPICE simulation results of inference for a network
of two neurons 𝑁0 and 𝑁1 with 9 normalising synapses each.
This can be seen as an example of synaptic normalisation
where neurons tuned to inputs with low coding level can be
more active than neurons tuned to inputs with high coding
level.

experiment starts with both𝑤00 and𝑤01 set to 0 (phase I). In this
configuration, input spikes do not produce synaptic current for
the neuron. The normalisation current is at the maximum value
𝐼gain_neu = 𝐼offset + 2𝐼step (Eq. 3). The corresponding nMOS gate
voltage is labeled in the graph as𝑉norm. The neuron dynamics (trace
𝑉mem) do not produce spikes given the lack of synaptic current.

In phase II, the weight of synapse 0 is changed as a result of
pre-post spike pair stimulation with a delay of 10ms (using the
STDP circuit [6]). Also in this case the neuron does not produce
spikes because the synaptic weight was still zero at the arrival of
the pre-synapstic spike. Nevertheless, the input stimulation makes
the synaptic weight potentiate (change from 0 to 1). Therefore,
𝐼gain_neu becomes 𝐼offset + 𝐼step, effectively reducing the excitability
of the neuron. A PRE0 spike is then sent again, causing the neuron
to spike with a given spike count (phase III).

The same protocol is then repeated for synapse 1 (phase IV, V
and VI). The final outcome is different in this case (compare phase
III with phase VI/VII), given that both𝑤00 and𝑤01 are potentiated,
𝐼gain_neu is only as large as 𝐼offset, the lowest possible value. For
this reason, the neuron responds with fewer spikes to an input
pulse applied to synapse 1 (phase VI) and synapse 0 (phase VII). In
particular, the response to a pulse on PRE0 shows that the response
of synapse 0 is altered when𝑤01 is potentiated (compare phase III
and VII).

3.2 Network Simulation Result
In order to show the potential application of the synaptic normal-
isation circuit, a bigger network composed by 18 synapses and 2
neurons has been simulated using Cadence Spectre®. To emulate
the pixel representation, the simulation employs 9 different volt-
age generators that create a single spike at the correct positions.
For pattern “O” and “C” out of 9 generators, 8 and 5 were active,
respectively (Fig. 4).

To test inference capabilities of the network, synaptic weights
are pre-programmed so that neuron 𝑁0 is stimulated by all active
pixels of pattern “O” and neuron 𝑁1 by those of pattern “C”. In
the experiment (Fig. 4), the synapses are activated by input spikes
representing the pattern “O” and then the pattern “C”. Given that
pattern “C” fully overlaps with pattern “O”, the network would fail

to distinguish them without synaptic normalization because the
two output neurons would be equally active upon presentation of
pattern “C”. Synaptic normalisation reduces the spiking activity
of neuron 𝑁0 in response to pattern “C”, because only a subset of
its active synapses are stimulated. Instead, neuron 𝑁1 can strongly
respond to pattern “C” thanks to the fact that all its active synapses
are stimulated. Therefore an online comparison of the output spike
count or instantaneous firing rate of the two neurons leads to a
correct classification of the input pattern. This can be explained
considering Equation 4. From that we can calculate that 𝑁0 and
𝑁1 have a normalisation current respectively of 𝐼offset + 𝐼step and
𝐼offset + 4𝐼step, while they have an input current of 8𝐼𝑤 and 5𝐼𝑤 .

4 CONCLUSIONS
In this work, we presented a novel CMOS circuit that implements
synaptic normalisation in an analog hardware SNN in combination
with STDP. The effective functionality of such a technique was
validated through experimental measurements performed on ASIC
and assessed through circuit simulations. The circuit, with its mini-
mum footprint (3060 µm2, without DAC and OTA periphery) can
be easily scaled up to hundreds of synapses per neuron, varying
the step and offset current given by every weight variation.

For future work we plan to extend the circuit to facilitate analog
weights. The circuit is agnostic to the learning rule implemented
and can be used in conjunction with learning rules for which the
neuron requires knowledge of the weights of input synapses [4].
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