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ABSTRACT

Context. The analysis of spectral energy distributions (SEDs) of protoplanetary disks to determine their physical properties is known to
be highly degenerate. Hence, a full Bayesian analysis is required to obtain parameter uncertainties and degeneracies. The main challenge
here is computational speed, as one proper full radiative transfer model requires at least a couple of CPU minutes to compute.

Aims. We performed a full Bayesian analysis for 30 well-known protoplanetary disks to determine their physical disk properties,
including uncertainties and degeneracies. To circumvent the computational cost problem, we created neural networks (NNs) to emulate
the SED generation process.

Methods. We created two sets of MCFOST Monte Carlo radiative transfer disk models to train and test two NNs that predict SEDs
for continuous and discontinuous disks, with 18 and 26 free model parameters, respectively. A Bayesian analysis was then performed
on 30 protoplanetary disks with SED data collected by the FP7-Space DIANA project to determine the posterior distributions of all
parameters. We ran this analysis twice, (i) with old distances and additional parameter constraints as used in a previous study, to
compare results, and (ii) with updated distances and free choice of parameters to obtain homogeneous and unbiased model parameters.
We evaluated the uncertainties in the determination of physical disk parameters from SED analysis, and detected and quantified the
strongest degeneracies.

Results. The NN are able to predict SEDs within ~ ms with uncertainties of about 5% compared to the true SEDs obtained by the
radiative transfer code. We find parameter values and uncertainties that are significantly different from previous values obtained by
x* fitting. Comparing the global evidence for continuous and discontinuous disks, we find that 26 out of 30 objects are better described
by disks that have two distinct radial zones. The analysed sample shows a significant trend for massive disks to have small scale
heights, which is consistent with lower midplane temperatures in massive disks. We find that the frequently used analytic relationship
between disk dust mass and millimetre-flux systematically underestimates the dust mass for high-mass disks (dust mass >107* M,).
We determine how well the dust mass can be determined with our method for different numbers of flux measurements. As a byproduct,

we created an interactive graphical tool that instantly returns the SED predicted by our NNs for any parameter combination.

Key words. protoplanetary disks — methods: data analysis

1. Introduction

Spectral energy distributions (SEDs) are commonly used to
determine the physical structure and the dust properties of pro-
toplanetary disks (e.g. Andrews & Williams 2007; Ricci et al.
2011). To determine, for example, the mass and shape of the disk,
or the properties of dust grains and polycyclic aromatic hydrocar-
bons (PAHs), radiative transfer (RT) models are usually applied
which, after some fitting procedure, provide the values of these
physical parameters.

However, SED analysis can be highly degenerate (e.g.
Thamm et al. 1994; Heese et al. 2017). For example, simulta-
neous changes in disk mass and dust composition can lead to
almost indistinguishable SEDs. Furthermore, dust particle set-
tling and disk flaring may have very similar effects on the SED
at (sub-)millimetre wavelengths. Such degeneracies can result in

* Interactive graphical tool: https://tillkaeufer.github.io/
sedpredictor

large uncertainties when the values of single physical parameters
are determined.

One approach to address this problem is to combine SED
fitting with other observations, for example, images at millime-
tre wavelengths to constrain the outer radius, which effectively
reduces the number of free parameters. However, such a proce-
dure will be very specific to a certain combination of multi-kind
data, and it is often done only for one or a selected number
of individual objects where that particular data exist (e.g. Pinte
et al. 2008; Tannirkulam et al. 2008; Dong et al. 2012). Analysing
larger samples entails substantial computational efforts (e.g.
Sheehan et al. 2022).

The statistically correct way to take all the degeneracies in
an analysis into account is to calculate the posterior distribu-
tions for all parameters via a full Bayesian analysis. However,
this requires running at least a few million SED models. Due to
the high computational cost of state-of-the-art 2D RT disk mod-
elling tools, this process is computationally very demanding.
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Even though this has been done for single objects using very
large computational resources, (e.g Pinte et al. 2008), it becomes
computationally unfeasible when considering larger samples of
objects. Another drawback of this brute-force method is that
modellers are forced to use SED modelling approaches that are
as fast as possible. Hence, they tend to avoid full RT models and
fall back on simpler underlying disk models or allow only for a
few physical parameters, in which case fewer degeneracies are
found (e.g. Liu et al. 2015).

To circumvent the high computational cost, the modelling
process can be emulated. Ribas et al. (2020) emulated the
D’Alessio irradiated accelerator disk (DIAD) models (D’Alessio
et al. 1998) using neural networks (NNs). DIAD assumes that the
disk is geometrically thin, and that therefore the radial energy
transport is negligible. Furthermore, the disks are assumed to
be in a steady state, with a constant mass accretion rate, and
in vertical hydrostatic equilibrium. In an iterative process, the
vertical disk structure is solved under these assumptions. The
NNs created by Ribas et al. (2020) predicted spectral fluxes
with an estimated 1o~ uncertainty of 10% compared to the true
SEDs of the DIAD models. This enabled them to fit the SEDs
of 23 objects, using the Markov chain Monte Carlo method to
derive posterior parameter distributions. Their work focusses
on confronting the @ description (Shakura & Sunyaev 1973)
with observations finding high accretion rates and viscosities for
many sources.

The uncertainties of disk parameters are expected to increase
with fewer observational constraints. Nevertheless, analytical
relationships are often used to estimate individual disk param-
eters from limited sets of observations. In particular, the dust
mass is often derived analytically from millimetre flux, assuming
certain values for the dust absorption opacity and mean temper-
ature, assuming the disk to be optically thin, and assuming the
dust temperatures to be high enough to emit in the Rayleigh limit
(Woitke et al. 2019). The disk dust masses derived this way have
been shown to disagree with the masses derived from the full
RT models, even when using the correct average dust temper-
ature and opacity from the models (Ballering & Eisner 2019;
Woitke et al. 2019). The Bayesian analysis carried out in this
paper will allow us, for example, to quantify the inherent uncer-
tainties in this disk mass determination method, and to confront
these results with the frequently applied analytical relationship.

To do so, we generated a large set of SEDs using the Monte
Carlo continuum RT code MCFOST (Pinte et al. 2006, 2009),
and used NNs to emulate this process of creating SEDs from
model parameters. The benefit of this process is the drastic
decrease in computational cost to generate SEDs. This makes
a full Bayesian analysis that is carried out for 30 well-known
protoplanetary disks feasible.

This paper is structured as follows. Section 2 introduces the
models, emulating process, and the fitting procedure including
data selection, data preparation and the Bayesian framework. We
present the results of this paper in Sect. 3 including the quality of
the SED predictions, the overlap to the DIANA fitting results, the
new fits, and the determination of the dust mass. These results
are discussed in Sect. 4 with a focus on parameter trends in the
sample, parameter uncertainties, and degeneracies. We conclude
this paper in Sect. 5 with a summary of our main findings.

2. Method

We created large sets of more than 10° Monte Carlo contin-
uum RT 2D disk SED models with MCFOST (Pinte et al. 2006,
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2009), which cover the expected parameter space in an efficient
way. We train a NN to reproduce these results from the values
of the model parameters. The predicted SEDs are then used to
perform a full Bayesian analysis on multiwavelength photomet-
ric and spectroscopic data sets of 30 well-known protoplanetary
disks as published by Dionatos et al. (2019). We compare our
new results for the physical disk properties with those previously
obtained by Woitke et al. (2019), who used an evolutionary strat-
egy to optimise 2. In the next step, we refit these objects using
updated Gaia distances (Gaia Collaboration 2021), fixing only
the stellar parameters, and inclination. As a result, we obtain the
most probable, up-to-date disk parameters for 30 well-known
disks from the SED data, taking into account all uncertainties
and degeneracies.

2.1. The SED forward model

All SEDs are calculated by the Monte Carlo radiative transfer
code MCFOST 2.20.8 (Pinte et al. 2006, 2009). MCFOST solves
the radiative transfer problem of a dusty disk being illuminated
by a star. The disk is assumed to be passive, that is, we assume
that all energy is coming from the central star and that at every
point the radiative heating of the dust particles equals their radia-
tive cooling. All relevant stellar, disk, and dust parameters for
this problem, including disk shape, dust material, size distri-
bution, and settling, are listed in Table 1 and are explained in
Sect. 2.2. The meaning of these parameters is described in detail
in Woitke et al. (2016).

MCFOST sets up a 2D density structure with a grid of 150 x
100 points concerning the radial and vertical directions, respec-
tively. This structure is defined by various disk shape parameters.
The material composition of the dust grains is assumed to be
constant throughout the disk. A size distribution function is
assumed and mapped onto 70 size bins. The opacities of these
dust grains are pre-computed using Mie and effective mixing
theory. We are using the so-called DIANA standard dust opac-
ities, see Woitke et al. (2016). The grains in each size bin are
then vertically redistributed, using the settling prescription of
Dubrulle et al. (1995), and their opacities are co-added.

Photon packets are propagated in 3D from the stellar surface
through the disk, while undergoing interactions with the dust on
the 2D grid. The packets are traced until they exit the compu-
tational domain. Scattering events are modelled as a change of
direction, dependent on the scattering angle, but without chang-
ing the wavelength. In case of absorption events, the packets
are re-emitted isotropically with a wavelength distribution that is
based on the local dust temperature (Bjorkman & Wood 2001).
During the Monte Carlo modelling procedure, the grains heat up
until radiative equilibrium is achieved. Packets that are absorbed
by PAHs are stopped. At the end of the Monte Carlo run, the
PAH temperature distribution is updated, and the absorbed pack-
ets are re-emitted. The procedure is iterated until convergence.
We use 5 x 10° photon packages for the temperature determina-
tion phase. For more information, please see Pinte et al. (2006,
2009).

Once the temperature structure is computed using the above
procedure, the SED is calculated in a subsequent step for a
predefined set of 140 wavelength points. For this, a raytracing
method is used, integrating the formal solution of the radiative
transfer equation. The full wavelength dependent source func-
tion has to be known at each location in the disk. The thermal
part of the source function is obtained from the temperature and
emissivity of the grains. The scattering part of the source func-
tion is computed using a monochromatic Monte Carlo run. For
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Table 1. All model parameters for single and two-zone models.

# Name Description Sampling (" Function® Xmin Xmax Xmean Xstd
Stellar parameters
1 M, Mass of the star (M) log,(My) Even® log,((0.2)  log((2.5)
2 Age Age of the star (Myr) log,(Age) Even® log,((0.5) log,((20)
3 Ter Effective stellar temperature (K) log,o(Ter) Even® Indirect™®  Indirect®
4 L, Luminosity of the star (Lo) logo(Ly) Even® Indirect®  Indirect®
5 fov Excess UV Lyy /Ly log;o(fuv) Gauss -3 -1 log;((0.08)  log;,(0.12)
6 puv Exponent of excess UV log,o(puv) Gauss log,((0.5) log,((2) log((1.2) 0.4
Dust parameters
7 Amin Minimal dust grain size (pm) log;(@min) Gauss -3 log,((0.2) log,,(0.03) log,((0.3)
8 max Maximal dust grain size (pm) log ;o (@max) Gauss log,,(300) 4 log,(,(4000) log,((2)
9 Apow Exponent of dust size distribution Apow Gauss 3 5 3.6 0.35
10 amC-Zubko Amount of amorphous carbon amC-Zubko Gauss 0.05 0.3 0.18 0.05
11 Usertle Viscosity parameter log;o(@sertte) Gauss -5 -1 -3 0.8
PAH parameters
12 feAH Amount of PAHs relative to the ISM log,o(fran) Gauss -3.5 0 -1.5 0.9
13 PAH harged Amount of charged PAHs PAH harged Even 0 1
Disk parameters
14 M gisk Disk mass (Mgy,) log,o(Misk /M) Gauss -5 0 -2 0.8
15 R, ® Inner disk radius (AU) Toup (K)© Gauss 100 1677 1333 457
Rin 7® Inner disk radius (AU) Rin Gauss 1 70 18 19
16 Riaper Taper radius (AU) log ;o (Riaper) Gauss log,((5) log,,(350) log,,(90) log,((5)
17 € Column density exponent Ny(r) oc =€ € Gauss 0 2.5 1 0.4
18 H, Scale height at 100 AU (AU) H, Gauss 3 35 12 7
19 B Flaring index B Gauss 0.9 1.4 1.15 0.08
Inner disk parameters
20 Mdiskl ® Disk mass (Msun) logl()(Mdisk,Z /Mdisk) Gauss -7 -0.7 -4 1.3
21 e® Column density exponent Ny »(r) o< r~< & Gauss -1 2 0.7 0.7
22 H,® Scale height at 1 AUU? (AU) H> Gauss 0.02 0.5 0.1 0.1
23 B® Flaring index 1% B2 Gauss 0.05 1.7 1. 0.26
24 Rin,® Inner radius (AU) To (K)© Gauss 100 1677 1368 497
25 Rout2 ® Outer radius logo(Rout2/Rin) Gauss -3 0 -0.48 0.8
26 Amax2 ® Maximal dust size log;((@max,2/ Gmax) Gauss -4 0 -0.95 1.6
27 Soana® Amount of PAHs log(fean2/ fean) Gauss -3.5 0 -0.99 1.72

Notes. (VSampled scale (linear or logarithmic) for the parameter or the ratio of the parameter to anotherone. ®Even (Eq. (1)) or Gaussian
distribution (Eq. (2)). @ All single zone models are Evenly distributed in mass and age, while all two-zone models are evenly distributed in
luminosity and temperature. The undetermined parameters are derived from evolutionary tracks (Siess et al. 2000) by a Neural Network. There
are no boundaries for the stellar temperature and luminosity, but limits in stellar mass and age. They lead to indirect limits in temperature and
luminosity through their relation in the HRD using pre-mainsequence tracks from Siess et al. (2000). ©Inner radius for single zone models.
©Using the stellar parameters and the sublimation temperature defines the radius (for details see Appendix B). P Inner radius of the outer disk

zone. ®Only applicable to two-zone models. @ H(r) = H, - (100 T

doing so, photon packets are systematically generated by the star
and by each cell. At each interaction, the weight of the pack-
age is reduced according to the probability of absorption, and
only the scattered fraction is traced further after the direction
has changed. From this procedure the angle dependent specific
intensity is computed at each location in the disk which allows
us to compute the contribution of scattering to the local source
function. In this way, the raytraced SED is calculated for all
inclination angles. The advantage of this separate raytracing step
is that the generated SEDs contain only very little remaining
Monte Carlo noise. In our setup, we have used 10* photon pack-
ages per wavelength point and 10 inclinations. These inclinations
are equidistant in cosine space: 18.19°, 31.79°, 41.41°, 49.46°,
56.63°, 63.26°, 69.51°, 75.52°, 81.37°, and 87.13°.

The selected wavelengths are evenly distributed in loga-
rithmic space, but with a denser coverage around the 10 um
and 20 pum silicate emission features, the mid-IR PAH emission

v ) O = By - (g )

1 AU

features at 3.3 um, 6.25 um, 7.85um, 8.7 um, 11.3 um and
12.7 um, and in the UV, see Fig. 1.

In total, the computation of one disk model, which generates
ten SEDs, takes about 3-15 minutes on 8 processors. We have
used MCFOST in this setup to calculate some 10° disk models,
that is, a few 10° SEDs due to the 10 inclination angles, which
are used for training and testing of the NNs, see Sect. 2.4.

2.2. The free parameters

The star is described by four independent parameters Teg, Ly,
fuv and pyy. We use pre-main-sequence evolutionary tracks
from Siess et al. (2000) to connect T.¢ and L, to the mass
M, and age of the star. The photospheric spectrum is inter-
polated from the PHOENIX stellar atmosphere spectra (Brott
& Hauschildt 2005) as function of effective temperature Teg
and surface gravity log g. The surface gravity is calculated from
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Fig. 1. Example of a predicted SED with strong PAH features for a
single zone model of a A6 star that is part of the test sample compared
to the true SED derived by the full RT code. The orange and blue points
in the upper panel show the predicted and the true SEDs, respectively.
The residual (orange) is shown in percent in the lower panel.

the given photospheric luminosity L, and the stellar mass M,.
At UV wavelengths, a power law spectrum replaces the photo-
spheric spectrum to account for the excess UV emission due to
accretion and stellar activity. This power law is described by
fuv and pyy, which are the total UV luminosity shortwards
of 250 nm relative to L4, and the spectral slope in the UV,
respectively.

The dust is described by five free parameters, using the
DIANA standard dust opacities (see Woitke et al. 2016). The dust
size distribution function before settling is assumed to be a power
law, f(a) oc a~%v, from a minimum size (dm;,) t0 a maximum
size (Amax), With power law index a0y . We assume the dust mate-
rial to be a mixture of silicate Mg(7Fe( 35103 (Dorschner et al.
1995) and amorphous carbon (Zubko et al. 1996) with a fixed
porosity of 25%. The opacity computations apply Mie-theory to
a distribution of hollow spheres (DHS; Min et al. 2005) with
a maximum volume fraction of the hollow core of 80%. The
DHS provides a reasonable representation of the spectral prop-
erties of irregularly shaped aggregate dust grains, see Min et al.
(2016). In addition to the three parameters of dust size, we have
one additional free parameter for the dust material (the mixing
ratio of amorphous carbon) and one additional parameter for dust
settling @eye-

Polycyclic aromatic hydrocarbons can add multiple emission
features to the SED at mid-IR wavelengths, in particular for cen-
tral stars that are bright in the blue and soft-UV. We include
PAHs in all models by means of two additional free parame-
ters in the models, namely the PAH-abundance in comparison to
the standard abundance in the interstellar medium (fpap) and the
ratio of charged to neutral PAHS (PAHhargea). We chose repre-
sentative PAHs consisting of 54 carbon atoms and 18 hydrogen
atoms. For details, see Woitke et al. (2016).

We are using two different types of disk structures (Fig. 2),
single and two-zone models. While single zone models have
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Single zone
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Fig. 2. Sketch of a single and two-zone disk structure. The shown
parameters are explained in Table 1.

a continuous radial surface density structure, two-zone models
consist of two disk zones that can be connected or have a gap in
between. This additional complexity is often used to improve the
fit quality of SEDs, see, for example Woitke et al. (2019).

There are six free parameters that define the shape of every
disk zone. The column density is assumed to decrease as a
radial power law from an inner radius (Rj,) to a tapering-off
radius (Rper) beyond which the column density deceases with an
exponential function, until the hydrogen nuclei column density
reaches a threshold value of 10?° cm™2 which defines the outer
radius, see Eq. (1) in Woitke et al. (2016). The exponent in the
power law is assumed to be the same as in the exponential (y = €)
in all models in this paper. The vertical extension of the gas den-
sity above the midplane is defined by a scale height (Hj) at a
reference radius and the flaring index (8), see Eq. (2) in Woitke
et al. (2016). The gas mass in the disk zone (Mgjsx) results from
radial integration and is used to set the proportionality constant
for the surface-density law.

The respective parameters for the inner disk zone in two-zone
models have the same name, marked with a 2 (see Fig. 2 and
Table 1). Additionally, the maximum dust size (amax2) and the
PAH abundance (fpan,2) in the inner zone are set independently.
All other dust and PAH parameters are set globally.

In all disk models, we assume a gas to dust mass ratio of
100 in all disk zones. However, the gas mass influences only
the settling efficiency in our models. Therefore, different gas to
dust ratios can be simulated by changing the settling parame-
ter accordingly. Additionally, we use an interstellar background
radiation field composed of (i) the cosmic microwave back-
ground (CMB) modelled with a Planckian of temperature 2.7 K,
plus (ii) a standard UV background (Draine 1978; Draine &
Bertoldi 1996) yism = 1. The number of free parameters (stel-
lar, dust, PAHs, disk, and inclination) adds up to 18 and 26 for
single and two-zone models, respectively.

2.3. Grid creation

We created two separate disk model grids to train the two NNs
predicting the single zone and two-zone SEDs, respectively. The
goal of both grids is to vary all model parameters that we want
to use to fit SEDs, so that the NNs can learn the influence
of these parameters. To find reasonable distributions for our
model parameters, we analysed the parameter values found in
the DIANA SED models (Woitke et al. 2019) and adjusted our
parameter distributions for the grid production accordingly. Both
grids are created similarly, but the two-zone grid has additional
parameters for an inner disk zone. In this section, we describe
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Fig. 3. Two parameters sampled with 1000 points using random num-
bers (upper panel) and the Sobol sequence (lower panel). Both parame-
ters are evenly distributed between 0 and 1.

the general idea behind the grid creation. A detailed explanation
highlighting special parameters is attached in Appendix B.

We use the low-discrepancy Sobol sequence (Sobol 1967)
to sample the parameter space. This results in a smooth quasi-
random coverage, as seen in Fig. 3. A random distribution shows
larger areas without any models and a more uneven distribution
for every parameter compared to the Sobol sampling. Therefore,
we think that the Sobol sampling improves the NN’s ability to
learn how the SEDs look like over the whole parameter space.

All parameters that vary for single and two-zone models
are listed in Table 1. They are either uniformly or Gaussian
distributed between a lower (xpi,) and upper limit (xyax). The
uniform distribution uses these minimal and maximal values
to map the Sobol numbers (xsobo1) that range from 0 to 1 to
parameter values (Xpara):

Xpara = Xmin T (Xmax — Xmin) Xsobol - (D

If we decided to sample a parameter with a Gaussian distribution,
we used the inverse error function (erf~!) to map the Sobol num-
bers to the parameter value. The Gaussian distribution is defined
by the mean value (xpean) and a standard deviation (xgq):

= Xmean T Xstd \/E erf™! (1 = 2 Xg0bol)- 2

Xpara

The Sobol numbers that result in values for xpar, outside the lim-
its of Xpin and xy.x are discarded and uniformly distributed in
the allowed range using Eq. (1). The values for Xmin, Xmaxs Xmean>
and xgq are derived from the DIANA sample. We calculated the
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Fig. 4. Chosen architecture of the neural network (NN) to predict sin-
gle zone model’s SEDs. The NN consists of an input layer (orange)
with 18 neurons (18 free parameters), 6 hidden layers (blue circles) with
300 neurons each, and an output layer (red) with 140 neurons (the SED
values at wavelength i of the 140 points (SED(4;)). All neurons are con-
nected to every neuron in the adjacent layer. This sums up to 499 340
trainable parameters.

respective values of the sample, discarded eventual outliers, and
influenced our decisions by knowledge of the physical meaning
of all parameters. This knowledge resulted in stricter or looser
limits for some parameters or in sampling the logarithm of a
parameter instead of its linear value.

All values describing the parameter distributions are listed
in Table 1, including the decisions whether or not to use loga-
rithmic values and whether the sampling is even or Gaussian.
In total, the single zone grid consists of 673378 SEDs. The
two-zone grid consists of 1 195285 SEDs.

2.4. Neural network

The NNs used in this paper consist of a number of layers, each
with a number of nodes (see, e.g. Gangal et al. 2021 for an
overview of different NNs). Each node or neuron is connected
to every node in the adjacent layers (Fig. 4). The first layer, also
called input layer, takes all input parameter values, one for each
node. In the final layer, also called output layer, each node pro-
duces the spectral flux at a different wavelength. Both layers are
connected through a number of hidden layers. Every connection
between a neuron i in layer £ and a neuron j in the next layer
¢ + 1 has a weight w; ;.. These weights are optimised during the
training process. The sum of the neurons’ values u;, in layer ¢,
multiplied by the respective weights, plus a trainable constant
b, called bias, is taken as input for the activation function f to
get the output value of the neuron u, in the next layer:

Wjeer = f Z wije - uie +bjel. 3)
7

We use the rectified linear unit (relu) function f(z) = max(0, u)
as the activation function for all neurons in all hidden layers.
This function introduces non-linearities to the network, which
is essential for the learning process. It enables a NN with just
one hidden layer and a finite number of neurons to approximate
any continuous function (Hornik et al. 1989). Multiple layers are
used to reach convergence quicker.

We trained two different networks for the single-zone and
the two-zone disk models. As input for both NNs, we take all
model parameters. Therefore, the input layer of the NN to pre-
dict single zone models consists of 18 nodes, while the respective
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NN for two-zone models has 26 nodes. For all parameters that
are logarithmically varied in the grid, we take the logarithm of
their values as input for the network. The output predicted by
the network is a vector with the logarithmic fluxes for the SED
at the 140 wavelength points. Therefore, there is no knowledge
about the relationship between the different wavelengths. Both
input and output data are standardised by a scaler derived from
the training data. This proved to be more successful than nor-
malising the data (Appendix A). 70% of the data are taken for
training, while the rest is used as a test set to determine the point
at which the training does not improve any more. We made sure
that all models that differ only in their inclination are part of the
same set, to insure the independence of the test set. This is nec-
essary, because the inclination is the only parameter not sampled
randomly.

In the training process, the weights are changed using
stochastic gradient descent to minimise the loss function. We
decided to use the mean squared error between predicted and
true logarithmic flux values as our loss function.

We use Keras (Chollet & Others 2015), which is part of the
python package TensorFlow (Abadi et al. 2016), to build the
multilayer feedforward NNs. Most hyperparameters are deter-
mined using hypergrids, which means running multiple NNs
to find good settings. A summary of this process is shown in
Appendix A. We are aware that we have not found the best com-
bination of hyperparameters, but the change in quality turned
out to be small for reasonable settings. This process results in an
architecture of 6 hidden layers with 300 neurons for the single
zone NN, a prediction of which is seen in Fig. 1. The two-zone
NN has 7 layers with 400 neurons. Therefore, both NNs have a
number of weights that is comparable to the size of the training
sets (single zone: 499 340 weights and 470379 SEDs in the
training set; two-zone: 1029340 weights and 1192877 SEDs
in the training set). For a detailed description of the training and
determination of the hyperparameters, see Appendix A.

We trained the networks until the test loss function stopped
improving for 100 epochs. Then we selected the state of the NN
with the best test predictions. The loss value improves rapidly
during the first epochs and converges quickly. Therefore, the
test score does not improve any more after epoch 1615, and the
training process is stopped.

2.5. Fitting process

In this section, we explain how we connect observations and the
method to derive model parameters with their uncertainties for a
sample of 30 protoplanetary disks.

2.5.1. The DIANA sample

We apply our machine learning SED-fitting method to a sam-
ple of 30 well-studied disks (the so-called DIANA sample, see
Woitke et al. 2019), for which many multiwavelength observa-
tions (photometric fluxes and low-resolution spectra) are avail-
able and which have already been fitted using the same RT code
(MCFOST). This will allow us to compare our results with a
previous study. 27 of these objects are introduced in Woitke
et al. (2019). However, here we expand this set by adding 3 more
unpublished SED fits for DN Tau, CQ Tau and PDS 66, which
have meanwhile been fitted as well using the same approach as
described in Woitke et al. (2019)". In this section, we introduce
this sample and explain the modelling done by Woitke et al.

! https://prodimo.iwf.oeaw.ac.at/models/diana-sedfit
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(2019) briefly. For details on the data collection, see Dionatos
et al. (2019) and Woitke et al. (2019) for details of the modelling.

The observational data for each object comprise photomet-
ric fluxes and low-resolution spectra (UV, ISO, Spitzer/IRS,
Herschel/PACS, Herschel/SPIRE) that are individually selected.
Measurement uncertainties smaller than 5% are set to 5% to
account for calibration problems in the mix of different mea-
surements.

The SED models for the DIANA sample in Woitke et al.
(2019) are derived in a two-step approach. First, the stellar
parameters are fitted and fixed afterwards. The stellar parame-
ters (Te, Ly, Ay, My, age, and spectral type) are consistent with
pre-main-sequence evolutionary tracks by Siess et al. (2000).

In a second modelling step, a disk model was fitted to the
SED measurements for every object. This was done using an
evolutionary strategy to minimise y?. For the modelling of each
object, either a single or two-zone setup was selected by hand,
which had a number of parameters fitted while other parameters
were fixed using literature knowledge. This process resulted in
the best fit for every object. We note that for a number of objects,
the fits have recently been updated. The most up-to-date versions
can be found online'.

For the three objects added to the DIANA sample in this
paper, we exactly followed the same procedure, with the most
up-to-date distances available at the time. We introduce these
three objects briefly here, while referring to Woitke et al. (2019)
for detailed information about the other objects.

CQTau. CQTau is a F5 star (Manoj et al. 2006) at a dis-
tance of about 163 pc (Gaia Collaboration 2018), and with an
age of about 10 Myr, it is one of the oldest Herbig Ae/Be stars
(Chapillon et al. 2008). We used a stellar luminosity of 13.81 L,
an effective temperature of 7231 K, a stellar mass of 1.25 M, a
visual extinction Av of 2.53, an age of 8.4 Myr, and a spectral
type of A9 to fit the selected observations, roughly reproducing
the literature values for age and spectral type. Gabellini et al.
(2019) found a cavity between 15 AU and 25 AU. The disk is
very similar to the TW Hydra system, due to its gas-rich disk
with dust grains up to a few centimetres (Testi et al. 2003).

PDS66. PDS66 is a T Tauri-type K1 star (Pecaut &
Mamajek 2016) at a distance of about 99 pc (Gaia Collaboration
2018). Depending on its membership to the Lower Centaurus
Crux (LCC) subgroup or the eta Cha association, it is thought
to have an age between 7 and 17 Myr (Wolff et al. 2016). The
stellar fit by Grife & Wolf (2013) resulted in an age of 13 Myr.
Despite the old age of the system, the inner rim of the disk is very
close to the star (0.12") in polarised light (Wolff et al. 2016). This
is in line with Cortes et al. (2009), who find an inner radius of
the disk consistent with the sublimation radius at 0.1 AU. This is
peculiar, because normally the inner part of the disk is cleared at
that time.

DN Tau. DN Tau in a classical T Tauri star of spectral
type MO (Long et al. 2018) at a distance of about 129 pc (Gaia
Collaboration 2018). A fit to our photometric, UV and X-ray data
collection (see Dionatos et al. 2019) finds an effective tempera-
ture of about 3990K and a stellar luminosity of about 0.71Lg
with a reddening of Ay ~ 0.71, which according to the Siess
tracks (Siess et al. 2000) corresponds to spectral type K7, a stellar
mass of 0.69 M and an age of 2.4 Myrs. These stellar proper-
ties are close to the ones discussed for DN Tau in Robrade et al.
(2014), even though our estimates use a slightly stronger red-
dening and hence larger luminosity, more in line with Ingleby
et al. (2013). According to the ALMA observations by Long
et al. (2018) the dusty disk of DN Tau shows a regular Gaussian
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Table 2. Assumed stellar parameters for the analysed sample.

Object SpTyp™ d(pc)@ AP T (K)® Ly (Lan)® My [Mgn]®  age Myr)®
HD 97048 B9 184.4 +0.8 1.28 10000 45.82 2.6 45
HD 100546 B9® 108.1+04  0.22 10470 33.55 250 >4.80)
AB Aur B9 155.9+09 042 9550 4935 2.6 3.9
HD 95881 A1© 111.0+24  0.89 9900 14.43 2.50 > 580
HD 163296 A1©® 101.0+04 048 9000 25.17 2.50 >5.80
49 Cet A2 57.23+0.18  0.00 8770 15.58 1.99 10
MWC 480 A5 156.2+13  0.16 8250 17.81 1.99 4.9 x 102
HD 169142 A7TD 114.87 +035 0.06 7800 6.15 1.74D > 15
CQTau A9 1494+13 253 7231 11.58 1.76 94
HD 142666 F1 146.3+05  0.81 7050 10.02 1.7 1.7 x 103
HD 135344B F3 1350+ 04  0.40 6620 7.07 1.58 12

V 1149 Sco F9 167.3+05 071 6080 3.75 1.33 16
PDS 66 KO 97.89+0.12 1.0l 5205 1.42 1.25 15
LkCal5 K3® 1572 +0.7 1.7 4730 1.51 15® >550
RY Lup K4 153.5+1.4 029 4420 1.95 1.23 1.9
Usco J1604-2130 K4 1453 £ 0.6 1.0 4550 0.76 1.0 10
CI Tau K6 160.3 + 0.5 1.77 4200 1.21 0.90 1.9
TW Cha K6 183.1+04 1.61 4110 0.78 0.82 2.8
TW Hya K7 60.14+0.05 020 4000 0.34 0.75 7.8
RU Lup K7 157.5+1.0  0.00 4060 1.49 0.73 1.1
AA Tau K7 134716  0.99 4010 0.78 0.71 2.3
GM Aur K7 158.1+12  0.30 4000 0.77 0.70 2.3
DN Tau K7 128.6+04  0.71 3986 0.71 0.69 24
BP Tau K7 1274+06 057 3950 0.74 0.65 2.0
DF Tau K7 176 + 16 1.27 3900 3.89 0.61 0.36
DO Tau MO 138.5+0.7 2.6 3800 0.90 0.52 1.1
DM Tau MO 1440+05  0.55 3780 0.25 0.52 54
CY Tau Ml 126.33+ 033 0.10 3640 0.29 0.42 2.8
FT Tau M3 1302 +04  1.09 3400 0.26 0.30 22
RECX 15 M3 103.4+24  0.65 3400 0.11 0.29 5.2

Notes. VSpectral type, stellar mass and age for every object is derived using the updated luminosity and pre-main-sequence tracks by Siess
et al. (2000) for solar-metallicity. ®Distances are taken from Gaia Collaboration (2021). ®Taken from Woitke et al. (2019). ®Updated luminosity:
Luminosity used by Woitke et al. (2019) scaled according to new distances. ©’No tracks from Siess et al. (2000) match, values are taken from the
closest point at T = 9650K and L, = 42 Lg,,. ©No tracks from Siess et al. (2000) match, values are taken from the closest point at Tt = 9000 K
and L, = 30 Lg,,. P No tracks from Siess et al. (2000) match, values are taken from the closest point at Tey = 7800 K and L, = 9 Lg,,. ®No tracks
from Siess et al. (2000) match, values are taken from the closest point at Ty = 4730 K and L, = 1.6 Lgy,.

intensity profile with only little evidence for rings. The apparent
radius of the dusty disk at 1.3 mm is about 56 au, which makes
DN Tau one to the smallest targets in the DSHARP sample.

The DIANA project used the observed UV spectra directly,
whenever available. However, for the general fitting performed
in this paper, we need to assume a power law in the UV with
two input parameters. Therefore, we estimated pyy and fyv by
an iterative process (resulting values in Tables C.1 and C.2),
until the UV power law roughly fits the observed UV data. In
case of RU Lup, the UV observations do not follow a power law.
Hence, we opted for a power law that matches the UV luminos-
ity from the DIANA fit instead. Additionally, there is no power
law within the limitations of the grid setup that can reproduce
the UV spectrum of DO Tau, due to the strong reddening of the
object. We therefore opted for a power law that fits the data as
good as possible. We do not expect these manipulations to have
a large impact on the derived disk parameters, because the UV
wavelength points are excluded from our likelihood function.

All model fits use the best distances available at that time.
However, since all DIANA objects have meanwhile updated dis-
tances (Gaia Collaboration 2021), we scaled the luminosities to

the new distances and used the evolutionary tracks from Siess
et al. (2000) to update the stellar mass, age, and spectral type
accordingly. A list of all stellar parameters are shown in Table 2.
The resulting stellar spectra fit well to the observational data.
Therefore, a completely new stellar fit is not necessary for the
aims of this project.

This means that the reader will find two SED-fits for every
object in this paper. The first fit uses old distance measurements
and the same parameter constraints used in DIANA to compare
the results to the previously published fits. The second fit uses
up-to-date distances without any parameter constraints to derive
new values with uncertainties for all disk parameters.

2.5.2. Data preparation

To compare observations to the SEDs derived with our tech-
nique, a few in-between steps are needed. The NNs return SEDs
for models that are at a distance of 100 pc, this has to be changed
in post-processing by scaling the flux to the new distance.
Furthermore, the output of the NNs needs to be reddened.
We use the reddening law by Fitzpatrick (1999) to derive the
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wavelength-dependent amount of interstellar extinction using
two reddening parameters, Eg_y and Ry. In the last step, the
reddened and distance-corrected SEDs are interpolated using a
spline fit in log-log space to the wavelengths of the observations.

2.5.3. Bayesian analysis

We use MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2019) through the PyMultiNest Python package (Buchner et al.
2014) to compare the models with observations and determine
the posterior distribution for the free parameters. MultiNest is
a Bayesian inference tool. It uses a multimodal nested sam-
pling algorithm to compute the Bayesian evidence and posterior
distribution from a likelihood function. All details of the algo-
rithm and the numerical implementation are described in the
references given above.

We use the observational data selected by Woitke et al.
(2019), which were introduced in Sect. 2.5.1. Since the goal of
this study is to fit the disk parameters with reasonable assump-
tions about the star, we exclude all observations shortwards of
0.5 um. The uncertainties for all (photometric and spectral) flux
data points (0 0bs) 1S set to be at least 5% times the observed
values, to account for calibration problems and stellar variability
when using multiple instruments and multi-epoch data. As men-
tioned before, the model emulation by a NN introduces an error
on the model prediction. To account for this, we add a model
error of 5% of the predicted flux value (see Sect. 3.1).

The likelihood function £ accounts for the deviations of the
interpolated model fluxes (¥; model = VFymode1) from the observa-
tional data (y; obs = VFy,0bs) considering all wavelength points i =
1 ... Nops longwards of 0.5 um, with respect to the uncertainties
of model (0 mode1) and observations (07 obs):

N,

°

bs 1
: 2 2
=l \/27( (O-i,model + O-i,obs)

The low-resolution spectra consist of many more data points
than the photometric measurements, which would make them
dominate the likelihood value. Therefore, we reduce the influ-
ence of the spectra by weighting the logarithmic likelihood of
spectral points. The weights are set to 10 divided by the spectral
resolution. Therefore, the weight of every spectral point equals
the weight a spectrum with a spectra resolution of 10 would have.

In addition to the likelihood function, we need to specify
the prior probability distribution function for each object and
parameter. We use the same parameter distributions that were
used for the creation of the model grids as our prior distribution
for all objects. We use additional constraints to ensure that the
NNs cannot predict parameter values outside of the range used
to create the training grid. We solved this problem by assign-
ing a very small likelihood in all such cases. These constraints
concern log;o(Misk/Mx), 10go(Muisk,2/Maisk), 1010 (Rout.2/Rin),
log;(amax.2/Amax)> 10g19(fean2/ fean), and Tgwp, which are all
checked for values outside of the limits xp,;, and xy.c. We also
use additional physical constraints to avoid the outer radii of
all zones smaller than their respective inner radii, overlapping
radial zones, and maximum dust sizes smaller than minimum
dust sizes.

As described in Appendix B, we excluded SEDs from the
training sample that have disks that occult the star (shielded
SEDs). In those cases, the NNs are unable to predict this
behaviour even if certain parameter combinations would lead to
it. Hence, we also need to exclude these cases from the Bayesian

(yi,model - .’/i,obs)2

2 2
2 (O-i,model + O-i,obs)
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Fig. 5. Quality distribution according to Eq. (5) of the predictions in
the test set for the single zone (orange) and two-zone (blue) NN. The
histogram shows how many predictions fall in each quality bin. The
dashed, dashed-dotted, and dotted black lines show the 5%, 10%, and
20% difference, respectively.

analysis. To do so, we trained two NNs to distinguish between
shielded and non-shielded SEDs with 2 and 4 hidden layers and
64 neurons per layer for single and two-zone models, respec-
tively. These NNs were trained on all SEDs created during the
grid creation. While all parameters (identical to the main NNs)
are used as input, the output is a number between 0 and 1
that encodes the probability of this parameter set resulting in a
shielded SED. Since we want to make sure that most shielded
SEDs are excluded, we set the threshold to distinguish shielded
and non-shielded SEDs to 0.0721 and 0.0577 for single and two-
zone models, respectively. These values are chosen because they
result in the detection of more than 99.9% of shielded SEDs
while incorrectly classifying as non-shielded SEDs in about 1%
of all test cases. We incorporated this classification into the like-
lihood in the same manner as previously shown, which hinders
the Bayesian analysis to explore these areas of parameter space.

3. Results
3.1. SED predictions

In this section, we evaluate the quality of the NNs’ predictions.
We use the relative deviations of predicted flux (Fpredici,2) at a
wavelength A compared to the true flux calculated by the full RT
code (Fe ) as our measure of quality for a predicted flux:

|Ftrue,/l - Fpredict,/ll

Qpred = 5)

F true, A

Figure 5 shows the quality distribution for every flux prediction
of the single and two-zone SEDs in the respective test sets. The
prediction quality for both networks peaks at similar values, with
median/mean values of 2.2%/2.9% (single zone) and 2.3%/3.2%
(two-zone).

Most predictions have similar qualities, with 68% of the pre-
dictions (1o) being better than 3.4% and 3.6% for the single
and two-zone NN, respectively. Therefore, we use a conserva-
tive value of 5% as the 1o uncertainty for the NNs’ predictions
in the Bayesian Analysis.
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We note that both NNs predict a few models poorly, while
the overwhelming majority are predicted well, with similar qual-
ity. We individually inspected the worst predictions and found
common patterns. Individual wavelength points in the UV (0.1—
0.15 wm and ~0.42 um) were sometimes poorly predicted. This
can be explained by the many emission lines in the UV. A
few wavelength points coincide with these lines. Therefore, the
resulting flux at these points are hard to predict. Nevertheless,
this does not affect the further analysis since the UV is not used
in the Bayesian analysis. The second most common source for
errors are the PAH features. Since the variation of the SED at
these wavelengths is large, stars that show strong PAH features
(high stellar luminosity and temperature) have the potential for
slightly worse predictions.

Figure 1 shows an SED prediction for an A-type star from
the single zone NN. This prediction has mean prediction quality
for the 140 fluxes of this model of 2.9%, which is the mean value
of the test sample. Therefore, the quality of this prediction is a
good representation of the average prediction quality.

3.2. Reproducing DIANA fits

In a first step, we aim to reproduce the DIANA fits with param-
eter uncertainties. This means setting the same constraints to the
model (fixed parameters and complexity) as done for the DIANA
fits.

Regarding the complexity of the models, we opted for sin-
gle or two-zone models according to the DIANA fits. Two-zone
models exist in three settings (gap, no gap, and smooth transi-
tion). A gap exists if Roy2 < Rin and there is no gap if Ry 2 =
Rin. A smooth transition means that the flaring index and mass
of the inner zone are adjusted so that the surface density and
scale height are the same for the inner and outer disk zone at
Rou2 = Rin. The list of fixed parameters always included all
stellar parameters (L, Tef, fuv, and pyy) and the inclinations.

For one object, RECX 15, the dust-to-gas ratio is not 0.01
in the DIANA data. Since we cannot account for that with our
setup, we adjusted the disk gas mass to a value that corresponds
to the needed dust-to-gas ratio. Since the gas mass influences
only the settling in our setup, we adjusted the settling parameter
of that model to have the same settling efficiency.

For some objects, DIANA fixed the outer radius to values
that do not fit into the relation we enforce between the outer
radius and taper radius. Additionally, and exponent of the expo-
nential function which decreases the column density outside
Riaper was sometimes fixed to values different from €. Both of
these effects, cannot be simulated with our neural networks.
However, we expect the resulting differences of the SED to be
minimal.

In Table C.1, all parameter values for single zone objects are
listed with the values from Woitke et al. (2019) for comparison.
If no value is given for a parameter for the fit from this study,
it was fixed to the value used by DIANA. If no values are given
for the PAH parameters in DIANA, this means that they were
excluded from the model. In that case, we set fpag = 0.001 and
PAH hargea = 0.0. Even though this does not completely remove
PAHs from our model, it makes them negligible.

In Table C.2, the parameter values for this work and DIANA
are shown for all two-zone models. Again, values that are only
listed for DIANA are fixed to that value in our study. For some
object the PAH parameters are not listed meaning that PAHs
were excluded for the respective zone in DIANA and set to
fean = 0.001, fpano = 0.000001, and PAHcpareed = 0.0 in this
study to mimic this effect.
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Fig. 6. Comparison between resulting parameter posterior distribution
and the DIANA fits for single zone objects. The histograms show the
fraction of DIANA models that have parameter values within the 1o,
20, and 30 contour or outside for that parameter.
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Fig. 7. Comparison between resulting parameter posterior distribution
and the DIANA fits for two-zone objects. The histograms show the frac-
tion of DIANA models that have parameter values within the 10, 20,
and 3o contour or outside for that parameter.

If the transition between zones is smooth, Myis» and 5, are
adjusted accordingly. This is noted in Table C.2 as ’smooth’ at
the relevant entries.

Now, we discuss the quantitative comparison of our fits and
the DIANA fits. Figures 6 and 7 show how often the parameter
values found in DIANA fall within different o levels from the
posterior for single and two-zone models, respectively.

For single zone models 23, 16, and 15 of the 72 param-
eter predictions fall within the 1o, 20, and 30 contour, with
18 DIANA parameter values outside the 30 level. For the 317
two-zone model parameter predictions 103, 74, and 68 predic-
tions fall within the respective contours, while 72 are outside the
30 level.

A good agreement between DIANA and this study can have
two causes. The parameter can be easy to constrain which makes
it possible for DIANA to find these values, or the parameter
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uncertainties are very large and therefore many parameter pre-
diction falls within a certain o contour. We test the size of the
uncertainties in Sect. 4.2. In general, there is little agreement
between the DIANA parameter values and the derived posteriors
for both single and two-zone models.

The best overlap for single zone parameters (Fig. 6) is found
for amin, Gmax> Usettles With 63%, 71%, and 63% of the fitted
parameters within the 20 level, respectively. Additionally, Rper
and e are fitted only one time each with good agreement between
the studies (within 107). Among the worst fitted parameters are
amC-Zubko, Ry,, Hy, and 8.

The two-zone fits (Fig. 7) in this study find similar overlap
compared to the single zone fits. Very often R;, values of DIANA
are outside the uncertainties of this study. Similarly, there is little
overlap for apow and Mg 5.

We constrain the Bayesian Analysis to only explore areas of
the parameter space in which the NN’s predictions are valid.
Therefore, it is not possible to predict values outside these
restrictions. Even though, we informed our parameter space by
the DIANA predictions, some parameter values that were found
in DIANA are so extreme that we excluded them from our grid
creation. As an example, it seems that the innermost radius
causes some disagreement between DIANA and this study with
3 (6) predictions for single zone (two-zone) models outside the
30 contour. 3 DIANA fit radii have temperatures that we exclude
from our study. Therefore, our method does not explore this area
of parameters space and these parameters are predetermined to
be outside the 30~ contour.

The different levels of overlap are not equally distributed over
all fitted objects. For example, the single zone fits of DN Tau
and DF Tau and the two-zone fit for CQ Tau, HD 135344B and
CY Tau find no > 30 disagreements. On the other hand, the
single zone DIANA fit for 49 Cet does end up in a completely
different area of parameter space, resulting in > 30 differences
between both studies. The largest number of parameter dis-
agreements for two-zone fits is found for AB Aur with 62% of
parameters outside the 30 level.

The differences between the parameter values derived in
these two studies might be caused by the different quality met-
rics that are used. In this study, we use the likelihood defined
in Sect. 2.5.3, while DIANA uses a wavelength weighted ver-
sion of y (DIANA-y). We want to check if the fits found in
this study are not just different from DIANA, but also of higher
quality. To do that, we use DIANA-y and calculate it for one rep-
resentative model of the posterior distribution of every object.
For this, we use the so-called median probability model, which
we define as the model for which the parameters are closest to
the median posterior values. This means that this model’s most
extreme parameter value is within the percentile level closest to
the median value of the posterior compared to all other models of
the posterior (similar to Barbieri & Berger 2004). This model is
a good representation of the posterior distribution, even though
it is not the model with the maximum likelihood.

We calculate the DIANA-y for SED predicted by the NNs
of that model and also for the MCFOST model with the same
parameters. Since data points shordwards of 0.5 um are excluded
from the Bayesian analysis, we exclude them from this cal-
culation. As a comparison, we are calculating the DIANA-y
for the DIANA models also excluding the same observations.
We find that the NN predicted SEDs for the median proba-
ble model results in a better DIANA-y than the DIANA model
for 17 of the 30 objects. We conclude that the better qual-
ities are not due to the NNs’ deviations from the MCFOST
models, because the MCFOST SEDs of the same models also
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result in better DIANA-y values in 17 cases. Therefore, the opti-
misation strategy of DIANA did not converge to the optimal
solution. This shows the advantages of exploring the parameter
space with Bayesian analysis compared to simpler optimisation
strategies.

The definition of the median probability model allows us to
plot the density structure (see Fig. D.1). This shows that due
to the fixing of some disk parameters and despite the param-
eter value differences, the disk structures of this work and the
DIANA project show many similarities. Therefore, it is difficult
to gain insights if one of the two disk structures is confirmed by
other observations. In the next section, we evaluate the evidence
for different disk structures (single zone and two-zone models).
These structures are different enough that other observations can
be used to distinguish between them.

3.3. Consistent fits for all objects

After comparing our method to previous fits, we start to con-
sistently fit all objects using a fully homogenised setup for both
a single and a two-zone model. This effort was not possible in
DIANA due to the computational cost. For doing so, we assume
the stellar parameters listed in Table 2 and the inclination used
in DIANA, which was always taken from literature values. This
allows us to incorporate external knowledge for parameters that
are hard to determine based on SEDs alone and for which we
have known values for every object. All other parameters are
free with the grid distribution imposed as a prior (Table 1). This
results in 60 fits with 13 and 21 free parameters for every object’s
single and two-zone model, respectively. The single zone param-
eter values with their uncertainties are shown in Table C.3, while
the two-zone fit results are displayed in Table C.4.

This systematic approach allows us for the first time to eval-
uate the benefit of discontinuous disk models over simpler single
zone models. We evaluate the significance by calculating the
Bayes factor (B),) for every object between the two-zone model
(M>) and the single zone model (M;). We calculate this factor as
the difference of the Nested Sampling Global Log-Evidence for
single (log(E(M;)) and two-zone models (log(E(M>)). Accord-
ing to Trotta (2008) B, < 1, 1 < Byp < 2.5, 2.5 < By <5,
5 < By < 11, and 11 < Bj, correspond to no evidence, weak
evidence, moderate evidence, strong evidence, and very strong
evidence for a two-zone model over the single zone model,
respectively. Negative values mean that single zone models are
preferred with the corresponding evidence.

Table 3 list the Bayes factors for all objects with their inter-
pretation. For 22 of the 30 objects, we find very strong evidence
that a two-zone model reproduces the SED observations better.
While some objects return inconclusive results, only 4 objects
return negative Bayes factors, corresponding to evidence of a
single zone model over a two-zone model. This dominance of
two-zone models is also reflected in DIANA, where 22 objects
used a two-zone fit. Nevertheless, we find very strong evidence
for two-zone models for objects (49 Cet, MWC 480, RU Lup,
DO Tau, FT Tau, and RECX 15) that are fitted with a single zone
model in the DIANA project. On the other hand, we find weak
evidence for a single zone model for TW Cha that is fitted with
two-zones in DIANA.

For the objects with a complexity mismatch to DIANA, many
disk parameters are similar between their single and two-zone
fits (comparing Tables C.3 to C.4). This means, that even though
SED fitting is very degenerate, certain parameters (e.g. disk
mass and innermost radius) can be determined relatively well
independently of the exact model.
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Table 3. Bayes factor between single and two-zone fits for all objects.

Object B 12 M N @ Evidence & NDIANA @
HD 97048 70.60 2 Very strong 2
HD 100546 168.65 2 Very strong 2
AB Aur 301.06 2 Very strong 2
HD 95881 6.76 2 Strong 2
HD 163296 13.29 2 Very strong 2
49 Cet 117.92 2 Very strong 1
MWC 480 24.87 2 Very strong 1
HD 169142 364.56 2 Very strong 2
CQ Tau 53.17 2 Very strong 2
HD 142666 0.61 2 None 2
HD 135344B 574.59 2 Very strong 2
V 1149 Sco 134.87 2 Very strong 2
PDS 66 71.67 2 Very strong 2
LkCal5s 41.09 2 Very strong 2
RY Lup 24.64 2 Very strong 2
UScoJ1604-2130 833.11 2 Very strong 2
CITau -0.75 1 None 2
TW Cha -2.18 1 Weak 2
TW Hya 35.16 2 Very strong 2
RU Lup 35.23 2 Very strong 1
AA Tau 4.59 2 Moderate 2
GM Aur 6.62 2 Strong 2
DN Tau -5.38 1 Strong 1
BP Tau 11.82 2 Very strong 2
DF Tau -0.02 1 None 1
DO Tau 11.39 2 Very strong 1
DM Tau 19.70 2 Very strong 2
CY Tau 48.57 2 Very strong 2
FT Tau 41.07 2 Very strong 1
RECX 15 13.36 2 Very strong 1

Notes. (VBayes factor between single and two-zone fits. @ Preferred
number of zones from our fitting. (3>Interpretation of B}, based on Trotta
(2008). @Number of zones used in DIANA.

This is also reflected in the single and two-zone density struc-
tures of the median probability models (see Fig. D.2). For many
objects, the single zone and two-zone density distribution has a
similar radial and vertical structure. This is very prominent for
objects that do not have very strong evidence for one of the two
structures. One example is CI Tau, which shows no evidence for
either model complexities. The two density structures differ only
in the two-zone model’s gap at about 10 AU. Other examples
for high similarities between the single and two-zone models
are HD 142666 and AA Tau for which the two-zone model is
preferred even though not strongly.

The resulting disk structures can be roughly compared with
images of the objects. Even though we cannot expect the struc-
tures derived by SED fitting to reproduce the images well, we
are interested if the preference of any disk structure can be con-
firmed by image data, especially if this study and DIANA prefer
different disk complexities.

We find very strong evidence for MWC 480 to be described
by a two-zone model, while DIANA used a single zone model
to fit the object. Images by the Atacama Large Millime-
ter/submillimeter Array (ALMA) at 1.33 mm show a prominent
disk gap at about 70 AU with a width of about 30 AU (Long et al.
2018). This is roughly consistent with the gap in the two-zone
model, even though this gap is closer in (inner radius of the outer

zone of about 45 AU). Therefore, we conclude that the evidence
for a two-zone model to fit the SED is confirmed by image data
in this case.

The images of CITau and FT Tau of the same study (Long
et al. 2018) show four rings with corresponding gaps and one
gap, respectively. Compared to MWC480 these gaps have a
much lower intensity contrast, which makes both disk struc-
tures plausible and does not give new insight in the complexity
mismatch between our study and DIANA.

Figure D.3 shows the resulting SEDs of the posterior distri-
bution. The SED contours are derived by using all models from
the posterior, and calculating the 1o~ (16th and 84 percentile),
20 (2.5th and 97.5th percentile), and 30 (0.05th and 99.95th
percentile) level for every wavelength point. The single zone or
two-zone fit is selected for every object based on their Bayes
factor.

For all objects, either the single or the two-zone fit does
reproduce the observations reasonably well. We point out a few
notable cases. For two objects, the UV fits does not overlap the
observations. RULup’s UV is not easily described by a power
law that intersects with the stellar spectrum. Therefore, a power
law that reproduces the UV flux is chosen. For DO Tau the red-
dened power law underestimates the UV flux compared to the
observations. Due to DO Tau’s strong reddening, it is not pos-
sible to find a power law within the allowed range of fyyv and
puv that overlaps with the observation and intersects the stellar
spectrum.

The mid-IR wavelength region for every fit is shown in
Fig. D.4. The silicate feature is well-fitted for all objects keep-
ing in mind that a single parameter is used to describe the dust
composition. For V 1149 Sco, Lk Ca 15, RY Lup, TW Cha, and
GM Aur it seems, despite the overlap, the model’s silicate feature
peaks at a wavelength shorter than the peak wavelength of the
observed feature. This hints that another dust composition could
be a better representation for these objects, since this shift can be
reproduced by changing the dust composition (see Fig. 4 in Min
et al. 2007).

Additionally, we find that most PAH features are reproduced
well by the models. Especially the strong features of HD 97048
and HD 169142 are well modelled and objects without PAH
features are fitted by models without features.

3.4. Determination of the dust mass

One of the most fundamental disk parameters is the dust mass
of the disk. While full RT models that are used for SED fit-
ting derive dust masses (even though without uncertainties),
most often the dust mass is inferred from single flux measure-
ments (e.g. Hildebrand 1983; Andrews & Williams 2005). The
used analytical relation relies on many assumptions and literature
values, which makes the relation often unreliable when compar-
ing with full radiative transfer models (e.g. Woitke et al. 2019;
Ballering & Eisner 2019).The dust mass MJ¥ is connected to
the observed flux () by:

Fod® Fyd*c?
Mo = = S ©6)

dust ana ana ana | 2 -7 ana
KBy (T K 2y kTN

The relation uses a flux measurement at a frequency v, the dis-
tance (d), the dust opacity «, (cm? g~!(dust)), and the Planck
function (B,) at the average dust temperature 73%. Assuming
that the dust is optically thin and emits in the Rayleight—
Jeans limit at the observed wavelength, the Rayleight—Jeans law
approximates the Planck function using the speed of light c,
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Fig. 8. Calculated dust mass with Eq. (6) using the flux at 850 um,
KM =35cm? g™, and T3 = 20K in comparison with the model dust
mass. The blue distribution shows all single and two-zone models that
were used to train and test the NNs. The distribution is derived by divid-
ing the value range of M(‘;L‘;‘fd into 50 equal size bins in log space. The
coloured lines show the median value for all models within their respec-
tive bins, the strongly, medium, and lightly shaded areas display the 1o,
20, and 30 percentiles of each bin. Over plotted are the object fits from
Sect. 3.3. The model values denote the result of the posterior distribu-
tion, with the error bars representing the 10~ contour. The analytical dust
masses are calculated in the same way as done for all grid models, with

the fluxes at 850 um of the respective models.

the Boltzmann constant k, and the average dust temperature
T3 Normally, flux measurements in the millimetre wavelength
regime are used to ensure that the assumptions hold true. For
comparison, often the same values are assumed in the literature
for the average dust temperature and dust opacity (e.g. 20 K and
3.5cm? g~ at 850 um Andrews & Williams 2005).

We show the analytical dust mass of Eq. (6) in comparison
to the model dust mass in Fig. 8. The blue distribution shows all
single and two-zone models that were produced during the grid
creation. It is clearly visible that the distribution follows the unity
line for about M0 < 10~* Mo, For higher masses, the analyti-
cal expression systematically underpredicts the dust masses. This
suggests that the assumptions of Eq. (6) break down. In partic-
ular, we suspect that for these high dust masses, disks become
partly optically thick. This explains why an increase in model
dust mass is not reflected any more in an increase in flux and
therefore the analytical dust mass. This finding is consistent with
a parameter study from Liu et al. (2022), which finds that the
analytical method can underestimate the dust mass by a factor of
up to hundreds for RT models.

Over plotted in Fig. 8 are the fits for the sample (Sect. 3.3).
For every object, the single or two-zone model is selected based
on the Bayes factor (Sect. 3.3). The model masses and their
uncertainties are directly obtained from the posteriors, with
the error bars showing the 1o level (based on its percentiles).
The analytical dust masses are calculated using the interpolated
model flux at 850 um, Eq. (6), k2" = 3.5cm? g™, and 72" =
20K. We note that the errors for the analytical dust masses,
propagated from the flux uncertainties, are smaller than the used
markers in Fig. 8. It can be seen that the majority of objects fall
within the mass range in which the analytic expression starts to
break down. Therefore, the dust mass is underestimated by the
analytic formula for many high-mass objects.

In a next step, we are evaluating the potential to estimate dust
masses based on a limited number of mm-flux measurements
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Table 4. Mass uncertainty factors for mock observations.

oD
A (um) 1% 5% 10%
0.2 0.18 0.21
T
3000 1.83009 185008 ol "
890, 1300 174005 g0 | ggdak
1300, 3000 17100 7400 | q9013”
890, 1300, 3000 1.6700 - 1703 176044
4 ’ : -0.07 *1-0.07 . —0.08

Notes. (Vop: relative uncertainty of the observation. ®A: wavelengths
of the SED measurements.

without any analytical assumptions. We selected 100 random
single zone models and used their mm-points as mock obser-
vations. The selected wavelength (combinations of 890 pm,
1.3 mm, and 3 mm) are seen in the first column of Table 4. The
fluxes at these wavelengths are given a mock uncertainty of 1%,
5%, and 10% (first row of Table 4). These mock observations are
then fitted with single zone models using a full Bayesian analysis
for which the stellar parameters and the inclination are fixed to
their correct model values. We used the resulting posterior dis-
tribution to estimate typical uncertainties for the disk mass. We
compare the 84th (x;,) and 16th percentile (x_i,) to derive a
typical uncertainty factor fo:

Jerr = Vx+10'/x—10'- @)

This factor is given in Table 4 for the different combinations
of mock observational wavelength and uncertainties. The table
shows the median mass uncertainty factor for the sample of 100
mock observations with the 84th and 16th percentile of the dis-
tribution given as uncertainties. Generally, the mass uncertainty
decreases with more observations and with smaller flux uncer-
tainties, which is to be expected. For a single observation at
890 um with a flux uncertainty of 10%, the mass can be con-
strained by a median factor of 2.11, while three observations at
890 wm, 1.3 mm, and 3 mm, with uncertainties of 1% result in
a median mass uncertainty factor of 1.67. Comparing only indi-
vidual flux measurements, it comes clear that a measurement at
longer wavelength can constrain the mass better than a measure-
ment with the same uncertainty at shorter wavelength. This hints
that parameters other than the disk mass are affecting the SED at
longer wavelength less, which makes the fitting less degenerate
and the mass determination more precise.

4. Discussion
4.1. Related parameters in the sample

In this section, we examine the relations between different model
parameters. Comparing all 30 objects, we analyse if a parameter
difference between objects coincides with a change of another
parameter. This gives insights into what kind of disks exist. Since
the two-zone models are preferred for most object, we use these
fits (Table C.4) for all objects to examine parameter relations.
The values of selected parameters with their 1o~ uncertainties are
displayed in Fig. 9. The displayed parameter combinations are
chosen based on the strength of their correlation and their phys-
ical importance. This correlation is quantified using the Pearson



Kaeufer, T., et al.: A&A proofs, manuscript no. aa45461-22

-0.38+/-0.11

-0.34+/-0.09
T T

-0.26+/-0.07

w
o
T
1
o
SN
T
_'_

N
U1
T
—
1

Ho [AU]
N
2
_'_
H, [AU]
o
w

151 _jF" 7

10F 1 .
0.1F
ijh:

| o ] -

25 _|_ -
15r “\F _H_ T

_I_
o

Ho [AU]
S
|

o[ . e T —I—-_—_I_—_I_ Sr —— 1
-4 -2 0 -10.0 -7.5 -5.0 -=-2.5 3.5 4.0 4.5
l0g10Myisk [M 6 ] l0g910Muisk, 2 [M o ] Apow

Fig. 9. Dependencies between selected physical two-zone disk parameters of all objects. Points with error bars denote the median values and the
84th and 16th percentiles resulting from the Bayesian analysis of two-zone fitted objects. The Pearson correlation coefficient is shown in the title

of every plot.

correlation coefficient, which is determined in an iterative pro-
cess. The posterior of every object is projected on the to examine
parameter combination. Then a random point from the posterior
of every object is chosen and the correlation coefficient for this
set of points is calculated. This process is repeated for a total
of 10000 sets of parameter values from every object’s poste-
rior. The mean coefficient values with their standard deviation
are displayed on top of every panel in Fig. 9.

The scale height (Hp) and the disk mass (Mg;s) shows a
Pearson coefficient of —0.38 + 0.11. The negative value cor-
responds to more massive disks having smaller scale heights.
The explanation for this dependency is that higher mass disks
are optically thicker, resulting in lower midplane temperatures,
which in hydrostatic equilibrium corresponds to flatter disks. It
seems impossible to have both a massive disk and a large scale
height, because such disks would extend vertically very high
before they become optically thin.

This relation is also true for the inner disk zone, with a Pear-
son coefficient of —0.34 + 0.09 between the disk mass Mix 2
and scale height H, of the inner zone. We therefore argue that
this correlation has a real physical origin in the disk structure, as
described above.

The third panel in Fig. 9 shows the correlation between
the dust size power law exponent ap,, and the scale height
of the outer zone. High apq, correspond to many small grains
and only a few large once. The panel shows that no object
with high values in Hy and ap,, exist in our sample (corre-
lation coefficient of —0.26 + 0.07). We argue similarly to the
previous correlation, that small grains have higher opacities at
shorter wavelength, which makes the disk more optically thick,
decreasing the temperature and therefore the scale height.

The parameter combinations that are not displayed show
some similar patterns. Firstly, some parameter combinations
show correlations with high correlation coefficients, but they are
enforced by our modelling process. For example, the inner radius
(Rin) of the outer zone strongly correlates with the outer radius
of the inner zone (Roy2). This is a consequence of the constraint
Rin > Rou2. Additionally, the stellar temperature strongly cor-
relates with the stellar luminosity, which is a consequence of
stellar evolution. Secondly, some parameter combinations have
error bars for both parameters that are larger than the value dif-
ferences between objects. An example of such a combination is
the PAH abundance ( fpan) and its charge ratio (PAHcharged). This
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Fig. 10. Violin plots showing the uncertainty distribution for all single
zone parameters (Table C.3). For the left part of the plot (left of the
dashed black line; linearly sampled parameters) the uncertainties are
given in absolute values x.; according to Eq. (8) corresponding to the
left axis. For the right part of the plot (logarithmically sampled parame-
ters), the uncertainties are given as factors f..; (Eq. (7)) corresponding to
the right axis. Every violin depicts the distribution of uncertainties for
an individual parameter. The upper, middle, and lower line encode the
maximal, median, and minimal uncertainty in the sample, respectively.

prohibits any strong correlation. Lastly, some parameter com-
binations have error bars that are smaller than the difference
between objects, but there is nevertheless no clear correlation
visible. This is, for example, the case for the mass of the disk
and the dust composition. It is not always clear if a correlation
is significant or not, therefore we decided to only show the most
convincing ones.

4.2. Uncertainties of all disk parameters

One main objective of this study is to calculate the uncertain-
ties for parameters derived from SED fitting, to provide general
uncertainty estimates for SED fits. We determine the uncertain-
ties of all parameters either in absolute values or in relative
factors. Absolute values are used for parameters that were sam-
pled on a linear scale, while factors are used for logarithmically
sampled parameter. In both cases, we use the 84% (x.,) and
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Fig. 11. Violin plots showing the uncertainty distribution for all two-zone parameters (Table C.4). For the left part of the plot (left of the dashed
black line; linearly sampled parameters) the uncertainties are given in absolute values x.,; according to Eq. (8) corresponding to the left axis. For
the right part of the plot (logarithmically sampled parameters), the uncertainties are given as factors f; (Eq. (7)) corresponding to the right axis.
Every violin depicts the distribution of uncertainties for an individual parameter. The upper, middle, and lower line encode the maximal, median,

and minimal uncertainty in the sample, respectively.

the 16% (x_i,) percentile level of the posterior probability
distribution to derive the uncertainty.

For linearly sampled parameters, we define the absolute
uncertainty X, as:

Xilo — X-lo
_ 8
2 (®)

Xerr =

For example, the flaring index of AB Aur derived from a two-
zone fitis 1.3717091¢ (see Table C.4), which according to Eq. (8)
results in an absolute uncertainty x., of 0.0205.

For logarithmically sampled parameters, the uncertainty is
given as a factor according to Eq. (7). The same fit of AB Aur

derives a disk mass of 0.0113?%:}M@, which results in an

uncertainty factor of V1.1 x 1.1 = 1.1.

Figures 10 and 11 summarise the uncertainty distribution
using violin plots for all single zone fits (Table C.3) and two-
zone fits (Table C.4), respectively. The upper, middle, and lower
lines encode the maximal, median, and minimal uncertainties of
all fits (Sect. 3.3) for the parameters named on the x-axis. The
width of the shaded area displays the distribution of all values.

For the single zone fits (Fig. 10), we first examine the param-
eters with absolute errors. The amount of amorphous carbon
(amc-Zubko) has uncertainties between 0.001 and 0.05 with
a median value of 0.02. The PAH charge ratio (PAHcharged)
is among the worst constrained parameters compared to their
allowed range. For many objects, no PAH features are visible,
which explains an absolute uncertainty of the charge ratio of up
to 0.34 with a median value of 0.31, which is large when consid-
ering the allowed parameter range of 1. For the best constrained
charge ratio, the uncertainty drops to 0.038, which shows to what
level it is possible to constrain this parameter if strong features
are available. The scale height Hy is constrained by between
0.15AU and 3.7AU with a median uncertainty of 0.61 AU,
which is small compared to the allowed parameter range of
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32 AU. The best constrained linearly sampled parameter with
respect to its allowed range is the flaring index (8) which can
have an uncertainty as low as 2.4 x 10~ even though the range
goes up to 0.5.

From the set of logarithmically sampled parameters, the
inner radius (Rj,) is the best constrained parameter. It has a max-
imum and median uncertainty factor in our sample of 1.18 and
1.10, respectively. Interestingly, the disk mass is determined by
a factor of 1.33 (median) with the distribution ranging from
1.03 up to 2.69. This means that even though five orders of
magnitudes of disk masses were allowed for every fit, SED fit-
ting can constrain the mass very well. This is consistent with
Ribas et al. (2020), who also find the disk mass well constrained
for all objects. We note that the disk mass uncertainties from
SED fitting are only slightly smaller than the once derived from
fitting individual flux measurements (Sect. 3.4). The worst con-
strained logarithmically sampled parameters are the viscosity
parameter (@) and the amount of PAHs (fpay) which have
maximal uncertainty factors of 5.8 and 6.2, respectively. The
difference between these parameters is that the settling has a
lower median (1.82 compared to 3.59) and minimal values (1.07
compared to 1.16). The minimal (an;,) and maximal dust size
(amax) are constrained by median factors of 2.1 and 1.5, respec-
tively. The parameter constrained by the smallest factor is the
best constrained fit of the taper radius (Ryaper), Which is 1.007,
while the worst constrained fit has the largest factor (7.22) of all
parameters.

Overall, the parameter uncertainties vary greatly between
different objects. This shows that different numbers of obser-
vations, different type of objects, or specific disk properties
influence how well disk parameters can be determined. However,
some parameters are better constrained than others.

Giving more degrees of freedom by adding multiple parame-
ters for a two-zone model (Fig. 11) increases the uncertainties for
parameters that are also used for single zone fits by a small factor.
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For example, the disk mass of the outer zone is constrained
within a factor between 1.11 and 1.86 (median of 1.37), which
is a slightly larger median value than the respective value for
the single zone fits (Fig. 10). For the set of parameters describ-
ing the inner disk zone, the mass (Mgjsk2), maximum dust size
(amax.2), and the PAH abundance (fpan2) are most uncertain with
median (maximal) factors of 3.20 (6.58), 5.93 (17.45), and 10.28
(16.03), respectively. While the mass and maximum dust size
are constrained by small factors for individual objects, the PAH
abundance of the inner zone is never better constrained than a
factor of 6.28.

We note that a fraction of the parameter uncertainties orig-
inate from the assumed uncertainty for the NNs’ predictions.
Therefore, a Bayesian analysis using the radiative model for
every iteration will decrease the parameter uncertainties. The
used prior will also affect the posterior. We rerun the Bayesian
analysis with flat priors to estimate the influence of them.
The uncertainties increase only slightly, showing that the given
measurements predominantly determine the posterior.

The uncertainties derived in this study are roughly consis-
tent with uncertainties estimated by Woitke et al. (2019) for three
objects. For example, their estimated uncertainties for the dust
parameter (dmin, Gmax> Gpow» Fsewles and amC-Zubko) are well
within the distributions displayed in Fig. 11.

4.3. Degeneracies

In this section, we examine the degeneracies in SED-fitting that
we have identified based on our full Bayesian analysis (Sect. 3.3).
While SED-fitting is well-known to be degenerate, quantifying
this effect is difficult due to the high computational cost.

We quantify a degeneracy between two parameters by the
Pearson correlation coefficient of the joint posterior distributions
using all single and two-zone models introduced in Sect. 3.3.
In total, there are 78 single zone and 210 two-zone parame-
ter relations to explore that represent all combinations of the
13 single zone and 21 two-zone parameters that were fitted.
We display parameter combinations that show large positive or
negative Pearson coefficients (mean absolute value larger than
0.35) in Fig. 12. The upper, middle, and lower bars encode the
maximum, median, and minimum values for a certain parameter

combination for all single (blue) and two-zone (orange) fits. The
width of the shaded area corresponds to the value distribution.
If a simultaneous increase in both parameters results in similar
SEDs, the Pearson coefficient is positive, whereas, if an increase
of one parameter can be counteracted by a decrease of another,
the Pearson coefficient is negative. If no correlation is found,
the Pearson coefficient is close to 0, and the two parameters are
considered not to be degenerate.

The largest degeneracy is found between the disk mass,
M ik, and the volume fraction of amorphous carbon in the dust
grain material, amC-Zubko. This degeneracy shows that a higher
disk mass in combination with less amorphous carbon can result
in similar SEDs. Clearly, an increase of either of these two
parameters results in more millimetre fluxes. However, Fig. 12
also shows that there are many objects where this Pearson coef-
ficient is quite small. We explain this behaviour by the inclusion
of mid-IR data, which measures the strength of the main sil-
icate features at 10 um and 20 um. For objects which exhibit
strong silicate emission features, the use of too much amor-
phous carbon results in too flat mid-IR dust opacities under the
assumption that the dust composition does not vary as a function
of altitude nor radius. This is a good example that some well-
known degeneracies get smaller when additional data is taken
into account.

For strong silicate emission features, we need the dust
absorption opacity to be dominated by small (um-sized) par-
ticles, for example, the power law exponent of the dust size
distribution (apow) must be large. Otherwise, if apoy is small,
the grey opacities of the large dust particles flatten out the dust
opacity at mid-IR wavelengths. This explains why apq is found
to be positively degenerate with the amorphous carbon fraction
amC-Zubko, which has a similar effect on the dust opacity in the
mid-IR when increased.

The most degenerate of our disk parameters is the scale
height of either disk zone (Hj and H,), which generally has a big
impact on the SED. The scale height is found to be degenerate
with ayoy, With the dust settling parameter @geqe, With the disk
flaring index (3, and with the mass of the inner disk zone Mgk 2
in case of a two-zone models. All these degeneracies have simi-
lar physical explanations. Larger scale heights, less dust settling,
more disk mass and a steeper dust size power law all result in
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more grains high up in the disk, which affects the SED in similar
ways.

Stronger disk flaring 8 reduces the scale heights inside the
reference radius (100 AU for Hy, and 1 AU for H;) and increases
the scale heights outside of that radius. The positive Pearson
coefficient between S and the scale height itself suggests that the
inner parts of the disk are more important for the SED than the
outer parts. The flaring indices S of both zones are also degener-
ate with the respective surface density exponent €. Increasing
either of these parameters changes the slope of the SED. An
increase of € and a decrease of 8 both increase the fluxes at
short wavelengths (1< 10 um) and decrease the fluxes at long
wavelengths (4= 100 um). However, the spread of the Pearson
coefficients for these correlations is already quite large, indi-
cating that the sign of the correlation can actually change with
circumstances, depending on, for example, whether or not the
outer disk zone is situated in the shadow cast by the inner disk.

Generally, parameters that exist for single and two-zone mod-
els show similar degeneracies. The degeneracies seen for the
single zone models are mirrored by similar degeneracies for
inner zone parameters in two-zone models. For example, is the
degeneracy of S with € and Hj similar to the degeneracy of 3,
with & and H,.

All found degeneracies are between parameters that have
a large impact on the SED. Parameters that do not affect the
SED strongly are poorly constrained, which makes them less
degenerate.

Alonso-Albi et al. (2009) conclude that the slope of the SED
at mm-wavelengths is for optically thin disks degenerate with
the maximum dust size and the exponent of the dust size distri-
bution. We do not see this degeneracy back in our SED fitting,
which means that flux measurements at different wavelengths
can break it.

4.4. Limitations of this method

In this section, we explore limitations and possible improve-
ments of our method. After deriving the single zone (Table C.3)
and two-zone (Table C.4) posteriors for every object, we selected
100 random models from every posterior to determine the qual-
ity of the NNs’ predictions at these points in parameter space. To
calculate the prediction quality, the true SEDs must be known.
Therefore, we run MCFOST of every selected model. The mea-
sure of quality is the relative flux difference between true and
predicted SEDs as introduced in Eq. (5). Figure 13 shows the
qualities for the selected models for the single zone and two-zone
posterior of every object. Since wavelength points shortwards
of 0.5 um are not used to calculate the likelihood function, we
excluded these points from the analysis.

68% (10) of these single zone and two-zone SED fluxes were
predicted by our NNs with qualities better than 4.5% and 4.8%,
respectively. Even though this is slightly worse than the achieved
qualities of the test sets, 95% of single zone (two-zone) predicted
SEDs have qualities better than 14% (13%). These errors, intro-
duced by the necessity to use NNs for fast SED prediction, are
generally small compared to the sum of measurement uncertain-
ties and systematic problems inherent in SED fitting, such as
source variability and systematic errors using multi-instrument
data.

The worst predictions are often caused by models with
parameter values close to the most extreme allowed values. This
can be especially seen for the single zone predictions that do not
describe the observations well and drift to extreme parameter
values. We expect these predictions to be slightly worst, since
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Fig. 13. Quality distribution according to Eq. (5) of the flux predic-
tions at wavelength longer than 0.5 pum for 100 random models from the
single (orange) and two-zone (blue) posterior of every object. The his-
togram shows how many models fall in each quality bin. The dashed,
dashed-dotted, and dotted black lines show the 5%, 10%, and 20% dif-
ference, respectively.

the NN have fewer training models in these areas of parameter
space. This can be seen best in the case of 49 Cet, which is best
fitted with inner radii as large as possible. The model from the
two-zone posterior have an inner radius of the outer zone that is
close to the maximum value of 70 AU allowed by the prior. For
the single zone model the inner radius is sampled differently,
which results for the given stellar parameters a tighter constraint
of about 40 AU. This is why the two-zone model is strongly pre-
ferred based on the Bayes factor. This extreme configuration has
two additional consequences. First, the two-zone model requires
an inner zone, but since the object does not require this, it is
close to the minimum possible mass. Second, the single zone
posterior causes the strongest disagreements when calculating
MCFOST models for the models of the posterior. This is because
the area of parameter space that would be preferred to fit the
model (large inner radii) is forbidden. This results in the Nested
sampling algorithm searching and finding the part at which the
NN’s predictions deviate the most from the RT runs and can
explain the observations. This is reflected in the extreme choice
also for many other fitted parameters of 49 Cet.

5. Summary and conclusion

We used a Bayesian framework to fit the SEDs of 30 proto-
planetary disks based on the observational data collected by the
FP7 DIANA project’, based on single and two-zone full RT
MCFOST models, emulated by NNs. The emulation decreases
the SED computation time by a factor larger than 10°. This web-
page® demonstrates the SED emulation process and (i) shows
graphically how individual model parameters affect the SED,
and (ii) can be used to compare models easily to observations
getting first estimates for well-fitting disk parameters. The main
conclusions of this paper are:

— Our trained NNs can emulate the SEDs of single and two-
zone disk models with flux errors of typically less than 5%.
This acceleration enables us to fit a large set of objects
using Bayesian analysis with or without using additional
constraints on the disk properties.

2 https://diana.iwf.oeaw.ac.at
3 https://tillkaeufer.github.io/sedpredictor
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— We find significant differences between the parameter pos-
terior distributions obtained in this study and the previ-
ously determined values based on a genetic x> optimisation
(Woitke et al. 2019). For single and two-zone fits, the param-
eter values from Woitke et al. (2019) are outside the 30 level
of the posteriors derived in this study in about 25% and 22%
of the cases, respectively.

We find significant statistical evidence that most objects are
better described by a discontinuous (two-zone) disk structure
compared to the continuous (single zone) models.

The disk dust masses derived from single mm-flux measure-
ments systematically underpredict the true dust masses in
the models for high-mass disks (dust mass >107* M,). Most
objects fall into this mass range.

By an additional emulator-based Bayesian analysis, we have
derived the uncertainties in disk mass determination from
single mm-flux measurements. We show that this uncer-
tainty decreases with the number and wavelength of the
photometric fluxes used.

— Our analysis shows a few clear, but not so well-known, cor-
relations between disk parameters. In particular, high-mass
disks have lower scale heights than their low-mass counter-
parts. This is in line with vertical hydrostatic equilibrium
based on cooler midplane temperatures in the high-mass
disks.

— We provide typical uncertainties for disk parameters derived
with our method. We show that certain parameters are rel-
atively well constrained (the dust mass of a single zone
model is typically constrained by a factor of 1.3), while other
parameters are poorly constrained (the minimal dust size has
an uncertainty factor of 2.1).

— SED fitting is known to be highly degenerate. Using our
statistical framework, we are able, for the first time, to quan-
tify these degeneracies. The disk mass and dust composition
show the clearest degeneracy. Additionally, the scale height
is degenerate with many parameters, like the dust size power
law exponent and the flaring index.

This study has shown that a combination of complex RT disk
models with novel machine learning techniques provide a pow-
erful tool to analyse SED data including all degeneracies. We
plan to use this method on more complex thermo-chemical disk
models in the future. These models take about a factor of 100
longer than the dust RT models discussed in this paper, making
the need for a faster generation of molecular emission spectra
even greater.
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Appendix A: Hypergrids

The training of a NN is an iterative process to minimise the loss
function. This corresponds in general to predictions of the NN
that are more similar to the true output, in our case the true SED
of a model. The minimisation is done by adjusting the weights
of the NN until the loss function converges. However, there are
many NN architectures and other settings, so-called hyperpa-
rameters, that change the NN or the training process. Finding
good settings is a process of trail and error that involves running
multiple NNs with different settings and comparing the results.

We used hypergrids to determine good values for the most
important hyperparameters. Therefore, we trained multiple NNs
with different settings and evaluated the quality of the predic-
tions. The measure of quality (Q) is the mean difference between
the logarithmic predicted (VF pyedic;) and true SED fluxes (vF )
averaged over all wavelength points N, and all models in the data
set N, model -

N, N 2
1 model 4 [loglo (Vinredict,i,j) - 10310 (ViFtrue,i,j)]

Nmodel = =1 N/l

(A1)

We examined 4 hyperparameters by running over 74 and
35 networks for single and two-zone predictions, respectively.
While two of these hyperparameters (number of hidden layers
and neurons per layer) determine the architecture of the NN, two
others specify scaling (standardising or normalising) of the input
and output data. Evaluating the influence of it is possible because
the defined quality O does not depend on the scaling of the SED,
in contrast to the loss function.

The training was done on 70% of the data, with the rest used
to evaluate the predictions. This is the same procedure used for
the final NN. To increase comparability, the split in training and
test set is the same for all NNs in all hypergrids.

To evaluate the effect of the scalers we trained a set of NNs
with a learning rate of 0.1 for 400 epochs with different num-
ber of hidden layers (5,6), neurons per layer (100,128,150,200),
and scaling (normalising and standardising) the input and output
data resulting in 32 different NNs. Table A.1 shows the achieved
average qualities for the test and training set for combinations of
input and output scalers. We conclude that runs using standard-
ised output achieve better qualities, while the different between
normalising and standardising the input is small. Nevertheless,
standardising the input gives slightly better predictions. There-
fore, we choose to standardise input and output for all NNs, not
just single zone NN, but also for the two-zone NNs.

We trained more single zone NNs for 400 epochs to deter-
mine good architectures. Larger networks were additionally
trained with 1000 epochs, to ensure that they converge. To
increase comparability, every training that did not improve for 10
epochs was stopped. As seen in Fig. A.1, we ordered the NNs by
the number of trainable parameters in it. This reveals that gen-
erally larger NNs perform better on our data. However, it also
becomes clear that for larger NN, the prediction quality for the
test set becomes significantly worse than the same quality for the
training set, which is a sign of overfitting.

Balanced between the quality of the predictions, overfitting,
and the time needed for training, we decided on using 6 hidden
layers with 300 neurons each. This gives a quality Q of 0.01618
and 0.017347 for the training and test set, which is close to
the best quality (test score of 0.01678) in the hypergrid. Addi-
tionally, this network takes ~1 min to train per epoch on our
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Fig. A.1. Hypergrid to determine the best architecture of single zone
NNs. The upper panel displays the quality Q of the test and training
set for 37 different NNs as explained in Eq. A.1. The number of layers,
neurons per layer, and the maximum number of epochs trained for every
NN are shown in the lower panels. The lowest panel displays the number
of trainable parameters in the NNs. The dashed line denotes the selected
NN.

Table A.1. Hypergrid for input and output scaler.

Output scaler

Norm(?
Qurain™ =0.03691
Qe =0.03762
Qurain™ =0.03701
Qtesl(3) =0.03774

Std”
Qtrain(j) =0.02111
Qlext(” =0.02185
O™ = 0.02126
Qres™® = 0.02200

Input scaler

Std¥/

Norm@

Notes.

() Std: standardising of the data

@ Norm: normalising the data

@ Qirainsess: quality according to Eq. A.1 of the training and test set,
respectively.

machines and has with 499, 340 trainable parameters a reason-
able size with respect to the size of the training set (470,379
training SEDs).

Fig A.2 displays the quality of the predicted SEDs for two-
zone NNs. We trained every network for 500 epochs. Again,
larger NNs perform better, but while the training score improves
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Fig. A.2. Hypergrid to determine the best architecture of two-zone NNs.
The upper panel displays the quality Q of the test and training set for 35
different NNs as explained in Eq. A.1. The number of hidden layers and
the number of neurons per layer for every NN are shown in the lower
panels. The lowest panel displays the number of trainable parameters in
the NNs. The dashed line denotes the selected NN.

steadily with size, the test score does not improve further for
networks larger than ~1, 000, 000 trainable parameters which is
roughly the number of SEDs used for the training (1, 195,285
SEDs). Therefore, we choose a NN with 7 hidden layers with
400 neurons per layer (1,029, 340 trainable parameters) as the
best setup for two-zone predictions. This network is with a train-
ing score of 0.01662 close to the optimal scores of 0.016086,
while the test score of 0.019649 is the best test score found in
the hypergrid.

Appendix B: Detailed grid creation

After explaining the general idea of the grid creation (Sect. 2.3),
this section focusses on individual parameters and their sam-
pling, highlighting the physical knowledge that influences
parameters. The four stellar parameters (M, age, Ly, and Teg)
cannot be varied independently, since only certain combina-
tions are physically possible. Therefore, we took two approaches,
either sampling M, and age or L, and T.; and deriving the
other two in a way that makes the stars consistent with pre-main-
sequence tracks from Siess et al. (2000).

12000F b

50001 b

Counts

103.

101 b

100.

L [LSUH]

fffff Isochrone

1072 DIANA objects 20.0 My E
B Original grid \
B Adjusted grid
103, "R . A 4
2-10% 10% 5-10° 3-10° 5000 15000
Terr [K] Counts

Fig. B.1. Hertzsprung-Russell diagram of the DIANA sample (orange
markers) and all stars in the original single zone grid (blue) and the
adjusted grid (green). The grey lines are the evolutionary tracks from
(Siess et al. 2000) for different masses, and the coloured dashed lines
are isochrones. The histograms show the distribution of values for lumi-
nosity and temperature for the sample and the grid in the same colours
as used in the main plot. The sample’s histogram is scaled to make a
comparison easier.

For single zone models, we sampled the stellar mass and
age (limits in Tab 1). A small NN predicted the temperature
and luminosity based on these parameters. This NN was trained
on a subset of pre-main-sequence track points from Siess et al.
(2000) and consists of 4 hidden layers with 32 neurons each. For
a separated test set, the temperature predictions show a mean
deviation of 0.18% with a maximal uncertainty of 2.11%. The
luminosity predictions have a mean error of 1.94%. The resulting
stellar distribution is shown in blue in the Hertzsprung—Russell
diagram (HRD; Fig. B.1). When comparing this distribution to
the DIANA sample, it comes clear that the grid has much fewer
bright and hot stars.

The first tests with different NNs showed that this leads
to worse prediction for stars that have such luminosities and
temperatures. Therefore, another set of models was sampled uni-
formly in the log space of T.¢ and L, for masses less than
25Mg, Ly > 4Lg, Teg > 5000K, and ages between 0.5 Myr
and 20Myr to better populate this gap (green distribution in
Fig. B.1).

For this adjusted grid, M, is predicted by another NN trained
on pre-main-sequence tracks using L, and T.g. It consists of 6
layers with 32 neurons each. For a test set, it has a mean mass
error of 0.39% and a maximal error of 4.19%.

The combination of both grids results in a distribution sim-
ilar to the stellar parameters of the DIANA target stars. In total,
452,444 SEDs are created using the mass and age sampling for
the stars and 220, 934 to fix the lack of massive stars in the grid.

For the two-zone grid, L, and T.g are sampled with mass
and age limits taken from the initial single zone grid, resulting
in the stellar distribution shown in Fig. B.2. The mass is again
predicted by the same NN as mentioned above.
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Fig. B.2. HRD for two-zone models. Explanation is the same as for B.1.

The mass of the disk is sampled indirectly by the ratio of it to
the mass of the star. This is done to avoid massive disks around
low-mass stars.

The innermost radius (Ry, for single zone models and Ry,
for two-zone models) is determined by the temperature at this
radius, with the idea to avoid disks that are too close to their
star for dust to be stable. Therefore, we approximate the temper-
ature (T'(Rp)) at the inner edge of the disk for all objects in the
DIANA sample using a simple analytic formula. The tempera-
ture is derived using the stellar temperature (Teg), stellar radius
(R,), and inner radius of the most inner disk zone (R;) for all
objects in the DIANA sample using Eq. B.1 with a = 0.2 (Woitke
2015):

2
TRy =(1-a)- (&) T (B.1)
Ry

The distribution of temperatures for the sample is used
to derive Xmin, Xmean, and xgq of the sample. The maximal
limit (xp,x) is set based on literature knowledge, to exclude
unrealistically high temperatures.

Using the described setup, we run all MCFOST models and
created SEDs for ten different inclinations. For high inclina-
tions (edge-on disks), often the disks block large parts of the
starlight. Since these SEDs look fundamentally different (see
Fig. B.3), they were excluded from our sample. We identified
these shielded SEDs by having at least one flux point at a wave-
length shorter than 2um lower than half the stellar flux. It is
justified to exclude them, because such objects are not present in
the DIANA sample, but make the training of a NN much more
challenging.
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Fig. B.3. Example of an MCFOST model with SEDs for all 10 dif-
ferent inclinations. The blue points show the stellar flux at different
wavelengths between 0.1 pm and 2 pm (both shown as vertical blue
lines). The blue line encode the limit, which is used to distinguish non-
shielded inclinations (green SEDs) that were accepted for the sample
and shielded inclinations (red SEDs) that were discarded.
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Appendix D: Figures
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This work
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Fig. D.1. Density plots for every object’s median probable model to reproduce the DIANA results (Sect. 3.2). Every panel shows the density
structure in number densities of Hydrogen per cubic centimetre (colour bar at the top) for the objects noted in the panel. The upper and lower
half of every plot depict the model from this study and DIANA, respectively. The radial axis is different for every object. The inner zones of
Usco J1604-2130 in this work has a radial extent smaller than the radial resolution of the plots.
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4.0 5.5 7.0 8.5 10.0 11.5 13.0 145

log10n <n>[cm™3]

Two-zone

Single zone

10 HD 97048 1 HD 100546 1 1 HD 95881 1 HD 163296
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r [AU] r [AU] r [AU] r [AU] r [AU]

Fig. D.2. Density plots for every object’s median probable model derived in this study (Sect. 3.3). Every panel shows the density structure in
number densities of Hydrogen per cubic centimetre (colour bar at the top) for the objects noted in the panel. The upper and lower half of every
plot depict the two-zone and single zone model, respectively. The radial axis is different for every object. The inner zone of the two-zone model
of 49 Cet has densities lower than the minimum threshold of the picture. The inner zones of HD 169142 and Usco J1604-2130have a radial extent
smaller than the radial resolution of the plots.
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Fig. D.3. SEDs for all objects. The coloured points and lines indicate the observation listed in the legend. The SEDs from the posterior distribution
are shown in black. The line denotes the median of all model SED, with the dark, medium, and light black areas denoting the 68%, 95%, and
99.9% percentiles, respectively. The name of the model and if it is fitted with a single or two-zone model is given in the title.
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