

 University of Groningen

A Hybrid In Situ Approach for Cost Efficient Image Database Generation
Bruder, Valentin; Larsen, Matthew; Ertl, Thomas; Childs, Hank; Frey, Steffen

Published in:
IEEE Transactions on Visualization and Computer Graphics

DOI:
10.1109/TVCG.2022.3169590

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bruder, V., Larsen, M., Ertl, T., Childs, H., & Frey, S. (2023). A Hybrid In Situ Approach for Cost Efficient
Image Database Generation. IEEE Transactions on Visualization and Computer Graphics, 29(9), 3788 -
3798. Advance online publication. https://doi.org/10.1109/TVCG.2022.3169590

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-11-2023

https://doi.org/10.1109/TVCG.2022.3169590
https://research.rug.nl/en/publications/8c663326-0f23-494c-848e-d986741634d6
https://doi.org/10.1109/TVCG.2022.3169590

A Hybrid in Situ Approach for Cost Efficient
Image Database Generation

Valentin Bruder , Matthew Larsen, Thomas Ertl , Hank Childs , and Steffen Frey

Abstract—The visualization of resultswhile the simulation is running is increasingly common in extreme scale computing environments.

We present a novel approach for in situ generation of image databases to achieve cost savings on supercomputers. Our approach, a hybrid

between traditional inline and in transit techniques, dynamically distributes visualization tasks between simulation nodes and visualization

nodes, using probing as a basis to estimate rendering cost. Our hybrid design differs from previousworks in that it creates opportunities to

minimize idle time from four fundamental types of inefficiency: variability, limited scalability, overhead, and rightsizing. We demonstrate our

results by comparing our method against both inline and in transit methods for a variety of configurations, including two simulation codes

and a scaling study that goes above 19 K cores. Our findings show that our approach is superior inmany configurations. As in situ

visualization becomes increasingly ubiquitous, we believe our technique could lead to significant amounts of reclaimed cycles on

supercomputers.

Index Terms—Visualization, High performance computing, In situ

Ç

1 INTRODUCTION

SCIENTIFIC visualization is a key approach for understanding
the complicated data sets produced by computational simu-

lations on supercomputers. These simulations produce mas-
sive data sets, with meshes containing billions or even trillions
of cells per time step, and so the visualization process is typi-
cally parallelized to complete on interactive time scales. Fur-
ther, this visualization process often occurs on the same
supercomputer that performed the simulation, obviating the
need to relocate simulation data [1], [2], [3], [4].

Leading-edge supercomputers are quite expensive, merit-
ing significant investigation into optimizing their usage.
Several new supercomputers are built annually with hard-
ware procurements costs upwards of $200 M, and their true
costs rising higher over time, including energy costs, staffing,
and upkeep. Each job running on a supercomputer shares
these costs. As a result, one important way to optimize a

supercomputer’s usage is to optimize individual jobs, i.e.,
having a job complete using fewer node hours. Such a
speedup frees up node-hours for running other jobs,
enabling the supercomputer to perform more calculations in
its finite life than it could otherwise. If a speedup can be
aggregated over all jobs, then the result can be profound,
potentially creating millions of dollars of extra node-hours
for additional computations. This work considers the topic
of optimizing jobs on supercomputers in the context of in
situ visualization, i.e., visualizing data as it is generated. Tra-
ditionally, visualization on supercomputers has used post
hoc processing, i.e., simulations save their data to disk and
dedicated visualization programs later read that data. How-
ever, the post hoc paradigm is increasingly ineffective on
supercomputers, as the ability to generate data on each new
generation of supercomputer is increasing much faster than
the ability to store and load data. In turn, I/O load times for
visualization are becoming unacceptably large, as are I/O
times for simulations performing frequent storage. In situ
visualization avoids this issue, since visualization can occur
without utilizing the file system. As a result, in situ process-
ing is increasingly being adopted on leading-edge supercom-
puters, and has the potential to become the dominant
paradigm in the future [5], [6], [7].

Despite the growing preference for in situ visualiza-
tion, there is still much room for improvement in terms
of cost and efficiency. Regarding cost, in situ visualiza-
tion will, despite saving on I/O, still require significant
computational resources—in situ routines sometimes use
10% or more of the simulation’s resources. Of course, the
exact proportion of time between visualization and simu-
lation varies, based on the nature of the simulation and
the data it produces, the type of visualization algorithm,
the frequency visualization occurs (i.e., every cycle or
less often), and other factors. The second observation,
that in situ visualization can be inefficient, is discussed
in Section 3.

� Valentin Bruder is with Daimler Truck AG, 70327 Stuttgart, Germany.
E-mail: valentin.bruder@visus.uni-stuttgart.de.

� Matthew Larsen is with Luminary Cloud, Inc., Palo Alto, CA 94304 USA.
E-mail: larsen30@llnl.gov.

� Thomas Ertl is with the University of Stuttgart, 70174, Stuttgart, Germany.
E-mail: thomas.ertl@vis.uni-stuttgart.de.

� Hank Childs is with the University of Oregon, Eugene, OR 97403 USA.
E-mail: hank@uoregon.edu.

� Steffen Frey is with the University of Groningen, 9712 Groningen, The
Netherlands. E-mail: s.d.frey@rug.nl.

Manuscript received 26 May 2021; revised 8 Feb. 2022; accepted 17 Apr. 2022.
Date of publication 29 Apr. 2022; date of current version 31 July 2023.
This work was supported in part by Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) with in Project A02 of the SFB/Transregio 161
under Grant 251654672, in part by the Intel Graphics and Visualization Insti-
tutes of XeLLENCE program under Grant CG #35512501, in part by Exascale
Computing Project under Grant 17-SC-20-SC, and in part by a collaborative
effort of the U.S. Department of Energy Office of Science (https://doi.org/
10.13039/100000015) and the National Nuclear Security Administration.
(Corresponding author: Valentin Bruder.)
Recommended for acceptance by M. Hadwiger.
Digital Object Identifier no. 10.1109/TVCG.2022.3169590

3788 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

1077-2626 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0001-5063-4894
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0003-4019-2505
https://orcid.org/0000-0001-5816-1892
https://orcid.org/0000-0001-5816-1892
https://orcid.org/0000-0001-5816-1892
https://orcid.org/0000-0001-5816-1892
https://orcid.org/0000-0001-5816-1892
https://orcid.org/0000-0002-1872-6905
https://orcid.org/0000-0002-1872-6905
https://orcid.org/0000-0002-1872-6905
https://orcid.org/0000-0002-1872-6905
https://orcid.org/0000-0002-1872-6905
mailto:valentin.bruder@visus.uni-stuttgart.de
mailto:larsen30@llnl.gov
mailto:thomas.ertl@vis.uni-stuttgart.de
mailto:hank@uoregon.edu
mailto:s.d.frey@rug.nl

With this work, we avoid inefficiencies via a new in situ
visualization approach that is a hybrid of traditional in situ
approaches. Our method specifically considers an impor-
tant technique for in situ visualization: the generation of
image databases of volume renderings in the style of the
Cinema project [8]. That said, our technique is applicable to
any in situ visualization setting that can be split into many
small tasks. Our findings indicate that we can regularly
save on the order of 7.5% of the combined simulation and
visualization time. We believe this speedup is very impact-
ful for this setting—the motivating research assumption
behind our work is that in situ visualization will become
ubiquitous on supercomputers, and that optimizing its per-
formance can potentially lead to millions of dollars of
reclaimed cycles.

2 RELATED WORK

This section is organized into four main areas of in situ
work: instantiations, hybrid approaches, approaches focus-
ing on cost savings, and elastic approaches (that adapt
resource usage over time).

In Situ Instantiations. There are many possible instances
of in situ processing, varying over division of resources,
access to data, and other factors [9]. That said, two instances
are used most commonly. In the first instance, sometimes
referred to as inline in situ, the simulation code and visuali-
zation routines run on the same compute nodes, accessing
the same memory and alternating usage of a node’s cores.
In this setting, visualization routines are typically integrated
into the simulation via a library, and the simulation code
invokes this library whenever visualization is required,
effectively giving up control of the compute resources until
the visualization routine returns from its function call. Pop-
ular products that use this form include Catalyst [10],
Ascent [11], and LibSim [12]. In the second instance, some-
times referred to as in transit in situ, the simulation code
and visualization routines use distinct resources, which we
refer to as “simulation nodes” and “visualization nodes.” In
this setting, the simulation code typically sends its data to
the visualization nodes via network communication, and
the visualization nodes will keep its own separate copy of
the simulation data. Popular products that use this form
include Damaris [13], SENSEI [14], and ADIOS [15]. Our
work is different than these as we consider a hybrid
between inline and in transit. We compare to both of these
approaches in our evaluation.

Hybrid in Situ Approaches. To date, there have been few
true hybrid in situ approaches that blend between inline and
in transit. Notably, Bennett et al. [16] used a hybrid in situ
approach for S3D combustion simulations, using inline com-
putations to reduce data such that modest in transit resour-
ces could be used to complete analysis tasks. In another
notablework, Zheng et al. [17] introduced “PreDatA,”where
compute nodes could do “local processing” before sending
data to in transit nodes, although most of the calculations
took place on in transit nodes.

In Situ Approaches Focusing on Cost Savings and Improving
Performance. Several works have focused on addressing
inherent inefficiencies with in situ processing. With Flex-
path [18], the authors focus on saving transfer costs by

reducing data movements or optimizing the data placement
based on network topology and other performance influenc-
ing factors. Damaris [19] considered the issue of variability,
while Kress et al. considered using in transit to reduce scal-
ability in two separate studies [20], [21]. Our work can be
viewed as a continuation of the Kress work, but with adding
support for rightsizing, and, to a lesser extent, variability
and overhead. There are also several works on assessing
resource usage of inline in situ and in transit analysis and
visualization tasks, including quantitative formulations [22],
[23]. Friesen et al. [24] discuss in situ experiments for the
two instances with the Nyx simulation code and two in situ
analysis suites while mainly considering overall execution
time performance. Other works focus on general workflow
optimization and orchestration [25], [26] or sub-sampling of
simulation data to be processed on a local machine [27].
While our approach explicitly optimizes for efficient usage
of node seconds, other works instead primarily focus on
minimizing the time to solution (e.g., by dynamically allo-
cating additional resources). Further, they use either in tran-
sit or inline processing, but not both in a hybrid fashion. In
the case of in transit, rightsizing is not considered although
several works acknowledge the problem.

Elastic in Situ. There have been more works exploring
elastic in situ [28], i.e., resource adaptation over the execu-
tion between simulation and visualization. Goldrush [29]
identified when simulation resources were idle and used
them to perform analysis tasks, and Landrush [30] extended
this idea to use idle cycles on GPUs. Melissa [31] supports a
design where a server processes data from multiple inde-
pendent simulation groups that connect dynamically.
Dirand’s TINS system [32] approached the problem from a
task-based perspective, with resources being allocated for
analytics when such tasks emerged. LOOM [33] is a frame-
work for tightly coupled in situ visualization that inter-
weaves tasks to reduce idle times of simulation threads.
While our approach is also elastic, it differs from these pre-
vious works in our focus: achieving cost savings by dynami-
cally arranging execution to minimize fundamental in situ
inefficiencies.

3 MOTIVATION

This section considers how in situ approaches suffer from
inefficiency. For background, in situ visualization generally
occurs within “mega-cycles,” which perform both simula-
tion and visualization. Specifically, a mega-cycle consists of
advancing a simulation from some cycle n to another cycle
nþm as well as visualizing the data from the previous
mega-cycle (i.e., cycle n). Further, within a mega-cycle, there
are two different types of visualization tasks to perform:
(1) tasks executing independently from each other (e.g., ren-
dering images of a data partition), and (2) collective tasks
executing on all pieces of data at once (e.g., compositing
partial result into one final image). Fig. 1 shows how these
tasks are scheduled within a mega-cycle for the three in situ
approaches using notional Gantt charts.

The remainder of this section is organized as follows:
Section 3.1 describes four types of inefficiency, Section 3.2
considers how the traditional in situ processing types (inline
and in transit) suffer from different kinds of inefficiency,

BRUDER ETAL.: HYBRID IN SITU APPROACH FOR COST EFFICIENT IMAGE DATABASE GENERATION 3789

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

and Section 3.3 describes the opportunities for a hybrid
approach to reduce inefficiency.

3.1 In Situ Inefficiencies

Inefficiencies with in situ processing stem from two main
categories: running in parallel and running on separate
resources. Further, each of these two categories has two dis-
tinct types of inefficiency. The two inefficiencies from run-
ning in parallel are:

(i) Variability: certain operations execute for variable
amounts of time, and the nodes that run for longer
create a bottleneck that leads other nodes to sit idle.
In particular, the cost of rendering images varies sig-
nificantly across nodes depending on the input data
and rendering parameters (e.g., transfer function for
volume rendering), especially when using accelera-
tion techniques like empty space skipping [34]. The
workload for the visualization of a node’s data parti-
tion typically also shifts as the simulation progresses.

(ii) Scalability: certain operations exhibit limited scalabil-
ity, and running them at scale causes all nodes to
run inefficiently. In particular, the compositing of
partial images (sub-images) into one final image fre-
quently exhibits poor scalability [35].

These inefficiencies are related, but distinct. In particular,
an algorithm can suffer from delays due to scalability even
if every compute node has the same amount of work to per-
form. Further, an algorithm with no parallel coordination is
very scalable, but it can suffer from delays due to variability
if some compute nodes have much more work to perform
than others. The two inefficiencies from running on separate
resources (i.e., dedicated visualization nodes) are:

(iii) Overhead: transferring data from the simulation nodes
to the visualization nodes causes delays in multiple
ways: the simulationmust take time for encoding and
sending, the visualization routines must receive and
decode the data, and the network has extra traffic.

(iv) Rightsizing: visualization tasks rarely exactly align
with the number of visualization nodes. If there are
too many nodes for the desired tasks, then the visu-
alization nodes sit idle. If there are too few visualiza-
tion nodes for the desired tasks, then either the
simulation nodes will need to block and wait for
them to complete or tasks need to be dropped.

3.2 Traditional in Situ: Inline and in Transit

For inline (Fig. 1a), there are no visualization nodes, so
the only inefficiencies are from running in parallel are
(i) variability and (ii) scalability. That said, these two ineffi-
ciency types are often significant for inline: since all nodes
participate in rendering and compositing the effects of
scalability and variability typically get worse as scale
increases.

In transit (Fig. 1b), provides an opportunity to save on
inline’s inefficiencies, but its use of separate resources cre-
ates new inefficiencies. In terms of savings, (ii) scalability
inefficiency can be reduced by scheduling collective tasks
on the visualization nodes, which are typically smaller in
number than the simulation nodes. Further, (i) variability
can potentially be addressed by identifying simulation
nodes with independent tasks that have higher cost and
reassigning some of those tasks to visualization nodes. That
said, in transit can suffer from issues due to (iii) overhead
and (iv) rightsizing, for the reasons discussed in Section 3.1.

3.3 Hybrid in Situ

Hybrid in situ (Fig. 1c) refers to using a mixture of inline
and in transit techniques. With this work, we consider a spe-
cific form of hybrid in situ where simulation nodes perform
all simulation work as well as some visualization work,
while visualization nodes only do visualization. At the
beginning of a mega-cycle, both simulation nodes and visu-
alization nodes tackle visualization tasks. At some point,
simulation nodes stop performing visualization tasks and
resume the simulation, while visualization nodes concur-
rently process their visualization tasks.

This form of hybrid in situ creates opportunities for
addressing all four inefficiencies:

(i) Variability.The visualization nodes can take work from
the most overloaded simulation nodes, reducing delays due
to bottlenecking.

(ii) Scalability. Non-scalable tasks can be run on the dedi-
cated visualization nodes, saving time.

(iii) Overhead.Transfer times can be overlapped with
doing visualization work on the simulation nodes.

(iv) Rightsizing. The work distribution between simula-
tion and visualization nodes is dynamically adapted. If
there are few visualization nodes, then they will receive
only the work they can perform in their allotted time and
the remainder can be performed on the simulation nodes. If
there are more visualization nodes, then they can assume
more work, and simulation nodes resume the simulation
more quickly. The main challenge for hybrid in situ is the
distribution of independent tasks and collective tasks to
simulation nodes and visualization nodes in a way that
minimizes these inefficiencies. Addressing this challenge is
a main focal point of our proposed method.

Fig. 1. Gantt diagrams of the two conventional in situ processing
schemes (a, b) and our hybrid approach (c).

3790 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

4 HYBRID IN SITU METHOD FOR IMAGE DATABASE

GENERATION

This section describes our hybrid in situ method for generat-
ing Cinema-style image databases. An image database con-
sists of a collection of n renderings, each corresponding to a
different camera position in our case. Creating each image
involves two types of operations: (1) rendering sub-images
across nodes s 2 S (independent tasks Is), and (2) composit-
ing sub-images to the final result (a collective task C). This
means that there are jSj � n independent tasks and n collec-
tive tasks in eachmega-cycle.

Our hybrid in situ system (Section 4.1) addresses the
involved inefficiencies. Compositing suffers from (ii) scalabil-
ity inefficiency, which we reduce by performing it only with
the generally significantly lower number of visualization
nodes. To address (iii) overhead, the system overlaps data
transfer and visualization work. Rendering suffers from (i)
variability inefficiency, as the rendering cost heavily depends
on the data generated by simulation node s 2 S and the cam-
era configuration associated with task i 2 I. This is addressed
together with (iv) rightsizing by distributing rendering tasks
I such that idle time across all nodes is minimized. For this,
we first estimate how long rendering and compositing will
take (Section 4.2), and then schedule visualization work
accordingly (Section 4.3).

4.1 System Overview

Fig. 2 gives a sequential overview of our system. Although
our approach is not limited to a specific rendering or
compositing technique, we use volume raycasting and
direct-send compositing in our system. A mega-cycle starts
with visualizing the simulation results from the previous
iteration. First, we create an estimation of induced cost on

the simulation nodes s 2 S (Section 4.2). Probing carries out
and measures a subset of the render tasks I 0s � Is to estimate
their cost. There is global synchronization between all nodes
to exchange probing timings (this is the only instance of global
synchronization in our approach). Compositing time is pre-
dicted using a simple performance model. This provides the
basis for visualization load assignment, which consists of two
phases (Section 4.3): first, each simulation node is assigned to
one visualization node (N : S ! V), and then the remaining
render tasks I�s ¼ Is n I 0s are distributed between a simulation
node s and its visualization node NðsÞ. Simulation data is
accordingly distributed to the visualization node that took
over respective rendering tasks. Likewise, all render parts
produced on s are moved to its assigned NðsÞ. These and all
other data sending and receiving operations are asynchro-
nous both on simulation and visualization nodes. This allows
the system to effectively hide induced latency, i.e., simulation
nodes can render while they are sending, and also visualiza-
tion nodes can process tasks while they are receiving. After
rendering, simulation nodes immediately continue with the
simulation. Visualization nodes v 2 V perform classic direct
send compositing with image parts rendered by them as well
as associated simulation nodes s (i.e, with v ¼ NðsÞ). Since
the images are composited sequentially, it allows us to com-
press and write them to disk concurrently. Details on the
implementation of our system, the integration into simulation
codes, and design decisions can be found in the supplemental
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TVCG.2022.3169590.

4.2 Render and Compositing Time Predictions

Render Probing.At the beginning of each mega-cycle, all sim-
ulation nodes carry out probing rendering. For this, we

Fig. 2. Sequence diagram of our system. Probing times are used as a basis to distribute the rendering load. Our main objective is to minimize the
inline visualization time and the upper bound for time spent rendering on the visualization nodes is constrained by the combined time of rendering
inline (including probing) and the simulation time before the next visualization step. Compositing is done on visualization nodes only. All sub-images
created inline or during probing are sent to the visualization nodes.

BRUDER ETAL.: HYBRID IN SITU APPROACH FOR COST EFFICIENT IMAGE DATABASE GENERATION 3791

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3169590
http://doi.ieeecomputersociety.org/10.1109/TVCG.2022.3169590

randomly sample from all render tasks Is of the respective
nodes s in each mega-cycle to select probing samples I 0s � Is.
We then render and measure timings for these on s as the
basis to predict the costs of the remaining tasks I�s . We use
the arithmetic mean of the probing render times as a runtime
estimate (per render) of the respective data partition. Typi-
cally, a random sampling of positions of an arcball-style cam-
era provides a good coverage of the overall performance
distribution [34]. During probing, we also detect if rendering
can be skipped by checking whether the scalar value range
in the data partition of s always yields opacity values below
a threshold of 0.001 for the provided transfer function.

Compositing Time. For direct send compositing, cost can
be estimated as a function of nodes participating [35], [36].
In our case, we consider whether nodes produce images
that contribute to the final results (i.e., which were not
skipped via opacity checking):

1:05 � aþ b � jV �j � jS
�j

jSj þ g � jV �j

1� jS�j

jSj

! !
:

Here, jV �j (with V � � V) is the number of visualization
nodes actively participating in compositing and a;b; g are
empirically determined constants on a target system. jSj is
the number of simulation nodes, while jS�j divided by the
total number of simulation nodes represents the normalized
amount of dataset partitions that actually need to be visual-
ized (i.e., the ratio between skipped and non skipped
partitions).

Since we determine a;b; g empirically, a few measure-
ments of compositing times are needed beforehand when
running our system on hardware using a different intercon-
nect. We determine the constants using the measurements
and a non-linear least squares function fit, which resulted in
a normalized root-mean-square error of 8.83% for our
compositing time estimation. To account for the uncertainty
in the prediction, we conservatively overestimate the time
by 5% to avoid blocking of the simulation nodes.

4.3 Visualization Load Assignment

Node Assignment N : S ! V . The estimated rendering time
from probing for the remaining images I� ¼ Is n I 0s provide
the basis for assigning each simulation node s 2 S to one
visualization node v 2 V . For this, we iteratively assign the
simulation node with the highest cost to the visualization
node with the lowest accumulated cost until all nodes are
distributed.

Rendering Task Assignment As : I
�
s ! ðs;NðsÞÞ. Next, ren-

dering tasks I�s that remain after probing on a simulation
node s are scheduled to be either tackled by s or its assigned
visualization node NðsÞ. Our main objective is to minimize
the inline visualization time in order to maximize the time
that the simulation node can use for simulation. Initially, we
expect all rendering to be done on the visualization nodes
(Fig. 3A). However, when aiming to avoid idle times, there is
an upper bound for time spent rendering and compositing
on the visualization nodes (Fig. 3B). It is constrained by the
combined time of three parts: (inline) rendering time on sim-
ulation nodes (influenced by As), the simulation steps before
the next visualization run on the simulation nodes, and the
maximum probing time of the next visualization cycle. The

probing time is approximated from the current mega-cycle.
As long as the combined time predictions for rendering and
compositing on the visualization nodes exceed the time of
those three parts, we gradually shift rendering load to inline
on the simulation nodes. For this, we consider the currently
fastest simulation node, randomly pick a corresponding
image part that is currently not assigned to it, and transfer
this task from the respective visualization node (updating
the respective time estimates in the process, Fig. 3C). This
balances the render load across simulation and visualization
nodes (Fig. 3D).

5 OVERVIEW OF EXPERIMENTS

Our experiments are organized into three phases.

� A parametric study evaluates different configurations
with varying amounts of work (number of images in
the image database) and resources (number of visu-
alization nodes).

� In-depth experiments are conducted to compare our
hybrid method with inline and in transit approaches
for a selected configuration.

� A weak scaling study evaluates how changes in con-
currency affect cost.

The remainder of this section describes software, hard-
ware, and workload details.

Software. We used the Ascent [11] in situ framework, which
can generate Cinema [8] image databases. Ascent implements
parallel rendering byusing vtk-m [37] for shared-memory par-
allelism and MPI for distributed-memory parallelism. Ascent
natively does inline and in transit, and we extended it to do
our hybrid method for this study. Further, direct-send
compositing is implemented using the DIY2 [38] library.
Reproducibility details about the integration can be found in
the supplemental material, available online. Ascent, VTK-m,
andCinema are all open source, as are our extensions.

One important aspect to our software is how much prob-
ing to perform. Prior to our experiments, we conducted an

Fig. 3. Our load balancing scheme exemplified with two simulation
nodes (1, 2) and one visualization node (3). Initially, all visualization load
is assigned to the visualization resource (A). If the estimated runtime
there exceeds the full cycle time on the simulation resources (B), we iter-
atively shift render load to the simulation node with the currently lowest
total (anticipated) runtime (C) until runtimes are evenly balanced across
all nodes (D).

3792 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

analysis to identify a good trade-off between performance
and accuracy. This analysis used an example case with 400
renderings. To calculate the accuracy, we generated twelve
random sequences of camera positions (see Section 4.2), and
generated estimations using the sequence with the first n 2
½4; 200� probings (Fig. 4). With this, we identified 15% of the
renderings to be a good compromise of scheduling flexibility
versus accuracy (yielding an error of 6:3%	 1:3%), and use
this ratio in all experiments that generate 400 renderings.

Hardware. We ran all our experiments on TACC’s Stam-
pede2 supercomputer. We used SKX nodes that feature
Intel Xeon Platinum 8160 CPUs with 48 cores on two sockets
(24 cores/socket). The CPUs support two hardware threads
per core, adding up to a total of 96 threads per node. Typi-
cally, we ran 6 MPI tasks per node with 16 OpenMP threads
per task.

When comparing across inline, in transit, and hybrid, we
fixed the number of simulation nodes and considered differ-
ent numbers of visualization nodes. This is crucial for com-
parability as the number of simulation nodes impacts the
domain decomposition of the simulation, which not only
influences the simulation itself but also the rendering tasks.

Workloads. A workload consists of running a simulation
code for some number of mega-cycles, as well as generating
an image database for each mega-cycle. We determine the
number of simulation steps in all mega-cycles by running
the simulation in intervals of 120 seconds of wall clock time
before invoking the in situ visualization. For image data-
bases, we generate a Cinema database of 400 volume render-
ings per visualization cycle using an orbital camera with
regular spacing of the angles and a single zoom level. The
images have a standard resolution of 800
 800 pixels, unless
noted otherwise. Experiments with larger image resolutions
can be found in the supplemental material, available online.
We use front-to-back volume raycasting accelerated by early
ray termination and block-based empty space skipping.
Finally, we employed supersampling during the weak scal-
ing phase.

Two simulation codes were used throughout our study.
The first two phases used Cloverleaf3D [39], a 3D Lagrang-
ian-Eulerian hydrodynamics benchmark. The third phase
used Nyx [40], a massively parallel code for cosmological
hydrodynamics simulations as a real world example. We
visualize the energy field for Cloverleaf3D (Fig. 6) and the
density field for Nyx (Fig. 7). While Cloverleaf3D uses regu-
lar grids, Nyx uses block structured adaptive mesh refine-
ment with AMReX [41]. The simulations also differ in how

they evolve over time. The Cloverleaf3D simulation starts
with two initial energy fields in opposite corners of its
domain, and these two energy fields extend over the course
of the simulation until they visually fill the whole domain.
The volume rendering’s transfer function treats low energy
regions as fully transparent, resulting in imbalanced work
from empty space skipping. As the simulation continues
this effect fades, but rendering imbalances emerge due to
early ray termination. With Nyx, the simulation starts with
an initial random seed of dark matter particles distributed
across the whole domain. Over the course of the simulation,
the particles attract each other to form clusters, creating
empty spaces as a side effect. As a result, data blocks
become less active over time.

6 RESULTS

Our results are organized into parametric study (Section 6.1),
in-depth experiments (Section 6.2), and weak scaling
experiments (Section 6.3).

6.1 Parametric Study

In our first phase, we compare different combinations of
workload (i.e., varying image count) and resources (i.e.,
number of visualization nodes). This phase consisted of 36
experiments, as a cross product of four image database sizes
(81, 144, 256, and 400 images) and nine in situ configura-
tions. Eight of the in situ configurations came from varying
the number of visualization nodes (1, 2, 4, and 8) for both
hybrid and in transit. The ninth configuration was running
inline. Each configuration ran Cloverleaf with eight simula-
tion nodes. Four of the 36 experiments in this phase are
investigated in more detail in Section 6.2. Further, results of
a similar study using different image resolutions instead of
varying image counts can be found in the supplemental
material, available online.

Fig. 5 compares the efficiency of our hybrid approach
with inline and in transit in a 4
 4 matrix. The lower left of
this matrix has the least work per visualization node (81
images and 8 visualization nodes), while the upper right of
this matrix corresponds to the most work per visualization
node (400 images and one visualization node). Our hybrid
technique has the most opportunity for cost savings when
there is more work, since there is more (i) variability we can
reduce. Further, when the amount of work per visualization
node becomes too low, then these nodes will have to sit idle
while the simulation advances, making (iv) rightsizing
impossible. The fact that the probing step in hybrid concep-
tually pins some work to the simulation nodes contributes
to the issue.

Our results confirm the importance of sufficient work per
visualization node for the success of our technique. Eight of
the sixteen configurations ran fastest with our hybridmethod.
The best savings were achieved in the “upper right” configu-
ration (most work per visualization node), with savings
decreasing as the number of visualization nodes increased or
the number of images decreased. The remaining eight config-
urations ran faster with either inline (seven times) or in transit
(one time). The worst performance of our hybrid approach
occurs in the “lower left,” with performance increasing as the
number of visualization nodes decreased or the number of

Fig. 4. Render time estimation error depending on the number of probing
images (total: 400). The data is based on twelve random sequences.

BRUDER ETAL.: HYBRID IN SITU APPROACH FOR COST EFFICIENT IMAGE DATABASE GENERATION 3793

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

images increased. Finally, for the configurations where our
hybrid approach performs poorly, inline’s strong perfor-
mance may fade at higher scale, as inline tends to perform
worse at larger scales as can be seen in Section 6.3.

Some of the sixteen configurations show our technique’s
flexibility in rightsizing. In particular, our hybrid technique
took approximately the same amount of time to render 256
images whether it was assigned one visualization node or
two visualization nodes. This is because our algorithm was
able to adapt the assignments to do more work on the simu-
lation nodes when there was one visualization node and
more work on the visualization nodes where there were
two. The cost is the same across the two experiments
because both have the same savings on scalability and vari-
ability, overheads do not increase, and (critically) rightsiz-
ing is maintained for both. In all, this demonstrates that our
method yields rightsizing in fairly wide ranges of configura-
tions, while in transit is only able to achieve this in the rare
case when all conditions align.

Finally, when the work per visualization node becomes
extremely high, our method’s performance can resemble a
pure inline approach, and thus be subject to (i) variability.
We did observe this in practice (see discussion in Section 6.2
on unavoidable idle from variability at mega-cycle 0), but

the effect was small enough that our method was still the
most efficient in comparison.

6.2 In-Depth Experiments

Our in-depth experiment considered a single workload that
was selected based on the results of the parametric study
(Section 6.1). We ran Cloverleaf3D for 14 mega-cycles on
eight simulation nodes, with a grid resolution of 3843 (1923

per node). For the image database, we generated 400 images
in each mega-cycle. We compare four in situ approaches:
inline (8), hybrid (8+2) with two dedicated visualizations
ranks (i.e., 10 nodes total), as well as in transit (8+4) and in
transit (8+8) with 4 and 8 dedicated visualization ranks,
respectively. Fig. 6 shows volume renderings from these
experiments, aswell as Gantt charts for each in situ approach.

Our hybrid technique was the most efficient approach,
requiring the least node seconds in total. It completed the sim-
ulation and visualization tasks in 2530s using 10 nodes (25.3K
node-seconds)), while the inline configuration took 3576s
using 8 nodes (28.6K node-seconds—13.1% more). The in
transit configuration took 3350s with 12 nodes (40.2K node-
seconds—58.9% more) and 1947s with 16 nodes (31.2K node-
seconds—23.1% more). The flexibility of hybrid enabled it to
do better in terms of the four types of in situ inefficiency
(see Section 3.1), despite introducing (iii) overhead for
transfer (pink) in comparison to inline, and also exhibiting
some (i) variability issues due to sub-optimal work assign-
ments (black).

For inline, the effects from (i) variability can be seen in the
high proportion of idle time (gray) in simulation ranks 1
through 6 while simulation ranks 0 and 7 are rendering
(green). These effects are significant from mega-cycles 0
through 4, with only two corners of the volume actually con-
tributing to the volume rendering. As the simulation evolves,
this improves when all nodes engage in rendering work in
mega-cycles 5 through 8, but inefficiencies re-emerge in
mega-cycles 9 through 14 due to early ray termination (node
7 in particular). Our hybrid technique addresses variability
by adapting the assignments to visualization ranks accord-
ingly. Inline also demonstrates (ii) scalability issues during
the compositing phase (yellow). Compositing costs were 160
node-seconds per mega-cycle with 8 simulation ranks partic-
ipating for about 20s, while hybrid only required 100 node-
seconds with just 2 nodes being involved for 50s. Both in
transit configurations perform quite poorly in comparison.
Hybrid reduces (iii) overhead inefficiencies with respect to in
transit both by overlapping data transfer with visualization
work and only triggering it when simulation nodes cannot
process all visualization work themselves. However, for
both in transit cases, the major issue is (iv) rightsizing—one
configuration has too few visualization nodes and the other
has too many. With too few visualization nodes (4 visualiza-
tion nodes, 12 total), the rendering tasks cannot be completed
in time, blocking the simulation nodes. This results in signifi-
cant idle time (gray) on the simulation nodes, especially after
mega-cycle 4. With too many visualization nodes (8 visuali-
zation nodes, 16 total), there are not enough rendering tasks
to occupy the visualization nodes. This again results in sig-
nificant idle time, although this time on the visualization
nodes and before mega-cycle 4. Together, these two configu-
rations demonstrate the difficulty in rightsizing in transit

Fig. 5. The columns in the 4
 4matrix correspond to the work (i.e., num-
ber of images rendered), while the rows reflect the resources (i.e., num-
ber of visualization nodes). Each of the 16 stacked bar charts compares
our hybrid in situ method with inline and in transit. The colors correspond
to different activities, and the heights for each color indicates how much
time was spent (on average) per mega-cycle. Broken bars indicate
higher y-values. As the inline configuration does not use visualization
nodes, a single inline run is repeated along each column. There are
small variations in render times between the techniques for some config-
urations that we attribute to our use of 6 MPI ranks per physical node
and hyper-threading, resulting in slightly different utilization of physical
cores.

3794 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

resources—whether too few or too many visualization
resources, the result is idle time. In contrast, hybrid achieves
rightsizing over a variety of visualization workloads by
dynamically assigning render tasks. In early mega-cycles,
the visualization ranks can almost exclusively handle the
rendering tasks, allowing simulation ranks to focus on the
simulation. When the cost of rendering tasks increase
(aroundmega-cycle 5), work is shared between visualization
and simulation ranks such that they complete their respec-
tive tasks right as themega-cycle ends.

Although our hybrid approach was able to improve
efficiency overall, this experiment also demonstrates some
limitations in highly unbalanced scenarios. Specifically,
the variability is extreme inmega-cycle 0: simulation nodes #0
and #7 have all the inline visualization work and the others
have none. For this level of imbalance, the ratio between visu-
alization nodes and simulations, and the amount of rendering
work compared to the length of themega-cycle, hybrid cannot
schedule tasks that will fully prevent idling on simulation
nodes #1–#6.

6.3 Weak Scaling

Finally, we consider a weak scaling study with the Nyx
simulation code, comparing our hybrid approach against
pure inline. Based on our parametric study (Section 6.1), we

aimed for a visualization to simulation resource ratio of
visualization
simulation ¼ 0:2 and used a data partition size of 323 per simu-
lation rank. The randomly seeded dark matter particle count
was adapted accordingly. We ran Nyx with nine different
node configurations on up to 19 200 logical cores. Configura-
tion details are listed in Table 1, sample renderings are
shown in Fig. 7 (more can be found in the supplemental
material, available online). The node configurations result
from the constraints that the MPI task count needs to be
divisible by 6 to fully occupy the nodes, and the simulation

Fig. 6. In-depth experiment of 14 mega-cycles of Cloverleaf3D simulation and Cinema database generation. Images at the top show volume render-
ings from every other mega-cycle. The remaining rows show Gantt charts for inline, hybrid, and in transit configurations. The charts are colored to
indicate the activity on a node, including two types of idle. Light gray depicts idle caused by variability while dark gray shows idle times caused by pre-
diction errors in our hybrid approach. Although in transit (8+8) has an overall shorter completion time, hybrid is more efficient in terms of node sec-
onds overall.

TABLE 1
Node Configurations for Nyx on Stampede2

Nodes
Logical
cores

Sim.
ranks

Vis.
ranks

Factor
Grid
size

Super-
sampling

2 144 8 1 0.125 643 1
 1
6 576 27 9 0.333 963 1
 1
13 1248 64 14 0.219 1283 2
 2
25 2400 125 25 0.200 1603 3
 3
43 4128 216 42 0.194 1923 4
 4
69 6624 343 71 0.207 2243 4
 4
103 9888 512 106 0.207 2563 4
 4
146 14016 729 147 0.202 2883 4
 4
200 19200 1000 200 0.200 3203 4
 4

BRUDER ETAL.: HYBRID IN SITU APPROACH FOR COST EFFICIENT IMAGE DATABASE GENERATION 3795

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

task count needs to correspond to the number of (uniform)
data partitions. We increased supersampling in the volume
raycaster for higher node counts to balance out the render
load decrease at higher concurrencies that is caused by our
constant image resolution. The run was interrupted after 1 h
of execution (hybrid) respective 1 h 20 minutes (inline). As
discussed above, we allowed the inline case more processing
time to get a similar number of full cycles as in the hybrid
case.

The performance summaries plotted in Fig. 8 show that
the four types of inefficiency change as concurrency
increases. The most obvious effect is with scalability. The
inline approach devotes more and more time to composit-
ing (yellow color) due to poor scalability, while our hybrid
approach is able to reduce compositing time significantly.
That said, as can be seen in Fig. 8, the compositing time
increases with concurrency for our hybrid technique as
well, as the number of visualization nodes increases propor-
tionally and begin to exhibit their own scalability ineffi-
ciency. Another important effect is with overhead, which
can be seen in the increasing transfer/copy times (pink) for
very high core counts. With respect to rightsizing, our algo-
rithm was able to make “rightsized” assignments for visual-
ization and simulation work (i.e., all tasks should finish a
mega-cycle at the same time), but these assignments did

sometimes lead to idle resources because of mispredictions
(black color). That said, the amount of misprediction does
not appear to change significantly as concurrency increases.
Finally, variability effects (gray color) increase slightly for
very high concurrencies for our hybrid method and stay at
a similar level for inline visualization. This effect has mainly
two reasons. First, the variability in data decrease at higher
concurrencies since the simulation progresses slower with
respect to wall-clock time and we use the same amount of
time per mega-cycle (more details and example renderings
can be found in the supplemental material, available
online). Second, overall rendering times are getting smaller,
since each block contributes fewer fragments.

In terms of actual savings, our hybrid approach had
lower cost for all concurrencies, although these savings var-
ied (144 cores: 6.9%, 576: 2.8%, 1248, 9.0%, 2400: 8.5%, 4128:
2.0%, 6624: 6.9%, 9888: 10.2%, 14016: 9.8%, 19200: 11.0%).
While the savings are fairly consistent, the factors behind
them are changing. These changes can be seen in Fig. 9. As
concurrency increases, scalability savings are growing fast
enough to offset additional overhead costs and reduced sav-
ings in variability.

7 CONCLUSION AND FUTURE WORK

The premise of this work was that a hybrid in situ visualiza-
tion approach had the potential to address fundamental inef-
ficiencies in a way that the traditional inline and in transit
techniques could not. That said, it wasmerely our hypothesis
that the savings we could achieve would be significant—the
magnitude of the resulting savings were unknown and
required running experiments for evaluation. We find the
results to be overall very promising. Compared to inline, we
were able to achieve a cost savings for themajority of the con-
figurations we considered. Of the remaining configurations,
it was often infeasible for a hybrid method to achieve cost
savings, as there was not enough work to justify the extra
visualization nodes. These configurations can be detected
ahead of time and eliminated (by requesting fewer visualiza-
tion nodes), which would make our hybrid method superior

Fig. 7. Renderings of the Nyx simulation data.

Fig. 8. Nyx weak-scaling results. For inline, compositing times grow with
higher thread counts, while rendering gets relatively faster. For hybrid,
overhead and render times grow, as well as idle times caused by predic-
tion errors. In transit runs are not considered since their results are sub-
stantially worse than hybrid or inline due to the rightsizing problem.

Fig. 9. Differences in cost between hybrid and inline as a function of con-
currency. The differences are calculated relative to the inline run. For
example, the total cost for the 2400 core inline experiment was 26.5K
seconds, of which 4310s were spent compositing. The corresponding
hybrid run took 1700s for compositing, representing a savings of 2610s,
which is 10% of the total inline run. In turn, the yellow (scalability) curve
has a point at (2400, -10%). The overhead curve (pink) considers both
transfer costs and reduced performance in rendering due to the overlap
with transfers.

3796 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

at a much higher rate. Overall, we felt one of the strongest
elements of our design was the ability to adapt to different
ratios of work (images to render) and resources (extra visual-
ization nodes), meaning that it should be able to operate
robustly in production settings. We also were enthused by
our comparisons with in transit processing.While Kress et al.
[21] was the first to show that in transit could save on scal-

ability inefficiency enough to offset overhead, their approach
was significantly more susceptible to rightsizing effects. In
other words, they achieved maximum savings when their
resource allocation had rightsizing harmony, but any devia-
tion from that harmony immediately began reducing those
savings. Our approach, however, is able to achieve rightsiz-
ing over a wide variety of configurations, and therefore
maintain maximum savings much more often. Although the
actual savings in cost may appear to be modest (on the order
of 7.5%), we feel this research has a chance to be very impact-
ful—small speedups for ubiquitous operations on expensive
devices add up to a large impact overall. For example, if all
the jobs on a $200M supercomputer utilized our in situ visu-
alization approach, then 7.5% savings would be the equiva-
lent of $15 M of extra compute power over the life of the
machine. Of course, not all jobs will use our approach, and
the benefit reduces proportionally. That said, simulations
are increasingly adopting Cinema to generate image data-
bases, thus increasing the need for our approach and increas-
ing its potential benefit. However, we acknowledge that the
design is somewhat complex, and this complexity will prob-
ably need to be hidden behind production software, such as
we have donewith Ascent.

Overall, our approach exhibits two main parameters: (i)
the ratio of visualization nodes and (ii) the ratio of work items
used for probing. As a rough guideline, (i) the ratio of visuali-
zation nodes should be chosen such that it is lower than the
expected ratio of visualization costs regarding the simulation
costs, whereas for (ii) the number of probing items needs to be
sufficient to adequately reflect the total cost of work items.
Too many visualization nodes means they cannot be effi-
ciently occupied with work throughout, and too many prob-
ing items limits the flexibility regarding work distribution. In
our current approach this needs to be set manually, but could
also be determined automatically with a small prior test run
(subject to future work). As discussed in the related context of
rightsizing above, we consider a main strength of our
approach to be its flexibly in adapting to different settings,
yielding robustness in the sense that execution is efficient for
a range of parameter settings.

Our approach should generalize to other visualization or
analysis tasks that can be split into fine granular sub-tasks
for dynamic distribution. The image database generation
considered in this work demonstrates benefits for a combi-
nation of independent tasks (the rendering of images) as
well as reduction (the compositing of partial results), which
is a common scheme for various distributed visualization
methods. In general, we anticipate that our approach would
particularly be beneficial for computation-heavy tasks with
heterogeneous costs and a high degree of parallelism,
potentially also requiring communication between nodes.
Visualization techniques using intermediate representations
(e.g., explicit isosurface rendering) could be approached in
two different ways: either the intermediate representation

could be generated on the simulation node and then this
representation would be distributed instead of the data, or
the data partition could be further subdivided and a work
item would comprise all operations—comprising intermedi-
ate representation generation and rendering—on a respec-
tive sub-partition of the data. We also expect our hybrid
approach to profit at scale for visualization techniques that
need additional communication (e.g., passing around rays
for path tracing). We aim to investigate further visualization
scenarios with our approach in future work.

We also see potential to further refine our approach for
image database generation. Here, we aim to focus on
improving the accuracy of cost predictions via importance
sampling for probing and advanced compositing and simu-
lation time predictions.

ACKNOWLEDGMENTS

The authors acknowledge the Texas Advanced Computing
Center (TACC) at the University of Texas for providing HPC
resources.

REFERENCES

[1] R. Binyahib, T. Peterka, M. Larsen, K.-L. Ma, and H. Childs, “A scal-
able hybrid scheme for ray-casting of unstructured volume data,”
IEEE Trans. Vis. Comput. Graphics, vol. 25, no. 7, pp. 2349–2361,
Jul. 2018.

[2] S. Dutta, C. Chen, G. Heinlein, H. Shen, and J. Chen, “In situ dis-
tribution guided analysis and visualization of transonic jet engine
simulations,” IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 01,
pp. 811–820, Jan. 2017.

[3] J. Woodring et al., “In situ eddy analysis in a high-resolution ocean
climate model,” IEEE Trans. Vis. Comput. Graphics, vol. 22, no. 1,
pp. 857–866, Jan. 2016.

[4] P. O’Leary et al., “Cinema image-based in situ analysis and visual-
ization of MPAS-ocean simulations,” Parallel Comput., vol. 55,
pp. 43–48, 2016.

[5] A. C. Bauer et al., “In situ methods, infrastructures, and applica-
tions on high performance computing platforms,” Comput. Graph.
Forum, vol. 35, no. 3, pp. 577–597, 2016.

[6] H. Childs, J. Bennett, C. Garth, and B. Hentschel, “In situ visuali-
zation for computational science,” IEEE Comput. Graph. Appl.,
vol. 39, no. 6, pp. 76–85, Nov./Dec. 2019.

[7] T. Peterka et al., “Priority research directions for in situ datamanage-
ment: Enabling scientific discovery fromdiverse data sources,” Int. J.
High Perform. Comput. Appl., vol. 34, no. 4, pp. 409–427, 2020.

[8] J. Ahrens et al., “An image-based approach to extreme scale in situ
visualization and analysis,” in Proc. Int. Conf. High Perform. Com-
put. Netwo. Storage Anal., 2014, pp. 424–434.

[9] H. Childs et al., “A terminology for in situ visualization and analy-
sis systems,” Int. J. High Perform. Comput. Appl., vol. 34, no. 6,
pp. 676–691, 2020.

[10] U. Ayachit et al., “Paraview catalyst: Enabling in situ data analysis
and visualization,” in Proc. Workshop In Situ Infrastructures
Enabling Extreme-Scale Anal. Visual., 2015, pp. 25–29.

[11] M. Larsen et al., “The ALPINE in situ infrastructure: Ascending
from the ashes of strawman,” in Proc. In Situ Infrastructures
Enabling Extreme-Scale Anal. Visual., 2017, pp. 42–46.

[12] B. Whitlock, J. Meredith, and J. Favre, “Parallel in situ coupling of
simulation with a fully featured visualization system,” Proc.
Eurogr. Conf. Parallel Graph. Visual., 2011, vol. 10, pp. 101–109.

[13] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu, and D. Semeraro,
“Damaris/viz: A nonintrusive, adaptable and user-friendly in
situ visualization framework,” in Proc. IEEE Symp. Large-Scale
Data Anal. Visual., 2013, pp. 67–75.

[14] U. Ayachit et al., “The sensei generic in situ interface,” in Proc.
Workshop Situ Infrastructures Enabling Extreme-Scale Anal. Visual.,
2016, pp. 40–44.

[15] W. F. Godoy et al., “Adios 2: The adaptable input output system. A
framework for high-performance data management,” SoftwareX,
vol. 12, 2020, Art. no. 100561.

BRUDER ETAL.: HYBRID IN SITU APPROACH FOR COST EFFICIENT IMAGE DATABASE GENERATION 3797

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

[16] J. C. Bennett et al., “Combining in-situ and in-transit processing to
enable extreme-scale scientific analysis,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2012, pp. 1–9.

[17] F. Zheng et al., “PreDatA-preparatory data analytics on peta-scale
machines,” in Proc. IEEE Int. Symp. Parallel Distrib. Process., 2010,
pp. 1–12.

[18] J. Dayal et al., “Flexpath: Type-based publish/subscribe system
for large-scale science analytics,” in Proc. IEEE/ACM Int. Symp.
Cluster Cloud Grid Comput., 2014, pp. 246–255.

[19] M. Dorier et al., “Damaris: Addressing performance variability in
data management for post-petascale simulations,” ACM Trans.
Parallel Comput., vol. 3, no. 3, pp. 1–43, 2016.

[20] J. Kress et al., “Comparing the efficiency of in situ visualization
paradigms at scale,” in High Performance. Berlin, Germany:
Springer, 2019, pp. 99–117.

[21] J. Kress et al., “Opportunities for cost savings with in-transit visu-
alization,” in High Performance Computing. Berlin, Germany:
Springer, 2020, pp. 146–165.

[22] F. Zheng et al., “In-situ I/O processing: A case for location
flexibility,” in Proc. Workshop Parallel Data Storage, 2011, pp. 37–42.

[23] T. M. A. Do et al., “A novel metric to evaluate in situ workflows,”
in Proc. Int. Conf. Comput. Sci., 2020, pp. 538–553.

[24] B. Friesen et al., “In situ and in-transit analysis of cosmological
simulations,” Comput. Astrophys. Cosmol., vol. 3, no. 1, pp. 1–18,
2016.

[25] Z.Wang, P. Subedi,M.Dorier, P. E. Davis, andM. Parashar, “Staging
based task execution for data-driven, in-situ scientificworkflows,” in
Proc. IEEE Int. Conf. Cluster Comput., 2020, pp. 209–220.

[26] K. Mehta et al., “A codesign framework for online data analysis
and reduction,” in Proc. IEEE/ACM Workflows Support Large-Scale
Sci., 2019, pp. 11–20.

[27] P. Grosset and J. Ahrens, “Lightweight interface for in situ analy-
sis and visualization of particle data,” in Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization, New York, NY,
USA: ACM, 2021, pp. 12–17.

[28] M. Dorier, O. Yildiz, T. Peterka, and R. Ross, “The challenges of
elastic in situ analysis and visualization,” in Proc. Hop In Situ Infra-
structures Enabling Extreme-Scale Anal. Visual., 2019, pp. 23–28.

[29] F. Zheng et al., “GoldRush: Resource efficient in situ scientific data
analytics using fine-grained interference aware execution,” in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal., 2013, pp. 1–12.

[30] A. Goswami et al., “Landrush: Rethinking in-situ analysis for
GPGPU workflows,” in Proc. IEEE/ACM Int. Symp. Cluster Cloud
Grid Comput., 2016, pp. 32–41.

[31] T. Terraz, A. Ribes, Y. Fournier, B. Iooss, and B. Raffin, “Melissa:
Large scale in transit sensitivity analysis avoiding intermediate fil-
es,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2017, pp. 1–14.

[32] E. Dirand, L. Colombet, and B. Raffin, “Tins: A task-based
dynamic helper core strategy for in situ analytics,” in Proc. Super-
comput. Front., 2018, pp. 159–178.

[33] J. Barbosa, P. Navratil, L. Paulo Santos, and D. Fussell, “Loom:
Interweaving tightly coupled visualization and numeric simula-
tion framework,” in Proc. Workshop In Situ Infrastructures Enabling
Extreme-Scale Anal. Visual., 2021, pp. 1–5.

[34] V. Bruder, C. M€uller, S. Frey, and T. Ertl, “On evaluating runtime
performance of interactive visualizations,” IEEE Trans. Vis. Com-
put. Graphics, vol. 26, no. 9, pp. 2848–2862, Sep. 2019.

[35] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An image
compositing solution at scale,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, pp. 1–10.

[36] M. Larsen, K. Moreland, C. R. Johnson, and H. Childs, “Optimizing
multi-image sort-last parallel rendering,” in Proc. IEEE Symp. Large
Data Anal. Visual., 2016, pp. 37–46.

[37] K. Moreland et al., “VTK-m: Accelerating the visualization toolkit
for massively threaded architectures,” IEEE Comput. Graph. Appl.,
vol. 36, no. 3, pp. 48–58, May/Jun. 2016.

[38] D. Morozov and T. Peterka, “Block-parallel data analysis
with DIY2,” in Proc. IEEE Symp. Large Data Anal. Visual., 2016,
pp. 29–36.

[39] A. C. Mallinson, D. A. Beckingsale, W. P. Gaudin, J. A. Herdman,
J. M. Levesque, and S. A. Jarvis, “CloverLeaf: Preparing hydrody-
namics codes for exascale,” Cray User Group, Napa Valley, CA,
USA, May 2013, pp. 1–15.

[40] A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki�c, and E. Van
Andel, “Nyx: A massively parallel AMR code for computational
cosmology,” Astrophys. J., vol. 765, no. 1, 2013, Art. no. 39.

[41] W. Zhang et al., “AMReX: A framework for block-structured
adaptive mesh refinement,” J. Open Source Softw., vol. 4, no. 37,
May 2019, Art. no. 1370.

Valentin Bruder received the PhD degree in com-
puter science from the University of Stuttgart,
Germany, in 2022. He was a researcher with the
University of Stuttgart Visualization Research Cen-
ter (VISUS) while this research was conducted,
and is now with Daimler Truck AG. His research
interests include scientific visualization methods
and their performance assessment, modeling, and
optimization.

Matthew Larsen received thePhD degree in com-
puter science from the University of Oregon, in
2016. He was a computer scientist with Lawrence
Livermore National Laboratory while this research
was conducted, and is currently with Luminary
Cloud, Inc. His research interests include rendering
for visualization, performance modeling for visuali-
zation, andmany-core architectures.

Thomas Ertl received the MS degree in computer
science from the University of Colorado at Boulder,
and the PhD degree in theoretical astrophysics
from theUniversity of Tuebingen. He is a full profes-
sor of computer science with theUniversity of Stutt-
gart, Germany in the Visualization and Interactive
Systems Institute (VIS) and a co-director of the
Visualization Research Center (VISUS).

Hank Childs received the PhD degree in com-
puter science from the University of California at
Davis, in 2006. He is a professor of Computer
and Information Science with the University of
Oregon. His research focuses on scientific visual-
ization, high performance computing, and the
intersection of the two.

Steffen Frey received the PhD degree in com-
puter science from the University of Stuttgart,
Germany, in 2014. He is an assistant professor
with the Bernoulli Institute, University of Gronin-
gen, Netherlands. His research interest include
visualization methods for increasingly large quan-
tities of scientific data.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3798 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 9, SEPTEMBER 2023

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:59:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

