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Circulating Biomarkers in Young Individuals
with Low Peak FEV1

To the Editor:

It is now well established that there is a range of lung function
trajectories throughout the life course (1, 2). Specifically, 4–12% of
young adults in the general population never achieve normal peak
lung function, as determined by FEV1 measurement (3). These
individuals are at higher risk of developing chronic obstructive
pulmonary disease (COPD) in adulthood (4), suffer a higher
prevalence and a decade earlier incidence of cardiovascular and

metabolic disorders, and die prematurely (3, 5). The biological
mechanisms underlying these observations are unknown.

Older patients with COPD often present abnormal levels of
circulatory inflammatory markers (IL-6, IL-8, CCL19 [C-CMotif
Chemokine Ligand 19]) (6), pneumo-proteins (CC16 [Club cell
secretory protein 16], SP-D [Surfactant Protein D], sRAGE [Soluble
Receptor for Advanced Glycation End Products], CCL18) (6), and
aging hallmarks (telomere attrition andmitochondrial damage/
mitochondrial DNA copy number) (7). Whether or not these
biological abnormalities also occur in young individuals with low
peak lung function has not been investigated before. To explore this,
we studied 300 individuals aged 25–35 years from the Lifelines
Cohort Study (8) with FEV1, lower limit of normal (LLN) (n=147)
or FEV1> LLN (n=153) for their age (according to the Global Lung
Function Initiative [GLI] equations). Demographic and clinical
factors had been recorded, as described elsewhere (8). Because groups
were balanced by sex and smoking exposure, their potential effect
could not be investigated here. The serum concentrations of IL-8, IL-
6, sRAGE, SP-D, CCL2, CCL19, Pentraxin-3, TSLP (Thymic stromal
lymphopoietin), CC16, CCL18, BNDF (Brain-derived neurotrophic
factor), Leptin, vWFA-2 (vonWillebrand Factor 2), and Collagen I
a1, all previously associated with COPD (6), were quantified using
the LuminexMAGPIX platform (R&D systems). Because IL-6 and
TSLP concentrations were below the detection level of the assay in
.80% of samples, they were excluded from analysis. For the included
biomarkers, determinations below the detection limit were imputed
with one-fourth of that value. The maximum number of imputed
samples was 11 (out of 300 measured, i.e., 3.7%) for both IL-8 and
Pentraxin-3. Telomere length and the ratio of mitochondrial to
nuclear DNA (i.e. mitochondrial DNA copy number measured as 12S
rRNA/RNAseP), two well-stablished aging hallmarks (7), were
measured by quantitative PCR in whole-bloodDNA. Differences
between groups were compared using the Mann-Whitney U test.
A stepwise multivariate logistic regression model that included
clinical factors associated with low peak FEV1 (Table 1) (3, 9–11)
and the biomarkers measured here was used to identify variables
independently associated with FEV1, LLN.

Table 1 compares selected clinical characteristics and
biomarker levels in participants with FEV1> LLN or
FEV1, LLN. A diagnosis of asthma was similarly prevalent in
both groups, but ever-wheezing and eosinophil counts were higher
in participants with FEV1, LLN, so we cannot exclude asthma
underdiagnoses. Triglycerides were higher in participants with
FEV1, LLN, who also showed a tendency toward shorter
pregnancy duration and breathing problems. The serum level of
most measured biomarkers was similar in both groups, except for
lower CC16 and higher CCL19 and leptin levels in individuals
with FEV1, LLN. Telomere length and the mitochondrial DNA
copy number were similar in both groups.

Multivariate logistic regression showed that triglycerides,
HbA1c, ever-wheezing, CC16, CCL2, sRAGE, CCL19, and Leptin
were independently related to low lung function in this young
population (Figure 1). In a sensitivity analysis in the population in
which information on eosinophils was available (n=291),
we found that they did not have a significant effect (odds ratio,
1.18; 95% confidence interval, 0.90–1.55; P=0.222), whereas
the other variables preserved the direction of effect and
significance.
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Table 1. Selected Characteristics and Biomarkers in Young Individuals (25–35 yr) with FEV1>Lower Limit of Normal or
FEV1,Lower Limit of Normal

FEV1<LLN FEV1 >LLN

P ValueN Mean6SD or n (%) N Mean6SD or n (%)

Demographics and exposures
Sex female* 147 88 (59.86) 153 88 (57.52) 0.725
Age, yr* 147 29.3763.22 153 29.8462.97 0.149
Body mass index, kg/m2* 147 25.1564.46 153 24.6563.43 0.68
Smoking status . or ,5 pack-years*

Ever-smoker with .5 pack-years 147 0 (0) 153 0 (0) 1.00
Ever-smoker with <5 pack-years 98 (66.67) 102 (66.67)
Never-smoker 49 (33.33) 51 (33.33)

Tobacco exposure*
Secondhand, exposed and more hours than the

average (40 min)
141 18 (12.77) 149 18 (12.08) 0.977

Secondhand, exposed but fewer hours than the
average (40 min)

12 (8.51) 12 (8.05)

Not exposed 111 (78.72) 119 (79.87)
Age of starting smoking and smoking status

. or ,5 pack-years*
Ever-smoker with <5 pack-years and age of

starting above average (15.8 yr)
146 57 (39.04) 152 60 (39.47) 1.00

Ever-smoker with <5 pack-years and age of
starting below average (15.8 yr)

40 (27.4) 41 (26.97)

Never-smoker 49 (33.56) 51 (33.55)
Early life events
Pregnancy duration, wk* 144 33.82613.32 152 34.36613.41 0.079
Mother ever smoked regularly during your

childhood?*
146 65 (44.52) 153 59 (38.56) 0.348

Education level*
Low education 147 8 (5.44) 152 3 (1.97) 0.331
Medium education 72 (48.98) 71 (46.71)
High education 66 (44.9) 77 (50.66)

Respiratory diagnoses and symptoms
Ever asthma diagnosed by doctor* 138 13 (9.42) 145 16 (11.03) 0.699
Asthma onset*

Asthma and onset above the average (9.7 yr) 136 ,10 143 ,10 0.723
Asthma and onset below the average (9.7 yr) ,10 ,10
No asthma 125 (91.91) 129 (90.21)

Have you ever suffered from wheezing?* 147 38 (25.85) 153 21 (13.73) 0.009
Do you at times have breathing problems?* 145 39 (26.9) 152 28 (18.42) 0.096
Do you usually cough in winter during daytime

or at night?*
147 18 (12.24) 153 21 (13.73) 0.734

Respiratory medicines* 147 21 (14.29) 152 19 (12.5) 0.735
Allergies
Known allergies* 147 65 (44.22) 153 71 (46.41) 0.914
Nasal allergy (including hay fever)* 147 42 (28.57) 153 42 (27.45) 0.898

Spirometry
FEV1% reference 147 74.7164.96 153 101.3368.13 0
FVC % reference 147 83.6168.76 153 103.6468.56 0
FEV1/FVC, L 147 0.7560.07 153 0.8160.06 0

Analytics
Leukocytes, 109/L* 147 6.1561.6 153 5.8761.51 0.099
Lymphocytes, 109/L 141 2.1260.61 150 2.0460.55 0.249
Neutrophil granulocytes, 109/L 141 3.2461.03 150 3.1661.12 0.351
Monocytes, 109/L 141 0.4660.12 150 0.4560.14 0.217
Eosinophil granulocytes, 109/L 141 0.1960.12 150 0.1660.12 0.035
Triglycerides, mmol/L* 147 1.1160.56 152 0.9660.51 0.002
Creatinine, μmol/L 147 71.29611.44 152 73.63610.76 0.046
HbA1c, %* 147 5.4160.35 153 5.3560.28 0.224
Hematocrit, v/v* 147 0.4260.03 153 0.4260.04 0.534
HDL cholesterol, mmol/L* 147 1.4360.35 152 1.4860.32 0.047
LDL cholesterol, mmol/L* 147 2.8160.76 152 2.7560.84 0.345

Cardiovascular
Heart rate* 147 68.16612.91 153 66.2869.95 0.309
Systolic blood pressure, mm Hg* 147 120.64612.9 153 120.3610.41 0.964
Diastolic blood pressure, mm Hg* 147 69.8668.13 153 69.7166.31 0.714
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Table 1. (Continued)

FEV1<LLN FEV1 >LLN

P ValueN Mean6SD or n (%) N Mean6SD or n (%)

Nonrespiratory health problems
Diabetes mellitus* 146 ,10 153 0 (0) 0.238
Heart valve problems* 147 ,10 153 ,10 1.000
Rheumatoid arthritis (joint inflammation)* 147 ,10 153 ,10 1.000
Hypertension* 147 ,10 153 ,10 0.614

Biomarkers
BNDF, pg/ml* 147 26.56617.91 153 27.62621.81 0.521
CCL18, pg/ml* 147 49.33644.07 153 45.92638.34 0.766
Collagen-1a, pg/ml* 147 10.86616.99 153 12.1620.99 0.157
CCL19, pg/ml* 147 0.0560.05 153 0.0460.04 0.045
CCL2, pg/ml* 147 0.2760.3 153 0.2360.3 0.219
IL-8, pg/ml* 147 0.5961.26 153 0.9061.93 0.223
Leptin, pg/ml* 147 17.41632.4 153 10.09620.95 0.01
Pentraxin 3, pg/ml* 147 0.6261.38 153 0.7461.32 0.528
sRAGE, pg/ml* 147 2.5361.72 153 2.7961.49 0.246
SP-D, pg/ml* 147 10.7668.25 153 10.7068.77 0.609
vWFA-2, pg/ml* 147 0.0360.05 153 0.0360.06 0.263
CC16, pg/ml* 147 13.51621.85 153 22.06625.62 0.003

Aging biomarkers
Telomere length, R/S ratio 143 67.05642.04 152 70.1633.61 0.358
Mitochondrial DNA qPCR, 12s/RNAsa P 141 8.6763.65 151 8.5363.43 0.438

Definition of abbreviations: 12s/RNAsa P=Mitochondrial 12S ribosomal RNA gene and to nuclear-encoded RNAse P gene ratio of copies;
BNDF=Brain-derived neurotrophic factor; CC16=Club cell secretory protein 16; CCL=C-C Motif Chemokine Ligand; HDL=high-density
lipoprotein; LDL= low-density lipoproteins; LLN= lower limit of normal; qPCR=quantitative PCR; R/S= relative telomere to single copy gene ratio;
SP-D=Surfactant Protein D; sRAGE=Soluble Receptor for Advanced Glycation End Products; vWFA-2=von Willebrand Factor 2.
Bold font indicates a P value , 0.05.
*Indicates that the variable was included in the step-wise selection for logistic regression (Figure 1).

0 1

Odds ratio (95% CI, log scale)

2 4 53

OR (95% CI and P value) for FEV1 < LLN

Age (yrs)    -  0.77 (0.59–0.99, P = 0.046)

Body Mass Index (kg/M2)    -  0.75 (0.54–1.03, P = 0.077)

HbA1c (%)    -  1.30 (1.01–1.70, P = 0.048)

Triglycerides (mmol/L)    -  1.52 (1.13–2.05, P = 0.005)

Ever wheezing  No               -

    Yes  2.52 (1.33–4.92, P = 0.005)

CCL2     -  1.41 (1.07–1.90, P = 0.018)

CCL19     -  1.34 (1.00–1.97, P = 0.089)

sRAGE     -  0.70 (0.50–0.97, P = 0.035)

Leptin    -  1.40 (1.06–1.87, P = 0.021)

SP-D     -  1.28 (0.93–1.76, P = 0.130)

CC16     -  0.59 (0.44–0.78. P<0.001)

Figure 1. Forest plot showing factors independently associated with FEV1, lower limit of normal (LLN) identified by the multivariate logistic
regression in 299 individuals (152 FEV1. LLN and 147 FEV1,LLN). The C-index of the logistic regression was (0.722). The variables included in
the model were the ones that minimized the AIC, which indicates a better goodness-of-fit. Odds ratio (OR) are per increase of 1 SD in the values of
the log-scaled biochemical and biomarker measurements. For instance, the OR for CC16 (Club cell secretory protein 16) (0.59) indicates that for
every 1 SD increase in CC16 levels, there is about a 41% decrease in the odds of having FEV1,LLN. AIC=Akaike information criterion; CCL=C-C
Motif Chemokine Ligand; CI=confidence interval; SP-D=Surfactant Protein D; sRAGE=soluble Receptor for Advanced Glycation End Products.
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To explore if the biomarkers associated here with low peak
lung function were also related to early lung function decline, we
calculated FEV1 changes during 5 years of follow-up in 70 of the
300 individuals in whom this information was available. In this
admittedly small population, we observed that FEV1 changed a
median of21.85 ml/yr (interquartile range [IQR], 63.8 ml/yr) in
those with baseline FEV1,LLN (n=32) and218.7 ml/yr (IQR
58.8 ml/yr) in those with baseline FEV1. LLN (n= 38; P= 0.02),
suggesting that low peak lung function is not associated with early
lung function decline in the studied population.

CC16 is a homodimer protein with antiinflammatory
properties secreted mostly by nonciliated bronchiolar club cells (10).
Previous studies have reported lower circulating CC16 levels in
relation to low lung function in childhood, smoking, increased
airway inflammation, airflow limitation in the general population,
accelerated FEV1 decline, and asthma (10, 12, 13). In line with these
reports, we observed that systemic CC16 levels were lower
in individuals with FEV1, LLN, supporting that CC16 is a
biomarker of abnormal lung development (14). This can be the
consequence of early-life respiratory infections (11), but
this information was not available in this cohort. CCL19 is a
chemokine involved in cell trafficking that activates dendritic and B
cells to produce proinflammatory cytokines (15). Increased levels of
CCL19 have been described in smoking mice models of COPD, in
the airway smooth muscle of patients with asthma (16), and in
severe COPD related to B cell responses (17). Our observations here
suggest that activation of dendritic and B cells in young individuals
can drive an inflammatory response. Interestingly, the levels of
CCL2, a monocyte homing cytokine, and those of surfactant protein
D, also an innate immune response protein (6), were also associated
with reduced FEV1 levels in the multivariate analysis. This further
supports a role of inflammation in this young population that goes
beyond smoking according to our study design.

We observed that low peak FEV1 in early adulthood was
associated with biomarkers of extrapulmonary organ dysfunction,
such as of the metabolic system (HbA1c) and leptin. This supports
that low lung function in early adulthood is a marker of poor
development of the lungs and also other organ systems, which may
contribute to multimorbidity later in life (3, 4).

We did not find differences in telomere length andmitochondrial
DNA copy number between groups, suggesting that abnormal aging
does not play a significant role in young adults with low peak lung
function. This is at variance with what has been reported in both old
and young patients with severe COPD (7), albeit it may be too early in
the disease course to observe these abnormalities.

In conclusion, we showed that low peak lung function in early
adulthood is associated with some circulating biomarkers (CC16,
CCL19, CCL2, SP-D, and sRAGE) previously associated with airflow
limitation in older patients with COPD, as well as with markers of
systemic organ dysfunction (HbA1c and Leptin), but not with
abnormal aging. These observations are partly in line with the Dutch
hypothesis (18), because some of these individuals present asthma
features and are likely to develop COPD later in life, particularly if
exposed to noxious stimuli. Also, these observations point toward still
poorly knownmechanisms linking abnormal lung and other systemic
organ development. Understanding them better may open novel
opportunities for prevention and early intervention with the long-
term aim of promoting healthier aging.�
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Critical Illness Myopathy Alters Diaphragm
Neuromuscular Junction Protein and
Gene Expression

To the Editor:

Mechanical ventilation (MV) is a lifesaving intervention for patients
in respiratory failure. However, MV is associated with the
development of critical illness–associated diaphragm weakness. This
condition occurs because of a rapid loss of diaphragmmuscle fiber
contractility and atrophy and is a serious complication to weaning
patients from the ventilator. Failure to wean prolongs time spent in
the ICU, dramatically increasing healthcare costs and the risk of
morbidity and mortality (1). Although clinical techniques exist to
diagnose respiratory muscle dysfunction in critical care patients, there
are currently no approved therapies to prevent diaphragm weakness
in mechanically ventilated patients.

Critical illness–associated diaphragm weakness contributes to
difficult weaning because of an inability of the diaphragm to support
the load necessary for independent respiration. Failure to wean can be
attributed to inactivity-induced wasting of the diaphragm, contractile
weakness, and/or insufficient signaling from the central nervous
system to the diaphragm (2, 3). Indeed, liberation fromMV requires
the resumption of diaphragm neuromuscular activity, which
necessitates adequate signaling from the central nervous system to
the respiratory muscles via signal transduction through the
neuromuscular junction (NMJ). Limited evidence from preclinical
models suggests that critical illness–induced diaphragm weakness
may be associated with impaired postsynaptic membrane
depolarization and altered postsynaptic protein expression (4).
However, the contribution of neuromuscular dysfunction is
currently unknown. This is the first study to show that prolonged
MV results in modification of postsynaptic diaphragm NMJ
proteins in patients.

Intraoperative biopsy specimens were obtained from the costal
diaphragm of seven brain-dead organ donors (case subjects) and
seven patients undergoing surgery for either benign lesions or stage
1 lung cancer (control subjects). Case subjects with diaphragm
inactivity underwent MV for 18–69 hours. In control subjects, the
combination of diaphragm inactivity andMVwas limited to
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