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Abstract: (1) Introduction: Near-infrared fluorescence (NIRF) combined with tumour-targeted tracers,
such as bevacizumab-800CW, could aid surgical decision-making. This study explored the use of
IRDye800CW, conjugated to bevacizumab, with four commercially available NIRF laparoscopes
optimised for indocyanine green (ICG). (2) Methods: A (lymph node) phantom was made from a
calibration device for NIRF and tissue-mimicking material. Serial dilutions of bevacizumab-800CW
were made and ICG functioned as a reference. System settings, working distance, and thickness
of tissue-mimicking material were varied to assess visibility of the fluorescence signal and tissue
penetration. Tests were performed with four laparoscopes: VISERA ELITE II, Olympus; IMAGE1 S™
4U Rubina, KARL STORZ; ENDOCAM Logic 4K platform, Richard Wolf; da Vinci Xi, Intuitive Surgi-
cal. (3) Results: The lowest visible bevacizumab-800CW concentration ranged between 13–850 nM
(8–512 times diluted stock solution) for all laparoscopes, but the tracer was not visible through 0.8 cm
of tissue in all systems. In contrast, ICG was still visible at a concentration of 0.4 nM (16,384 times
diluted) and through 1.6–2.4 cm of tissue. Visibility and tissue penetration generally improved with a
reduced working distance and manually adjusted system settings. (4) Conclusion: Depending on
the application, bevacizumab-800CW might be sufficiently visible with current laparoscopes, but
optimisation would widen applicability of tumour-targeted IRDye800CW tracers.

Keywords: fluorescence guided surgery; fluorescence molecular imaging; image-guided surgery;
near-infrared fluorescence (NIRF); targeted tracer; IRDye800CW; indocyanine green (ICG)

1. Introduction

Surgeons rely on visual and tactile feedback for intraoperative decision-making. How-
ever, many laparoscopic or robotic surgical systems lack tactile feedback. Image-guided
surgery, such as near-infrared fluorescence (NIRF), aid surgical decision-making with addi-
tional visual feedback. There has been an increasing interest in NIRF and its new applications
for fluorescence guided surgery. In oncological surgery, NIRF is primarily used to achieve
tumour-free excision, identify occult lesions, debulking, and recognition of vital structures [1].

Near-infrared light (650–950 nm for the first NIRF window) has superior tissue pen-
etration compared to white light and has limited interference with human tissues [2–5].
Fluorescence-guided surgery is primarily focused on the non-specific tracer indocyanine
green (ICG) as it has a well-established safety profile and is the only FDA and EMA approved
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fluorophore for general surgery [6]. Development of new fluorescent tracers is mostly focused
on tumour-targeted tracers; fluorophores bound to a ligand [7,8]. Tumour-targeted tracers
could provide real-time information about the presence of tumour or metastases and allow
intraoperative decision-making [9]. Furthermore, antibodies are commonly used as a ligand
due to their availability for a wide range of targets and modifiability [10].

The fluorophore IRDye800CW has an NH ester group for labelling proteins such as
antibodies [11], making it an applicable fluorophore for tumour-targeted tracers. By using
the same fluorophore for multiple antibodies, the same camera system could be used for a
wide variety of tumour-targeted tracers and indications. Multiple commercially available
open-air NIRF camera systems can detect IRDye800CW (absorption: ~780 nm, excitation:
~800 nm [11,12]), but are primarily intended for ICG (absorption: ~800 nm, excitation:
~830 nm [13]) and cannot be used for minimally invasive surgery [14]. Bevacizumab-
800CW is a tumour-targeted tracer, aimed at vascular endothelial growth factor α (VEGFα),
which has been used in multiple clinical studies [9,15–22]. Likewise, cetuximab-800CW,
aimed at endothelial growth factor, is used in multiple clinical trials [23,24], and various
other antibodies conjugated to IRDye800CW are currently investigated [25–27] since the
process of developing these tracers is relatively simple compared to developing a new
investigational drug or tracer [27,28]. Micro-dosages of tumour-targeted tracers are most
often used in studies since first-in-patient studies can more easily be conducted due to
the unlikelihood of major side effects [29–32]. Simultaneously, tumour-targeted tracers in
micro-dosages still provide sufficient fluorescent intensity for diagnostic purposes.

Our intention is to use targeted tracers for the detection of sentinel lymph nodes or
lymph node metastases in patients with colon cancer during laparoscopic surgery [33,34].
Sentinel lymph node detection entails interstitial injection of a tracer, which results in a
local high concentration of the tracer. However, there is a limited number of studies re-
garding commercially available laparoscopes for use with (tumour-targeted) IRDye800CW
tracers [35,36]. Comparison of different systems is difficult as intraoperative detection of
a fluorophore is dependent on various biological and optical factors [37]. Therefore, we
conducted a systematic in vitro study with a NIRF calibration device. This phantom study
aimed to explore the use of IRDye800CW, as an example conjugated to bevacizumab, with
four commercially available NIRF laparoscopic surgical systems.

2. Materials and Methods
2.1. Phantom Set-Up

Clinical-grade bevacizumab-800CW was manufactured according to current Good
Manufacturing Practice and supplied by the University Medical Center Groningen for use
in this phantom study, as previously described [28]. In summary, bevacizumab (Roche
Holding AG, Basel, Switzerland) and IRDye-800CW-NHS (LI-COR Biosciences, Lincoln,
NE, USA) were conjugated with a dye to antibody ratio of 1.6:1 and formulated in a sodium
chloride solution. Fifteen concentrations were created using serial dilution, starting from
the standard concentration 6.8 µM (1 mg/mL bevacizumab-800CW), using 1:1 dilution
with PBS, ending at 0.42 nM.

ICG (Verdye, Diagnostic Green GmbH, Aschheim-Dornach, Germany) was used as
a fluorescent reference for bevacizumab-800CW. ICG was combined with 2% intralipid
and PBS. Intralipid acted as human albumin in blood serum and was required for this
phantom study, as ICG dissolved in water for injection or PBS has a different excitation and
emission wavelength [38]. The ICG solution was serially diluted from the manufacture’s
recommended dose (5 mg/mL = 6.5 mM), similar to bevacizumab-800CW, resulting in the
lowest concentration of 0.39 µM.

The molar concentration of ICG serial dilutions were a factor 950 higher than the
bevacizumab-800CW concentrations, and 597 times higher than the molar concentration
IRDye800CW due to the 1.6:1 dye to antibody ratio. Therefore, the first five concentra-
tions of bevacizumab-800CW serial dilutions correspond approximately to the last five
concentrations of ICG (Appendix A Table A1).
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Transparent polypropylene Eppendorf tubes were filled with the solutions of bevacizumab-
800CW or ICG and placed in a CalibrationDisk (SurgVision, Munich, Germany) [37,39]. The
CalibrationDisk is a calibration device for NIRF systems and can hold up to eight Eppendorf
tubes (Figure 1a). Two windows in the calibration device, approximately the size of lymph
nodes, allowed fluorescent intensity measurement for each tube. Fat tissue-mimicking hydro-
gel made from gelatine (2.5 g), agar (2.5 g), and water (200 mL) to recreate fat in the mesocolon,
were used to cover the CalibrationDisk. Formulation of the hydrogel was adopted from a
previous ICG assessment study [40]. A black box was used to limit the influence of ambient
light and therefore create a comparable situation to in vivo use of laparoscopes.
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it was not tested in this study. The fluorescent light emitted by the fluorescent dyes were displayed 
as (a false) green or blue colour and superimposed over the images, except for the Rubina mono-
chromatic image which was a true monochromatic mode. The pictures were all acquired at the same 
working distance (10.4 cm), therefore, differences in field of views depend on system properties. 

Figure 1. CalibrationDisk and near-infrared fluorescence modes of laparoscopes. (a) The Calibra-
tionDisk for near-infrared fluorescence calibration with eight transparent Eppendorf tubes, and
(b–e) serially diluted bevacizumab-800CW visible with four laparoscopes. (b) The da Vinci Xi had a
single, monochromatic, fluorescence mode. (c) The VISERA ELITE II, (d) Rubina, and (e) ENDOCAM
had a white light with fluorescence overlay mode (left column) in addition to a monochromatic mode
(right column). The Rubina has a third mode, intensity map, that is not displayed since it was not
tested in this study. The fluorescent light emitted by the fluorescent dyes were displayed as (a false)
green or blue colour and superimposed over the images, except for the Rubina monochromatic image
which was a true monochromatic mode. The pictures were all acquired at the same working distance
(10.4 cm), therefore, differences in field of views depend on system properties.
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2.2. Laparoscopic Near-Infrared Fluorescence Systems

Four commercially available laparoscopic systems for clinical use were tested: (1) VIS-
ERA ELITE II, Olympus; (2) ENDOCAM Logic 4K platform (short: ENDOCAM), Richard
Wolf; (3) IMAGE1 S™ 4U Rubina (short: Rubina), KARL STORZ; and (4) da Vinci Xi,
Intuitive Surgical (Figure 1). The VISERA ELITE II has a xenon lamp and the da Vinci Xi
a laser source for NIRF excitation, while the other two systems use light emitting diodes
(LEDs). Gain, software-based, to increase the fluorescence intensity, was automatically
adjusted to improve visibility, except for the manually adjustable VISERA ELITE II system.
Instead of gain, brightness of fluorescence could be manually changed for the ENDOCAM,
Rubina, and da Vinci Xi to improve visibility. All systems have (at least) two fluorescence
view mode options, except the da Vinci system with only one fluorescence view mode.
Description of components, indications, and fields of use can be found in Appendix A
Table A2.

2.3. Measurements

Imaging of phantoms, with different concentrations of bevacizumab-800CW and ICG,
was performed with all four laparoscopic NIRF systems. Since 15 dilutions were used,
imaging was performed in two steps by using the phantom of Figure 1a; the highest
eight concentrations were imaged together in Eppendorf tubes, followed by the lowest
seven concentrations. First, standard system settings (brightness, intensity or gain) were
compared to high settings. High settings meant that the brightness, intensity or gain were
maximised. Furthermore, imaging was performed in the different fluorescence modes
when available. Next, working distance between laparoscope and phantom were varied to
represent general working distances in laparoscopic surgery (8.7, 9.6 and 10.4 cm) while
keeping all ROIs in the field of view. Last, visibility and tissue penetration were determined
under optimal conditions per system. Up to three layers of tissue-mimicking hydrogels
(0.8 cm in width each) were stacked to assess tissue penetration.

2.4. Data Analyses

The acquired fluorescence images were independently assessed for visibility by two re-
searchers (DJS and AJS). Visibility of individual Eppendorf tubes was scored as visible or
invisible and disagreement was resolved through discussion or a third researcher (ECJ).
Consensus judgement of visibility was used for analyses since the interobserver agreement
was almost perfect (kappa = 0.88) [41].

Segmentation of images was performed to evaluate the different image properties
by three different parameters; target-to-background (or tumour-to-background, TBR;
Equation (1)), signal-to-noise (SNR; Equation (2)), and contrast-to-noise (CNR; Equation (3))
ratio. The fluorescence signal was expressed in arbitrary units (AU). Regions of interest
were defined as the windows in the CalibrationDisk (Appendix A Figure A1). TBR repre-
sents sensitivity to detect a fluorescent object from background and is frequently reported in
clinical studies [16,23,42,43]. SNR is a measure comparing the signal, and therefore defines
the sensitivity, and may be used to define the applicability of a tracer [43,44]. CNR is a
measure based on contrast instead of the raw signal [44,45] Noise from background may
influence detectability, thus CNR may be more representative in an environment with noise.
System settings and working distance with the highest visibility were selected to assess
the lowest visible concentration and tissue penetration depth. Analyses were performed
with Matlab (2022b, The MathWorks, Portola Valley, CA, USA). No comparative tests were
performed since this study explored the use of laparoscopes with bevacizumab-800CW
instead of directly comparing equipment. Furthermore, photobleaching of IRDye800CW
and ICG during measurements would lead to unfair comparison of laparoscopes [46–51].

TBR = mean signal of ROI/
mean signal of background

(1)
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SNR = mean signal of ROI/standard deviation of signal in non-ROI (background) (2)

CNR = (mean signal of ROI − mean signal in non-ROI
(background))/standard deviation of signal in non-ROI (background)

(3)

3. Results
3.1. Influence of System Settings and NIRF Mode on Visibility

Serial dilutions of bevacizumab-800CW (concentrations ranging from 0.42 to 6800 nM)
and ICG (concentrations ranging from 394 nM to 6460 µM) were used to assessed visibility
with different system settings and NIRF modes, totalling fourteen different scenarios with
four laparoscopes for each fluorophore. Adjustment of brightness did not improve visibility
of bevacizumab-800CW and ICG for the da Vinci Xi and ENDOCAM (Figure 2). All concen-
trations of bevacizumab-800CW were invisible with the standard settings of the VISERA
ELITE II, independent from NIRF mode, while many of the ICG concentrations were visible
with the same setting. However, bevacizumab-800CW was visible after the VISERA ELITE
II system settings were manually adjusted. Likewise, adjusting fluorescence intensity led to
visibility of lower concentrations when using the Rubina. Changing the fluorescence mode
to a monochromatic view led to improvement in visibility of fluorophores for the VISERA
ELITE II and Rubina, but it did not improve visibility of bevacizumab-800CW or ICG for
the ENDOCAM. High system settings and monochromatic view often showed improved
visibility and outcomes analysis.
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3.2. Influence of Working Distance on Visibility 

Figure 2. Visible concentrations of bevacizumab-800CW and ICG with four laparoscopes using vary-
ing system settings and NIRF modes. Adjusting system settings and switching to a monochromatic
NIRF mode generally improved visibility of fluorophores for the VISERA ELITE II and Rubina. For
example, bevacizumab-800CW was not visible with the standard settings of the VISERA ELITE II
while it was visible with high system settings. Note(s): the da Vinci Xi does not have a white light
with NIRF overlay mode.
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3.2. Influence of Working Distance on Visibility

High camera settings and monochromatic NIRF mode were used to assess the influ-
ence of working distance to the phantom (Figure 3). In general, lower concentrations of
bevacizumab-800CW were visible with the Rubina and VISERA ELITE II after the working
distance was reduced to 8.7 cm. However, working distance did not influence visibility
of bevacizumab-800CW and ICG for the ENDOCAM and da Vinci Xi. The smallest work-
ing distance, 8.7 cm, was used for assessment of visibility of concentrations and tissue
penetration of the fluorescent signal.
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Figure 3. Visible concentrations of bevacizumab-800CW and ICG with four laparoscopes using
varying working distances (8.7, 9.6 and 10.4 cm). Working distances were measured from tip of
the laparoscope to the phantom. More concentrations of fluorophores were visible with reduced
working distance using the VISERA ELITE II and Rubina, in accordance with the inverse-square
law. The working distance did not influence visibility for the ENDOCAM and da Vinci Xi. Note(s):
measurements performed with high system settings and monochromatic NIRF mode.

3.3. Visibility of Bevacizumab-800CW

The lowest visible concentrations of bevacizumab-800CW for the da Vinci Xi, ENDO-
CAM, VISERA ELITE II, and Rubina system were 850, 850, 213 and 13 nM (corresponding
to 8, 8, 32 and 512 times diluted stock), respectively. In Figure 4 this is shown in grey.

The TBR, SNR, and CNR of the lowest visible concentration bevacizumab-800CW
were: (1) VISERA ELITE II 2.90, 1.94, 1.27; (2) ENDOCAM 0.86, 2.52, −0.41; (3) Rubina
1.75, 2.53, 1.08; (4) da Vinci Xi 1.44, 1.44, 0.44, respectively (Figure 4). Primarily for the
ENDOCAM and da Vinci Xi, there were invisible concentrations that had comparable or
higher ratios than the last visible concentration.

TBR, SNR, and CNR were higher for the visible ICG concentrations compared to the
bevacizumab-800CW concentrations, especially for the Rubina and da Vinci Xi (Figure 5e–h).
However, the lowest visible concentration of ICG was not found with the serial dilutions
used in this set up as the lowest available concentration of ICG was still visible.
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Figure 4. Visibility of bevacizumab-800CW with four laparoscopes correlated with TBR, SNR,
and CNR. The visible concentrations per laparoscope are displayed in grey. The lowest visible
concentrations of bevacizumab-800CW were 850, 850, 213 and 13 nM (corresponding to 8, 8, 32
and 512 times diluted stock) with the da Vinci Xi, ENDOCAM, VISERA ELITE II and Rubina,
respectively. The TBR, SNR, and CNR decreased until bevacizumab-800CW was not visible anymore.
However, there were higher TBRs/SNRs/CNRs for some invisible concentrations compared to the
last visible concentration of bevacizumab-800CW, especially with the ENDOCAM and da Vinci Xi.
Note(s): measurements performed with high system settings, monochromatic NIRF mode, and 8.7 cm
working distance.
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decreased the SNR and the CNR using the VISERA ELITE II. (c) bevacizumab-800CW using the
ENDOCAM. (d) ICG using the ENDOCAM. Higher ratios were seen using the monochromatic view,
suggesting better visibility using the ENDOCAM. (e) bevacizumab-800CW using the Rubina system.
(f) ICG using the Rubina system. The Rubina barely showed changes in the ratios when changing
the settings. (g) bevacizumab-800CW using the da Vinci Xi. (h) ICG using the da Vinci Xi. When
increasing the system settings in the da Vinci Xi, a slight increase in the ratios was noted. Note:
measurements performed with 8.7 cm working distance.
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The ratios found using the VISERA ELITE II (Figure 5a,b) decrease when imaging ICG
and the settings are changed from standard to high, especially for the SNR and CNR. Both
are influenced by noise which increased with the use of higher settings. Switching to the
monochromatic view of the ENDOCAM resulted in higher ratios compared to the white
light fluorescence overlay mode (Figure 5c,d). In the Rubina system (Figure 5e,f) changing
the system settings did not substantially change the ratios. Looking at the results using
the da Vinci Xi (Figure 5g,h) it is striking to see that the SNR and CNR are higher when
increasing the settings.

3.4. Tissue Penetration of Bevacizumab-800CW and ICG

Visibility of bevacizumab-800CW and ICG decreased with the amount of tissue-
mimicking material (Figure 6). High concentrations (range 0.4–6.8 µM) of bevacizumab-
800CW were visible in all systems with at least 0.8 cm of tissue-mimicking material, except
for the da Vinci Xi. The Rubina and VISERA ELITE II were able to detect 1.7–6.8 µM
bevacizumab-800CW through 1.6 cm of gel. In contrast, ICG could be detected through
a minimum of 1.6 cm of tissue-mimicking material, and Rubina managed to detect ICG
through 2.4 cm of gel. Interestingly, ICG concentration 9 with the VISERA ELITE II, and
concentration 9 and 10 of the ENDOCAM were invisible using two gel layers while earlier
and later concentrations were visible.
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Figure 6. Tissue penetration of bevacizumab-800CW and ICG with four laparoscopes using tissue-
mimicking gel. Bevacizumab-800CW was visible with all laparoscopes through 0.8 cm of gel, except
for the da Vinci Xi (not visible through gel), and the Rubina was able to detect fluorescence through
1.6 cm of gel. By contrast, ICG could be detected through a minimum of 1.6 cm of gel, up to 2.4 cm
with the Rubina. Note(s): measurements performed with high system settings, monochromatic NIRF
mode, and 8.7 cm working distance.

4. Discussion

Image-guided surgery and NIRF could aid surgeons in intra-operative decision-
making. This study explored the use of IRDye800CW, conjugated to bevacizumab, in vitro
with four commercially available NIRF laparoscopic surgical systems intended for use
with ICG. All four laparoscopes were able to detect bevacizumab-800CW in the highest
concentrations, relevant for lymph node metastases detection after local administration,
even though optimal absorption and emission wavelengths of IRDye800CW are different
from ICG [13,38,52]. Depending on the system, bevacizumab-800CW could be detected
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through up to 1.6 cm of tissue-mimicking material. In comparison, ICG was still visi-
ble after the standard solution was >16,000 times diluted and achieved 1.6–2.4 cm tissue
penetration in all systems. In general, a surgeon could reduce the working distance and
adjust system settings (gain, sensitivity or brightness) in order to improve visibility of
bevacizumab-800CW.

In our study, laparoscopes were able to detect bevacizumab-800CW down to a con-
centration of 13–850 nM. In contrast, preclinical and clinical open-air camera systems, can
detect ~0.05–15 nM bevacizumab-800CW in ideal conditions [14]. Visibility of bevacizumab-
800CW with the laparoscopes might be sufficient for clinical use depending on the ap-
plication, since an estimated 6–65,000 nM is required to detect ICG in sentinel lymph
nodes after local injection [53] and IRDye800CW has a similar or higher quantum yield
than ICG [54–56]. In an animal study, locally administered 99mTc-tilmanocept-800CW was
successfully used for sentinel lymph node detection with a laparoscope [36]. Intravenously
administered tumour-targeted tracers in micro-dosages will have a lower percentage of
tracer uptake in metastatic lymph nodes; an estimated 0.3% of the injected dose [53]. In
comparison, colonic adenomas contained an estimated 4.8–6.86 nM bevacizumab-800CW
after 10–25 mg intravenous bevacizumab-800CW which should not be detectable with
the laparoscopes [57]. Thus, the four laparoscopes might be insufficient to detect tumour-
targeted bevacizumab-800CW in metastatic lymph nodes after intravenous injection or
more tracer must be administered. Furthermore, promising results have already been
achieved with tumour-targeted IRDye800CW for the detection of metastatic lymph nodes
with open camera systems [58,59].

There is a wide range of conditions that influence visibility of tracers. For example,
reduced working distance improved visibility in our study like it did in another study
that assessed bevacizumab-800CW with an endoscope (Xenon light source with ICG filters
and Image1S H3-Z FI camera from KARL STORZ) [60], due to the inverse-square law [61].
However, light reflections of tissue also increase with a decreased working distance and
could give false information which may complicate decision making during surgery [60].
In the subjective assessment, ROIs were sometimes white instead of their intended NIRF
green or blue colour (depending on the system) in the white light with overlay images.
White ROIs were not considered to contain fluorescence, since white ROIs were due to
light reflecting from tissue-mimicking gel or from oversaturation which may be caused due
to high system settings. Therefore, some ICG concentrations were intermittently visible
as seen in Figure 6 (VISERA ELITE II and ENDOCAM). Furthermore, ICG would only
become visible after the stock was diluted >16 times. Invisibility of ICG in the highest
concentrations is due to the aggregation of ICG molecules, which results in a substantial
lower absorption wavelength (695 nm) [38] compared to the usual 800 nm absorption
peak of ICG [13]. Quenching might also contribute to invisibility of ICG in >0.5 µg/mL
concentrations [62] (roughly corresponding to 1024 times diluted stock in our study), but
new research contradicts this claim [63].

In this phantom study, tissue penetration of bevacizumab-800CW and ICG was up to
1.6 cm and 1.6–2.4 cm through tissue-mimicking material, respectively. In earlier phantom
studies, ICG could be detected through 3.6 mm of beeswax (optimal concentration after
200–2500 times diluted) [64], 6 mm of prostate-mimicking phantom (optimal concentration
after 2000 times diluted) [65], and 2 cm of breast tissue-mimicking material [40]. Thus,
fluorescence penetration varies in different tissues or phantoms due to optical properties,
in addition to working distance and imaging properties [14]. Human or animal mesocolon
could have been used for in vitro recreation of colon cancer sentinel lymph node detection.
However, problems arose with the use of pig mesocolon as the tissue was heterogeneous
and had an unstable shape, which hinders testing multiple surgical systems over multiple
hours. The tissue-mimicking material used in this phantom study was homogenous and
had similar optical absorption properties to human fat, thus allowing optimal compari-
son of multiple systems with the use of a calibration device [40]. Radioactive tracers are
capable of achieving deeper tissue penetration compared to NIRF tracers. Utilisation of
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hybrid radioactive and NIRF targeted tracers, such as 99mTc-tilmanocept-800CW [36] and
99mTc-ICG [66–68], would enable surgeons to benefit from the deeper tissue penetration
of radioactive tracers for targeting lesions located further away while also allowing for
more precise localisation of lesions in close range using NIRF. Future incorporation of
augmented reality based on preoperative imaging presents another potential application
for these hybrid tracers [69].

The lowest visible concentrations bevacizumab-800CW had a TBR ranging from
0.86 to 2.90, a SNR of 1.44 to 2.53, and a CNR of −0.41 to 1.27. Literature suggests
that a TBR > 1.5 might be sufficient to discriminate fluorescent lesions and reduce false
negatives in ideal situations. However, often a TBR > 2 is pursued for fluorescence-
guided surgery and decision-making, and the TBR is also dependent on where it is
measured [70]. For example, in vivo TBR would probably result in lower TBRs compared
to ex vivo or in vitro measurements [70]. CNR might be more representative in an
environment with noise and a CNR < 0 means less signal than noise, meaning that
the ROI is not distinguishable from the background noise [44]. However, clear cut-off
values for the ratios are not defined in the literature. Although visibility is a subjective
parameter, this study showed a near-perfect interobserver agreement and its subsequent
clinical applicability. Furthermore, objective image quality (described by SNR and
CNR) did not always correspond to the subjective clinical visibility score. Some of
the lowest visible concentrations were judged as visible but had a CNR < 0 and a TBR
< 1. This could be due to multiple reasons. First, in the lowest visible samples the
fluorescence signal was scarcely visible within the ROI, while the larger part of the
remaining ROI was dark. This reduces the mean value of the ROI compared to the
background leading to a negative CNR and low TBR. Second, the conversion of colour
images to a grey scale, for segmentation purposes, may have decreased contrast. Two
images, one acquired in monochromatic mode and one in coloured NIRF overlay mode,
would result in different TBR/SNR/CNR after this segmentation process, but would
have identical (subjective) visibility. Last, disagreement between objective and subjective
assessment was seen in invisible concentrations that had a higher TBR/SNR/CNR than
the last visible concentration, predominantly occurring with the ENDOCAM and da
Vinci Xi. This might be explained by the automatic gain that is automatically applied to
dark images in which no (or very little) fluorescence is detected. Often the second set
of bevacizumab-800CW serial dilutions (with the lowest seven concentrations) in the
phantom were predominantly invisible. Therefore, the second set of images were darker
compared to first set of eight concentrations and more automatic gain would be applied.

Strengths and Limitations

To our knowledge, this is the first study looking into the use of commercially avail-
able laparoscopes of key market players and the use of a tumour-targeted tracer without
modification of hardware or software. For this study, IRDye800CW conjugated to only
bevacizumab was used as a tumour-targeted tracer. However, we hypothesise that other
antibodies conjugated to IRDye800CW will have similar results, since the same NHS ester
group is used for conjugation. Furthermore, absorption and emission wavelengths of
IRDye800CW and hybrid targeted IRDye800CW tracers (e.g., 111In-DTPA-trastuzumab-
800CW and 68Ga-tilmanocept-800CW) were comparable [71,72], unlike free ICG and ICG
bound to albumin [38]. However, antibody-bound IRDye800CW or other tumour-targeted
tracers are currently not yet approved by the FDA or EMA for application in general
surgery. Nevertheless, the market for fluorescence-guided surgery is growing which
might stimulate development of laparoscopic NIRF systems for tumour-targeted trac-
ers [14]. A high sensitivity of laparoscopic NIRF systems for a tracer is one of the six key
features described by Dsouza et al. and is especially important for tracers in micro-
dosages [14]. However, micro-dosages of tumour-targeted bevacizumab-800CW have
already been used for a broad range of indications with (experimental) open-air and en-
doscopic systems [18,19,21,24,57,59,73–76]. Thus, translation to optimised laparoscopes
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should be achievable. In addition, the intended use for the laparoscopes, except the Olym-
pus (Appendix A Table A2), already allows the use of fluorescence imaging for other
fluorophores than ICG (e.g., IRDye800CW).

The different dilutions used, were too many to image all at once using the Calibra-
tionDisk. Therefore, the highest eight concentrations and the lowest seven concentrations
were imaged separately. This may have resulted in an unexpected intensity increase or
decrease at the middle dilutions due to automatic adjustment of the images by some of the
systems as also earlier described to cause an objective and subjective disagreement. Ideally
a control dilution, used in both images, should have been used or all the used dilutions
should have fitted in the CalibrationDisk.

Furthermore, the Rubina and da Vinci Xi laparoscopes had 30◦ optics while the other
two laparoscopes were 0◦. Ideally, only 0◦ optics would have been used, but the Rubina
and da Vinci Xi 0◦ optics were unavailable at the time of the experiments. Measurements
of the Rubina and da Vinci Xi were not postponed to keep all other variables constant.
Nonetheless, the central viewing axis and working distances were kept constant between
the different degree optics as these variables influence fluorescence intensity [64]. Further-
more, we do not expect the degrees of the optics to influence results as evident from a prior
study [60]. However, we did not control for photobleaching of bevacizumab-800CW and
ICG as we used the same samples for every laparoscope. Fluorescence intensity can halve
after 30 min of near-infrared exposure [49]. Therefore, no conclusions can be drawn about
which laparoscope is most sensitive to the fluorophores and future studies may want to
control for photobleaching [40]. However, this study does suggest there are differences
between usability of laparoscopes due to the wide range of the lowest visible concentration
bevacizumab-800CW (13–850 nM). Consequently, surgeons should be aware that studies
with fluorescent tracers (i.e., IRDye800CW and ICG) cannot directly be extrapolated to
other laparoscopes or fluorescence imaging systems. Above all, each system has its own
negative and positive properties and users should be aware of those properties when
choosing a laparoscope for fluorescence imaging. Until there is a clear standardisation
protocol for fluorescence imaging it will remain difficult to compare the sensitivity of
different systems [77].

5. Conclusions

IRDye800CW, conjugated to bevacizumab, was visible with four commercially avail-
able laparoscopic surgical systems optimised for ICG with the lowest visible concentrations
being 13–850 nM (equal to 8–512 times diluted stock). Tissue penetration of bevacizumab-
800CW was up to 1.6 cm. In contrast, ICG was still visible after >16,000 times dilution
and achieved tissue-penetration up to 2.4 cm. Depending on the application, visibility of
bevacizumab-800CW might be sufficient for clinical use with current NIRF laparoscopes,
but optimisation of sensitivity for IRDye800CW would widen the indication of tumour-
targeted tracers in laparoscopic surgery. More future studies should focus on standardised
testing of laparoscopes and their capabilities for detecting (new) NIRF tracers.
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Appendix A

Table A1. Concentration and dilution of two fluorophores: bevacizumab-800CW and ICG.

Sample Dilution from the
Standard Stock

Bevacizumab-800CW ICG
mg/mL Molar Concentration (M) mg/mL Molar Concentration (M)

1 Standard 1.00 6.80 × 10−3 5.00 6.46
2 2 0.50 3.40 × 10−3 2.50 3.23
3 4 0.25 1.70 × 10−3 1.25 1.61
4 8 1.25 × 10−1 8.50 × 10−4 6.25 × 10−1 8.07 × 10−1

5 16 6.25 × 10−2 4.25 × 10−4 3.13 × 10−1 4.04 × 10−1

6 32 3.13 × 10−2 2.13 × 10−4 1.56 × 10−1 2.02 × 10−1

7 64 1.56 × 10−2 1.06 × 10−4 7.81 × 10−2 1.01 × 10−1

8 128 7.81 × 10−3 5.31 × 10−5 3.91 × 10−2 5.05 × 10−2

9 256 3.91 × 10−3 2.66 × 10−5 1.95 × 10−2 2.52 × 10−2

10 512 1.95 × 10−3 1.33 × 10−5 9.77 × 10−3 1.26 × 10−2

11 1024 9.77 × 10−4 6.64 × 10−6 4.88 × 10−3 6.31 × 10−3

12 2048 4.88 × 10−4 3.32 × 10−6 2.44 × 10−3 3.15 × 10−3

13 4096 2.44 × 10−4 1.66 × 10−6 1.22 × 10−3 1.58 × 10−3

14 8192 1.22 × 10−4 8.30 × 10−7 6.10 × 10−4 7.89 × 10−4

15 16,384 6.10 × 10−5 4.15 × 10−7 3.05 × 10−4 3.94 × 10−4

The standard stock solutions of bevacizumab-800CW and ICG were 1:1 serially diluted until the last sample was
diluted 16,384 times. The molar concentration of the ICG stock is 950 times higher than the molar concentration of
the bevacizumab-800CW stock. Therefore, the molar concentration of the first five samples of bevacizumab-800CW
correspond approximately with the last five samples of ICG (highlighted in grey).
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Table A2. Description of laparoscopic near-infrared fluorescence systems, system components, and indication for use of fluorescence.

Laparoscope
Manufacturer

VISERA ELITE II
Olympus

ENDOCAM Logic 4k
Richard Wolf

IMAGE1 S™ 4U Rubina
KARL STORZ da Vinci XiIntuitive Surgical

Short name VISERA ELITE II ENDOCAM Rubina da Vinci Xi
NIRF excitation source, power Xenon, 300W [78] LED, 15W LED, undisclosed Laser, undisclosed

Excitation wavelength Undisclosed 760–810 nm Undisclosed 802–805 nm [79]
NIRF emission filter Undisclosed Undisclosed Undisclosed Undisclosed

System settings No automatic gain.
Manual intensity control

Automatic gain.
Manual brightness control.

No automatic gain.
Intensity manually adjustable

Automatic gain.
Manual brightness control.

Fluorescence view mode(s)

1. “Standard mode”:
White light with green overlay

2. “Infrared enhancement mode”:
Monochromatic with blue overlay

(6 field)

1. “greenICG mode”:
White light with green overlay

2. “greenICG pure
mode”:Monochromatic with

green overlay

1. White light with
green/blue overlay
2. Monochromatic

3. Intensity map (not used in
this study)

1. “Firefly”:
Monochromatic with green overlay

System components

Camera head OLYMPUS CH-S200-XZ-EA
(N5766550)

LOGIC HD
CAMERA HEAD GREEN

(85525812)

IMAGE1 S 4U Rubina, Opal1
NIR/ICG camera head (TH121)

Standard da Vinci Xi set-up
(not the Endoscope Plus)Light source CLV-S200-IR

(N5427050)
Light source LED green
ENDOLIGHT (5165002)

Power LED RUBINA, OPAL1
NIR/ICG (TL400)

Optic WAIR100A
(W8IR100A)

TELESCOPES
0◦ Ø 10 MM (8934461) TIPCAM1 RUBINA (26003BRA)

Video processor OLYMPUS OTV-S200
(N5426850)

LOGIC 4K
CAMERA CONTROLLER

(5525301)
IMAGE1 S CONNECT II (TC201EN)

Cable WA03310A
(WA03310A)

FIBER LIGHT CABLE Ø 5 MM
(806550231)

Fiber Optic Light Cable, 300 cm,
4.8 mm
(495TIP)

Other Not applicable Not applicable IMAGE1 S 4U-LINK
(TC304)
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Table A2. Cont.

Laparoscope
Manufacturer

VISERA ELITE II
Olympus

ENDOCAM Logic 4k
Richard Wolf

IMAGE1 S™ 4U Rubina
KARL STORZ da Vinci XiIntuitive Surgical

Indications and field of use for
fluorescence

Indication
An IR telescope is designed for
fluorescence imaging in the near
infrared range using indocyanine
green (ICG) as dye. A
filterexclusively designed for ICG is
built into the telescope. Light of
suitable wavelength passes through
the filter and enhances visualization
on compatible imaging systems.

Indication
The products are used for the
following indications in various
medical disciplines:

• Endoscopic operations
• Visualization of the visceral

blood flow
• Lymph Node Mapping

The products are used for
fluorescence cholangiography,
especially in laparoscopy.
Contra-indication
For fluorescence endoscopy (this
relates to the indications of visceral
blood flow, lymph node mapping
and fluorescence cholangiography)
please follow the specifications of
the fluorescence dye manufacturer.

Indication
NIR/ICG fluorescent light sources
are intended for generating light in
endoscopic and microscopic
diagnostic examinations and in
surgical procedures.
Intended use
For fluorescence endoscopy (this
relates to the indications of visceral
blood flow, lymph node mapping
and fluorescence cholangiography)
please follow the specifications of
the fluorescence dye manufacturer.
Contra-indication
For fluorescence endoscopy (this
relates to the indications of visceral
blood flow, lymph node mapping
and fluorescence cholangiography)
please follow the specifications of
the fluorescence dye manufacturer.

Indications for use [79]
Upon intravenous administration
and use of an ICG drug product
consistent with its approved label,
the da Vinci Fluorescence Imaging
Vision System and the da Vinci
Firefly Imaging System are intended
to provide real-time endoscopic
visible and near-infrared
fluorescence imaging. The da Vinci
Fluorescence Imaging Vision System
and the da Vinci Firefly Imaging
System enable surgeons to perform
minimally invasive surgery using
standard endoscopic visible light as
well as visual assessment of vessels,
blood flow and related tissue
perfusion, and at least one of the
major extrahepatic bile ducts (cystic
duct, common bile duct or common
hepatic duct), using near
infrared imaging.
Fluorescence imaging of biliary
ducts with the da Vinci Fluorescence
Imaging Vision System and da Vinci
Firefly Imaging System are intended
for use with standard of care white
light and, when indicated,
intraoperative cholangiography.
The device is not intended for
standalone use for biliary
duct visualization.
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Table A2. Cont.

Laparoscope
Manufacturer

VISERA ELITE II
Olympus

ENDOCAM Logic 4k
Richard Wolf

IMAGE1 S™ 4U Rubina
KARL STORZ da Vinci XiIntuitive Surgical

Upon interstitial administration and
use of an ICG drug product
consistent with its approved label,
the da Vinci Fluorescence Imaging
Vision System and the da Vinci
Firefly Imaging System is used to
perform intraoperative fluorescence
imaging and visualization of the
lymphatic system, including
lymphatic vessels and lymph nodes.
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Figure A1. CalibrationDisk with regions of interest and background highlighted. The CalibrationDisk
for near-infrared fluorescence calibration with eight transparent Eppendorf tubes. Regions of interest
(ROIs), defined as the windows in the CalibrationDisk of one sample, are displayed in green. Back-
ground was defined as the surface of the CalibrationDisk around the ROIs, displayed in red. The
caps of Eppendorf tubes could show fluorescence, however, this was not considered as visible or an
ROI. ROIs and background were used to calculate target-to-background (TBR), signal-to-noise (SNR),
and contrast-to-noise (CNR).
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