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Abstract

Imaging of brain glucose metabolism with 18F-2-fluoro-2-deoxy-d-glucose posi-
tron emission tomography (18F-FDG PET) can give important information 
regarding disease-related changes in underlying neuronal systems, when com-
bined with appropriate analytical methods. One such method is the scaled sub-
profile model combined with principal component analysis (SSM PCA). This 
model takes into account the relationships (covariance) between voxels to iden-
tify disease-related patterns. By quantifying disease-related pattern expression 
on a scan-by-scan basis, this technique allows objective assessment of disease 
activity in individual subjects. This chapter provides an overview of steps 
involved in pattern identification in 18F-FDG PET data and is divided into three 
sections. Section 1 introduces basic concepts in nuclear imaging and explores the 
cellular underpinnings of signals measured with 18F-FDG PET.  Section 2 
describes relevant basic concepts in 18F-FDG PET image analysis including ana-
tomical registration, normalization, and analysis of variance and covariance. 
Section 3 is dedicated to SSM PCA specifically. The goal of this chapter is to 
make the technique more accessible to readers without a mathematics or neuro-
imaging background. Although many excellent texts on this topic exist, the 
current chapter aims to provide a more conceptual overview, including some 
discussion points that are not always formally described in literature.

4.1	 �18F-FDG PET Imaging

4.1.1	 �Basic Concepts in PET

Positron emission tomography (PET) allows measurement of the local tissue accu-
mulations of injected radioactive tracers. The type of tracer that is used depends 
on the focus of the PET study. For instance, tracers can bind to specific receptor 
sites, allowing quantification of the distribution of a receptor in a tissue. Tracers can 
also be metabolically active compounds and allow measurement of the activity of a 
particular enzyme or biochemical pathway. Tracers are “tagged” with a radioactive 
atom. Radioactive decay of this atom is central to PET technology. A simplified 
explanation of radioactive decay necessary to understand PET technology is pro-
vided in the next paragraphs.

Atoms consist of protons, neutrons, and electrons. Protons and neutrons can be 
found in the nucleus, whereas electrons orbit around the nucleus. Protons have a 
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positive charge, and electrons are negatively charged. The number of protons deter-
mines to what chemical element the atom belongs. Elements can have multiple 
isotopes. Isotopes of an element have the same number of protons in their nucleus, 
but a variable number of neutrons. In order for a nucleus to be stable, a certain bal-
ance is needed between protons and neutrons in the nucleus. Most naturally occur-
ring isotopes have stable nuclei. Isotopes of an element with an unstable nucleus 
are referred to as radioisotopes. These isotopes will spontaneously emit particles or 
photons (or both) from its nucleus in order to regain stability. In this process, mass 
is converted into energy. This is called radioactive decay.

Different modes of radioactive decay exist. PET is designed to measure positron 
emission. In radioactive decay by positron emission, a proton in the nucleus is trans-
formed into a neutron and a positron. A positron is the antiparticle of an electron (i.e., 
a positively charged electron, also called a β+ particle). When a positron is emitted, 
it travels a distance before it annihilates with an electron (a β− particle) from the 
surrounding matter. The annihilation of the masses of the two β particles results in 
the conversion and emission of two gamma (γ) rays. Gamma rays consist of high-
energy photons. In the case of positron emission and annihilation, each γ-ray con-
tains 511 keV in energy. These two γ-rays always originate simultaneously and are 
emitted in opposite directions. They form a so-called back-to-back pair (Fig. 4.1a).
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Fig. 4.1  Schematic of an annihilation event in positron emission (a) and its detection (b). (a)The 
positron travels a short distance before it loses its kinetic energy and then annihilates with an elec-
tron (β−) from the surrounding matter. The mass of the two particles is converted into two opposing 
photon beams (γ-rays), traveling at approximately 180○ from each other with an energy of 511 keV 
each. (b) In a PET camera, a ring of detectors is placed around the patient. Opposing detectors, 
connected via a coincidence circuit, record annihilation photons only when they arrive simultane-
ously. The origin of the annihilation event is inferred along the line of response (LOR)
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A PET camera consists of a large number of small scintillation detectors posi-
tioned on a ring around the patient. Scintillation detectors use inorganic crystals that 
absorb γ-rays and then fluoresce. The γ-rays are converted into visible light by the 
crystal. The light signal is multiplied and transformed into an electric current. The 
strength of this current is proportional to the intensity of the light from the crystal 
and thus to the energy of the γ-ray that was detected.

A PET camera can determine the origin of the detected γ-ray in the tissue of the 
patient, by using the principle of γ-ray pairs. If one γ-ray is detected by a crystal, 
then its twin must be detected by the opposite crystal within a certain time win-
dow (a few nanoseconds). Such an event is called a coincidence event. Opposing 
crystals are linked via coincidence circuits. From a coincidence event, the origin of 
the annihilation can be inferred along a “line of response” (LOR) running between 
the two detectors (Fig. 4.1b). Modern electronics permit measurement of the time 
interval between detection of the first and the second photon of the same photon 
pair. This means that the origin of the photon pairs (the point of annihilation) can 
be pinpointed to a part of the LOR, close to the true event (Karp et al. 2008; Surti 
and Karp 2016). PET data thus consists of many back-to-back photon pairs, con-
nected with LORs through the patient, from which the locations of the multiple 
annihilations are estimated. Because the detector system is a stationary ring that 
completely surrounds the patients, it is possible to acquire data from many differ-
ent angular views (projections) simultaneously. From these multiple projections of 
the detected emissions, images can be reconstructed using mathematical algorithms 
(Cherry et al. 2012). In the final 3D PET image, each pixel (or voxel) has a value 
which reflects the number of coincidence events (“counts”) that belong to that par-
ticular coordinate. Thus, the more radioactive decay in a certain part of the tissue, 
the higher the counts for the corresponding pixel in the image.

The spatial resolution of PET depends on its accuracy and precision in pinpoint-
ing the exact location of annihilation events. Even with sophisticated computerized 
techniques, the reconstructed location of the annihilation event is not exact. Current 
state-of-the-art PET systems have a maximum resolution of just under 3 mm. This 
limitation is inherent to physical properties of PET. First, the PET system assumes 
γ-rays pairs to be emitted at a 180○ angle, but this is not always the case. Second, 
after emission, the positron travels a short distance (a few millimeters (Phelps et al. 
1975)) before it annihilates with an electron.

Some commonly used PET tracers in neurology and their half-lives are listed 
in Table 4.1. Fluorine-18 (18F) is the most commonly used radioisotope in clinical 

Table 4.1  Commonly used isotopes in PET

Isotope Half-life (min) Product Examples of tracers
11C 20.38 11B 11C-methionine: amino-acid transport

11C-raclopride: dopamine receptors
15O 2.03 15N 15O-water: perfusion

15O-oxygen: oxygen utilization
18F 109.8 18O 18F-FDG: glucose utilization

18F-Fdopa: activity of aromatic amino-acid decarboxylase
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practice. It is produced in a particle accelerator (cyclotron). An important advantage 
of 18F is its relatively long half-life, which facilitates regional production of 18F 
tracers and distribution to other hospitals. The main application of 18F is labeling of 
fluorodeoxyglucose (FDG), which provides a measure of glucose utilization in the 
cells of the body. 18F-FDG is the most widely used positron-emitting radiopharma-
ceutical with a wide range of clinical applications.

4.1.2	 �18F-FDG PET Imaging

The tracer 18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) is an analogue of glucose. In 
normal conditions, glucose is the predominant metabolic substrate for brain tissue, 
and the brain’s oxygen consumption is almost entirely for the oxidative metabolism 
of glucose (Fox et al. 1988). The brain holds minimal glycogen stores, and therefore, 
a permanent supply of glucose via the blood is necessary. Glucose is transported 
through the blood-brain barrier via GLUT transporters. Once in the cell, glucose 
undergoes numerous transformations to end up in three main metabolic pathways. 
The goal of each of these pathways is to create energy (in the form of ATP) for 
cells to function. The first step for any of these pathways is the phosphorylation of 
glucose into glucose-6-phosphate, a reaction catalyzed by the enzyme hexokinase. 
Hexokinase is the rate-controlling enzyme for all of the subsequent pathways. The 
enzymatic rate of this first step is equivalent to measuring the glucose utilization 
rate (Fig. 4.2a).

It has been attempted to quantify regional glucose metabolism with 14C-glucose, 
but the many transformations and pathways for radioactively labeled glucose to 
enter are complex, leading to many different metabolites. Moreover, 14C-glucose 
is very rapidly converted to CO2 and H2O, and CO2 is too rapidly cleared from the 
cerebral tissue to allow measurement (Raichle et al. 1975; Sacks 1957). In the 1970s, 
this problem was solved by Sokoloff and colleagues, who applied a deoxyglucose 
analogue, 2-deoxy-d-glucose (2-DG), labeled with 14C (Sokoloff et al. 1977). The 
deoxy variant of glucose is phosphorylated by hexokinase, at a definable rate relative 
to that of glucose. However, unlike glucose-6-phosphate, 14C-2-DG-6-phosphate is 
not metabolized further and is essentially trapped in the tissue, allowing quantifica-
tion of hexokinase. Therefore, regional deoxyglucose uptake measured with PET 
reflects the first step of the glucose metabolic pathway. Reivich et al. were the first 
to measure cerebral glucose metabolism with the deoxyglucose method in humans 
(Reivich et  al. 1979). Instead of 14C, 18F was used as the radioisotope. 18F-FDG 
behaves similarly as 14C-DG and glucose (because fluorine behaves biochemically 
like hydrogen) and can measure glucose utilization accurately and reliably.

The kinetics of accumulation of 18F-FDG-6-PO4 can be described with a three-
compartment model (Reivich et al. 1979). A description of tracer kinetic model-
ing is beyond the scope of this chapter and can be found elsewhere (Heiss 2014). 
In brief, after intravenous administration of 18F-FDG, the regional cerebral meta-
bolic rate of glucose (CMRglc) can be determined using the 18F concentration in 
the tissue (measured with PET), the concentration of 18F-FDG in the arterial plasma 
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(time-activity curve of blood tracer concentration), and the concentration of glucose 
in the plasma. In this situation, multiple sequential PET images are obtained (i.e., 
a dynamic protocol). When performed in this manner, PET provides absolute mea-
sures of regional CMRglc (i.e., in physiological units).

Thus, for a fully quantitative determination of absolute regional glucose utiliza-
tion, arterial blood sampling is required, which is an invasive and time-consuming 
procedure. Already early on it was recognized that “raw counts” data could be ana-
lyzed instead of physiological units, obviating the need for arterial blood sampling 
(Fox et al. 1984). In current clinical practice and most experimental designs, arterial 
blood sampling is not strictly necessary, because the relative regional distribution of 
18F-FDG (raw counts) can be visually assessed and/or statistically analyzed.

In a clinical setting, 18F-FDG is injected intravenously, and patients subsequently 
rest in a quiet, dimly lit room for 30–45 min, at which time metabolic equilibrium is 
reached. Next, a single static image with a frame duration of 5–15 min is acquired, 
and a low-dose CT scan is performed for attenuation correction. The corrected, 
reconstructed 18F-FDG PET images are visually assessed by an expert reader in 
the context of the available clinical information. When performed according to the 

a b

Fig. 4.2  (a) Schematic of the behavior of glucose and 18F-FDG in brain tissue. Glucose and 18F-
FDG are similarly transported over the blood-brain barrier (BBB) and are both metabolites for the 
enzyme hexokinase. FDG-6-phosphate (18F-FDG-6-PO4) is trapped in the brain tissue, whereas 
glucose-6-phosphate (G-6-PO4) can be metabolized further and has many metabolites. The dashed 
arrow represents the activity of glucose-6-phosphatase (G-6-P), which catalyzes the hydrolysis of 
G-6-PO4 and 18F-FDG-6-PO4 back to glucose, and 18F-FDG, respectively. This is a slow process 
(Sokoloff et  al. 1977). (Adapted from (Heiss 2014) with permission from Springer Verlag 
Heidelberg). (b) Visual representation of an 18F-FDG PET study of a 65-year-old healthy individ-
ual. The participant fasted for at least 6 h before the investigation. 18F-FDG PET imaging was 
performed in a 3D mode using a Siemens Biograph mCT-64 PET/CT system. A 6 min static frame 
was acquired starting 30 min after the injection of 205 MBq 18F-FDG in 4 mL saline. 18F-FDG 
uptake and image acquisition were performed in the resting state with eyes closed in a dimly lit 
room with minimal auditory stimulation. The image was iteratively reconstructed with OSEM 3D, 
including point spread function and time-of-flight modeling (3 iterations/21 subsets, matrix 400), 
and smoothed with a Gaussian 2 mm full-width at half-maximum filter. Voxel size is 2 mm. Scatter 
and attenuation corrections were applied based on the acquired low-dose CT
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guidelines, 18F-FDG PET imaging in a clinical setting is easy, reliable, and accu-
rate (Varrone et al. 2009). 18F-FDG PET has an established role for a number of 
diagnostic indications in neurology, one of which is the differential diagnosis of 
neurodegenerative brain diseases.

An example of an 18F-FDG PET image of a healthy control participant is given 
in Fig. 4.2b. Resting-state 18F-FDG uptake is much higher in gray matter compared 
with white matter. In healthy controls, 18F-FDG uptake is typically highest in the 
basal ganglia, primary visual cortex, cingulate cortex, and frontal cortex, with 
lower values in other cortical and subcortical areas, brain stem, and cerebellum 
(Heiss 2014).

4.1.3	 �Studying Brain Function with 18F-FDG PET

The goal of neuroimaging is to understand how the brain functions under different 
circumstances and conditions, including disease. In the past decade, the focus of 
neuroimaging studies has converged on the study of brain networks (Friston 2011). 
Networks encompass connections between neurons and can be described in terms 
of structure and function. Structure dictates which neurons are connected. Function 
is dynamic, and this term is used to describe neuronal activity that assembles on the 
backbone of a relatively fixed anatomical structure (Buzsaki et al. 2013). A synapse 
may be present between two neurons, but the connection may be used to different 
degrees depending on the situation (Fornito et al. 2016). The main principle of func-
tional neuroimaging techniques is that localized changes in neuronal activity can be 
mapped by measuring changes in energy metabolism or hemodynamics, which are 
thought to reflect the underlying cellular events.

Brain activity is determined by signaling between neurons. Neural signaling is 
achieved with the generation and propagation of action potentials across synapses. 
Energy metabolism (glucose metabolism) increases almost linearly with the fre-
quency of action potentials (Kadekaro et  al. 1985). Action potentials themselves 
do not require energy, as they are passive electrical consequences of K+ and Na+ 
fluxes across the cell membrane upon depolarization. Restoring ionic gradients 
and resting membrane potentials in the cell after an action potential does require 
energy. In primates, the major energetic burden is located at the nerve terminals 
from the postsynaptic neuron (the neuropil) (Sokoloff 1993). This is because there 
are a large number of synapses per neuron, and during signaling, postsynaptic pas-
sive Na+ influx acts as an amplifier of the initial signal. Reversing ion fluxes after 
postsynaptic currents has been estimated to cost 74% of the energy used in signal-
ing (Attwell and Laughlin 2001). Of note, energy metabolism in the postsynaptic 
neuron increases with both excitatory (glutamatergic) and inhibitory (GABA-ergic) 
signaling (Buzsaki et al. 2007; Jueptner and Weiller 1995). The only way to deter-
mine which has occurred is to look downstream at the next synapses in the projec-
tion zones of those neurons (Sokoloff 1993).

To sustain brain activity, neurons continuously require energy in the form of 
adenosine triphosphate (ATP). Under normal physiological conditions, generation 
of ATP is supported almost exclusively by the oxidative (i.e., aerobic) metabolism 
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of glucose. Only around 10% of ATP is generated by anaerobic metabolism through 
glycolysis (Vaishnavi et al. 2010). The products of glycolysis, such as lactate, can 
subsequently be metabolized further using oxygen. Astroglia are thought to play 
an important role in the latter process, in which lactate is also exchanged between 
neurons and glia cells (Magistretti and Allaman 2015).

Glucose and oxygen supplies are maintained by an adequate regulation of cere-
bral blood flow (CBF). The relationship of the cerebral metabolic rate of glucose 
(CMRglc), the cerebral metabolic rate of oxygen (CMRO2), and cerebral blood flow 
(CBF) to the underlying cellular events is complex and still not completely under-
stood. Counter-intuitively, CBF increases do not simply serve to adjust glucose and 
oxygen delivery to the variable energy demands of neuronal tissue. Activation stud-
ies have shown that in response to a task (i.e., an increase in neuronal activity), CBF 
and CMRglc increase together, but far exceed CMRO2 (Fox and Raichle 1986; Fox 
et al. 1988). Several models have been used to explain the cellular underpinnings 
of neurovascular coupling and uncoupling (Lin et  al. 2008; Lin et  al. 2009; Lin 
et al. 2010).

An important advantage of measuring CMRglc is that it provides a direct, physi-
ologically specific signal that can be quantified. This was elegantly demonstrated 
by several early autoradiography studies with 14C-deoxyglucose (Sokoloff 1993). 
For example, in rats, retinal stimulation with flashes of light of a known, calibrated 
intensity resulted in proportional increases in local CMRglc in the primary projec-
tion areas from the retina, whereas local CMRglc remained unchanged in structures 
that did not receive direct projections from the retina (Batipps et al. 1981).18F-FDG 
PET measurements are indicative of a steady state of neuronal activity during the 
uptake and scanning interval.

Relative to other tissues, the brain’s energy demand is high in the resting state 
and during sleep and increases with only a fraction of its baseline metabolism with 
activity. In the resting state, most of this energy is also devoted to neuronal signaling 
(i.e., synaptic function) (Sibson et al. 1998). In activation (or task-based) studies, 
local changes in 18F-FDG uptake in response to a task are studied to localize brain 
functions. Studies in which subjects are in a resting state, which means there is 
no specific sensory stimulation and patients are not engaged in any behavioral or 
physical task, can give information about time-invariant aspects of brain function. 
Several neuroimaging and electroencephalography (EEG) studies have shown that 
spontaneous neuronal activity is highly organized at rest and that several conditions 
(including disease) can alter resting-state neuronal activity.

4.2	 �Analysis of Resting-State 18F-FDG PET Images

4.2.1	 �Image Registration

Voxel-wise image analyses usually start with the registration of each image to stan-
dard space. This is because this type of analysis of brain images is hampered by the 
differences in brain morphology between subjects. In image registration, the brain 
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images of subjects are translated to another image (usually a template), such that 
voxels/regions can be compared between subjects. Image registration entails the 
estimation of the optimal spatial transformation between two images. 18F-FDG PET 
images are often directly registered to a template such that all the images are in the 
same space. An example of 18F-FDG PET image registration is given in Fig. 4.3. A 
more detailed explanation of image registration can be found elsewhere (Herholz 
et al. 2004).

4.2.2	 �Normalization

By adhering to strict scanning protocols, it is attempted to minimize the differences 
between each scanning session (Varrone et al. 2009). By image registration, mor-
phological differences are accounted for. However, considerable inter-individual 

Fig. 4.3  Example of two healthy controls showing the reconstructed 18F-FDG PET image, and the 
images after registration to an 18F-FDG PET specific template in standard space (Della Rosa 
et al. 2014)
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differences in 18F-FDG uptake remain present. This is because there may be slight 
differences in the dose of 18F-FDG injected, or due to baseline metabolic differences 
between people (even after fasting). This is apparent in Fig. 4.4a, which shows the 
average brain FDG uptake for three healthy controls, scanned with identical proto-
cols. These large inter-individual differences will obscure underlying task-evoked 
or disease-dependent patterns of altered metabolism.

This can be solved with tracer kinetic modeling, which transforms count data 
into physiological units using information from arterial blood sampling. However, as 
stated previously, this entails an invasive, time-consuming procedure. A solution is 
normalizing the raw count data to a reference value. It should be noted that any 18F-
FDG PET study that does not apply arterial blood sampling cannot study absolute 
differences of 18F-FDG uptake, but can only make inferences on relative differences.

Several approaches are used to normalize raw count data. Some researchers 
choose a reference region which is thought to be unaffected by the disease process. 
The average 18F-FDG uptake in that region is measured, and all voxel values in each 
image are subsequently divided by this value (Borghammer et al. 2008). An impor-
tant limitation of this approach is that it requires a priori assumptions. For example, in 
the study of Parkinson’s disease, some authors have chosen the cerebellum as a refer-
ence region, whereas it is now known that the cerebellum plays an important part in 
parkinsonism (Bostan et al. 2013; Rodriguez-Oroz et al. 2009). For 18F-FDG studies 
which study brain-wide metabolism, choosing a reference region may therefore be 
problematic. Still, in other radiotracer studies, a reference region can be very useful.

A frequently used alternative is to ratio-normalize each voxel value to the sub-
ject’s average whole-brain uptake (usually within a gray matter mask), which is 

a b c

Fig. 4.4  Two types of normalization. Raw voxel values (i.e., raw count data) (a); ratio-normalized 
voxel values (b); and voxel values normalized according to the SSM (c) are depicted for five dif-
ferent coordinates in three healthy controls (S1, S2, and S3). The average voxel value was calculated 
for each subject, by taking all voxels in the image within a gray matter mask. This average voxel 
value is indicated for each subject in (a) with the dashed line (μS1, μS2, and μS3). In (b) each voxel 
value was divided by the corresponding subject average. This results in voxel values centered 
around 1 for each subject. In (c) voxel values within the same mask were log-transformed, and 
subsequently the log mean was subtracted from the data. This results in voxel values centered 
around zero for each coordinate and each subject. In (a and b), data is non-negative. In (c), negative 
values are present
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referred to as global mean normalization (Fig. 4.4b). An equivalent approach is the 
scaled subprofile model (SSM), in which the data is first log-transformed, and sub-
sequently the log mean is subtracted (Fig. 4.4c). The appendix provides additional 
details on these two methods and the associated issues.

4.2.3	 �Analysis of Variance and Covariance

After applying some type of normalization, a straightforward approach to investi-
gating differences in cerebral glucose metabolism between patients and controls is 
by comparing the mean 18F-FDG uptake in each region (or each voxel) between the 
groups with multiple t tests. This is an example of analysis of variance. Variance is 
a measure of spread of the data. It is equal to the square of the standard deviation 
of the data:
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Multiple t tests between voxel values in two or more groups can be easily per-
formed. If a cluster of voxels holds significantly lower values in patients compared 
to controls, then this brain region shows decreased 18F-FDG uptake in the disease 
state, which reflects a loss of synaptic integrity. The interpretation of such statisti-
cal parametric mapping (SPM)-based group contrasts is thus very straightforward. 
Several studies have used a voxel-based SPM analysis to identify group differences 
between patients with a neurodegenerative disease and healthy age-matched con-
trols (Eckert et al. 2005; Juh et al. 2004; Teune et al. 2010; Yong et al. 2007). These 
univariate patterns give a good impression of the brain regions involved in disease.

Covariance is a measure of how much two variables change together. The for-
mula for covariance is very similar to the formula for variance, but includes an 
additional variable (variable Y):
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A positive covariance indicates that as X increases, so does Y; and a negative 
covariance indicates that as X increases, Y decreases (or vice versa). If the cova-
riance is zero, X and Y are unrelated. The concepts variance and covariance are 
explained in a schematic in Fig. 4.5.

If there are more than two variables (i.e., more than two dimensions), covariance 
(C) can be stored in a matrix. If we have three variables (x, y, and z), the diagonal 

4  From Positron to Pattern: A Conceptual and Practical Overview of 18F-FDG…



84

entries in this matrix reflect the variance. The off-diagonal entries reflect the cova-
riance between x and y, x and z, and y and z. The matrix is symmetric around the 
diagonal.
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4.2.4	 �Principal Component Analysis

In data with only a few dimensions, it is easy to appreciate the “patterns” in the 
data (i.e., the relationship between variables). However, when the dimensionality 
of the data increases, as is the case in typical neuroimaging data (>100,000 voxels 
and dozens of subjects), relationships between variables can no longer be presented 
graphically. Principal component analysis (PCA) reduces the number of dimensions 
and can hereby aid in identifying patterns in complex datasets. In this section, we 
will explore what PCA does in a simple, two-dimensional example.

Imagine we have studied the values of two voxels (X and Y) in ten controls and ten 
patients. PCA requires a dataset with a mean of zero. Therefore, we first subtract X  
from each observation of X and Y  from each observation of Y. A plot of the data is 
shown in Fig. 4.6 (this is mock data, so the values do not represent true voxel values).

From Fig. 4.6b, it is clear that the two voxels are related. We can infer that these 
two variables have a positive covariance. The variance-covariance matrix for these 
variables is:

a b cP>0.05 P<0.05
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Fig. 4.5  A schematic, easy representation of variance and covariance (mock data). Two voxels are 
considered in a patient group and a control group. The mean in 18F-FDG uptake (normalized 
counts) in voxel X is compared between patients and controls with a t test (a), which does not show 
a significant difference. The mean value for voxel Y does show a significant difference (patients 
higher than controls) (b). Voxel X and voxel Y are correlated; a higher value in voxel X predicts a 
higher value in voxel Y. These two variables thus show positive covariance (C)
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Fig. 4.6  Two voxels were studied in 20 subjects (mock data). The data points were demeaned (a). 
(b) shows these values for voxel X and voxel Y in ten controls (grey circles) and ten patients (black 
triangles). In (c), the first eigenvector (PC1) and the second eigenvector (PC2) are drawn. PC2 is 
perpendicular (orthogonal) to PC1. PC = principal component
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The variance of voxel X is 22.97 and the variance of voxel Y is 6.01. The covari-
ance of the two voxels is 11.57. From the covariance matrix, we can calculate the 
eigenvectors and the eigenvalues of this dataset (how this is done is beyond the 
scope of this chapter):

eigenvectors =
−

− −
0 45 0 89

0 89 0 45

. .

. .
	  eigenvalues =

0 14

28 84

.

.

The eigenvectors describe the lines that are plotted in Fig. 4.6c. The first eigen-
vector, called principal component (PC) 1, almost perfectly fits the data points. The 
second eigenvector, PC2, describes how much the data points deviate from PC1. 
Thus, this process of taking the eigenvectors from the covariance matrix has enabled 
the extraction of lines that characterize the data.

The first eigenvector explains most of the variability in the data. This eigenvec-
tor therefore has the highest eigenvalue. In PCA, eigenvectors (or components) are 
always ordered in terms of how much of the variability in the data they describe. 
The component with the highest eigenvalue is principal component 1, the one with 
the second highest eigenvalue is principal component 2, and so on. The number of 
principal components depends on the dimensionality of the data. A PC is always 
perpendicular (also called orthogonal) to all other PCs.

The rest of the steps involve transforming the data such that they are expressed 
in terms of PC1 and PC2. This means that each data point will obtain a new value 
in terms of PC1 and PC2. This is essentially a rotation by which PC1 and PC2 
describe the new axes. Note that in Fig. 4.7a, this rotation effectively removes the 
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covariance from the data. The new values can be calculated by multiplying the orig-
inal, demeaned voxel values with each eigenvector. We could also decide to only 
keep PC1, since this eigenvector describes the most important effects in the data, 
and we can discard PC2. This is a way of reducing the dimensionality of the data 
(Fig. 4.7b). We have discarded some of the information (the PC with the lowest 
eigenvalue), but kept the most important effects in one dimension (the PC with the 
largest eigenvalue).

In the example above, we have explained PCA with 20 subjects but just 2 voxels. 
In that mock data, there were only two eigenvectors. In neuroimaging studies, there 
are many more voxels than there are subjects. In such studies, the number of possi-
ble eigenvectors is limited to the number of subjects minus 1. This can be intuitively 
understood when we imagine a situation where we have just two subjects with three 
voxels each (voxels x, y, and z). The voxels determine the axes: a three-dimensional 
grid with axes x, y, and z. The subjects are plotted in this three-dimensional grid: 
each subject has a value for each voxel. With only two subjects, just one eigenvec-
tor (running exactly between the two points) can be calculated. Now imagine we 
have three subjects in the same space. In this situation, two eigenvectors can be 
calculated. Since these three subjects are in one plane, a third eigenvector cannot be 
determined. This same principle works for multi-dimensional space. In other words, 
the possible number of eigenvectors depends on the length of the shortest dimen-
sion. As noted above, in neuroimaging, the shortest dimension is usually the number 
of subjects. For example, in the typical situation where we have 40 subjects (20 
controls and 20 patients) and > 100,000 voxels, 39 eigenvectors can be determined.

a b

Fig. 4.7  Rotation of the data such that PC1 values are plotted along the x-axis, and PC2 values are 
plotted along the y-axis (a). The data can be reduced in dimensionality (from two-dimensional to 
one-dimensional) when only one PC is considered (b). PC1 contains the information of interest (it 
separates the two groups), and PC2 can be discarded
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4.3	 �SSM PCA

Now that the concepts variance, covariance, and PCA have been explained, we will 
give an overview of the steps involved in scaled subprofile model (SSM) and prin-
cipal component analysis (PCA). SSM PCA was first introduced by Moeller and 
colleagues for region-of-interest (ROI) data (Eidelberg et al. 1994; Moeller et al. 
1987; Moeller and Strother 1991) and was later extended to whole-brain voxel-
wise analyses (Eidelberg 2009; Habeck et al. 2008; Ma et al. 2007; Spetsieris and 
Eidelberg 2011). This approach combines a type of normalization (SSM) with 
principal component analysis (PCA) to find patterns (components) that can poten-
tially discriminate between neuroimaging data of two groups. Here, we explain the 
method in a conceptual manner, such that an audience with a limited mathematics 
background can follow the steps involved.

4.3.1	 �Defining the Data

Usually, SSM PCA is applied to 18F-FDG PET data that are acquired in a static imag-
ing protocol and registered to a template in Montreal Neurological Institute (MNI) 
brain space. The data are typically smoothed (8–10 mm full width at half maximum) 
to improve the signal to noise ratio. A threshold of the whole-brain maximum is 
applied to remove out-of-brain voxels. The threshold value is usually chosen as the 
value that is 35% of the whole-brain maximum. This results in a mask of mainly gray 
matter (see Spetsieris and Eidelberg (2011) for details and alternatives). This mask is 
created for each subject, and the masks for all subjects are combined to include only 
those voxels that are shared between all participants. The remaining data can be stored 
in a matrix where subjects are in rows and voxels are in columns (Fig. 4.8).

4.3.2	 �Normalization with the Scaled Subprofile Model (SSM)

First, the SSM is applied, which refers to the normalization of the raw count data. 
This preprocessing starts with the log transformation of each voxel value for each 

Fig. 4.8  Data matrix (D) 
with m subjects (Sm) and n 
voxels (vn). Removal of the 
subject mean (row-
centering) and group mean 
(column-centering) is 
indicated
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subject. Subsequently, the mean for each subject is removed (row-centering). These 
two steps combined serve to remove subject-specific scaling effects (also see the 
appendix and Fig. 4.4c). Next, the mean per voxel is removed (column-centering). 
This mean per voxel is referred to as the group mean profile (GMP). The remaining 
data matrix consists of residual voxel values for each subject. For each subject, this 
is termed the “subject residual profile” (SRP). Because all SRPs are in the same 
scale, the SRPs can now be compared between subjects (and thus between groups).

4.3.3	 �Calculating Eigenvectors from a Covariance Matrix

After normalization, a PCA is performed on the SRP data matrix. First, a covariance 
matrix is determined. The formula for covariance was introduced previously:
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Remember that the SRP matrix has a mean of zero, because the data was log-
transformed and the mean was subtracted. Therefore, we can ignore the terms X  
and Y . In other words:
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The covariance between all voxels across all subjects can be determined from the 
voxel * voxel covariance matrix. We arrive at the voxel * voxel covariance matrix 
by multiplying the transpose of D with D itself (D′ * D). This can be visualized as 
follows (Fig. 4.9):

Since we usually have thousands of voxels, the voxel * voxel data matrix (Svox) 
will be quite large, and calculating the eigenvectors from Svox will require a lot of 
computational power. This can be solved by determining the eigenvectors from the 
subject * subject covariance matrix (Ssub) instead and left-multiplying these with the 
transposed SRP (Spetsieris and Eidelberg 2011).

The eigenvectors from Svox are referred to as group invariant subprofiles (GIS) in 
literature (Eidelberg 2009; Spetsieris and Eidelberg 2011). The terms eigenvector, 
GIS, and PC are often used interchangeably. As described in Sect. 2, the compo-
nents in PCA are always ordered in terms of variance accounted for. Thus, PC1 
explains most of the variance in the data, PC2 less, and so on. The last component 
accounts for only a small percentage of the total variance.
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4.3.4	 �Calculating Subject Scores and Selecting 
Disease-Related Components

In order to reduce the dimensionality of the data, we need to project each data point 
(each SRP) onto each PC.  Each subject will receive a score on each PC.  These 
so-called subject scores (SS) are easily computed by the inner product of the two 
vectors:

	 SS SRP PC= ∗ 	

In the case of n subjects, this will result in a matrix of subject scores on each PC, 
with a maximum of n −1 PCs (Fig. 4.10):

The subject scores will determine which PC is of interest to the study. On some 
PCs, the subject scores will be significantly different between patients and controls. 
These components may thus contain the disease-related changes that are of interest 
and may be selected for further analysis. Of note, the subject scores on each PC are 
inspected, to ensure that the mean subject score in patients is higher than the mean 
subject score in controls. This convention aids in the interpretation of the PC maps, 
as will be discussed later. In case the calculated mean scores are higher in controls 
than in patients, both the subject scores and the associated PC are multiplied by −1.

There are several ways to decide which PC (or combination of PCs) constitute(s) 
the final disease-related pattern (Spetsieris and Eidelberg 2011). In some studies, a 

Fig. 4.9  The product (not shown here) will show the variance across the diagonal of the matrix, 
and the off-diagonal entries will show the covariance between the voxels. Thus, the entire matrix 
describes the spatial variance and covariance relationships between voxels across subjects

4  From Positron to Pattern: A Conceptual and Practical Overview of 18F-FDG…



90

single PC is chosen (usually PC1) if it discriminates significantly between controls 
and patients. Consecutive, smaller PCs are not included (even if these also discrimi-
nate between patients and controls) (Niethammer and Eidelberg 2012; Wu et  al. 
2013; Wu et al. 2014). A disadvantage of that approach is that it assumes that the 
relevant disease-related information is captured in a single component, which may 
not be the case. On the other hand, an important consideration is the risk of overfit-
ting. Including more components may yield a pattern that gives a better fit of the 
initial sample, but may be limited in its relevance or generality across new datasets 
from the same population.

In previous studies by our group (Meles et al. 2018a; Meles et al. 2018b; Teune 
et al. 2013; Teune et al. 2014a; Teune et al. 2014b), combinations of principal com-
ponents were selected using a forward stepwise logistic regression model. First, the 
components that explain the top 50% of the total variance in the data are selected. 
This is an arbitrary threshold that assumes that the lower 50% includes only noisy 
components that explain very small sources of variance in the data (a few percent) 
and are probably not disease-related. The combination of components that together 
give the lowest Akaike information criterion (AIC) of the model is selected (Akaike 
1974). In other words, we combine the least possible number of components that 
together give the optimum discrimination between groups (trade-off between dis-
criminative power and parsimony of the model). The selected components are 
subsequently combined linearly into a single PC vector using the coefficients deter-
mined by the logistic regression model.

We have re-evaluated the data in previously published disease-related patterns 
(Teune et al. 2013; Teune et al. 2014a; Teune et al. 2014b) and found that a combi-
nation of components as selected by the logistic model gave better discrimination of 
groups compared to the selection of PC1 alone. This does not imply that this model 
can be applied blindly to any dataset. In every analysis, each separate component 
should be inspected carefully, for instance, by visually checking if the component 
could potentially reflect disease activity or noise.

An important consideration is that PCA is susceptible to outliers. One outlier 
may contribute overwhelmingly to the variance, resulting in a first PC that accounts 
for most of the variance (i.e., >90%). The rest of the components are always orthog-
onal to this first, “faulty” PC, and thus even the remaining PCs are influenced by 
this issue, even though they reflect the effects of interest in the data (Habeck et al. 

Fig. 4.10  Matrix of 
subject scores on each PC
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2010). It is thus advisable to always check each PC visually and in terms of vari-
ance accounted for. It may be necessary to re-run the analysis, excluding a prob-
lematic case.

Of note, when PCA is performed without this double-centering procedure, the 
chance that the first few components will reflect group-dependent differences in 
brain function is reduced (Moeller and Strother 1991; Spetsieris and Eidelberg 
2011). In such a scenario, the first PC will reflect major sources of variance stem-
ming from global mean values. This PC does not discriminate patients from con-
trols. The disease-related pattern (i.e., the component that can discriminate between 
groups) shifts in order of importance, to a lower eigenvalue.

4.3.5	 �Prospective Application of the Pattern

Once a pattern has been identified, it can be applied to new scans. Scans of new 
subjects are registered to the same template and masked using the same parameters 
as in the original dataset. Next, the data are log-transformed, the mean per subject is 
subtracted, and the SRP for each subject is calculated by subtracting the group mean 
profile (GMP) that was determined from the original pattern identification dataset. 
Finally, the pattern is projected onto the new data to calculate the subject score:

	 SS SRP PC= ∗ 	

Subject scores are usually z-transformed with reference to the control group:

	

ZSS
SSHC

SSHC

SS
=

− µ

σ 	

SS refers to the (“raw”) subject score, μSS HC refers to the mean raw subject score 
of the control group, σSS HC refers to the standard deviation of the raw subject scores 
in the control group, and ZSS refers to the z-transformed subject score of the new 
subject. This implies that the mean z-score of controls will be set to zero, with a 
standard deviation of 1. If the new dataset was acquired in a different manner than 
the original pattern identification dataset (for instance, the subjects were scanned on 
a different PET system), it may be necessary to z-transform the new data to a control 
cohort that was acquired under the same circumstances (Kogan et al. 2019).

4.3.6	 �Validation

One cannot assume that components that result from PCA are intrinsically mean-
ingful. PCA is a mathematical operation, and aspects such as variance ordering and 
orthogonality are true by design (Habeck and Moeller 2011). Even if the signals 
only consist of noise, PCA will achieve a data reduction. Disease-related patterns 
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may be found by coincidence, and therefore, it is important to check empirically if 
the findings that were determined on the derivation set hold in a completely new 
dataset. If the pattern successfully discriminates between patients and controls in a 
new dataset, it is likely that this pattern can be interpreted as disease-related. This 
can be substantiated if subject scores correlate to other markers of disease such as 
disease duration or severity (measured with a validated scale) in new subjects. If 
significant correlations are found, this would mean that the identified component 
has some meaning other than a purely mathematical dimension.

In some cases, a testing set may not be available. This can be (partly) solved 
using a leave-one-out cross validation (LOOCV). In LOOCV, the analysis described 
above is repeated several times, each time leaving out one subject. Imagine patient 
x is part of our identification sample. We have included 20 controls and 20 patients. 
We leave out patient x and re-determine the pattern on the remaining 20 controls and 
19 patients. We subsequently calculate the subject score of this pattern in patient 
x. We now have the LOOCV subject score for patient x. This procedure can be 
repeated for each subject (patients and controls). It results in subject scores for each 
subject, which are independent from the pattern identification step. The difference 
between LOOCV subject scores in controls and patients can be determined with a 
t test. If significant, the original pattern is considered a predictor for the disease in 
new cases.

4.3.7	 �Visualization and Interpretation of PC Maps

PCs can be visualized as 3D brain images, in which each voxel has a weight (the 
voxel value). Positive and negative weights indicate the direction of the principal 
component vector with respect to the mean. Voxels with a greater absolute weight 
in the pattern will be dominant in determining the subject score on that PC. This 
does not mean that weaker voxel weights should be discarded. “Although highly 
weighted regions may have a greater influence on the pattern score, regional values 
alone are not as predictive as whole pattern expression in performance measures” 
(Spetsieris et al. 2015). PCs are vectors, which do not have a direction. If controls 
have higher subject scores on a PC compared to patients, then the PC map is multi-
plied with −1 by convention. Subsequently, positive voxel weights are color-coded 
red in PC maps, and negative voxel weights are color-coded blue.

In order to interpret the pattern topography itself, it is useful to apply a thresh-
old to the PC image, which somehow indicates which regions are most important. 
Several approaches have been applied in literature. For instance, all voxel values in 
the PC map can be transformed to Z-values. Next, only the highest and lowest voxel 
values in this “Z-map” are displayed (at a certain threshold, for instance, Z > 1.96 
corresponding to P < 0.05). Regions that survive this threshold are interpreted as 
the most important regions of the pattern; these regions are likely most involved in 
the disease process.

An important issue arises when small sample sizes (20/20) are used, as is usually 
the case in neuroimaging studies. Pattern maps will likely be variable depending on 
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the specific sample of patients and controls. Thus, voxel weights in the pattern may 
fluctuate (this is also the case for univariate approaches). Identification of the areas 
most affected by the disease process becomes less reliable. This could be solved 
by collecting many different datasets of controls and patients and determining the 
disease-related pattern for each dataset. Imagine we have 1000 datasets of 20 con-
trols and 20 patients. Then we can derive 1000 patterns. We can study the distribu-
tion of voxel weights across the different patterns. For each voxel, we can determine 
the mean voxel weight and its standard deviation. If a particular voxel has a similar 
weight in each pattern and does not fluctuate much across populations (i.e., it has 
a small standard deviation), then this voxel gives a reliable contribution to the pat-
tern and is interpreted as being important in the disease. In contrast, if a voxel has a 
negative weight in some populations, but a positive voxel weight in others (i.e., the 
distribution straddles 0), then this voxel is probably unreliable. In summary, if we 
have such a distribution of voxel weights for each voxel, we can test which voxels 
in the pattern are reliable.

In reality, such a study is hampered by small numbers of subjects in most datasets 
and varying imaging protocols across centers which impedes pooling of datasets. 
To approximate this distribution per voxel, we apply a bootstrap estimation proce-
dure. A bootstrap estimation procedure entails repeating the PCA several (~1000) 
times on randomly sampled data (with replacement) from the pool of patients and 
controls. In each iteration, the control and patient group contain the same number 
of images. This means that some subjects are represented more than once in some 
iterations, whereas others are completely omitted. We are thus creating multiple 
datasets from just one derivation set, which is similar to the LOOCV procedure. In 
contrast to the LOOCV, a bootstrap allows us to reuse subjects. For each iteration, 
each voxel will get a voxel weight. With multiple iterations, it is possible to analyze 
the distribution of weights of a voxel with a point estimate (average) of w and a stan-
dard deviation of sw. Using this distribution, we can determine thresholds, which can 
subsequently be used to display only those voxels that we consider stable enough to 
be interpreted as part of the disease topography.

Again, one approach to this threshold is to make a Z-map using the bootstrap dis-
tribution. Each voxel will receive a z-value: z = w/sw. “Sufficiently small variability 
of a voxel weight around its point estimate results in a Z-value of large magnitude, 
and indicates a reliable contribution to the covariance pattern” (Habeck et al. 2008). 
One can chose a certain z-threshold to show only stable voxels (e.g., |z| > 1.96 cor-
responding to a P-value of <0.05).

In previous studies, we chose to apply the confidence interval (CI) as a threshold. 
For each average voxel weight (w), we can determine a CI interval based on the 
distribution of the voxel weights from the bootstrap. This confidence interval (e.g., 
90%) has an upper and a lower bound. For positive regions, we display only those 
voxels for which the lower bound of the confidence interval is larger than zero. For 
the negative regions, we display only those voxels for which the upper bound of the 
confidence interval is smaller than zero. Voxels for which the confidence interval 
straddles zero are not visualized.
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The maps that follow from the bootstrap estimation procedure are only used for 
visualization. It is likely that those voxels that survive the chosen threshold after 
a bootstrap estimation procedure are truly related to the disease process and not 
coincidentally found in a given sample. Thus, if a pattern were to be identified in a 
completely new set of controls and patients, it is likely that those regions would be 
identified again.

In summary, several validation procedures are necessary when identifying a 
disease-related pattern with SSM PCA. First, it is important to calculate its expres-
sion in a new dataset to ascertain that the pattern can be generalized to new subjects. 
If a validation set is not available, a leave-one-out cross validation can be applied. 
This approach tests whether the pattern is a good predictor of the disease in a new 
subject. Ideally, subject scores are also correlated to some aspects of the disease, 
such as disease duration or severity of symptoms. Finally, the stability of the pattern 
is assessed with a bootstrap estimation procedure. Stable regions will probably be 
found again if the pattern was to be re-derived in a completely new population and 
may thus be interpreted as important regions in the pathophysiology of the disease.

4.3.8	 �Advantages of SSM PCA Over Univariate SPM Models

In reality, neither mass-univariate nor SSM PCA can provide an exact description 
of the pathophysiological mechanisms that underlie the disease and give rise to 
alterations in neuroimaging signals (Moeller and Habeck 2006). That said, SSM 
PCA has a few advantages over univariate approaches. The core issue in univariate 
approaches is that they assume that voxels are independent, which is not the case. 
The signal in neuroimaging data stems from the communication between neurons 
over synapses. The strength of neuroimaging lies in the detection of these inter-
actions, to ultimately understand the network-level changes in certain conditions. 
Disregarding interactions between voxels means that most of the data of interest is 
in fact discarded (O'Toole et al. 2007). Multivariate approaches such as SSM PCA 
take into account the interactions (covariance) between voxels, and patterns that 
result from these analyses are more easily interpreted in the context of network-
level changes.

The assumption of independent voxels in mass-univariate analyses also leads to 
a technical issue. In voxel-by-voxel comparisons, 104 to 105 voxels are compared 
between two groups, with an equal number of t tests. Performing multiple t tests 
leads to an inflation of the error rate. In such cases the α-level has to be corrected 
for multiple comparisons. This correction can be either too liberal (leading to type I 
errors) or too conservative (leading to type II errors), potentially “correcting away” 
true effects of interest in the data. Some solutions have been proposed (Genovese 
et al. 2002), but investigators are often willing to tolerate higher (p > 0.05) false-
positive rates. For example, voxel clusters at uncorrected levels of P < 0.001 are 
often reported for standard F- or T-statistics (Moeller and Habeck 2006). In con-
trast, multivariate analyses such as SSM PCA have enhanced statistical power, as 
correction for multiple comparisons is not necessary.
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In addition, it is generally accepted that PCA-based multivariate approaches 
have better sensitivity and replicability compared to univariate approaches (Habeck 
et al. 2008; Habeck et al. 2010). SSM PCA is especially relevant when making 
predictions in new cases. Habeck et al. compared SSM PCA pattern analysis to 
univariate approaches in the study of Alzheimer’s disease (AD). In the univariate 
approach, AD patients and controls were compared using SPM with a t test. The 
area that gave the best group separation in the derivation sample was chosen as 
the region of interest (ROI). The ROI in this study was the right parietotemporal 
area. Signal values in this ROI were inspected in new AD subjects, which were 
subsequently classified as AD if the signal in that ROI surpassed a fixed threshold 
level obtained from the derivation sample. The multivariate approach entailed the 
identification of the AD-related pattern (ADRP) with SSM PCA. ADRP subject 
scores were calculated in scans of new AD patients, and these subjects were clas-
sified as AD if the subject score surpassed a fixed threshold level obtained from 
the derivation sample. Although both methods were able to distinguish between 
patients and controls in the derivation sample, the classification of new subjects 
was significantly better when the ADRP was used. Even when the most important 
area was omitted from the scans (i.e., the voxel values in the right parietotempo-
ral area were set to zero in each subject), ADRP subject scores remained stable. 
According to the authors, “this demonstrates how multivariate analysis takes into 
account the interregional correlation structure in the data, and is thus not criti-
cally dependent on the inclusion of any particular brain region and can withstand 
dropping out even the most salient areas” (Habeck et al. 2008). This also supports 
the concept that pathological processes have a widely distributed effect on brain 
function in neurodegeneration.

�Appendix: Effects of Normalization

In this example we demonstrate effects of ratio normalization versus log transforma-
tion and subtraction of the mean, as applied in the scaled subprofile model (SSM). 
In this example, we consider 18F-FDG uptake in two regions, A and B, in healthy 
controls and patients. Region B is affected by the disease. Metabolism in this region 
has changed compared to the control population with ΔB. In our example, region 
A is unaffected in both groups. For each subject, there is a scaling factor q which 
accounts for effects due to, for instance, the amount of radioactive label adminis-
tered. The term q is a subject-specific scaling factor which we need to eliminate 
from the data.
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We introduce another term n, which indicates the relative size of region A.

	
Mean brain uptake : nA n B n+ −( ) < <1 0 1 	

Often, 18F-FDG uptake is altered in a few areas due to the disease. In such a case, 
A will contribute much more to the whole-brain average than B. Situations where B 
contributes only a small proportion to the whole-brain average include, for instance, 
early Parkinson’s disease, or even its prodromal phases.

One can imagine situations where large parts of the brain are affected by the dis-
ease. For instance, in advanced Alzheimer’s disease, we would expect hypometabo-
lism in large parts of the cerebral cortex. In that case, B contributes overwhelmingly 
to the whole-brain average. As a result, whole-brain and average 18F-FDG uptake 
will be lower in patients compared to controls.

As discussed in the main text, a normalization is needed. Two options are dis-
cussed. The first method is global mean normalization by proportional scaling, which 
is commonly applied and entails dividing each voxel value by the subject mean. The 
second method is the normalization procedure as applied in SSM PCA. In the SSM, 
data is first log-transformed and subsequently the subject mean is subtracted. In this 
example we will show that:

	1.	 Scaling effects (q) are eliminated in both methods.
	2.	 Both normalization techniques can introduce artifacts in (the unaffected) 

region A.

�Global Mean Normalization

In global mean normalization, 18F-FDG uptake in each voxel is divided by the 
mean uptake of the whole brain. For our example, the corrected values are shown 
in below figure

 

Although 18F-FDG uptake in region A is the same in the control and patient 
population, the values in this area are different after global mean normalization.
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Thus, the change in signal in region B due to pathology resulted in an altered 
signal in region A after global mean normalization (i.e., it produced an artifact).

�Log Transformation and Demean in the SSM

In the SSM, the data are first log-transformed, and next we subtract the mean (see 
below figure). The fact that factor q can be eliminated in the SSM indicates that any 
multiplicative effect in the data can be removed, just like it can be eliminated in the 
global mean normalization. Thus, both methods are invariant to scaling effects (also 
see Spetsieris and Eidelberg (2011)).

�Practical Examples

We modeled the formulas above in MATLAB, with two values for n (0.9 and 0.1) 
and variable values for ΔB. For A and B, we chose the same (realistic) fixed values.
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Example 1: Changes in a few regions.
In this situation, 18F-FDG changes are present in a few brain regions. In patients, 

most of the brain is unchanged, and thus A contributes most to the average (n is 
close to 1).

We plotted the values for A and B after global mean normalization (“Amean” and 
“Bmean”) and after SSM normalization (“Alog” and “Blog”). On the x-axis, we show the 
values for ΔB, ranging from −1000 (i.e., a decrease in B) to +1000 (i.e., an increase 
in B). Furthermore, we chose: A = 1001, n = 0.9 and B = 1001. The result is shown 
in Fig. 4.11a.

It is clear that there is an offset difference between the two methods. This is 
inherent to subtracting the mean versus dividing by the mean. When region B 
becomes hypometabolic, there is a slight (artificial) increase in region A. However, 
the changes in region A as a function of ΔB, even for extreme values of ΔB, are 
relatively small. The slope for the new values in A and B after each normalization 
procedure are almost equal.

Example 2: Changes in most of the brain.
In this situation, most of the cortex of the brain shows altered 18F-FDG uptake 

in patients. Only a few brain regions have intact 18F-FDG uptake (A), and these 
brain regions only contribute marginally to the whole-brain average. The altered 
brain areas (B) dominate the whole-brain metabolism, and ΔB is large. To simulate 
this situation, we repeated the example (A = 1001, B = 1001), but this time we 
chose n = 0.1. The result is shown in Fig. 4.11b. This example illustrates that both 
methods can cause an artifactual increase in A, when there is extreme hypometabo-
lism in B.

To summarize, the grand mean normalization and the normalization in the SSM 
are equivalent methods. We illustrated that normalization to any mean is useful to 
eliminate subject-specific scaling factors in 18F-FDG-PET data, but inherently can 
induce artificial increases and decreases. This is a known issue in any imaging study 
where absolute values are not available, be it univariate or multivariate. It is there-
fore important that patients and controls have similar values of average 18F-FDG 
brain uptake (i.e., global metabolic rate (GMR)).

This issue has been addressed in several publications concerning the spatial 
covariance pattern that was identified in Parkinson’s disease (Parkinson’s disease-
related pattern, PDRP). This pattern is characterized by relatively increased metabo-
lism in subcortical structures (globus pallidus, putamen, thalamus, cerebellum, and 
pons), relatively increased metabolism in the sensorimotor cortex, and relatively 
decreased metabolism in the lateral frontal and parieto-occipital areas (Fig. 4.12). It 
has been posited that the PDRP reflects normalization artifacts due to GMR differ-
ences between controls and patients (Borghammer et al. 2008; Borghammer et al. 
2009). Specifically, widespread cortical decreases, rather than subcortical increases, 
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Fig. 4.11  The normalized values for region A are plotted for the global mean normalization 
method (Amean: black) and for the SSM (Alog: red). The normalized values for region B are also plot-
ted for both regions (Bmean and Blog). In a, the results of example 1 are shown (n = 0.9; A = 1001 and 
ΔB ranges from −1000 to 1000). In b, the results of example 2 are shown (n = 0.1; A = 1001 and 
ΔB ranges from −1000 to +1000)
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were suggested to be characteristic of the PD disease process (Borghammer et al. 
2010). However, both theoretical and empirical evidence is available to support the 
contention that the PDRP topography holds true pathophysiological meaning and 
that the “red PDRP nodes” are central to PD pathophysiology.

Spetsieris et al. showed that GMR reductions in PD patients were not significant 
relative to healthy controls after 15 years of illness. GMR reductions also did not cor-
relate with symptom duration (in contrast to PDRP scores) (Spetsieris and Eidelberg 
2011). Ma et al. analyzed absolute 18F-FDG uptake (with arterial blood sampling) in 
24 patients with early-stage PD (Hoehn and Yahr I–II) and 24 controls. Both absolute 
(physiological units) and relative (after global mean ratio normalization) scan data 
was analyzed with a univariate model (SPM). A group contrast of relative count data 
revealed increased metabolism in the globus pallidus, ventral thalamus, dorsal pons/
midbrain, and sensorimotor cortex, but cortical metabolic decreases were not found. 
There was no significant difference in mean whole-brain CMRglc between patients 
and controls. When absolute measures (physiological units without global mean nor-
malization) were compared between groups in a similar univariate SPM analysis, 
no differences were found between controls and patients. This was attributed to the 
marked reduction in between-subject variability achieved with the normalization 
step. A similar analysis was also performed in repeat scans of PD patients. Globally 
normalized values for the “hypermetabolic regions” showed greater reproducibil-
ity than the corresponding absolute values (in physiological units). Thus, instead of 
introducing bias, the authors concluded that, when the global metabolic rate is care-
fully matched across groups, global normalization enhances the sensitivity of PET 
to detect meaningful regional differences. The SSM PCA disease-related pattern that 
was identified in the same data was similar to the SPM pattern but also included 
some additional regions (Ma et al. 2009).

A PDRP has also been identified by first normalizing the data to the cerebellum 
(non-log; every voxel divided by average cerebellar uptake), which was very similar 
to the original PDRP. In addition, the “red” and “blue” parts of the PDRP have also 
been used as separate vectors to calculate subject scores. Interestingly, both were 

Fig. 4.12  The Parkinson’s disease-related pattern (PDRP) identified in 17 controls and 19 PD 
subjects. Stable voxels are displayed, determined after a bootstrap resampling (90% confidence 
interval not straddling zero). Overlay on a T1 MRI template. Positive voxel weights are color-coded 
red (relative hypermetabolism), and negative voxel weights are color-coded blue (relative hypome-
tabolism). L = Left. Coordinates in the axial (Z) and sagittal (X) planes are in Montreal Neurological 
Institute (MNI) space
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able to discriminate between controls and PD patients of a new dataset, in which the 
red pattern performed the best (Spetsieris and Eidelberg 2011). In addition, when 
the “red” and “blue” vectors were calculated separately in longitudinal FDG PET 
scans of de novo PD patients and controls (three scans per subject over a 48-month 
period), the rate of progression of the red regions was the greatest and significantly 
higher compared to controls. By contrast, the expression of the blue pattern did not 
differ from controls at any of the three time points (Ma et al. 2009). Moreover, if the 
“blue” areas in the PDRP define or cause the “red” areas in the PDRP, then the “red” 
areas should disappear when the PDRP is re-derived in a subspace that excludes 
the “blue” areas. This was not the case; a PDRP derived in the red voxel subspace 
was very similar to the “red” vector of the original PDRP, and subject scores for 
these two patterns were significantly correlated (Spetsieris and Eidelberg 2011). 
Finally, Dhawan et al. studied a group of healthy participants in whom global meta-
bolic activity was experimentally decreased by sleep induction (with secobarbital). 
Participants were scanned with 18F-FDG PET while awake and during stage II sleep 
(monitored with EEG recordings). Sleep-induced reductions in global metabolic 
activity did not increase PDRP expression in these controls. In addition, an SSM 
PCA pattern comparing sleep and wake scans did not disclose any PDRP-like sub-
cortical increases (Dhawan et al. 2012).
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