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Chronic kidney disease (CKD) substantially affects global
health, affecting ∼10% of adults and leading to 1.2 million
deaths and 28million lost life years each year [1]. In the coming
years, CKD will be among the fastest rising causes of death,
and is anticipated to be the fifth leading cause of death by the
year 2040 [2]. Being able to early identify the individuals at
highest risk of developing kidney failure beyond conventional
biomarkers like creatinine or albuminuria, comorbidities or
validated risk prediction tools (such as the Kidney Failure Risk
Equation) is a key research priority, as this would allow the
implementation of corrective pharmacological strategies. In
this issue of Nephrology Dialysis Transplantation, Steinbrenner
et al. address the potential of serum osteopontin as a
biomarker for kidney function, kidney damage, and kidney
failure [3].

OSTEOPONTIN AND THE KIDNEY
Osteopontin is an extracellular protein predominantly ex-
pressed in the thick ascending limb of the loop of Henle and
the distal nephron. Itsmain physiological functions include the
regulation of monocyte-macrophage recruitment by acting as
a secreted adhesive molecule and cytokine, and the regulation
of biomineralization processes in the body [4]. Being part of
the SIBLING family of secreted glycoproteins, its role as a
linking protein is underlined by the suffix –pontin, derived
from the Latin word for bridge (pons). Although its function
in the healthy kidney is not fully understood, osteopontin has
been implicated in tubulogenesis [4]. Remarkably, osteopontin
protein expression in the healthy kidney is low, and knockout
mice do not have a kidney phenotype [5, 6]. However, during
kidney damage, osteopontin is strongly upregulated in the
kidney, and is present in substantially elevated concentrations
in both blood and urine [7]. One mechanistic explana-
tion is that it mediates early interstitial macrophage influx,

providing a crucial contribution to interstitial inflammation
and, subsequently, fibrosis [6]. Indeed, animal experiments in
the unilateral ureteral obstruction (UUO) model of kidney
fibrosis demonstrated reduced interstitial early inflammation
and less tubulo-interstitial fibrosis in osteopontin knockout
UUO mice, as compared with wild-type UUO mice [6].
At the same time, a protective role has been proposed for
osteopontin, reducing cellular damage through the inhibition
of nitric oxide and reactive nitrogen species [5]. In line,
depletion of osteopontin from the culture medium by a neu-
tralizing antibody enhanced apoptosis in rat tubular epithelial
cells [6].

Although the role of osteopontin in the pathophysiology
of progressive CKD has not been fully elucidated, previ-
ous studies have consistently demonstrated higher levels in
serum, plasma, or urine in groups of patients with various
kidney diseases, including minimal change disease, focal
and segmental glomerulosclerosis, membranous nephropa-
thy, lupus nephritis, and diabetic nephropathy as well as
in kidney transplant recipients with allograft rejection [7].
In IgA nephropathy, findings have been contradictory as
not all studies demonstrated clear differences between IgA
nephropathy patients and healthy individuals and osteopon-
tin levels did not always correlate with clinical data or
pathological findings [7]. In patients with diabetes, a higher
plasma or serum osteopontin level has been consistently
linked with an increased risk of the development of diabetic
nephropathy and worse kidney function (reviewed in [7]).
Of note, animal studies also demonstrated increased osteo-
pontin expression in mice with diabetic nephropathy, and
osteopontin knockout mice were protected from diabetes-
induced albuminuria andmesangial expansion [8]. Altogether,
preclinical and clinical studies suggested a role for osteopontin
in CKD, although longitudinal data in CKD patients had been
missing.
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OSTEOPONTIN AND CKD PROGRESSION
In this issue ofNDT, Steinbrenner et al. report an observational
study evaluating the association between serum osteopontin
and cross-sectional kidney function (eGFR) and kidney
damage (albuminuria), as well subsequent risk of kidney
failure in a large cohort of CKD patients from the German
CKD (GCKD) study [3]. The study population consisted of
patients with an eGFR 30–60 ml/min/1.73 m2 or an eGFR
>60 ml/min/1.73 m2 and increased albuminuria (>300 mg/g
creatinine) or proteinuria (>500 mg/g creatinine). This is the
largest clinical study in CKD patients evaluating correlates of
osteopontin. The main findings are that serum osteopontin
levels are strongly associated with eGFR and albuminuria in
cross-sectional analyses, and independently of these classic
biomarkers, osteopontin was consistently associated with the
risk of death and kidney failure. However, osteopontin did not
improve the performance of models including established risk
equations for kidney failure, including the Kidney Failure Risk
Equation.

Strengths of the study include the large sample size and
the patient population with a broad range of kidney function
and damage. This helps to refute previous observations from
smaller studies regarding risks being mediated by inflam-
mation. The validated endpoints, based on a standardized,
distinct event adjudication catalogue, are also a strength that
contributed to the robustness of the study. Finally, the disease-
specific subgroup analyses provided additional insights and
seem to point towards a stronger association of osteopontin
with outcomes in patients with diabetic kidney disease.

The lack of ostepontin’s prognostic value beyond classic
risk models challenges the promise of osteopontin as a
biomarker for kidney failure in clinical practice. Given the
role of osteopontin in biomineralization and CKD-metabolic
bone disorder (CKD-MBD), and the role of these in the
genesis and complications of CKD progression, we see as
a limitation the lack of information and adjustment for
serum calcium, phosphate, and parathyroid hormone. From an
aetiological point of view, it remains unclear whether higher
serum osteopontin level reflects more advanced CKD-induced
metabolic deregulation, which in turn is the correlating factor
with kidney failure risks.

WHAT DOES IT TAKE FOR A GOOD
BIOMARKER?
Do the results from Steinbrenner et al. put an end to the quest
for osteopontin as a promising biomarker of CKDprogression?
In our view, osteopontin meets some of the basic requirements
for a good biomarker [9]: it is present in peripheral body
tissue and/or fluid; it is easy to quantify in assays that are
affordable and robust; and its concentrations are associated
with kidney damage. Yet, beyond these basic criteria, very
few biomarkers have additional prognostic value over and
above eGFR and albuminuria [10], and osteopontin may be
one of those. Furthermore, it remains unclear what to do
with patients with high osteopontin levels as directed anti-
osteopontin therapies are, to our knowledge, not available.

If biomarkers cannot be specifically targeted, this is a clear
impediment for their clinical application [11].

CONCLUSION
Lack of prognostic gain does not necessarily mean that
osteopontin is not a true risk factor for kidney failure, but that
in clinical practice itmay not be better than the biomarkers that
we already use. Further research is needed to address whether
osteopontin may specifically be able to predict the progression
of diabetic kidney disease, as subgroup analyses pointed
towards a particularly strong association in this subgroup.
Whether the associations are independent of other CKD-MBD
biomarkers would also add to the existing literature.

Genetic studies may help discern whether lowering
osteopontin levels is ‘causally related’ with the risk of kidney
failure. Another study from the GCKD cohort identified two
replicated polymorphisms that were associated with serum
osteopontin levels: one close to the SPP1 gene, encoding
osteopontin, and another one that mapped to the KLKB1 gene
encoding prekallikrein, which is processed to kallikrein [12].
Kallikrein, in turn, has been implicated through the kinin-
kallikrein system in blood pressure control, inflammation,
blood coagulation, cancer, and cardiovascular disease. The
SPP1 gene was not among the 11 loci associated with kidney
function decline in a genome-wide association study analysis
in >340 000 individuals [13]. The replication of these genetic
instruments may be the first step towards adequately designed
Mendelian randomization studies exploring the causation
behind these observed risks. While currently a bridge too far,
osteopontin could be just one step closer to clinical practice.
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