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1. SUMMARY 

In this paper, it is suggested that specificity 
and non-specificity in (oral) microbial adhesion 
are different expressions for the same phenom- 
ena. It is argued that the same basic, physico- 
chemical forces are responsible for so-called 
'non-specific' and 'spec'fic' binding and that from 
a physico.ehemieal point of view the distinction 
between the two is an artificial one. Non-specific 
interactions arise from Van der Waals and elec- 
trostatic forces and hydrogen bonding, and origi- 
nate from the entire cell. A specific bond consists 
of a combination of the same type of Van der 
Waals and electrostatic forces and hydrogen 
bonding, now originating from highly localized 
chemical groups, which together form a stereo- 
chemical combination. The absence or presence 

Correspondence to: H.J. Busscher, Laboratory for Materia 
Technica, University of Groningen, Anton,.'us Deusinglaan I, 
NL-9713 AV Groningen, Netherlands. 

of specific receptor sites on microbial cell sur- 
faces must therefore be reflected in the overall, 
non-specific surface properties of cells as well. 
This point is illustrated by showing that glucan- 
binding lectins on mutans streptococcal strains 
may determine the pH dependence of the zeta 
potentials of these cells. When studying microbial 
adhesion, a non-specific approach may be better 
suited to explain adhesion to inert substrata, 
whereas a specific approach may be preferred in 
case of adhesion to adsorbed protein films. Adhe- 
sion is, however, not as important in plaque for- 
mation in the human oral cavity as is retention, 
because low shear force periods, during which 
adhesion presumably occurs, are followed by high 
shear force periods, during which adhering cells 
must withstand these detachment forces. Evi- 
dence is provided that such detachment will be 
through cohesive failure in the pellicle mass, the 
properties of which are conditioned by the over- 
all, non-specific substratum properties. There- 
fore, in vivo plaque formation may be more read- 
ily explained by a non-specific approach. 
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2. INTRODUCTION 

The controversies between those favouring a 
specific approach [1-24] and those favouring a 

non-specific approach [25-37] of (oral) microbial 
adhesion has lingered on for several years with 
little signs of a scientific unification of ideas as 
required in order to advance our understanding 
of microbial adhesion. 

In the specific approach of (oral) microbial 
adhesion, it is usually argued that adhesion can- 
not be understood unless the adhesin, a molecu- 
lar structure on the cell surface which is stereo- 
chemical with a substratum receptor site, has 
been properly identified [38]. Indeed, many ad- 
hesins have been described in the literature and 
it has been shown that blocking of these adhesins 
can inhibit adhesion. Well known examples of 
this specific type of interaction can be found in 
Escherichia coil,  a non-oral microorganism. E. 
coli strains can elaborate tip-localized proteins on 
pap fimbria¢, which are important in uroepithe- 
lial attachment [39]. K88 and K99 are other E. 

Table 1 

coli fimbrial antigens which complex with recep- 
tors on intestinal epithelium [40,41]. Oral mi- 
croorganisms also possess a wide variety, of spe- 
cific adhesin molecules. Table 1 gives a far from 
complete overview of adhesins and their func- 
tions, as described for a variety of oral bacteria. It 
may be obvious, considering the number of strains 
and species in the oral cavity, that continuation 
along this line of research will yield an infinite 
number of adhesins identified in due time and it 
is unlikely that specific receptors will ever be 
found for all the different polymers existing (and 
to be developed) like Teflon, polymethyimeth- 
acrylate or polyvinylchloride. Also, none of the 
receptors identified seem to be known at a 
molecular level, and only vague descriptions of 
the receptors exist in most cases. 

In the non-specific approach of oral microbial 
adhesion, adhesion is described as the combined 
result of overall, macroscopic surface properties, 
such as charge, surface free energy and hy- 
drophobicity [28,31,33], being the physico-chem- 
ical expression of the chemical composition of the 

Overview of adhesive interactions in the oral cavity and adhesins identified 

Strain Adhesin Partner Adhesin Reference 
Actinomyces viscosus Type 2 fimbriae Mammalian cel ls  Galactose residues [10] 
Actinomyces naeslundii [ 14] 
Actinomyces viscosus Type 2 fimbriae S. sanguis Internal [4] 
Actinomyces naeslundii GalNacpl --, 3Gal 
Actinomyces vlscosus Type 1 fimbriae SHA a Proline-rich proteins, [9] 

statherin [7] 
Bacteroides gingivalis 150 kDa component Mammalian cel ls  Fibrinogen [8] 
Bacteroides gingivalis Galactose-containing Fusobacterium Protein [5] 

carbohydrate nucleatum 
Bacteroides ginglvalis Mammalian cel ls  Arginine residues [12] 
Bacteroides gingivalis SHA Proline-rich protein [21] 
Bacteroides intermedius Mammalian ce l l s  Galactose residues [Ill 
Bacteroides Iocscheii 75 kDa polypeptide S. sanguis [23] 

45 kDa polypeotide A. israelii 
Eikenella corrodens F.pithclial cells Galactose residues [13] 
Streptococcus mitis Sialic acid binding SHA Sialic acid [2] 
Streptococcus sanguis protein [1.22] 
Streptococcus salivatius HB Veillonella binding VeiUonella parvula [3] 

protein 
Streptococcus salivarius HB Glycoprotein Buccal epithelial cells 13] 
Streptococcus sanguis 12 Adhesin St SHA pH sensitive receptor [24] 
Streptococcus sobr/nus SHA Glueans. [6] 

glucosyltransferase 
* S H A  = saliva.coated hydroxTapatite. 
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cell surface [42,43]. Glantz, one of the pioneers of 
physico-chemical approaches of oral microbial 
adhesion, showed that the amount of plaque ac- 
cumulated in rive on intra-oral surfaces de- 
creased greatly with decreasing substratum hy- 
drophobicity, as assessed from water contact an- 
gles [44,45]. A similar study by Quirynen et al. 
[46] demonstrated that planimetric plaque scores 
on hydrophobic materials glued to the front in- 
cisors of human volunteers were much lower than 
on hydrGphilic materials. The non-specific ap- 
proach has also been successfully applied to show 
that hydrophobic bacterial strains, as assessed 
from water contact angles, preferentially adhere 
to hydrophobic substrata and vice versa [47-49]. 

So far, little success has been reported in ex- 
plaining oral microbial adhesion to pellicle-coated 
materials with different hydrophobicities in vitro 
on the basis of a non-specific approach, although 
a minor, sustaining influence of the underlying, 
overall substratum properties has been described 
[50,51]. 

Several years ago, we published a hypothesis 
[52] in which overall, macroscopic cell surface 
properties were assumed to be responsible for 
the initial approach of a cell towards a substra- 
tum, whereas specific interactions were thought 
to commence operating when the distance be- 
tween cell and substratum had become suffi- 
ciently small and inteffacial water was removed 
by hydrophobic moieties. Thus it can be specu- 
lated that, although specific interactions may oc- 
cur as a consequence of close approach to pelli- 
cle, non-specific forces are always important in 
bacterial adhesion phenomena. Also, many cario- 
genie mutans streptococci have been found to 
bind at least partially non-specifically to pellicle, 
i.e. their binding was of low affinity and not 
saturable or inhibitable with specific macro- 
molecules [53,54]. Thus, the adhesion of these 
members of the plaque consortium is best de- 
scribed using a aon-specific approach. Further- 
more, two separate investigations [55,56] of the 
kinetics of Streptococcus sanguis adhesion found 
two distinct adhesion phases: an initial phase, 
mediated by non-specific forces and a second, 
high-affinity phase in which specific interactions 
have become operative. This argues that even in 
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the absence of specific interactions, adhesion will 
take place. 

It is the aim of this paper to demonstrate that 
specificity and non-specificity arise from the same 
basic physico-chemical forces and are thus differ- 
ent expressions for the same phenomena. Fur- 
thermore~ a hypothesis will be presented on the 
relative importance of specific and non-specific 
approaches to oral microbial adhesion. 

3. BASIC FORCES AND INTERACTIONS 

it is presently a modern trend in physico- 
chemistry to explain poorly understood phenom- 
ena in terms of so-called additional forces. Van 
Oss [57] recently summarized these 'additional 
forces' of unknown origin and came to no less 
than 17 types of forces. Van Oss argued that in 
reality these could all be reduced to three cate- 
gories: (i) (Lifshitz) Van der Waals forces; (ii) 
electrostatic forces; (iii) hydrogen bonding. 
These are the basic physico-chemical forces re- 
ponsible for adhesion. Mathematical expressions 
for the interaction energies between a cell and a 
substratum according to the DLVO-theory on the 
basis of these forces are given elsewhere [32]. 
Since these forces are relatively long-range and 
originate from the entire body of the cell and 
substratum, the interaction energy decreases with 
distance -2 [32]. In the presence of sufficient elec- 
trostatic repulsion, a so-called secondary interac- 
tion minimum occurs between approximately 10 
and 20 nm. A potential energy barrier, that can 
become as high as several thousand kT units, may 
exist at smaller distances (<  10 rim) prior to the 
occurrence of a primary interaction minimum, 
provided again there is sufficient electrostatic re- 
pulsion between the interacting surfaces [32]. It is 
important to realize that the above forces are 
always present, regardless of the absence or pres- 
ence of specific receptor sites (see also Fig. 1), 
which may (or may not) contribute to adhesion, in 
addition to the non-specific interactions. 

A specific bond can also be envisaged as re- 
sulting from the above mentioned basic physico- 
chemical forces [58], now acting between ex- 
tremely small, highly localized and spatially well 
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organized, opposing molecular groups on both 
interacting surfaces (see Fig. 2). For  complete- 
ness, it is noted that the electrostatic nature of  
many specific bonds can be demonstrated by 
showing the dependence of  the bonding on ionic 
strength or  pH of the medium in which bonding 
O~Ul'$. 

Despite the fact that specificity and non- 
specificity originate from the same basic, 
physico-chemical forces, there is one important 
phenomenological difference between the two. 
When specific bonds are superimposed on non- 
specific interactions, the highly localized charac- 
ter of  the specific bonds not only causes adhe- 
sion, but also immobilization [27]. Non-specific 
forces are only able to cause adhesion; i.e. to 
keep adhering cells .on a substratum surface, but 
they allow for sliding [27], an aspect that can be 
of  major medical and ecological importance. Fur- 
thermore it has been argued that specific bonds 
are stronger than non-specific bonding, and that 
non-specific bonding occurs immediately when 
the cell comes in the vicinity of  a surface, whereas 
specific bonding may be more time-consuming 
due to possible necessary rearrangement of  stere- 
ochemical, molecular groups to interact, or even 
expression of  new macromolecules by a cell in 

Substratum 

ntOon In whk~h vtn d~ Wa~ and e l e ~ - ~  Comes 
me ~ Ix~lt~ oe~  

]Fi.~. 1. Non-specific forces (Van der Waals and electrostatic 
reties and hydrogen bonding) originate from the entire c¢11 
at~:J for that reason may not be neglected as compared to the 

effect of specific adheslns. 

Bac te r ia l  cel l  s u r f a c e  

S u b s t r a t u m  

reg~an i~ whk~ vim cl~ WIm~ anti eh~tmstatic ~ m  

Fig. 2, A specific bond between stcreocbemicai molecular 
groups on the cell and substratum surfaces, consists of a 
combination of attractive Van der ,Waals and electrostatic 
forces and hydrogen bonding, originating from highly local- 
ized chemical groups, which together form a stereocheraical 

combination. 

response to a surface [59,60]. However, because 
specificity arises from the same basic physico- 
chemical forces as usually said to cause non- 
specificity, the absence or presence of specific 
receptor sites on microbial cell surfaces should 
have an effect on the overall, macroscopic cell 
surface properties as well. Most frequently, inves- 
tigators do not seek to examine relations between 
specific and non-specific cell surface properties. 

4. G L U C A N - B I N D I N G  LECTINS A N D  Z E T A  
POTENTIALS O F  M U T A N S  STREPTOCOCC~ 

Recently, we published a detailed study [61] on 
the hydrophobicity (assessed by water contact an- 
gles), zeta potentials and overall elemental sur- 
face and molecular composition of  four mutans 
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streptococcal species: S. sobrinus, S. cricetus, S. 
rattus and  S. mutans .  Results  showed tha t  $. 
rat tus strains were slightly less hydrophobic than  
the  o ther  strains and  had  elevated amounts  of  
~arface phosphate .  However, the most  notewor- 
thy difference between these species was the  dif- 
ferent  p H  dependence  of  thei r  zeta potentials  in 
10 m M  potassium phosphate  buffer  (see Table  2). 

Taking a specific approach,  Drake et  al. [16] 
studied the  absence or  presence of  glucan-bind- 
ing lectins on mutans  streptococcal strains by 
measur ing macroscopic agglutination of  ceils by 
glucan T2000 with light scattering. The i r  data  are 
summarized in Table  2, expressed as an aggluti- 
na t ion rate constant.  Drake et  al. [16] argued tha t  
agglutinat ion by glucan T2000 indicates the  pres- 
ence of  a glucan-binding lectin (GBL)  on the  
cells. 

Al though we have no  proof  tha t  the  cells grown 
by Van der  Mei et  al. [61] and  Drake et al. [16] 
are identical, it is interest ing to compare  thei r  
da ta  in order  to illustrate tha t  specificity and  
non-specificity can indeed be  different expres- 
sions for the  same phenomenon .  

S. sobr in~ ,  S. cricetus and  S. mutans ,  all pos- 
sessing GBLs, show a significant increase in their  
zeta potentials  towards positive values upon low- 
ering the  pH. One  of  the  possible explalmtions of  
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these observations is tha t  GBLs counterbalance  
the expression of negative charge especially at  
low pH, and  the  highly negative zeta potent ia l  of  
S. rattus over the  ent ire  pH range can be  consid- 
ered  as a corollary of  the  absence of  GBI.s. 

Taking a non-specific approach,  we have re- 
cently explained the  poor  adhesion of $. rattus to 
artificial salivary pellicles on  glass as a result  of  
strong electrostatic repulsions between the  cells 
and  the  pellicle. In a specific approach,  the  lack 
of GBLs on S. rattus strains would probably have 
been  used to explain these observations. 

The  above example has been  included in order  
to show that  specific cell surface propert ies  influ- 
ence non-specific cell surface propert ies,  as a 
corollary of the chemical composit ion of  the  cell 
surface. These  ideas may not  be  used for any 
general izat ion concerning the  pH independence  
of  zeta potentials  and the  presence of  GBLs on  
cell surfaces. In ano ther  situation, as e.g. in the  
case of  Streptococcus salivarius HB and  a series 
of  fiblil-deficient mutants  [43], hydrophobicity or  
any o ther  overall surface characterist ic may be  
the  more appropr ia te  characterist ic to consider in 
relat ion w i t h t h e  absence or  presence of  specific 
receptor  sites on cells. However, this example 
does show the great  potential  of  pH-dependen t  
zeta potential  measurements ,  reflecting very sen- 

Table 2 
Zeta potentials of mutans streptococcal strains in 10 mM potassium phosphate as a function of pH and agglutination rates by 
glucan T2000 

Species and/or Zeta potential (mV) Rate constant 
original strain pH 2.0 pH 7,0 pH 9.0 (min-t) 
number a 

$. sobrinus + 1.0 - 11.7 - 10.5 0.7-1.1 x 10 ° 
S. cricetus 0.0 - 16.7 - 19.3 3.1-3.2x 10- t 

AHT - 2.5 - 16.8 - 14.8 3.2 x 10 - ! 
E 4 9  - 1.7 - 15.3 -23.8 3.1 X 10- I 
HS-6 + 4.1 - 18.1 - 19.2 3.1X 10- 

$. rattus - 24.3 - 28.1 - 28.1 0.0 
FA*I - 26.6 - 24.4 - 18.6 0.0 
BHT - 18.6 - 38.4 - 37.1 0.0 

5, mutans +8.4 - 14.9 - 13.2 0.0 b 

a Strain numbers and data are only given when both Van der Mei et al. [61] and Drake et al. [16] included these strains. Otherwise 
data per species are given. 

b For several of the $. mutans strains, macroscopic agglutination was reported to be not readily measurable by light scattering. 
After centrifugation, these strains were observed to be agglutinated by glucan T2000. 
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sitively the effects of (de)protonation of ionic 
groups on the cell surface. 

5. SPECIFICITY vs. NON-SPECIFICITY IN 
ADHESION 

In vitro adhesion experiments with oral strep- 
tococci to inert, artificial solid substrata of differ- 
ent surface free energies have yielded a number 
of important observations: (i) hydropbobic strains, 
such as S. mitis adhere in higher numbers to 
hydrophobic substrata than to hydrophilic sub- 
strata [48]; (ii) hydrophilic strains, like S. mutans, 
adhere in higher numbers to hydrophilic sub- 
strata [48]; (iii) adhesion of hydrophobic strains is 
more reversible on hydrophilic substrata than 
on hydrophobie substrata, whereas hydrophilic 
strains adhere more reversibly to hydrophobic 
substrata [47]. 
The degree of preference of =,~ains for substrata 
of similar hydrophobicity turned out to be strain- 
dependent [62] and influenced by the absence or 
presence of surface appendages and whether or 
not the cells were able to produce biosurfactants 
that could mask the substratum properties [63] 
Interestingly, data on ground and polished hu- 
man enamel fitted exactly within the relations 
found for the artificial substrata [51]. Thus we 
can conclude that a non-specific approach is quite 
adequate in explaining oral streptococcal adhe- 
sion to both artificial solid substrata as well as to 
ground and polished human enamel. 

Our observations on oral streptococcal adhe- 
sion to protein-coated artificial solid substrata 
and human enamel could be explained only partly 
on the basis of a non-specific approach. In the 
case of an albumin coating and substrata covered 
with an artificial salivary pellicle, all the above 
described tendencies were greatly attenuated but 
still present [51], suggesting that cells could probe 
the properties of the underlying substratum 
through the adsorbed protein film. 

Contrary to the above, S. mutans adhered to 
mucin-coated hydrophobic substrata in much 
h~her  numbers than to mucin-coated hydrophilic 
substrata [64], at odds with expectations on the 
basis of observations with bare substrata. R was 

hypothesized that the degree to which hidden 
receptor sites of the mucin molecule ('crypti- 
topes') for S. mutans were exposed, was regu- 
lated by the hydrophobicity of the substratum to 
which the mucin was adsorbed [6,21,65]. Thus it is 
obvious to conclude that, despite a small sustain- 
ing influence of non-specific substratum proper- 
ties, a specific approach is probably better suited 
to explain oral streptococcal adhesion to protein- 
coated substrata. 

Surprisingly, however, both Glantz [44,45] as 
well as Quirynen et al. [46] found by independent 
measures that plaque formed up till 9 days in the 
human oral cavity accumulated to a much lesser 
extent on hydrophobic substrata than on hy- 
drophilic substrata. Thus it appears that non- 
specificity is more important under the dynamic, 
in vivo conditions of the oral cavity than speci- 
ficity. Since protein adsorption proceeds on a 
much faster timescale than microbial adhesion, 
bacterial adhesion in vivo will always be to an 
adsorbed protein layer. The differences in amount 
of plaque accumulation can only be explained if 
the characteristics of the adsorbed protein layer 
are influenced by the physico-chemistry of the 
underlying surface. This observation is difficult to 
reconcile with the conclusion that specificity pre- 
vails in adhesion to adsorbed protein films and 
actually constitutes a clear contradiction: "When 
specificity prevails in bacterial adhesion to pro- 
tein-coated substrata in vitro, then why is not this 
the case for plaque formation in vivo?" 

An explanation for this contradiction can 
probably be found in the realization that plaque 
formation equally involves microbial adhesion as 
well as retention [29,30,66,67] of adhering cells. 
Shear forces acting in the oral cavity may vary by 
a factor of 50-100 at rest as compared to during 
swallowing, eating, drinking and speech [68,69]. It 
seems reasonable to assume that cells will adhere 
predominantly during periods of low shear force, 
whereas detachment of adhering cells will occur 
more readily during the periods of high shea~ 
force (see Fig. 3). Detachment of cells at the 
adsorbed protein-cell interface is unlikely, be- 
cause this adhesion is thought to be mediated by 
strong specific bonds. Therefore detachment must 
be through cohesive failure in the adsorbed pro- 
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tein mass or, alternatively, though less likely, at  
the  adsorbed p ro te in - subs t ra tum interface (see 
Fig. 3). This puts major  emphasis  on  the hypothe- 
sis tha t  adsorbed protein films are condit ioned in 
various aspects by non-specific substra tum prop- 

shear force 

eating 

$1nklng 

rest speech 

t ime  

2O5 

Table 3 

Over, iew of studies indicating that adsorbed protein films are 
conditioned according to the overall, macrosopic properties of 
the substrata 

Technique Summary of conclusions Refer- 
ence 

Ellipsometry 
and infrared 
spectroscopy 

Infrared 
spectroscopy 

Amino acid 
analysis 

Transmission 
electron 
spectroscopy 

Photo acoustic 
spectroscopy 

Radio- 
iodination 

Relative film density of adsorbed [37] 
salivary proteins is higher on 
hydrophobic than on hydrophilic 
materials 
Amide ! and Amide II absorption [70] 
bands differ on hydropbobic and 
hydrophilic materials 
Amino acid composition [71-77] 
of adsorbed salivary proteins 
is different on hydrophobic 
and hydrophilic materials 
Adsorbed proteins form a contig- [64,751 
uous film on hydrophilic materials 
and form island-like structure 
on hydrophobic materials 
Photo acoustic response of organic [76] 
films depends on hydrophobicity of 
the substrata 
Selective adsorption of proteins [77,78] 
from plasma depends on hydro- 
phobicity of the substrata 

adhesion 
phase 

detachment i 
phase , 

Fig. 3. In the oral cavity, periods of low and high shear follow 
each other rapidly. Since salivaw protein adsorption proceeds 
at a much faster timescale than microbial adhesion, bacteria 
adhere predominantly to the pellicle surface during periods of 
low shear. Specific bonding together with non-specific forces 
mediates a firm adhesion between cells and the pellicle sur- 
face. During periods of high shear, detachment occurs through 
cohesive failure in the protein mass, the properties of which 

are determined by non-specific substratum properties. 

erties, a hypothesis for which increasing evidence 
has become available (see Table  3). 

The  data  in Table 3 suggest tha t  this condi- 
t ioning mechanism probably involves: 
(i) the amount  of prote in  adsorbed;  
(ii) the thickness of  the  adsorbed protein layer; 
(iii) the  relative density of  the adsorbed prote in  
layer; 
(iv) the  spatial a r rangement  of the  adsorbed pro- 
teins; 
(v) the  configuration of the  adsorbed proteins;  
(vi) selective adsorption of  specific proteins.  

6. C O N C L U D I N G  R E M A R K S  

This paper  a t tempts  to illustrate tha t  speci- 
ficity and  non-specificity originate f rom the  same 
basic physico-chemicai forces, l.~fshitz-Van der  
Waals, electrostatic forces and hydrogen bonding 
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[57,79,80] are usually summarized as the non- 
specific forces. Since these types of  forces are 
also basic to specificity, there is no such a thing 
as a specific force. One can, however, refer to 
'specific interactions' ,  which are mediated 
through 'non-specific' forces, and 'specific ap- 
proaches' to bacterial adhesion problems. 

Specific approaches may be preferred when 
studying microbial adhesion to adsorbed protein 
films in vitro and under constant shear forces, 
whereas a non-specific approach is better suited 
to explain both microbial adhesion to inert sub- 
strata and plaque formation in the oral cavity. 
This conclusion is likely to hold for every applica- 
tion in which adhering cells are exposed to vary- 
ing shear forces as e.g. uropathogens on catheter 
surfaces [81], viridans streptococci adhering to 
artificial heart valves [82], microorganisms infect- 
ing artificial vascular grafts [83] or bacteria in 
aquatic environments [84]. 

In the course of  our studies we have encoun- 
tered some bacterial strains with particularly un- 
usual surface architecture, such as tufted S. san- 
gu/s strains [85] and Actinobacil lus actino- 
mycetemcomitans strains with very long and 
sparsely distributed hydrophobic fimbriae [86] that 
act as exceptions to the principles outlined here. 
The current state of physico-chemical techniques 
does not allow examination of surfaces at the 
level of a mtAecularly local detail. As these tech- 
niques advance to be more sensitive for local 
architecture of cell surfaces as well, it will be 
found that these unusual strains also will adhere 
according to the principles outlined in this paper. 

It is often said that 'bacteria stick to any 
surface'. Whether  this is always true or  not is 
beyond the scope of this paper, but it is certainly 
true that non-specific forces will enable cells to 
adhere to many surfaces, despite the fact that 
they may not yet have developed specific receptor 
sites for that surface. Bacteria may develop new 
specific receptor sites in order to colonize a new 
host surface, often first maintaining a non-specific 
association with the substratum in question. 

Thus, while scientists argue about specificity 
and non-specificity, bacteria make clever use of  
this controversy to adhere to the surfaces of  their 
choice. 
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