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ABSTRACT
Objectives  Regional accessibility and distribution of 
endovascular thrombectomy (EVT) capable facilities, that 
is, comprehensive stroke centres (CSCs), may significantly 
influence time to treatment. We analysed the impact of 
adding CSCs in the north of the Netherlands, a region with 
roughly 1.7 million inhabitants currently served by one CSC 
and eight primary stroke centres (PSCs).
Design  Monte Carlo simulation modelling was used 
to establish new CSCs in our region by hypothetically 
upgrading existing PSCs to CSCs and ensuing adjustments 
in health services set-up.
Setting  One CSC and eight PSCs in the north of the 
Netherlands.
Participants  165 patients with acute stroke treated with 
EVT and underwent interhospital transfer between PSC and 
CSC (drip and ship patients).
Primary and secondary outcomes  Time from onset 
to groin (OTG) puncture and predicted probability of 
favourable outcome (modified Rankin Scale 0–2) after 
90 days. Sensitivity analyses were performed to assess 
uncertainty in workflow efficiency of CSCs.
Results  Adding one or two CSCs would reduce the 
OTG time up to approximately 17 min and increases 
the predicted probability of favourable outcome by 
approximately 2%. Sensitivity analyses revealed that 
‘slow-acting’ CSCs may reduce OTG by 3–5 min compared 
with 24–32 min for ‘fast-acting’ CSCs.
Conclusions  This study suggests that adding one or two 
CSCs in the north of the Netherlands would have modest 
impact. Improving workflow efficiencies seems to be more 
potent when aiming to improve existing acute stroke care 
systems.

INTRODUCTION
Fast treatment of acute ischaemic stroke (AIS) 
due to large vessel occlusion (LVO) is pivotal 
to improve functional outcome.1 The effects 
of both intravenous thrombolysis (IVT) and 
endovascular thrombectomy (EVT) for AIS 
are highly time dependent. that is, every hour 
delay implies a 5%–6% decline in the chance 
of a favourable outcome.2 3

Two main organisational models for acute 
stroke care currently exist. In the mother-
ship (MS) model, a patient with suspected 
stroke is directly transported to a comprehen-
sive stroke centre (CSC), which can admin-
ister both IVT and EVT. In the drip and ship 
(DS) model, the patient is initially trans-
ported to the nearest IVT capable hospital, 
a primary stroke centre (PSC). In case the 
patient appears eligible for EVT, interhos-
pital transfer by emergency medical services 
(EMS) is arranged between the PSC and CSC, 
which was shown to substantially increase 
the onset to groin (OTG) time and thus 
delaying the start of EVT.4–7 The dominance 
of a certain organisational model and associ-
ated delays to EVT, mainly depend on region 
specific spread of hospitals, the geographic 
location of stroke onset and protocols used 
by EMS. In some regions there are concerns 
regarding timely access to EVT, as patients 
require relatively long travel times towards a 
CSC.8 A possible solution is to upgrade other 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ The results of this study adds important knowledge 
on the potential benefits of adding comprehensive 
stroke centres in underserved rural regions.

	⇒ Input data for the developed models represent pa-
tient level data both from the hospital and prehos-
pital setting thereby accurately representing clinical 
practice.

	⇒ Simulation modelling is presented as a flexible and 
efficient methodological approach which has the 
potential for broader use by using input data from 
other regions.

	⇒ Does not include the broader patients with stroke 
population of non-large vessel occlusion and haem-
orrhagic subtypes.

	⇒ The simulation model includes time delay parame-
ters on system performance that may have changed 
over time.
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hospitals presently acting as PSCs to meet the standard of 
a CSC, thereby aiming to reduce interhospital travel times 
or avoid inter-hospital transfer delay altogether.

The aim of this paper is to estimate the potential effects 
of adding one or more CSC(s) in the northern region of 
the Netherlands on the OTG puncture time and 90 days 
functional outcome in patients treated with EVT, using 
simulation modelling.

METHODS
Participants and setting
For the baseline model prospectively collected data of 
183 patients from the MR CLEAN Registry was used.9 All 
patients were treated with EVT between July 2014 and 
November 2017 and routed according to the DS model 
in the northern region of the Netherlands. In this region, 
the University Medical Centre Groningen (UMCG) is the 
only CSC. Its catchment area serves 1.7 million inhabi-
tants (209 per square kilometre), including eight PSCs at 
distances between 6 and 84 kilometers (figure 1).

In order to acquire a complete overview of the acute 
stroke pathway, prehospital and interhospital transfer 
data was retrospectively collected at the regional EMS and 
subsequently linked. Inclusion criteria were prestroke 
modified Rankin Scale (mRS) score ≤2 and OTG time 
≤390 min.

Baseline model
A Monte Carlo simulation model was developed based 
on DS time variables collected in the MR CLEAN 
Registry9 and served as baseline model. Input variables 
for the model included time of: symptom onset or last 
seen well, CT, start IVT, CT angiography (CTA), arrival 
at angiography suite and groin puncture. EMS variables 
included time of: 911 call, arrival at the stroke onset loca-
tion, departure to PSC, PSC arrival, transfer notification 

(second 911 call), arrival at PSC, departure to CSC, and 
arrival at the CSC.

Prior to development of the simulation model, concep-
tual modelling was applied to capture the real-world 
acute stroke pathway for DS patients (figure 2). For each 
patient various logistical routes can be defined, starting 
from the moment of stroke onset up to groin puncture. 
For example, stroke onset may occur inside or outside the 
hospital, patients may be eligible for IVT or not, undergo 
CTA before IVT treatment or the other way around. Also, 
after interhospital transfer, patients may be assigned 
directly to the angiography suite, or first undergo addi-
tional diagnostics. The conceptual model represented all 
these variations and was validated using stroke experts 
participating in the nationwide COllaboration for New 
TReatments of Acute Stroke (CONTRAST) consortium, 
and based on findings from previous publications.10

The Monte Carlo simulation model was coded using 
Plant Simulation software.11 Time intervals were quan-
tified and presented as statistical distributions using 
ExpertFit,12 based on the original patient data (online 
supplemental table S1, online supplemental material).

Adding CSC(s): Data and experiments
To evaluate the impact of adding one or more CSCs in 
our region, the baseline model was modified and patient 
routing adapted towards the nearest new CSC (online 
supplemental table S2, online supplemental material). 
Based on the original prehospital routing strategy, two 
categories of patients were distinguished: (1) patients 
routed directly towards the new CSC (modified MS 
model), and (2) patients routed according to the DS 
model, and subsequently routed towards the nearest new 
CSC (modified DS model). The time distributions under-
lying the baseline model were changed accordingly, see 
figure  2 (parts 1–3). For patients routed according to 
the modified MS model interhospital transfer time and 

Figure 1  PSCs, CSC and NSCs in the north of the Netherlands. CSC, comprehensive stroke centre; NSC, non-stroke centre; 
PSC, primary stroke centre.
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time for additional diagnostics were set to zero (figure 2, 
part 1). In addition, for the new CSCs, we included time 
interval distributions from emergency department (ED) 
to angiography suite arrival and from angiography suite 
arrival to groin puncture (figure  2, part 2). For these 
distributions, we used data of MS patients (MR CLEAN 
Registry) treated with EVT in the UMCG.9

For patients still routed according to the DS model, 
but transferred to the nearest (new) CSC, the time distri-
butions representing EMS interhospital transport were 
adapted (figure 2, part 3).

In addition, the strategy of prehospital routing to the 
nearest CSC was added. Prehospital routing was adapted 
when transportation times to the nearest CSC were 
shorter than 30–45 min,13 both for added and existing 
CSCs. Transport times from stroke onset location to the 
added or existent CSC were based on times collected by a 
web-based route planner (figure 2, part 4),14 and adjusted 
for presumed higher ambulance speeds by reducing 
transport times by 23% (calculated by comparing route 
planner car times and EMS time variables that were 
collected for our region). Furthermore, similar adaptions 
were made as for the modified MS model (figure 2, part 
1 and 2).

Model scenarios
Three scenarios were tested to assess the impact of adding 
new CSC(s). The first two scenarios included selection of 

PSCs to be hypothetically upgraded to a CSC, based on 
their distance to the existing CSC, expected treatment 
volumes and available resources. Based on a distance of 
approximately 60 km from the UMCG and an expected 
treatment volume of 50 patients per year (based on 
collected patients with EVT of the last year in its catch-
ment area),9 scenario 1 adds a CSC in the western section 
of the region (figure 3A). Scenario 2 adds an additional 
CSC in the south-east section at approximately 60 km 
from the UMCG (figure 3B). This centre would have a 
treatment volume of approximately 15 patients per year,9 
but an increase in treatment volume is considered likely 
because this hospital is on a provincial border and thereby 
might attract patients from adjacent regions. In scenario 
3, all PSCs are upgraded to CSCs.

In addition, a subscenario was to scenario 1 (1A) and 
2 (2A) for adapted prehospital routing, that is, directly 
routed to the nearest CSC, when transportation time was 
shorter than30-45 minutes.

On adding CSC(s), we assumed that workflow effi-
ciencies (time from door/last examination at the ED 
to groin) within the new CSCs would be comparable to 
the existing CSC in the region (the UMCG). However, as 
not every CSC will perform equal, we performed a sensi-
tivity analyses representing practice variation observed in 
the Netherlands. Based on MR CLEAN Registry data of 
hospitals providing EVT in the Netherlands, we studied 

Figure 2  Conceptual model of the acute stroke pathway (DS patients), baseline model and adapted time variables. Time 
variables and patient routing for the baseline model are represented by rectangles and diamonds. Time variables adapted when 
upgrading PSCs to CSCs are marked as coloured parts, referring to one or multiple time variables. Part 1: steps omitted, when 
patient is routed directly to the new CSC. Part 2: steps for which time variables are set equal to the distributions found for the 
existing regional CSC, when patient is routed directly to the new CSC. Part 3: time distribution for EMS interhospital transport 
is adjusted for patients still routed according to the DS model but transferred to the nearest new CSC. Part 4: time distribution 
adapted when prehospital routing is adapted to routing directly to the nearest CSC. CSC, comprehensive stroke centre; CT, 
computed tomography; CTA, CT angiography; EMS, emergency medical services; EVT, endovascular thrombectomy; IVT, 
intravenous thrombolysis; POC, point of care; PSC, primary stroke centre.
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the impact of a 25% increase and decrease in workflow 
efficiency.

Outcome measures
For each scenario, we calculated the clinical benefits in 
terms of reduction in OTG, and favourable functional 
outcome defined as mRS score of 0–2.

Statistical analysis
Missing values were excluded from analyses, as statistical 
imputation techniques were not necessary to obtain intact 
model distributions. Time distributions of the baseline 
model were numerically validated by comparing model 
output (mean, median, SD, minimum and maximum) 
with real-world data of patients.

Ordinal regression was used to estimate the likeli-
hood of each of the seven outcomes according to the 
mRS score. Known prognostic variables were: OTG, age, 
National Institutes of Health Stroke Scale score and CTA 
collateral grading score in four categories. The predicted 
probability of favourable outcome (PPFO) was predicted 
using the formula obtained by ordinal regression, that 
is, still discerning all possible mRS and subsequently 
dichotomising.

Model outcomes for scenarios were compared with 
the baseline model. Testing for significance was deemed 
redundant since the aim was to assess the potential gains 
that may be expected based on a hypothetical cohort of 
100.000 individuals.

Simulation model access
The simulation model will be available on reasonable 
request for other researchers.

Figure 3  CSCs added in the north of the Netherlands. 
(A) One CSC is added in the western part of northern 
Netherlands (scenario 1). (B) Two CSCs are added in the 
western part and southern part of northern Netherlands 
respectively (scenario 2). CSC, comprehensive stroke centre; 
NSC, non-stroke centre; PSC, primary stroke centre.

Table 1  Characteristics, diagnostics and time delays of the 
baseline model

Patient characteristics N

Age in years (SD) 70 (13) 165

Male (%) 99 (60) 165

IVT rate (%) 132 (80) 165

Patient diagnostics

 � Baseline NIHSS score 1–15 (%) 71 (43) 165

 � Collaterals absent (%) 11 (7) 155

 � <50% filling of collaterals (%) 81 (49) 155

 � >50% filling of collaterals, less than 
100% (%)

49 (30) 155

Process times EMS

 � Symptom onset to 911 call 11 (3–33) 139

 � Response time 9 (7–12) 132

 � On scene time 16 (12–20) 126

 � Transport time 12 (7–15) 122

Process times in-hospital, PSC

 � Hospital arrival to CT 15 (11–20) 125

Route 1

 � CT to IVT 8 (4–19) 56

 � IVT to CTA 11 (5–19) 57

 � CTA to EMS call for transfer 31 (23–50) 56

Route 2

 � CT to CTA 9 (5–11) 62

 � CTA to IVT 9 (4–15) 63

 � CTA to EMS call for transfer 21 (8–34) 61

Route 3

 � CT to CTA 14 (9–30) 31

 � CTA to EMS call for transfer 33 (23–48) 31

Process times interhospital transfer

 � Response time 8 (5–10) 140

 � Handover time 14 (10–16) 139

 � Transport time 27 (19–32) 150

Process times in-hospital, CSC

 � CSC arrival to additional diagnostics 23 (17–45) 17

 � Additional diagnostics to 
angiography suite

29 (14–70) 18

 � CSC arrival to angiography suite 26 (16–38) 151

 � Arrival angiography suite to groin 30 (24–35) 163

Overall time

 � OTG 230 (198–275) 165

Time variables are in minutes, median (IQR).
CSC, comprehensive stroke centre; CT, computed tomography; 
CTA, computed tomography angiography; EMS, Emergency Medical 
Services; IVT, intravenous thrombolysis; NIHSS, National Institutes of 
Health Stroke Scale; OTG, time from stroke onset to groin puncture; 
PSC, primary stroke centre.
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Public and patient involvement
Patients and the public were involved in the conception 
of the topics to be addressed in the CONTRAST consor-
tium. Study results will be disseminated through newslet-
ters, poster presentations and publications in newspapers, 
lay journals and publication in peer-reviewed journals.

RESULTS
Baseline characteristics
Out of the 179 patients, we included 165 patients. Four-
teen patients were excluded because of an unknown or 
>2 prestroke mRS, and four because of an OTG >390 min. 
Baseline patient characteristics are presented in table 1.

Input data, adding CSC(s)
The median (IQR) time intervals from hospital arrival 
to angiography suite arrival and from angiography suite 
arrival to groin puncture were 58 (44–82) and 28 (25–35) 
minutes, respectively.

Simulation results, adding CSC(s)
Results for all simulated scenarios are presented in table 2. 
Adding a new CSC (scenario 1), would reduce OTG by 
14 min and increase PPFO by 1.6%. For patients routed 
specifically according to the modified MS model, OTG 
would be reduced by 43 min and PPFO would increase by 
5.2%. For all patients routed according to the DS model, 
OTG is reduced by 7 min and PPFO would increase by 
0.8%. The strategy of direct prehospital routing to the 
nearest CSC would result in a 35 min reduction in OTG, 
and an increase by 4.1% in the PPFO.

Adding another CSC in the region (scenario 2) would lead 
to an overall reduction in OTG of 19 min and would improve 
PPFO by 2.2%. Modified MS patients would be treated 43 min 

faster and PPFO would increase by 5.2%. All patients routed 
according to the DS model would be treated 9 min faster and 
PPFO would increase by 1.2%. Using the adapted prehospital 
routing directly to the nearest CSC reduces OTG by 38 min 
and increases PPFO by 4.6%.

Upgrading all PSCs to CSCs effectively routing all 
patients according to the modified MS model (scenario 
3), OTG would be reduced by 43 min and the PPFO 
increased by 5.5%. Increasing the number of CSCs 
showed a shift towards lower predicted mRS scores 
(online supplemental figure S1).

Sensitivity analysis
Results of the sensitivity analysis are presented in online 
supplemental table S3. When considering adding a 
new CSC in which workflow processes were 25% slower 
compared with the original CSC, OTG would be reduced 
by 3 min compared with the baseline model and PPFO 
would increase by 0.4%. In contrast, when implementing 
a CSC that is 25% faster, OTG would be reduced by 
24 min and PPFO would increase by 3.0%. Adding two 
CSCs to the region, with 25% slower or faster workflow 
would reduce OTG by 5 and 32 min, respectively. PPFO 
would increase by 0.7% and 3.9%.

By upgrading all PSCs to CSCs, and assuming all the 
new CSCs would be 25% slower or faster compared with 
the baseline model, OTG would reduce by 19 and 67 min, 
respectively. PPFO would increase by 2.4% and 8.2%. In 
addition, if the original single CSC would achieve a 25% 
faster workflow, this would reduce OTG by 15 min and 
PPFO would increase by 1.8%.

DISCUSSION
This modelling study demonstrated that, adding one 
or two CSC(s) in our region with comparable workflow 

Table 2  Modelling results of adding CSC(s) and its effect on OTG and PPFO

Scenario OTG (95% CI) PPFO (95% CI)

All patients

 � 0. Baseline 240.9 (240.5–241.3) 52.4 (52.3–52.5)

 � 1. Adding one CSC 227.4 (227.0–227.7) 54.0 (53.9–54.2)

  �  A. Prehospital routing to nearest CSC 209.5 (209.2–209.9) 56.2 (56.1–56.4)

 � 2. Adding two CSCs 222.3 (221.9–222.7) 54.7 (54.5–54.8)

  �  A. Prehospital routing to nearest CSC 203.4 (203.0–203.8) 57.0 (56.8–57.1)

 � 3. All PSCs upgraded to a CSC 197.9 (197.5–198.2) 57.6 (57.5–57.8)

All patients routed according to the DS model (to the new CSC and the original CSC)

 � 1. Adding one CSC 234.1 (233.8–234.5) 53.2 (53.1–53.4)

 � 2. Adding two CSCs 231.7 (231.3–232.0) 53.5 (53.4–53.7)

 � 3. All PSCs upgraded to a CSC NA NA

Patients routed according to the modified MS model

 � 1. Adding one CSC 198.1 (197.7–198.4) 57.6 (57.5–57.7)

 � 2. Adding two CSCs 198.2 (197.8–198.6) 57.6 (57.4–57.7)

 � 3. All PSCs upgraded to a CSC 197.9 (197.5–198.2) 57.6 (57.5–57.8)

CSC, comprehensive stroke centre; DS, drip and ship; mRS, modified Rankin Scale; MS, mothership; NA, not applicable; OTG, onset to 
groin puncture; PPFO, predicted probability of favourable outcome (mRS 0–2); PSC, primary stroke centre.
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efficiency as the current CSC, would reduce OTG between 
15 and 20 min and improve PPFO at 90 days by 1%–2% 
(absolute benefit). A likely explanation for this modest 
effect may be the relatively short travel distances, the 
well-developed road network and the well-organised EMS 
within our region. Upgrading all PSCs to CSCs would 
have a much larger impact, reducing the OTG time by 
more than 40 min and improving PPFO by more than 
5% (absolute benefit). This latter scenario is considered 
unfeasible, for reasons of low treatment volumes, which 
is related to the quality of EVT,15 availability of staff and 
equipment and higher costs.

When prehospital routing was adapted to direct 
transfer to the nearest CSC, the OTG may be reduced by 
30–40 min and PPFO at 90 days improves by 4%–4.5%. 
Although this option appears to be beneficial, we did 
not estimate onset to IVT times for non-LVO patients. In 
addition, the expected increased workload for CSCs when 
routing all patients with stroke directly towards CSCs was 
not taken into account. A more comprehensive simula-
tion model would be needed to study this option further. 
Patients routed directly to the new CSCs (MS model) 
were observed to be treated much faster compared with 
patients routed according to the DS model. This is in 
line with previous research indicating that interhospital 
transfer significantly contributes to longer OTG times.4–7 
Analysing our data clarifies how the time interval from 
completing CTA to call for transfer explains more than 
one third of the difference among patient groups. Rapid 
LVO detection after CTA,16 early EMS notification or 
even EMS waiting for release at the PSC17 are therefore 
clear recommendations to further reduce the interhos-
pital transfer time.

Importantly, sensitivity analyses revealed that workflow 
performance would have a major impact on performance 
of additional CSCs. Our sensitivity analysis revealed a 
difference of approximately 25 min in OTG times between 
‘slow’ versus ‘fast’ acting CSC(s) compared with the base-
line model. Given the practice variation between hospi-
tals, the estimated impact might even be greater, and may 
be further enhanced by workflow improvements.18 In 
addition, our sensitivity analysis suggests that improving 
workflow might be even more efficient than adding a 
second or third CSC. However, prior to offering clear-cut 
recommendations we suggest performing cost and cost-
effectiveness studies.

Our results may be generalisable to other underserved 
rural regions, which indeed reflects 31% of the European 
population, and a higher proportion of the older popu-
lation.8 Using simulation modelling to obtain early esti-
mates on the potential impact of implementation policies 
is in line with stroke guidelines indicating that organisa-
tion of stroke care should be analysed and/or adjusted 
per region.13 19 Moreover, simulation could be applied to 
other regions using the same approach by repopulating 
the model with region-specific distributions and assump-
tions. For example, similar analyses might be performed 
using data from urban regions possibly overserved 

currently by an abundance of CSCs. Thus, the effect of 
reducing the number of CSCs may be assessed.

Limitations
Our study has limitations. Model input is only described 
for patients eligible for EVT, although in reality organising 
acute stroke care requires a comprehensive approach 
beyond this specific group. that is, by including a wider 
group of patients with stroke including non-LVO patients 
and haemorrhages. Also, our simulation study has a main 
focus on logistic gains implied by adding CSCs, leaving 
quality issues as reflected in outcome models out of scope.

Conclusions
Our study suggests that the impact of adding CSCs on 
treatment times and clinical outcome in the north of 
the Netherlands will be modest. Workflow efficiency 
and prehospital routing (using a prehospital triage 
scale) seems important when considering to add CSCs 
to existing infrastructures. Both the performance of the 
existing CSC(s) as well as additional CSC(s) are important 
in this consideration.
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Supplementary material; Modelling the impact of adding comprehensive stroke centres. Can we 1 

deliver endovascular thrombectomy sooner? 2 

 3 

Introduction 4 

The main text of the manuscript provides the most important findings of the study. This supplementary 5 

material provides details on the simulation modelling methodology, the estimation of the predicted 6 

probability of favorable outcome (mRS score, 0 to 2) at 90 days used in the manuscript, and extended 7 

tables of the results.  8 

 9 

Simulation modelling methodology 10 

Monte Carlo simulation modelling  11 

Within the Monte Carlo simulation methodology random variables are used for solving stochastic or 12 

deterministic problems. The passage of time plays no substantial role, as there is no competition 13 

between patients.1 Variety in patient diagnostics, characteristics, time delays towards endovascular 14 

thrombectomy (EVT) and routing patterns are incorporated into the model by probability distributions 15 

derived from real patient data. The Monte Carlo simulation modelling is to test ‘what if’ scenarios for 16 

workflow changes in the acute stroke pathway.  17 

 18 

Distribution fitting 19 

Activity durations and diagnostics are modelled by probability distributions, using data on individual 20 

patients. ExpertFit is used for distribution fitting, supporting the selection of statistical distributions, 21 

determining their parameters and testing candidate distributions for their goodness-of-fit.2 Main steps 22 

in distribution fitting concerned: 23 

• Importing of patient data into ExpertFit.  24 

• Fitting theoretical distributions.  25 
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• Seeking further evidence in case goodness of fit tests are indeterminate, in an attempt to 1 

underpin the choice of a specific theoretical distribution.3 Evidence considered includes 2 

conceptual usage of the candidate distribution(s), commonalities between highest ranked 3 

distributions, and consultation of domain experts. If such evidence is not found an empirical 4 

distribution was chosen. 5 

 6 

Set-up of experiments 7 

All experiments concern independent observations on a single run of 100.000 hypothetical patients. 8 

Independence of observations is guaranteed by modelling the stroke pathway as a non-queuing 9 

system reflecting the relatively low numbers of patients being treated in stroke centres, and priority 10 

rules that allow stroke patients to queue jump.4  11 

 12 

Software 13 

Plant Simulation was used to model the acute stroke pathway and perform experiments.5 Expertfit2 14 

was used to find the probability distributions and their parameters.  15 

 16 

Models 17 

Baseline model 18 

In the main text the conceptual model, the set-up of the baseline model, i.e. drip-and-ship model (DS), 19 

is visualized (figure 2). After stroke onset patients either enter the hospital from outside by ambulance 20 

transportation or are already hospitalised (9.1%). After distinguishing these patient routes (Table S1), 21 

the following time delay variable was modelled for hospitalised patients; ‘time from stroke onset to 22 

computed tomography (CT)’. For  patients outside the hospital the following were modelled; ‘time 23 

from stroke onset to 911 call’, ‘emergency medical services (EMS) response’, ‘EMS on scene’, ‘EMS 24 

transport’, ‘time from hospital arrival to CT’. 25 
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 After the time delay variables ‘time from stroke onset to CT’ (hospitalised patients) and ‘time 1 

from hospital arrival to CT’ (patients outside the hospital) patients were routed through the emergency 2 

department (ED) according to 3 routes; route 1 = CT-IVT- computed tomography angiography(CTA)-3 

transfer call(EMS) , route 2 = CT-CTA-IVT-transfer call(EMS) and route 3 = CT-CTA-transfer 4 

call(EMS) (in case of a contraindication for IVT). The following percentages per routes are observed 5 

and used; 37.7%, 41.8% and 20.5 %, respectively. 6 

 After ED routing the following time delay variables are modelled; EMS response for transfer, 7 

EMS handover, and EMS transfer. EMS transfer was divided in 3 groups, i.e. the western subregion, 8 

north-east region and southern region. After comprehensive stroke centre (CSC) arrival patients 9 

receive additional diagnostics (AD) (10.9%) or are routed to the angiography suite. The following time 10 

variables are modelled for patients that receive AD; ‘time from hospital arrival to last additional 11 

diagnostics’ (CT or CTA time) and ‘time from additional diagnostics to angiography suite’. Patients 12 

not receiving AD, ‘time from hospital arrival to angiography suite’ is modelled. Finally, ‘time from 13 

angiography suite to groin puncture’ is modelled for every patient. All distributions of the model are 14 

shown in Table S1.   15 

 In addition, patients age and diagnostics (National Institutes of Health Stroke Scale (NIHSS) 16 

and collaterals) are modelled to estimate the 7 scales of the mRS at 90 days. Collaterals are divided in 17 

4 categories: absent of collaterals, less than 50% filling of occluded area, more than 50% filling but 18 

less than 100% filling of occluded area or 100% filling of occluded area, and NIHSS score and age are 19 

both continuous variables. Means (SD) are for NIHSS 15.3 (5.3), for age 70.2 (12.9) years and 20 

collateral categories were divided in 7.2%, 52.9%, 31.4% and 8.5%, respectively. 21 

 22 

Table S1. Distributions of the baseline model, DS model. 23 

Activity duration Distribution  Parameters  

Hospitalised vs. patients 

outside hospital 

Discrete 

empirical 

Value  Frequency 

  Hospitalised 15 

  Outside hospital 150 
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Time from stroke onset 

to CT (hospitalised 

patients) 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 30 7 

  30 60 5 

  227 227 1 

Time from stroke onset 

to 911 call  

(patients outside 

hospital) 

Continuous 

empirical  

Lower Bound  Upper 

Bound 

Frequency  

  0 1 26 

  1 5 22 

  5 10 17 

  10 15 10 

  15 20 10 

  20 30 11 

  30 40 8 

  40 50 7 

  50 75 10 

  75 100 6 

  100 150 6 

  150 200 3 

EMS Response Beta Lower endpoint = 2.29; Upper endpoint = 

30.53; α1 = 2.56; α2 = 7.15 

EMS on Scene  Gamma Location = 1.70;  α = 5.43; β = 2.73 

EMS Transport: Divided 

in 3 subregion 

  

Western subregion 

(n=102) 

Weibull  Location = 0.00 α = 2.03; β = 13.41  

North-eastern subregion 

(n=42) 

Beta Lower endpoint = 3.41;  Upper endpoint =  

34.44;  α1 = 1.54;  α2 = 3.87 

Southern region 

(n=21) 

Beta Lower endpoint = 0.94;  Upper endpoint =  

15.16;  α1 = 1.05;  α2 = 1.53 

Time from hospital 

arrival to CT 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 5 8 

  5 10 21 

  10 15 39 

  15 20 28 

  20 25 14 

  25 35 12 

  35 55 3 

ED routing 

(3Catergories) 

Discrete 

empirical 

Value  Frequency 

  Route 1: CT to IVT to CTA 57 

  Route 2: CT to CTA to IVT 63 

  Route 3: CT to CTA 31 

Time from CT to IVT 

(route 1) 

Erlang μ = 13.70; σ = 17.09 
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Time from IVT to CTA 

(route 1) 

Erlang  μ = 14.54; σ = 13.73 

Time from CTA to 

transfer call (route 1) 

Gamma Location = 0.00; α = 2.63; β = 13.66 

Time from CT to CTA 

(route 2) 

Gamma Location = 0.00; α = 2.63; β = 3.53 

Time from CTA to IVT 

(route 2) 

Erlang  μ = 12.57; σ = 13.05 

Time from IVT to 

transfer call (route 2) 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 5 12 

  5 15 10 

  15 25 14 

  25 35 13 

  35 60 9 

  60 90 3 

Time from CT to CTA 

(route 3) 

Lognormal μ = 23.06; σ = 21.72 

Time from CTA to 

transfer call (route 3) 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 15 6 

  15 30 5 

  30 45 8 

  45 60 9 

  60 95 3 

EMS response for 

transfer 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 2 12 

  2 4 17 

  4 6 18 

  6 8 29 

  8 10 39 

  10 15 17 

  15 30 8 

EMS handover for 

transfer 

Continuous 

empirical 

Lower Bound  Upper 

Bound 

Frequency  

  0 5 5 

  5 10 31 

  10 15 59 

  15 20 31 

  20 30 11 

  30 40 2 

EMS transport (western 

subregion) 

Beta Lower endpoint = 17.92;  Upper endpoint =  

43.91;  α1 = 1.24;  α2 = 1.85 

EMS transport (southern 

subregion) 

Log-logistic Location = 25.02; α = 7.46; β = 3.80 

EMS transport (north-

east subregion) 

Lognormal μ = 10.97; σ = 7.03 
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Additional diagnostics 

vs. no additional 

diagnostics 

Discrete 

empirical 

Value  Frequency 

  Additional diagnostics 18 

  No additional diagnostics  147 

Time from hospital 

arrival to last additional 

diagnostics  

Gamma Location = 10.39; α = 1.11; β = 17.41  

Time from additional 

diagnostics to 

angiography suite 

Beta Lower endpoint = 4.82; Upper endpoint = 

124.31;  α1 = 0.67;  α2 = 1.60 

Time from hospital 

arrival to angiography 

suite 

Gamma Location = 4.25;  α = 2.23; β = 10.19   

Time from angiography 

suite to groin puncture  

Beta Lower endpoint = 4.72; Upper endpoint = 

65.69;  α1 = 4.55;  α2 = 6.55 
NIHSS(continuous)  Discrete empirical  Value Frequency 

  3 1 

  4 5 

  5 3 

  6 3 

  7 10 

  8 7 

  9 3 

  10 2 

  11 2 

  12 7 

  13 5 

  14 10 

  15 12 

  16 10 

  17 19 

  18 17 

  19 14 

  20 9 

  21 8 

  22 7 

  23 6 

  24 3 

  28 1 

Age(Continuous) Discrete empirical Value  Frequency 

  25 1 

  34 1 

  38 1 

  40 1 

  42 1 

  45 2 

  46 1 

  48 1 

  51 2 

  52 2 

  53 3 

  54 2 
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  55 4 

  56 1 

  57 3 

  58 2 

  59 4 

  60 4 

  61 4 

  62 4 

  63 3 

  64 4 

  65 6 

  66 5 

  67 5 

  68 5 

  69 4 

  70 5 

  71 4 

  72 5 

  73 7 

  74 5 

  75 3 

  76 2 

  77 6 

  78 5 

  79 6 

  80 5 

  82 3 

  83 7 

  84 2 

  85 4 

  86 7 

  87 1 

  88 2 

  89 2 

  90 3 

  91 1 

  92 1 

  93 1 

  97 1 

  99 1 

Collaterals Discrete empirical Value  Frequency 

  Absent (0) 11 

  less than 50 % filling (1) 81 

  > 50% or < 100% filling (2) 48 

  100% filling (3) 13 

DS, ‘drip-and-ship’ model; CT, Computed Tomography; EMS, Emergency Medical Services; SD, 1 

Standard deviation; IVT, intravenous thrombolysis; CTA, Computed Tomography angiography; ED, 2 

Emergency department; NIHSS, National Institutes of Health Stroke Scale. 3 

 4 

 5 

 6 
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Estimating patient outcomes  1 

The efficacy of EVT is time dependent. For the simulation model the probability of each of the 7 scales 2 

belonging to the modified Rankin Scale (mRS) score, ranging from 0 (no symptoms) to 6 (death) is 3 

approximated by a ordinal regression model. Model fit was tested by the Likelihood Ratio chi-square 4 

test, which was significant (P=.000). This indicates that the full model represents an improvement in 5 

fit over the model with only the intercept. Pearson’s chi-square test indicates that the model does not 6 

fit the data well [χ²(906)=989.614, p=.027], whereas Deviance chi-square test does indicate good fit to 7 

the data [χ²(906)=489.881, p=1.00]. Overall, this reflects an acceptable prediction of long-term 8 

outcomes for modelling purposes. For individual prognostication this may be another matter. 9 

 10 

Regression models account for patient characteristics using the following variables;   11 

• Stroke onset-to-groin  puncture time (Total delay in minutes), continuous variable 12 

• Age, continuous variable  13 

• NIHSS score, continuous variable  14 

• Collaterals in 4 categories, with dummy variables for absent of collaterals (yes or no, dummy 15 

0), < 50 filling (yes or no, dummy 1), >50% filling, <100% filling (yes or no, dummy 2), 100% 16 

filling (yes or no, dummy 3, reference category).  17 

 18 

The following formulas were obtained and used (n=154):  19 

- Probability of mRS6 = 1/(1+exp(6.975-(Collaterals_dummy_0 * 0.712)-20 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-21 

(NIHSS * 0.165)-(Age * 0.017))) 22 

 23 

- Probability of mRS5  = (1/(1+exp(6.841- (Collaterals_dummy_0 * 0.712)-24 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-25 
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(NIHSS * 0.165)-(Age * 0.017))))-(1/(1+exp(6.975- (Collaterals_dummy_0 * 0.712)-1 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-2 

(NIHSS * 0.165)-(Age * 0.017)))) 3 

 4 

- Probability of mRS4 = (1/(1+exp(6.359- (Collaterals_dummy_0 * 0.712)-5 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-6 

(NIHSS * 0.165)-(Age * 0.017))))-(1/(1+exp(6.841- (Collaterals_dummy_0 * 0.712)-7 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-8 

(NIHSS * 0.165)-(Age * 0.017)))) 9 

 10 

- Probability of mRS3 = (1/(1+exp(5.549- (Collaterals_dummy_0 * 0.712)-11 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-12 

(NIHSS * 0.165)-(Age * 0.017))))-(1/(1+exp(6.359- (Collaterals_dummy_0 * 0.712)-13 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-14 

(NIHSS * 0.165)-(Age * 0.017)))) 15 

 16 

- Probability of mRS2 = (1/(1+exp(4.131- (Collaterals_dummy_0 * 0.712)-17 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-18 

(NIHSS * 0.165)-(Age * 0.017))))-(1/(1+exp(5.549- (Collaterals_dummy_0 * 0.712)-19 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-20 

(NIHSS * 0.165)-(Age * 0.017)))) 21 

 22 

- Probability of mRS1 = (1/(1+exp(2.366- (Collaterals_dummy_0 * 0.712)-23 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-24 

(NIHSS * 0.165)-(Age * 0.017))))-(1/(1+exp(4.131- (Collaterals_dummy_0 * 0.712)-25 
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(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-1 

(NIHSS * 0.165)-(Age * 0.017)))) 2 

 3 

- Probability of mRS0 = 1-(1/(1+exp(2.366- (Collaterals_dummy_0 * 0.712)-4 

(Collaterals_dummy_1 * 0.455)-(Collaterals_dummy_2 * -0.148)-(TotalDelay * 0.006)-5 

(NIHSS * 0.165)-(Age * 0.017)))) 6 

 7 

Adding CSC(s) – experiments 8 

To evaluate the impact of adding one or more CSCs in our region, the baseline model was adapted.  9 

Table S2 shows the adapted steps in the acute pathway and the corresponding distributions for; 1) 10 

patients now routed directly to the new CSC, i.e. ‘mothership’ patients, and 2) patients still transferred 11 

from primary stroke centre (PSC) to the new CSC, i.e. ‘drip-and-ship’ patients.  12 

 13 

Table S2; Distributions used for experiment 1 and 2 and 3; adding one or two CSC(s) in the region 14 

Activity duration Distribution  Parameters  

‘mothership’ patients 

ED to call for transfer None 0.00 

EMS response (inter-hospital transfer) None 0.00 

EMS handover (inter-hospital transfer) None 0.00 

EMS transport (inter-hospital transfer) None 0.00 

Time from ED to angiography suite Gamma Location = 0.00; α = 3.49;  β 
= 18.63  

Time from angiography suite to groin 

puncture  

Log-logistic Location = 0.00; α = 28.36; β 
= 4.89 

‘drip-and-ship’ patients 

EMS transport (inter-hospital transfer), 

western subregion, PSC 1 

Log-logistic Location = 13.71; α = 6.46; β 
= 7.93 

EMS transport (inter-hospital transfer), 

western subregion, PSC 2 

Log-logistic Location = 0.00; α = 16.49; β 
= 18.21 

EMS transport (inter-hospital transfer), 

western subregion, PSC 3 

Weibull  Location = 5.95 α = 9.17;    β 
= 11.24  

EMS transport (inter-hospital transfer), 

southern subregion 

Log-logistic Location = 19.43; α = 3.68; β 
= 3.21 

 15 

Table S2; Distributions used for experiment ‘A’; Adding one or two CSC(s) in the region and adapt the pre-hospital routing to direct to 16 
the nearest CSC 17 

Activity duration Distribution  Parameters  
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Pre-hospital transport direct to CSC: add 1 CSC: 

Western subregion, PSC 1 Weibull  Location = 0.71 α = 2.26;    β 
= 14.76  

Western subregion, PSC 2 Weibull  Location = 0.00 α = 4.86;    β 
= 24.55  

Western subregion, PSC 3 Log-logistic Location = 0.00; α =18.94; β 
=7.34 

Western subregion, PSC 4 Beta Lower endpoint = 16.87;  

Upper endpoint =  34.99;  α1 
= 0.87;  α2 = 1.49 

North-eastern subregion Beta Lower endpoint = 5.79;  

Upper endpoint =  28.79;  α1 
= 0.98;  α2 = 1.23 

Southern subregion  Gamma Location = 0.00;  α = 0.66; β 
= 58.27  

Pre-hospital transport direct to CSC: add 

2 CSCs: 

 

 

Western subregion, PSC 1 Weibull  Location = 0.71 α = 2.26;    β 
= 14.76  

Western subregion, PSC 2 Weibull  Location = 0.00 α = 4.86;    β 
= 24.55  

Western subregion, PSC 3 Log-logistic Location = 0.00; α =18.94; β 
=7.34 

Western subregion, PSC 4 Beta Lower endpoint = 16.87;  

Upper endpoint =  34.99;  α1 
= 0.87;  α2 = 1.49 

North-eastern subregion Beta Lower endpoint = 5.79;  

Upper endpoint =  28.79;  α1 
= 0.98;  α2 = 1.23 

Southern subregion, PSC 1 Beta Lower endpoint = 0.05;  

Upper endpoint =  15.07;  α1 
= 1.82;  α2 = 0.85 

Southern subregion, PSC 2 Discrete empirical  Value Frequency 

  19 1 

  22 3 

  24 1 
 1 

 2 

 3 

Results – extended table  4 

Table S3; Results of modelling the addition of CSC(s) and its effect on OTG, PPFO, and mortality.  5 

Scenario OTG (95%CI) FI (95%CI) 
Mortality 

(95%CI) 

All patients 

0. Baseline  240.9 (240.5 - 241.3) 52.4 (52.3 - 52.5) 21.4 (21.3 - 21.5) 
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a. 25% slower CSC workflow, original CSC 255.4 (255.1 - 255.8) 50.6 (50.5 - 50.7) 22.8 (22.7 - 22.9) 

b. 25% faster CSC workflow, original CSC  226.4 (226.0 - 226.7) 54.2 (54.0 -54.3) 20.1 (20.1 - 20.2) 

1. Adding a second CSC in northern Netherlands 227.4 (227.0 - 227.7) 54.0 (53.9 - 54.2) 20.3 (20.2 - 20.4) 

a. 25% slower CSC workflow, compared to the original CSC 238.1 (237.7 - 238.5) 52.7 (52.6 - 52.9) 21.2 (21.1 - 21.3) 

b. 25% faster CSC workflow, compared to the original CSC  216.6 (216.3 - 217.0) 55.4 (55.2 - 55.5) 19.4 (19.3 - 19.5) 

2. Adding a second and third CSC in northern Netherlands 222.3 (221.9 - 222.7) 54.7 (54.5 - 54.8) 19.8 (19.8 - 19.9) 

a. 25% slower CSC workflow, compared to the original CSC 235.7 (235.4 - 236.1) 53.0 (52.9 - 53.2) 21.0 (20.9 - 21.1) 

b. 25% faster CSC workflow, compared to the original CSC  208.9 (210.0 - 210.7) 56.3 (56.2 - 56.4) 18.7 (18.7 - 18.8) 

3. All PSCs upgraded to a CSC 197.9 (197.5 - 198.2) 57.6 (57.5 - 57.8) 17.9 (17.8 - 17.9) 

a. 25% slower CSC workflow, compared to the original CSC 221.7 (221.3 - 222.1) 54.7 (54.6 - 54.9) 19.9 (19.8 - 20.0) 

b. 25% faster CSC workflow, compared to the original CSC  174.0 (173.7 - 174.4) 60.5 (60.4 - 60.7) 16.0 (15.9 - 16.1) 

All patients routed according to the DS model (to the new CSC and the original CSC) 

0. Baseline  240.9 (240.5 - 241.3) 52.4 (52.3 - 52.5) 21.4 (21.3 - 21.5) 

1. Adding a second CSC in northern Netherlands 234.1 (233.8 - 234.5) 53.2 (53.1 - 53.4) 20.8 (20.7 - 20.9) 

a. 25% slower CSC workflow, compared to the original CSC 244.8 (241.4 - 242.2) 52.3 (52.2 - 52.4) 21.5 (21.4 - 21.6) 

b. 25% faster CSC workflow, compared to the original CSC  226.5 (226.1 - 226.8) 54.2 (54.0 - 54.3) 20.2 (20.1 - 20.2) 

2. Adding a second and third CSC in northern Netherlands 231.7 (231.3 - 232.0) 53.5 (53.4 - 53.7) 20.6 (20.5 - 20.7) 

a. 25% slower CSC workflow, compared to the original CSC 241.0 (240.7 - 241.4) 52.4 (52.3 - 52.5) 21.4 (21.4 - 21.5) 

b. 25% faster CSC workflow, compared to the original CSC  222.3 (221.9 - 222.6) 54.7 (54.6 - 54.8) 19.8 (19.7 - 19.9) 

3. All PSCs upgraded to a CSC NA NA NA 

Patients routed according to the modified MS model 

0. Baseline  NA NA NA 

1. Adding a second CSC in northern Netherlands 198.1 (197.7 - 198.4) 57.6 (57.5 - 57.7) 17.8 (17.8 - 17.9) 

a. 25% slower CSC workflow, compared to the original CSC 222.0 (221.6 - 222.4) 54.7 (54.5 - 54.8) 19.9 (19.8 - 20.0) 

b. 25% faster CSC workflow, compared to the original CSC  174.1 (173.8 - 174.5) 60.5 (60.4 - 60.6) 16.0 (15.9 - 16.0) 

2. Adding a second and third CSC in northern Netherlands 198.2 (197.8 - 198.6) 57.6 (57.4 - 57.7) 17.9 (17.8 - 18.0) 

a. 25% slower CSC workflow, compared to the original CSC 222.1 (221.7 - 222.5) 54.6 (54.5 - 54.8) 19.9 (19.8 - 20.0) 

b. 25% faster CSC workflow, compared to the original CSC  174.3 (173.9 - 174.6) 60.5 (60.3 - 60.6) 16.0 (16.0 - 16.1) 

3. All PSCs upgraded to a CSC 197.9 (197.5 - 198.2) 57.6 (57.5 - 57.8) 17.9 (17.8 - 17.9) 

a. 25% slower CSC workflow, compared to the original CSC 221.7 (221.3 - 222.1) 54.7 (54.6 - 54.9) 19.9 (19.8 - 20.0) 

b. 25% faster CSC workflow, compared to the original CSC  174.0 (173.7 - 174.4) 60.5 (60.4 - 60.7) 16.0 (15.9 - 16.1) 

OTG, onset to groin puncture; PPFO predicted probability of favorable outcome (mRS 0-2); CSC, 1 

comprehensive stroke centre; PSC, primary stroke centre; DS, drip and ship; NA, Not applicable; MS, 2 

mothership. 3 

 4 
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