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Convergence Analysis of Dual Decomposition
Algorithm in Distributed Optimization:

Asynchrony and Inexactness
Yifan Su , Zhaojian Wang , Member, IEEE, Ming Cao , Fellow, IEEE, Mengshuo Jia , Member, IEEE,

and Feng Liu , Senior Member, IEEE

Abstract—Dual decomposition is widely utilized in the
distributed optimization of multiagent systems. In practice,
the dual decomposition algorithm is desired to admit an
asynchronous implementation due to imperfect communi-
cation, such as time delay and packet drop. In addition,
computational errors also exist when the individual agents
solve their own subproblems. In this article, we analyze
the convergence of the dual decomposition algorithm in
the distributed optimization when both the communication
asynchrony and the subproblem solution inexactness exist.
We find that the interaction between asynchrony and inex-
actness slows down the convergence rate from O(1/k) to
O(1/

√
k). Specifically, with a constant step size, the value

of the objective function converges to a neighborhood of
the optimal value, and the solution converges to a neigh-
borhood of the optimal solution. Moreover, the violation of
the constraints diminishes in O(1/

√
k). Our result general-

izes and unifies the existing ones that only consider either
asynchrony or inexactness. Finally, numerical simulations
validate the theoretical results.

Index Terms—Asynchronous algorithm, distributed op-
timization, dual decomposition, inexact algorithm, multia-
gent system (MAS).
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I. INTRODUCTION

DUAL decomposition is widely utilized in solving dis-
tributed optimization problems of multiagent systems

(MASs), such as communication networks [1], [2], [3], computer
vision [4], [5], and power systems [6], [7], [8]. A dual decompo-
sition algorithm usually involves two phases in each iteration: a
coordinator updates the dual variables (Lagrangian multipliers)
and individual agents solve their subproblems locally [9], [10],
[11]. Then, the dual variables and the subproblem solutions
are exchanged between the coordinator and the agents via the
communication network to execute the next iteration. During the
iterative process, the communication asynchrony and the sub-
problem solution inexactness may undermine the convergence
of the algorithm. In the literature, these two issues are addressed
separately even though they always coexist. In this regard, this
article analyzes the convergence of the dual-decomposition-
based distributed optimization (DD-DO) algorithm considering
asynchrony and inexactness simultaneously.

A. Related Works

Dual decomposition is commonly regarded as a first-order
(sub)gradient ascent method with respect to the dual problem.
Under ideal conditions, the convergence of dual decomposition
has been thoroughly studied. For a diminishing step sizeαk satis-
fying

∑∞
k=0 αk → ∞,

∑∞
k=0 α

2
k < ∞, the gradient and subgra-

dient algorithms converge to the optimal value [12, Prop. 8.2.4].
For a constant step size, the gradient algorithm still converges to
the optimal value [13, Prop. 3.4], while the subgradient method
converges to a neighborhood of the optimal value [12, Prop.
8.2.2]. However, if the communication asynchrony and the sub-
problem solution inexactness are considered, the convergence
of dual decomposition requires further studies. Next, we give a
short review of these two aspects.

1) Communication Asynchrony: In practice, the imple-
mentation of the DD-DO algorithm usually suffers from asyn-
chrony due to packet drop, time delay in communications,
nonidentical computational rates, etc. In this situation, the syn-
chronous DD-DO algorithm may cause longer idle time since the
coordinator and the agents have to wait for the latest information
from their neighbors in order to execute the next iteration [14].
To circumvent this problem, the asynchronous DD-DO algo-
rithm is proposed by updating the dual variables and solving
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the subproblems immediately using the previously stored in-
formation, if the latest information happens to be unavailable.
In [15], the convergence of the asynchronous DD-DO algorithm
is studied, showing that the algorithm converges to the optimal
solution under a bounded time delay. Magnússon et al. [16]
develop a fully distributed dual decomposition-based method
in a radial communication network and proves the convergence
of the proposed algorithm, considering the asynchrony under a
novel communication structure. Notarnicola et al. [17] propose
an asynchronous partitioned dual decomposition algorithm for
fully distributed optimization over peer-to-peer networks, where
the algorithm converges in probability with the independent and
identically distributed (i.i.d.) delays.

Besides the dual decomposition method, the communication
asynchrony has also been considered in other distributed
optimization algorithms, e.g., the alternating direction method
of multipliers (ADMM) [18], [19], [20], the consensus
algorithm [21], the primal-dual gradient method [22], [23], and
the distributed Newton method [24]. Chang et al. [20] prove that
the asynchronous distributed ADMM has a linear convergence
rate for the consensus optimization problem. In [23], the
dynamic of the proposed partial primal-dual gradient method
converges to the equilibrium point exponentially even with a
nonsmooth objective function. Mansoori and Wei [24] develop
an asynchronous Newton approach, which converges with a
global linear rate and a local superlinear rate in expectation.

2) Subproblem Solution Inexactness: In the dual decom-
position algorithm, the subproblem solutions of the individual
agents will inevitably deviate from the optimal solutions, de-
pending on the preset error tolerances of solvers, the types of
problems, and the accuracy of parameters. The inexactness issue
may lead to considerable error or even divergence of the algo-
rithm due to the accumulation of subproblem errors during iter-
ations. To address the issue, the averaging scheme is suggested
in recent years by taking the average of the decision variables
over the iteration horizon. Devolder et al. [25] utilize the inexact
oracle to study the dual decomposition algorithm. In [26], the
inexact dual decomposition is proved to have an O(1/k) rate of
convergence. An inexact DD-DO algorithm to solve a Laplacian
consensus problem is studied in [27], where the deviation of
solution diminishes exponentially considering the exponentially
decayed error. In [28], the iteration complexity of the inexact
augmented Lagrangian method for constrained convex program-
ming is studied, where the convergence rate isO(1/k) even with
a nonsmooth objective function. Mehyar et al. [29] analyze the
convergence of dual decomposition with inexact updating of
dual variables, where the choice of step size is presented to help
the algorithm enter an attraction region in finite steps.

The inexactness has also been considered in other distributed
optimization algorithms, e.g., the ADMM [30], [31], the primal
gradient algorithm [32], the primal-dual gradient method [33],
the proximal gradient method [34], [35], [36], and the
distributed Newton method [37], [38]. Chang et al. [30] prove
that the ADMM with the proximal subproblems converges lin-
early under certain convexity assumptions, while Svaiter [31]
show that the ADMM with the σ-approximate solutions of
subproblems converges in O(1/k). In [32], a novel primal-dual

gradient projection method is proposed with an inexact compu-
tation of the projection, which has an O(1/k) rate of ergodic
convergence. Wei et al. [38] develop an inexact distributed
Newton method considering the errors of the Newton direction
and the step size calculation, which achieves a local quadratic
convergence rate.

B. Contributions

It should be noted that the works mentioned previously only
consider either the asynchrony [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24] or the inexactness [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], although
they always coexist in distributed optimization methods. It is still
unknown how the distributed optimization methods perform in
the asynchronous and inexact case, which hinders these algo-
rithms from being applied to real systems. In this article, we
analyze the convergence of the DD-DO algorithm considering
asynchrony and inexactness simultaneously. Specifically, under
mild conditions, we prove the convergence of the asynchronous
and inexact DD-DO algorithm, whose characteristics include
the following.

1) Sublinear convergence rate: Under ideal conditions, the
DD-DO algorithm converges in O(1/k) as given in [39]
and [40]. We prove that the interaction of asynchrony
and inexactness slows down the convergence rate to
O(1/

√
k). We also show that a constant step size is

enough to obtain the aforementioned convergence perfor-
mance, which is more applicable in practice than using a
diminishing step size.

2) Suboptimality and feasibility: We show that the value of
the primal variable converges to a neighborhood of the
optimal solution to the primal problem, while the value of
the primal (dual) objective converges to a neighborhood
of the optimal value of the primal (dual) problem, both
in O(1/

√
k). We also give upper bounds of these neigh-

borhoods, which are positively correlated to the degrees
of asynchrony and inexactness. Moreover, the violation
of the constraints diminishes in an O(1/

√
k) rate of

convergence, even though the subproblem solutions are
inexact in each iteration.

3) Generality: Our convergence results generalize and unify
the existing works that only consider asynchrony [15] or
inexactness [26]. By simply setting the inexactness or
asynchrony parameter as zero, our result reduces to that
given in [15] or [26], respectively. Our work also first
gives an O(1/k) rate of convergence of the asynchronous
DD-DO algorithm, which, to the best of our knowledge,
has not been presented in the existing literature [6], [15],
[16].

C. Organization

The rest of this article is organized as follows. Section II
formulates the optimal MAS operation problem and solves it
by the synchronous and exact DD-DO algorithm. In Section III,
the asynchrony and inexactness are formulated and analyzed in
the DD-DO algorithm. Section IV proves the convergence of the
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asynchronous and inexact algorithm. Section V gives numerical
results, and finally, Section VI concludes this article.

Notations: In this article, we use Rn (Rn
+) to denote the n-

dimensional (nonnegative) Euclidean space. For x,y ∈ Rn, we
denote the inner product by < x,y >= xTy, and the 2-norm
by ‖x‖ =

√
< x,x >. For a vector x ∈ Rn, xi stands for the

ith entry. col{xi}i∈I stacks the vectors xi as a new column
vector in the order of the index set I. For a vector x ∈ Rn,
[x]+ := col{max{xi, 0}}i∈{1,2,...,n} stands for the projection
onto Rn

+. For x,y ∈ Rn, x ≤ y (or y ≥ x) are meant to be
component wise, i.e., xi ≤ yi ∀i = 1, 2, . . ., n. For a matrixA ∈
Rm×n, ‖A‖ stands for the 2-norm. For a set Ω, |Ω| stands for its
cardinality.

II. DD-DO ALGORITHM IN MASS

In this section, we formulate the optimal operation problem
of the MAS, and solve it by the conventional DD-DO algorithm.

A. Primal Problem

We focus on the large-scale MAS with a set of agents denoted
by N . Each agent i ∈ N can make its decision xi ∈ Rni in a
local feasible region Xi, and meanwhile causes a cost fi(xi).
Our objective is to minimize the aggregate cost with restrictions
on global constraints and local feasible regions, i.e., solve the
following optimization problem, called the primal problem

min
x

F (x) =
∑
i∈N

fi (xi) (1a)

s.t.xi ∈ Xi, ∀i ∈ N (1b)

Ax ≤ b (1c)

where x = col{xi}i∈N ∈ Rn is the aggregate decision vector;
X = Πi∈NXi is the aggregate feasible region; (1b) represents
the local feasible regions of the agents; (1c) is the global
constraints. The matrix A ∈ Rm×n and the vector b ∈ Rm

are constants. Let Ai ∈ Rm×ni denote the ith sliced block of
A = (A1, A2, . . ., A|N |). Then, (1c) can be replaced by∑

i∈N
Aixi ≤ b.

Throughout this article, we make the following assumptions
on the primal problem.

Assumption A1:
1) The cost function fi(·) is ci strongly convex and differ-

entiable over Xi. Hence, the objective function F (·) is
strongly convex with cF = mini∈N ci and differentiable
over X .

2) The feasible region Xi is a nonempty, compact, and
convex set. Hence, X is also nonempty, compact, and
convex.

3) There exists a strictly feasible interior point in X that
satisfies (1c).

Under Assumption A1, problem (1) enjoys a unique primal
optimal solution denoted by x∗ ∈ X . Denote by

F ∗ = F (x∗)

the optimal value of (1).

B. Dual Problem

Define the Lagrangian of (1)

L (x;λ) = F (x) + 〈λ, Ax− b〉
where λ ∈ Rm

+ is the Lagrangian multiplier of (1c). Throughout
this article, we call x and λ the primal and dual variables,
respectively.

Then, the dual problem of (1) is given as

max
λ≥0

min
x∈X

L (x;λ) . (2)

From the strong convexity of F (x), given λ ≥ 0, the La-
grangian L(x;λ) is also cF strongly convex in x. Denote by
D(λ) andx(λ) the optimal value and the unique optimal solution
to the inner minimization problem of (2), i.e.,

D (λ) = min
x∈X

L (x;λ) (3)

x (λ) = argmin
x∈X

L (x;λ) . (4)

Let D∗ denote the optimal value of (2). Under Assumption
A1, the Slater condition of the problem (1) holds from [42, Sec.
5.2.3]. It indicates that the duality gap is zero, i.e., F ∗ = D∗.
Define the optimal set of (2) as Λ∗ := {λ ∈ Rm

+ |D(λ) = D∗}
and denote by λ∗ ∈ Λ∗ an arbitrary optimal solution to (2). It
follows that

D∗ = D (λ∗) = L (x (λ∗) ;λ∗) , ∀λ∗ ∈ Λ∗.

From [42], the Slater condition guarantees that Λ∗ is nonempty
and bounded. According to the dual theory [42, Sec. 5.1.2], the
dual function D(λ) is concave. Thus, Λ∗ is convex from [42,
Sec. 4.2.1].

Remark 1 (Multiple optimal solution λ∗): Although the opti-
mal solution to (2) may not be unique, i.e., |Λ∗| ≥ 1, our main
results hold for any λ∗ ∈ Λ∗. To tighten our convergence results,
we can pick the unique optimal solution with the minimal 2-norm
defined as

λ∗∗ := arg min
λ∗∈Λ∗

‖λ∗‖ . (5)

C. Dual Decomposition

The basic idea of dual decomposition is to solve the dual
problem in a distributed manner. Note that the Lagrangian is
separable, i.e.,

L (x;λ) =
∑
i∈N

Li (xi;λ)− < λ, b >

Li (xi;λ) = fi (xi)+ < AT
i λ,xi > .

From the strong convexity of fi(xi), given any λ, Li(xi;λ)
is also ci-strongly convex in xi, and hence, is minimized over
Xi at a unique point. For i ∈ N , we define

Di (λ) = min
xi∈Xi

Li (xi;λ) (6)

xi (λ) = arg min
xi∈Xi

Li (xi;λ) . (7)
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Algorithm 1: Synchronous and Exact DD-DO Algorithm.
Input: Accuracy tolerance ε > 0, step size α > 0, initial
dual variable λ0 ≥ 0, and iteration index k = 0.

Output: Optimal solution x∗.
S1 (Solving subproblems): Agent i attains the optimal
solution, xk

i , to the following subproblem:

min
xi∈Xi

Li

(
xi;λ

k
)

(8)

i.e., xk
i = xi(λ

k).
S2 (Updating dual variable): The central coordinator
updates the dual variable as

λk+1 =
[
λk + α

(
Axk − b

)]+
(9)

where xk = col{xk
i }i∈N .

S3: If ‖λk+1 − λk‖ ≤ ε, xk is recognized as the optimal
solution and the algorithm terminates. Otherwise, set
k = k + 1 and go to S1.

Hence, we have

D (λ) =
∑
i∈N

Di (λ)− < λ, b >

x (λ) = col {xi (λ)}i∈N .

The entire distributed algorithm is shown in Algorithm 1. Ac-
cording to [13, Prop. 3.4], [15], the dual variable ultimately con-
verges to some optimal point λ∗ ∈ Λ∗, and meanwhile, agents
attain the optimal solution x∗ = x(λ∗) = col{xi(λ

∗)}i∈N and
the optimal valueD∗ = D(λ∗) =

∑
i∈N Di(λ

∗)− < λ∗, b >by
solving the subproblems (8).

Remark 2 (Distributed Implementation): The dual decompo-
sition algorithm can be partially distributed or fully distributed
up to the structure of the MAS. Dual decomposition is commonly
implemented in a partially distributed manner as Algorithm 1,
where the dual variable is computed by a central coordinator.
The algorithm can also be fully distributed depending on the
particular sparse communication network, for instance, Internet
networks [15] and radial distribution grids [16]. Without a
central coordinator, each agent communicates with its neighbors
and updates the dual variable locally. Both the partially and fully
distributed algorithms share the same iterative procedure as Al-
gorithm 1. Hence, we follow the partially distributed framework
throughout the rest of this article.

For later theoretical analyses, we turn to studying the basic
properties of the dual decomposition algorithm. Under Assump-
tion A1, we have the following lemma of the Lipschitz continuity
of xi(λ).

Lemma 1: Suppose Assumption A1 holds. xi(λ) is ‖Ai‖/ci
- Lipschitz continuous in λ ∈ Rm

+ .
The proof of Lemma 1 can be found in Appendix A. Then,

we have the following corollary of the existence and Lipschitz
continuity of ∇D(λ).

Corollary 2: Supposing Assumption A1 holds, we have the
following properties.

Fig. 1. Algorithm in the synchronous and asynchronous cases.

1) Di(λ) is differentiable and the gradient is defined as

∇Di (λ) = Aixi (λ) . (10)

Moreover, ∇Di(λ) is Li-Lipschitz continuous with

Li =
‖Ai‖2
ci

.

2) D(λ) is differentiable and the gradient is defined as

∇D (λ) = Ax (λ)− b =
∑
i∈N

∇Di (λ)− b. (11)

Moreover, ∇D(λ) is LD-Lipschitz continuous with

LD =
∑
i∈N

Li =
∑
i∈N

‖Ai‖2
ci

.

The proof of Corollary 2 can be found in Appendix B.

III. ASYNCHRONOUS AND INEXACT DD-DO ALGORITHM

In this section, we present the asynchronous and inexact DD-
DO algorithm.

First of all, We describe the communication asynchrony fol-
lowing [6], [14], [15]. The local clock Ki is the set of time
instants when agent i takes action. At time instant k ∈ Ki,
the agent i solves the subproblem with the previously stored
dual variable if the latest is not received; otherwise, it keeps
the solution unchanged. The local clock KD is the set of time
instants when the central coordinator takes action. At time
instant k ∈ KD, the central coordinator updates the dual variable
with the previously stored subproblem solution if the latest is
not received; otherwise, it keeps the dual variable unchanged.
Define the global clock as K = KD ∪ K1 ∪ . . . ∪ K|N|. Fig. 1
shows the difference of the algorithm in the synchronous and
asynchronous cases.

The asynchronous and inexact DD-DO algorithm is presented
in Algorithm 2. Denote by {x̃k} and {λk}, respectively, the
primal and dual sequences generated by the algorithm. Here, x̃
is an inexact version of x. Note that x̃k = col{x̃k

i }i∈N .
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Algorithm 2: Asynchronous and Inexact DD-DO Algo-
rithm.

Input: Accuracy tolerance ε > 0, step size α > 0, initial
dual variable λ0 ≥ 0, and iteration index k = 0.

Output: Suboptimal solution x̃∗.
S1 (Solving subproblems): If k ∈ Ki, agent i solves its
subproblem (12) and attains an εi-suboptimal solution x̃k

i .
Otherwise, set x̃k

i = x̃k−1
i .

S2 (Updating dual variable): If k ∈ KD, the central
coordinator updates the dual variable λk+1 by (14).
Otherwise, set λk+1 = λk.

S3: If k ∈ KD and ‖λk+1 − λk‖ ≤ ε, the algorithm is
regarded to converge and the iteration terminates.
Otherwise, set k = k + 1 and go to S1.

If k ∈ Ki, the agent i will compute the subproblem and attain

x̃k
i = x̃i(λ̂

k,i
), where x̃i(λ̂

k,i
) is an inexact solution to the

following subproblem:

min
xi∈Xi

fi (xi)+ < AT
i λ̂

k,i
,xi > (12)

where λ̂
k,i

is the previously stored dual variable by the agent i.

λ̂
k,i

is defined as

λ̂
k,i

= λk−δkdi (13)

where δkdi ≥ 0 is the time delay associated with k.
If k /∈ Ki, the solution is unchanged, i.e., x̃k

i = x̃k−1
i .

Denoted by xk
i (λ̂

k,i
) is the optimal solution to (12). The error

of the inexact solution x̃k
i (λ̂

k,i
) from xk

i (λ̂
k,i

) will be defined
later.

If k ∈ KD, the central coordinator will update the dual vari-
able λk+1 as

λk+1 =
[
λk + ανk

]+
(14)

where νk is the estimated gradient, differently from the real
gradient ∇D(λk). νk is defined as

νk = Ax̂k − b (15)

where x̂k := col{x̂k
i }i∈N is the previously stored primal vari-

able. x̂k
i is defined as

x̂k
i = x̃

k−δkpi
i (16)

where δkpi ≥ 0 is the time delay associated with k.
If k /∈ KD, the dual variable is unchanged, i.e., λk+1 = λk

and νk = 0.
Then, we make the following assumption on the communica-

tion asynchrony.
Assumption A2: There exists an upper bound k0 ≥ 0 on time

delays such that

0 ≤ δkdi ≤ k0 ∀i ∈ N , k ∈ K (17a)

0 ≤ δkpi ≤ k0 ∀i ∈ N , k ∈ K. (17b)

From (13) and (16), we have

x̂k
i = x̃

k−δkpi
i = x̃i

(
λ̂
k−δkpi,i

)
= x̃i

(
λk−δkpi−δ

k−δk
pi

di

)
.

For simplicity, define δki := δkpi − δ
k−δkpi
di . Under Assumption

A2, it follows that

x̂k
i = x̃i

(
λk−δki

)
, 0 ≤ δki ≤ 2k0. (18)

Denote by D̃i(λ) the inexact value of the objective function
with respect to x̃i(λ), i.e.,

D̃i (λ) = Li (x̃i (λ) ;λ) = fi (x̃i (λ))+ < λ, Aix̃i (λ) > .
(19)

Then, we have the following assumption on the subproblem
solution inexactness.

Assumption A3: There exists an error bound εi ≥ 0 such that
given any λ ∈ Rm

+ , the inexact solution x̃i(λ) is εi-suboptimal,
i.e.,

1) feasible, i.e., x̃i(λ) ∈ Xi;
2) suboptimal, i.e., D̃i(λ)−Di(λ) ≤ εi, in other words,

Li(x̃i(λ);λ)− Li(xi(λ);λ) ≤ εi.
Under Assumption A3, we have the following lemma about

the subproblem solution inexactness.
Lemma 3: Suppose Assumptions A1 and A3 hold. The dis-

tance between the optimal and inexact solutions is bounded by

‖xi (λ)− x̃i (λ)‖2 ≤ 2εi
ci

.

The proof of Lemma 3 can be found in Appendix C.
Define

εD :=
∑
i∈N

εi ≥ 0. (20)

Then, k0 and εD can be regarded as the indexes of asyn-
chrony and inexactness, respectively. k0 = 0 (εD = 0) indicates
a synchronous (an exact) case. Otherwise, it is asynchronous
(inexact).

IV. MAIN RESULT

In this section, we analyze the convergence of the asyn-
chronous and inexact DD-DO algorithm.

Define the dual deviation

σk := λk+1 − λk

and the sum-of-square of dual deviations

Sk :=
k∑

κ=0

‖σκ‖2 .

Besides, to avoid trivial discussions, we set σk = 0, k < 0.

A. Bound on the Sum-of-Square of Dual Deviations

We turn to proving that the sequence {
√
Sk} generated by

Algorithm 2 increases not faster than O(
√
k), starting with the

following two lemmas.

Authorized licensed use limited to: University of Groningen. Downloaded on August 11,2023 at 07:48:46 UTC from IEEE Xplore.  Restrictions apply. 



4772 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Lemma 4: In Algorithm 2 ∀k ∈ KD

< νk,σk >≥ ∥∥σk
∥∥2

/α. (21)

Proof: Recalling λk+1 = [λk + ανk]+, we have by the pro-
jection theorem [44, Prop. 2.1.3]

< λk+1 − λk − ανk,λ − λk+1 >≥ 0 ∀λ ≥ 0.

By replacing λ with λk and recalling σk = λk+1 − λk, we
obtain (21) directly. �

Lemma 5: Suppose Assumptions A1–A3 hold. In Algorithm
2, we have for k ∈ KD∥∥∇D

(
λk

)− νk
∥∥ ≤ LD

k−1∑
κ=k−2k0

‖σκ‖+
√

2LDεD. (22)

Proof: From the definitions of ∇D(λk) and νk, we have for
k ∈ KD∥∥∇D

(
λk

)− νk
∥∥

=
∥∥∥Ax (

λk
)−Ax̂k

∥∥∥
a)

≤
∑
i∈N

‖Ai‖
∥∥∥xi

(
λk

)− x̂k
i

∥∥∥
=

∑
i∈N

‖Ai‖
∥∥∥xi

(
λk

)− x̃i

(
λk−δki

)∥∥∥
b)

≤
∑
i∈N

‖Ai‖
∥∥∥xi

(
λk

)− xi

(
λk−δki

)∥∥∥
+

∑
i∈N

‖Ai‖
∥∥∥xi

(
λk−δki

)
− x̃i

(
λk−δki

)∥∥∥
c)

≤
∑
i∈N

‖Ai‖ ‖Ai‖
ci

∥∥∥λk − λk−δki

∥∥∥+
∑
i∈N

‖Ai‖
√

2εi
ci

d)

≤
∑
i∈N

Li

k−1∑
κ=k−δki

∥∥λκ+1 − λκ
∥∥+

∑
i∈N

√
2Liεi

=
∑
i∈N

Li

k−1∑
κ=k−δki

‖σκ‖+
√
2
∑
i∈N

√
Li

√
εi

e)

≤
∑
i∈N

Li

k−1∑
κ=k−2k0

‖σκ‖+
√
2

√√√√(∑
i∈N

Li

)(∑
i∈N

εi

)

= LD

k−1∑
κ=k−2k0

‖σκ‖+
√

2LDεD

where a) follows from the triangle inequality and ‖Ab‖ ≤
‖A‖‖b‖ ∀A ∈ Rm×n, b ∈ Rn, b) holds by adding and subtract-
ing xi(λ

k−δki ) and using the triangle inequality, c) is due to
Lemmas 1 and 3, d) follows from the triangle inequality and the
definition of Li in Corollary 2, and e) holds from δki ≤ 2k0 and
the Cauchy − Schwarz inequality. �

Then, we obtain the upper bound on
√
Sk, if the step size is

sufficiently small.

Theorem 6: Suppose Assumptions A1–A3 hold. In Algo-
rithm 2, provided that the step size satisfies

0 < α <
1

(2k0 + 1/2)LD
(23)

then it follows that

√
Sk ≤

√
2LDεD
γα

√
k + 1 +

√
D∗ −D0

γα
(24)

where γα is a positive constant defined as

γα :=
1

α
−

(
2k0 +

1

2

)
LD

and D0 is defined as D0 := D(λ0).
Proof: Recalling that σk = λk+1 − λk and ∇D(·) is LD-

Lipschitz continuous, we have for k ∈ KD

D
(
λk

)−D
(
λk+1

)
a)

≤ − < ∇D
(
λk

)
,σk > +

LD

2

∥∥σk
∥∥2

b)
= < νk −∇D

(
λk

)
,σk > − < νk,σk > +

LD

2

∥∥σk
∥∥2

c)

≤ ∥∥νk −∇D
(
λk

)∥∥ ∥∥σk
∥∥− 1

α

∥∥σk
∥∥2

+
LD

2

∥∥σk
∥∥2

d)

≤ LD

k−1∑
κ=k−2k0

∥∥σκ
∥∥ ∥∥σk

∥∥+
√
2LDεD

∥∥σk
∥∥

+
LD

2

∥∥σk
∥∥2 − 1

α

∥∥σk
∥∥2

e)

≤ LD

2

k−1∑
κ=k−2k0

{∥∥σκ
∥∥2

+
∥∥σk

∥∥2
}
+

√
2LDεD

∥∥σk
∥∥

+
LD

2

∥∥σk
∥∥2 − 1

α

∥∥σk
∥∥2

=
LD

2

k∑
κ=k−2k0

∥∥σκ
∥∥2

+
√

2LDεD
∥∥σk

∥∥
+

(
k0LD − 1

α

)∥∥σk
∥∥2

(25)

where a) follows from the property of Lipschitz continuity [45,
Lemma 1.2.3], b) holds by adding and subtracting < νk,σk >,
c) is due to the Cauchy-Schwarz inequality and Lemma 4,
d) follows from Lemma 5, and e) holds from ab ≤ (a2 +
b2)/2, ∀a, b ∈ R.

Note that (25) also holds when k /∈ KD, since σk = λk+1 −
λk = 0. Summing (25) overall k, we have

D0 −D
(
λk+1

)
≤ LD

2

k∑
κ=0

κ∑
k′=κ−2k0

∥∥∥σk′
∥∥∥2

+
√

2LDεD

k∑
κ=0

‖σκ‖

+

(
k0LD − 1

α

) k∑
κ=0

‖σκ‖2
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≤ (2k0+1)LD

2

k∑
κ=0

‖σκ‖2 +
√

2 (k + 1)LDεD

√√√√ k∑
κ=0

‖σκ‖2

+

(
k0LD − 1

α

) k∑
κ=0

‖σκ‖2

=

((
2k0 +

1

2

)
LD − 1

α

)
Sk +

√
2 (k + 1)LDεD

√
Sk

where the second inequality holds by noting each nonnegative
term ‖σk′ ‖2 appears at most 2k0 + 1 times and applying the
inequality

∑m
i=1 ai/m ≤ √∑m

i=1 a
2
i /m, ∀ai ∈ R.

Then, we have

γαS
k −

√
2 (k + 1)LDεD

√
Sk ≤ D

(
λk+1

)−D0

≤ D∗ −D0. (26)

The coefficient γα is positive if the step size α satisfies (23).
Then, we complete the proof by solving the quadratic inequality
(26) as

√
Sk≤

√
2 (k+1)LDεD+

√
2 (k+1)LDεD+4γα (D∗−D0)

2γα

≤ 2
√

2 (k + 1)LDεD +
√

4γα (D∗ −D0)

2γα

=

√
2LDεD
γα

√
k + 1 +

√
D∗ −D0

γα

where the second inequality holds since
√
a+ b ≤ √

a+√
b ∀a, b ≥ 0. �
Remark 3 (Interaction Between Asynchrony and Inexactness):√
Sk characterizes the interaction between asynchrony and in-

exactness in the DD-DO algorithm. If the subproblem solutions
are exact, i.e., εD = 0, the O(

√
k) term in (24) vanishes. In

other words,
√
Sk is not greater than a positive constant, and

hence, limk→∞ ‖σk‖ = 0, which implies the convergence of
{λk} in the asynchronous DD-DO algorithm, as proved in [15].
However, if the subproblem solutions are inexact, i.e., εD > 0,
the errors will be accumulated, leading to the increasing of√
Sk in O(

√
k), and hence, {λk} fails to converge to some

λ ∈ Λ∗.

B. Bound on the Dual Variable

We turn to showing that in Algorithm 2, the sequence {‖λk‖}
increases not faster than O(

√
k). We start from the following

lemma.
Lemma 7: Suppose Assumptions A1 and A3 hold. In Algo-

rithm 2, we have for any ξ,μ ∈ Rm
+

0 ≤ D̃i (ξ)−Di (μ) + < μ− ξ, Aix̃i (ξ) >

≤ Li ‖μ− ξ‖2 + 2εi.

Proof: For the left-hand side inequality, from the definition
of xi(·), we have for any μ ∈ Rm

+

Di (μ) = min
xi∈Xi

fi (xi)+ < μ, Aixi >

= fi (xi (μ))+ < μ, Aixi (μ) >

≤ fi (x̃i (ξ))+ < μ, Aix̃i (ξ) >

= D̃i (ξ)+ < μ− ξ, Aix̃i (ξ) > .

For the right-hand side inequality, from the inequality ab ≤
(a2 + b2)/2∀a, b ∈ R, we have

‖Ai‖ ‖μ− ξ‖ ‖xi (ξ)− x̃i (ξ)‖

=
‖Ai‖√

ci
‖μ− ξ‖ · √ci ‖xi (ξ)− x̃i (ξ)‖

≤ ‖Ai‖2
2ci

‖μ− ξ‖2 + ci
2
‖xi (ξ)− x̃i (ξ)‖2

=
Li

2
‖μ− ξ‖2 + ci

2
‖xi (ξ)− x̃i (ξ)‖2 . (27)

Recalling that ∇Di(·) is Li-Lipschitz continuous, we have

Di (μ)
a)

≥ Di (ξ)+ < μ− ξ, Aixi (ξ) > −Li

2
‖μ− ξ‖2

b)

≥ D̃i (ξ)− εi+ < μ− ξ, Ai (xi (ξ)− x̃i (ξ)) >

+ < μ− ξ, Aix̃i (ξ) > −Li

2
‖μ− ξ‖2

c)

≥ D̃i (ξ)− εi − ‖Ai‖ ‖μ− ξ‖ ‖xi (ξ)− x̃i (ξ)‖

+ < μ− ξ, Aix̃i (ξ) > −Li

2
‖μ− ξ‖2

d)

≥ D̃i (ξ)− εi − ci
2
‖xi (ξ)−x̃i (ξ)‖2 − Li

2
‖μ−ξ‖2

+ < μ− ξ, Aix̃i (ξ) > −Li

2
‖μ− ξ‖2

e)

≥ D̃i (ξ)− 2εi+ < μ− ξ, Aix̃i (ξ) > −Li ‖μ− ξ‖2

where a) follows from the property of Lipschitz continuity [45,
Lemma 1.2.3], b) holds by adding and subtracting < μ−
ξ, Aix̃i(ξ) > and using Assumption A3, c) follows from the
Cauchy − Schwarz inequality, d) holds from (27), and e) is due
to Lemma 3. �

Then, we have the following theorem on the bounded dual
variables.

Theorem 8: Suppose Assumptions A1–A3 hold. In Algo-
rithm 2, if the step size satisfies

0 < α ≤ 1

4LD
(28)

then the dual variable λk+1 is bounded by∥∥λk+1
∥∥ ≤ 2

∥∥λ∗∥∥+
∥∥λ0

∥∥+ 2
√
αεD

√
k + 1 + 2k0

√
Sk

∀λ∗ ∈ Λ∗.

Proof: For k ∈ KD, applying the projection theorem [44,
Prop. 2.1.3], we have

〈λk+1 − λk − ανk,λ − λk+1〉 ≥ 0 ∀λ ≥ 0. (29)
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It follows that∥∥λk+1 − λ
∥∥2

=
∥∥λk+1 − λk + λk − λ

∥∥2

=
∥∥λk − λ

∥∥2
+

∥∥λk+1 − λk
∥∥2

+ 2〈λk+1 − λk,λk − λ〉
a)
=

∥∥λk − λ
∥∥2

+
∥∥λk+1 − λk

∥∥2

+ 2〈λk+1−λk,λk−λk+1〉+ 2〈λk+1−λk,λk+1−λ〉
=

∥∥λk − λ
∥∥2 − ∥∥λk+1 − λk

∥∥2
+ 2〈λk+1−λk,λk+1−λ〉

b)

≤ ∥∥λk − λ
∥∥2 − 4αLD

∥∥λk+1−λk
∥∥2

+ 2α〈λk+1−λ,νk〉
c)

≤ ∥∥λk − λ
∥∥2 − 2α〈λk+1 − λ, b〉

+2α
∑
i∈N

{
〈λk+1−λ, Aix̂

k
i 〉 − 2Li

∥∥λk+1−λk
∥∥2

}
(30)

where a) holds by adding and subtracting λk+1 in the inner
product term, b) is due to 4αLD ≤ 1 and (29), and c) follows
from the definitions of νk in (15) and LD in Corollary 2.

For i ∈ N , we have

〈λk+1 − λ, Aix̂
k
i 〉 − 2Li

∥∥λk+1 − λk
∥∥2

a)

≤
〈
λk+1−λk−δki , Aix̃i

(
λk−δki

)〉
− Li

∥∥∥λk+1−λk−δki

∥∥∥2

︸ ︷︷ ︸
(Δ1)

−
〈
λ − λk−δki , Aix̃i

(
λk−δki

)〉
︸ ︷︷ ︸

(Δ2)

+2Li

∥∥∥λk − λk−δki

∥∥∥2

b)

≤ Di

(
λk+1

)− D̃i

(
λk−δki

)
+ 2εi

+ D̃i

(
λk−δki

)
−Di (λ) + 2Liδ

k
i

k−1∑
κ=k−δki

‖σκ‖2

c)

≤ Di

(
λk+1

)−Di (λ) + 2εi + 4k0Li

k−1∑
κ=k−2k0

‖σκ‖2 (31)

where a) holds by adding and subtracting λk−δki in both the
inner product term and the 2-norm term, applying the inequality
‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, ∀a, b ∈ Rn, and using the defini-
tion of x̂k

i in (18), in b) the term (Δ1) is relaxed by setting
ξ = λk−δki and μ = λk+1 in the right-hand side inequality in
Lemma 7, (Δ2) is slacked by setting ξ = λk−δki and μ = λ

in the left-hand side inequality in Lemma 7, and the quadratic
term ‖λk − λk−δki ‖2 is relaxed by the inequality ‖∑m

i=1 bi‖2 ≤
m

∑m
i=1 ‖bi‖2, ∀bi ∈ Rn, and c) holds since δki ≤ 2k0.

Following (30), we have∥∥λk+1 − λ
∥∥2 − ∥∥λk − λ

∥∥2

≤ − 2α < λk+1 − λ, b > +2α
∑
i∈N

{
Di

(
λk+1

)−Di (λ)

+ 2εi + 4k0Li

k−1∑
κ=k−2k0

‖σκ‖2
}

≤ 2α
(
D

(
λk+1

)−D (λ)
)
+ 4αεD + 2k0

k−1∑
κ=k−2k0

‖σκ‖2

(32)

where the first inequality holds from (31) and the second in-
equality follows from D(λ) =

∑
i∈N Di(λ)− < λ, b >, εD =∑

i∈N εi, and 4α
∑

i∈N Li = 4αLD ≤ 1.
By replacing λ with an arbitrary λ∗ ∈ Λ∗ in (32) and noting

that D(λk+1)−D(λ∗) ≤ 0, we have

∥∥λk+1 − λ∗∥∥2 ≤ ∥∥λk − λ∗∥∥2
+ 4αεD + 2k0

k−1∑
κ=k−2k0

‖σκ‖2 .

Note that the aforementioned inequality also holds when k /∈
KD, since λk+1 = λk. Applying the inequality k + 1 times, we
get∥∥λk+1 − λ∗∥∥2 ≤ ∥∥λ0 − λ∗∥∥2

+ 4α (k + 1) εD + 4k20S
k

where we consider each non-negative term ‖σκ‖2 appears at
most 2k0 times.

By expanding the quadratic terms, eliminating the term ‖λ∗‖2
on each side, relaxing the nonpositive term − < λ0,λ∗ >, and
applying the inequality < λ∗,λk+1 >≤ ‖λ∗‖‖λk+1‖, we have∥∥λk+1

∥∥2−2
∥∥λ∗∥∥∥∥λk+1

∥∥ ≤ ∥∥λ0
∥∥2

+4α (k+1) εD+4k20S
k.

Then, we complete the proof by solving the aforementioned
quadratic inequality as∥∥λk+1

∥∥
≤

2 ‖λ∗‖+
√

4 ‖λ∗‖2+4 ‖λ0‖2+16α (k+1) εD+16k20S
k

2

≤2
∥∥λ∗∥∥+

∥∥λ0
∥∥+ 2

√
αεD

√
k + 1 + 2k0

√
Sk

where the second inequality holds due to
√
a+ b ≤ √

a+√
b ∀a, b ≥ 0. �

C. Convergence Analysis

Based on Theorems 6 and 8, we turn to proving that the asyn-
chronous and inexact DD-DO algorithm converges inO(1/

√
k).

Instead of the primal and dual sequences, we consider their
running averages over iteration, which are defined as

x̄k :=
1∣∣Kk
D

∣∣ ∑
κ∈Kk

D

x̂κ, λ̄
k+1

:=
1∣∣Kk
D

∣∣ ∑
κ∈Kk

D

λκ+1 (33)

where Kk
D is defined as

Kk
D = {κ ∈ KD |κ ≤ k} . (34)
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Under Assumption A2, it follows that

k + 1

2k0 + 1
≤ ∣∣Kk

D

∣∣ ≤ k + 1. (35)

We have the following theorem of convergence.
Theorem 9: Suppose Assumptions A1–A3 hold. If the step

size satisfies

0 < α < min

{
1

(2k0 + 1/2)LD
,

1

4LD

}
(36)

given any λ∗ ∈ Λ∗, Algorithm 2 has the following convergence
performance.

1) The violation of the constraints is bounded by∥∥∥[Ax̄k − b
]+∥∥∥ ≤ M1/2√

k + 1
+

M1

k + 1
. (37)

2) The deviation of primal value is bounded by

−M1/2 ‖λ∗‖√
k + 1

− M1 ‖λ∗‖
k + 1

≤ F
(
x̄k

)− F ∗

≤ N0 +
N1/2√
k + 1

+
N1

k + 1
.

(38)

3) The deviation of dual value is bounded by

0 ≤ D∗ −D
(
λ̄
k+1

)
≤ N0 +

N1/2√
k + 1

+
N ′

1

k + 1
.

(39)

4) The deviation of primal average variable is bounded by∥∥x̄k − x∗∥∥2 ≤ 2N0

cF
+

2
(
N1/2 + ‖λ∗‖M1/2

)
cF

√
k + 1

+
2 (N1 + ‖λ∗‖M1)

cF (k + 1)
(40)

where M1/2,M1, N0, N1/2, N1, and N ′
1 are positive constants

defined as

M1/2 :=
2k0 + 1

α

(
2
√
αεD +

2k0
√
2LDεD
γα

)

M1 :=
2k0 + 1

α

(
2 ‖λ∗‖+ ∥∥λ0

∥∥+ 2k0

√
D∗ −D0

γα

)

N0 := 2εD +
4k20 (2k0 + 1)LDεD

αγ2
α

N1/2 :=
4k20(2k0 + 1)

√
2LDεD (D∗ −D0)

αγ
3/2
α

N1 :=
2k0 + 1

2α

(∥∥λ0
∥∥2

+
4k20

(
D∗ −D0

)
γα

)

N ′
1 :=

2k0 + 1

2α

(∥∥λ0 − λ∗∥∥2
+

4k20
(
D∗ −D0

)
γα

)
.

Proof: 1) If k ∈ KD, we have

λk+1 =
[
λk + α

(
Ax̂k − b

)]+
≥ λk + α

(
Ax̂k − b

)

i.e.,

α
(
Ax̂k − b

)
≤ λk+1 − λk.

If k /∈ KD, we have λk+1 = λk, which indicates

0 ≤ λk+1 − λk.

Summing overall k ∈ K, we obtain

α
∑
κ∈Kk

D

(Ax̂κ − b) ≤ λk+1 − λ0 ≤ λk+1.

By taking the average and applying
∥∥[y]+∥∥ ≤ ∥∥y∥∥, ∀y ∈ Rn,

we have∥∥∥[Ax̄k − b
]+∥∥∥ ≤

∥∥λk+1
∥∥

α
∣∣Kk

D

∣∣ ≤ 2k0 + 1

α (k + 1)

∥∥λk+1
∥∥ .

Invoking Theorems 6 and 8 immediately yields (37).
2) For the left-hand side inequality of (38), the optimality of

F ∗ and λ∗ ≥ 0 yields

F ∗ ≤ F
(
x̄k

)
+ < λ∗, Ax̄k − b >

≤ F
(
x̄k

)
+

∥∥∥λ∗
∥∥∥ ∥∥∥[Ax̄k − b

]+∥∥∥ .
Applying (37) establishes the left-hand side inequality.
For the right-hand side inequality of (38), ifk ∈ KD, it follows

that∥∥λk+1
∥∥2 − ∥∥λk

∥∥2
+ 2α〈λk+1, b〉

a)

≤ 2α
∑
i∈N

{
〈λk+1, Aix̂

k
i 〉 − 2Li

∥∥λk+1 − λk
∥∥2

}
b)

≤ 2α
∑
i∈N

{〈
λk−δki , Aix̃i

(
λk−δki

)〉
︸ ︷︷ ︸

(Δ3)

+2Li

∥∥∥λk − λk−δki

∥∥∥2

+
〈
λk+1−λk−δki , Aix̃i

(
λk−δki

)〉
−Li

∥∥∥λk+1−λk−δki

∥∥∥2

︸ ︷︷ ︸
(Δ4)

}

c)

≤ 2α
∑
i∈N

{
D̃i

(
λk−δki

)
− fi

(
x̃i

(
λk−δki

))

+2Liδ
k
i

k−1∑
κ=k−δki

‖σκ‖2 +Di

(
λk+1

)−D̃i

(
λk−δki

)
+ 2εi

}

d)

≤ 2α
∑
i∈N

Di

(
λk+1

)−2αF
(
x̂k

)
+4αεD+2k0

k−1∑
κ=k−2k0

‖σκ‖2

(41)

where a) holds by taking λ = 0 in (30); b) holds by
adding and subtracting λk−δki in both the inner product
term and the 2-norm term, applying the inequality ‖a+
b‖2 ≤ 2‖a‖2 + 2‖b‖2∀a, b ∈ Rn, and using the definition
of x̂k

i in (18); in c), (Δ3) follows from the definition of
D̃i(λ

k−δki ) in (19), (Δ4) is relaxed by setting ξ = λk−δki

and μ = λk+1 in the right-hand side inequality in Lemma
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7, and the quadratic term ‖λk − λk−δki ‖2 is relaxed by
the inequality ‖∑m

i=1 bi‖2 ≤ m
∑m

i=1 ‖bi‖2∀bi ∈ Rn; and
d) is due to F (x̂k) =

∑
i∈N fi(x̃i(λ

k−δki )), εD =
∑

i∈N εi,
4α

∑
i∈N Li = 4αLD ≤ 1, and δki ≤ 2k0.

Note that∑
i∈N

Di

(
λk+1

)− < λk+1, b >= D
(
λk+1

) ≤ D∗ = F ∗.

Following (41), we have∥∥λk+1
∥∥2−∥∥λk

∥∥2

2α
≤F ∗−F (x̂k) + 2εD +

k0
α

k−1∑
κ=k−2k0

‖σκ‖2 .

If k /∈ KD, it obviously follows that∥∥λk+1
∥∥2 − ∥∥λk

∥∥2

2α
≤ 0.

Summing overall k ∈ K, we obtain∥∥λk+1
∥∥2−∥∥λ0

∥∥2

2α
≤

∑
κ∈Kk

D

(F ∗−F (x̂κ))+2
∣∣Kk

D

∣∣ εD+
2k20
α

Sk

where we consider each nonnegative term ‖σκ‖2 appears at most
2k0 times.

By taking the average and using the convexity of F (·), we
have

F
(
x̄k

)−F ∗ ≤ 2εD +
1

2α
∣∣Kk

D

∣∣ (∥∥λ0
∥∥2−∥∥λk+1

∥∥2
+4k20S

k
)

≤ 2εD +
2k0 + 1

2α (k + 1)

(∥∥λ0
∥∥2

+ 4k20S
k
)
.

Invoking Theorem 6 immediately yields the right-hand side
inequality of (38).

3) From the optimality of D∗, the left-hand side of (39) holds
directly. For the right-hand side, by setting λ = λ∗ in (32), we
have for k ∈ KD∥∥λk+1 − λ∗∥∥2 − ∥∥λk − λ∗∥∥2

≤ 2α
(
D

(
λk+1

)−D∗)+ 4αεD + 2k0

k−1∑
κ=k−2k0

‖σκ‖2 .

If k /∈ KD, it obviously follows that∥∥λk+1 − λ∗∥∥2 − ∥∥λk − λ∗∥∥2 ≤ 0.

Summing overall k ∈ K, we obtain∥∥λk+1 − λ∗∥∥2 − ∥∥λ0 − λ∗∥∥2

2α

≤
∑
κ∈Kk

D

(
D

(
λκ+1

)−D∗)+ 2
∣∣Kk

D

∣∣ εD +
2k20
α

Sk.

By taking the average and using the concavity of D(·), we
have

D∗−D
(
λ̄
k+1

)
≤ 2εD+

1

2α
∣∣Kk

D

∣∣ (∥∥λ0 − λ∗∥∥2

− ∥∥λk+1 − λ∗∥∥2
+ 4k20S

k
)

≤ 2εD+
2k0 + 1

2α (k + 1)

(∥∥λ0−λ∗∥∥2
+ 4k20S

k
)
.

Applying Theorem 6 directly yields the right-hand side in-
equality of (39).

4) Recall that x∗ is the optimal solution to the problem (1).
From the optimality condition [46, Th. 3.25], we have

〈∇F (x∗) +ATλ∗,x− x∗〉 ≥ 0 ∀x ∈ X (42a)

Ax∗ ≤ b, λ∗ ≥ 0 (42b)

〈λ∗, Ax∗ − b〉 = 0. (42c)

By replacing x with x̄k in (42a), we obtain

− 〈∇F (x∗) , x̄k − x∗〉
≤ 〈ATλ∗, x̄k − x∗〉
= 〈λ∗, Ax̄k − b〉 − 〈λ∗, Ax∗ − b〉
= 〈λ∗, Ax̄k − b〉. (43)

From the strong convexity of F (·), we have

cF
2

∥∥x̄k − x∗∥∥2 ≤ F
(
x̄k

)− F ∗ − 〈∇F (x∗) , x̄k − x∗〉
(43)

≤ F
(
x̄k

)− F ∗+ < λ∗, Ax̄k − b >

≤ F
(
x̄k

)− F ∗ +
∥∥∥λ∗

∥∥∥ ∥∥∥[Ax̄k − b
]+∥∥∥ .

The proof is completed by considering (37) and the right-hand
side inequality in (38). �

Remark 4 (Constant step size): A constant step size is used
to attain the convergence performance in Theorem 9, instead
of a diminishing one. Compared with a constant step size, a
diminishing step size may lead to a slow convergence rate near
the eventual limit and usually needs additional experimentations
to determine how fast the step size declines [46], [47], [48].
Hence, a constant step size is more applicable and popular in
practice.

Remark 5 (Generality): Theorem 9 indicates the uniform
ultimate boundedness of the DD-DO algorithm considering
asynchrony and inexactness. The convergence results consid-
ering only asynchrony [15] or inexactness [26] can be regarded
as special cases of our result by simply setting the inexactness
or asynchrony parameter as zero. On the one hand, if the al-
gorithm is synchronous (k0 = 0) and inexact (εD > 0), N1/2

vanishes, while other parameters decrease, similarly to [26]. It
indicates that asynchrony commonly slows down the conver-
gence and magnifies errors. On the other hand, if the algorithm
is asynchronous (k0 > 0) and exact (εD = 0), M1, N1 and N ′

1

are unchanged, while the rest parameters are zero. Here, the
algorithm converges to the optimal solution, similarly to [15].

Moreover, we show that the asynchronous algorithm con-
verges in O(1/k), which, to the best of our knowledge, has
not been presented in the existing literature [6], [15], [16], [17].
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Corollary 10: Suppose Assumptions A1–A3 hold. If the step
size satisfies (36), the asynchronous and exact version of Algo-
rithm 2 has the following convergence performance:∥∥∥[Ax̄k − b

]+∥∥∥ ≤ M1

k + 1
(44a)

− M1 ‖λ∗‖
k + 1

≤ F
(
x̄k

)− F ∗ ≤ N1

k + 1
(44b)

0 ≤ D∗ −D
(
λ̄
k+1

)
≤ N ′

1

k + 1
(44c)

∥∥x̄k − x∗∥∥2 ≤ 2 (N1 + ‖λ∗‖M1)

cF (k + 1)
(44d)

where M1, N1, and N ′
1 are defined as Theorem 9.

In addition, by setting k0 = 0 and εD = 0, the results in
Theorem 9 reduce to the synchronous and exact case as follows.
Note that the convergence rate is O(1/k), which is the same as
the results of [39] and [40].

Corollary 11: Suppose Assumptions A1–A3 hold. If the step
size satisfies (36), the synchronous and exact version of Algo-
rithm 2 has the following convergence performance:∥∥∥[Ax̄k − b

]+∥∥∥ ≤ 2
∥∥λ∗∥∥+

∥∥λ0
∥∥

α(k + 1)
(45a)

− 2
∥∥λ∗∥∥2

+
∥∥λ0

∥∥∥∥λ∗∥∥
α(k + 1)

≤F
(
x̄k

)−F ∗≤
∥∥λ0

∥∥2

2α(k + 1)
(45b)

0 ≤ D∗ −D
(
λ̄
k+1

)
≤

∥∥λ0 − λ∗∥∥2

2α(k + 1)
(45c)

∥∥x̄k − x∗∥∥2 ≤
∥∥λ0

∥∥2
+ 2

∥∥λ0
∥∥ ∥∥λ∗∥∥+ 4

∥∥λ∗∥∥2

αcF (k + 1)
. (45d)

Remark 6 (Averaging to combat inexactness): In our main
results, the running average sequences {x̄k} and {λ̄k+1} defined
in (33) are leveraged to develop our main results. The insight is
that averaging can alleviate errors in iterative algorithms [25],
[26], [49], [50]. From [42], the violation of the constraints and
the errors of the objectives can be reduced by averaging due
to the convexity of constraints and the primal objective and the
concavity of the dual objective.

For instance, consider a sequence {λk} satisfying D∗ −
D(λk) ≤ εk. From the Jensen’s inequality [51] and the con-
cavity of D(·), we have

D

(
1

k

k∑
κ=1

λκ

)
≥ 1

k

k∑
κ=1

D (λκ) ≥ D∗ − 1

k

k∑
κ=1

εκ.

As long as the sum of the errors
∑k

κ=1 ε
κ increases slower than

O(k), the error of the running average sequence will decrease.

V. ILLUSTRATIVE EXAMPLE

In this section, the convergence results of the asynchronous
and inexact DD-DO algorithm are demonstrated by numerical
simulations carried out on a six-agent system and a 100-agent
system.

A. Overview of Implementation

1) Platform: The simulation is carried on a desktop with
Intel i7-10700 CPU and 16-GB memory. The simulation plat-
form is MATLAB 2016B, and commercial solver CPLEX [52]
is utilized to solve subproblems with the intermediary toolbox
YALMIP [53].

2) Problem: The dual decomposition algorithm is applied
to the network utility maximization (NUM) problem [9], [10],
[11]. There are n sources (agents) connected by m links, where
the agent i wants to maximize its utility Ui(xi) with respect to
the resource transmission rate xi through the given static path.
The system congestion is the maximal transmission capacity bj
of every link j. The NUM problem is formulated as

min
x

F (x) = −
∑
i

Ui (xi) = −
∑
i

{
Cb − Ca (xi − xi)

2
}

s.t.xi ∈ Xi := {z |xi ≤ z ≤ xi} ∀i
Ax ≤ b

where the matrix A indicates the topology of the network as

Aj,i =

{
1, source i goes through link j
0, otherwise

and the jth entry of the vector b is the capacity of link j.
3) Asynchrony: To guarantee the asynchrony satisfying As-

sumption A2, we design the following method to generate the lo-
cal clocksKi,KD and the time delays δkdi, δ

k
pi. We assume that in

each local clockKi (KD), the first element is 0 and the difference
between any two adjacent elements follows the discrete uniform
distribution within [1, k0 + 1]. The randomized differences are
generated by the function randi in MATLAB. After generating
local clocks, we define the time delays δkdi, k ∈ Ki as

δkdi = max
κ

k − κ (46a)

s.t.κ− 1 ∈ KD, κ ≤ k. (46b)

From the definition (46), the range of δkdi is [0, k0], which
satisfies Assumption A2. The minimal value, δkdi = 0, happens
when k − 1 ∈ KD, and then, κ∗ = k, while the maximal value,
δkdi = k0, happens when k ∈ KD, the previous element in KD

before k is k − k0 − 1, and then, κ∗ = k − k0.
The definition of δkpi, k ∈ KD is similar to (46) as

δkpi = max
κ

k − κ (47a)

s.t.κ ∈ Ki, κ ≤ k. (47b)

4) Inexactness: First, we obtain the exact optimal value
Di(λ) by CPLEX. Then, we attain an inexact solution x̃i(λ)
by solving the following problem:

x̃i (λ) ∈ arg max
xi∈Xi

Li (xi;λ) (48a)

s.t.Li (xi;λ)−Di (λ) ≤ εi (48b)

which is the worst-case solution satisfying Assumption A3. If the
solution to the problem (48) is not unique, we randomly pick one.
Noting that the inexact solution is worst case, the representation
of our simulation results is guaranteed.
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Fig. 2. Topology of the six-agent network.

TABLE I
AGENT DATA

Fig. 3. Violation of the constraints during iterations.

B. Simulation on a Six-Agent System

Consider an MAS with six sources (agents) and seven links,
whose topology is presented in Fig. 2. The parameters of the
agents are provided in Table I. The capacities of the links are as
follows:

b = [15, 17, 20, 15, 20, 20, 15]T .

The asynchronous and inexact DD-DO algorithm is imple-
mented in the NUM problem of the six-agent system. From
(36) in Theorem 9, the sufficient condition to guarantee the
convergence is that the step size α satisfies 0 < α < 0.0069.
A small step size may slow down the convergence, whereas a
big one may lead to nonconvergence. We choose a moderate
α = 0.004. Set the parameters k0 = 0 or 4 and εD = 0 or 30.

Figs. 3–6 show the curves of the violation of the constraints,
the relative errors of the primal and dual objectives, and the
deviation of the primal variable during iterations, respectively.
The x-axis uses a linear scale, while the y-axis uses a logarithmic
scale. In each figure, there are eight curves in blue (synchronous
and exact), red (asynchronous and exact), green (synchronous
and inexact), and yellow (asynchronous and inexact). The solid
lines are the real trajectories generated by Algorithm 2, while

Fig. 4. Relative error of the primal objective during iterations.

Fig. 5. Relative error of the dual objective during iterations.

the dashed lines are the upper bounds computed by (37)–(40) in
Theorem 9.

The violation of the constraints during iterations is shown
in Fig. 3. The curves all converge, even if the algorithm is
inexact or/and asynchronous. It verifies the convergence result
(37) in Theorem 9, i.e., the feasibility is always satisfied. From
this figure, we also find that both asynchrony and inexactness
increase the violation of the constraints.

Figs. 4 and 5 are the relative errors of the primal and dual
objectives during iterations. The comparison of real and dashed
curves verifies the convergence results (38) and (39) in Theorem
9, i.e., the value of the objective converges to a neighborhood of
the optimal value. It is clear that the inexactness has a remarkable
influence on the upper bounds on the ranges of neighborhoods,
while the convergence speed slows down from synchronous to
asynchronous algorithms. Under the inexact conditions (green
and yellow curves in Fig. 4), the difference of the primal
objective values F (x̄k)− F ∗ turns from negative to positive
during iterations. This transition leads to the rapid drop in the
exponential coordinate.

The deviation of the primal variable from the optimal solution
is shown in Fig. 6. The simulation results verify our
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Fig. 6. Deviation of the primal variable during iterations.

Fig. 7. Topology of the 100-agent network.

Fig. 8. Violation of the constraints during iterations.

theoretic analysis on the solution accuracy (40) in Theorem
9. If the subproblem solutions are inexact, the sequence {x̄k}
converges to a neighborhood of the optimal solution. Otherwise,
the deviation decreases to zero and the optimal solution can
be obtained. On the other hand, asynchrony slows down the
convergence of the primal variable, similarly to the influence on
the objective values, as indicated in Theorem 9.

C. Simulation on a 100-Agent System

Consider an MAS with 100 sources (agents) and 133 links,
whose topology is presented in Fig. 7. For each agent i, the path

Fig. 9. Relative error of the primal objective during iterations.

Fig. 10. Relative error of the dual objective during iterations.

Fig. 11. Deviation of the primal variable during iterations.

of the transmitting source is generated by randomly picking
another agent j and finding a shortest path by the Dijkstra
algorithm [54]. The capacities of the links are randomly chosen
in [0, 200]. For each agent i, the lower bound of xi is xi = 0,
while the upper bound xi is randomly generated in the range
of [2, 8]. The parameter Ca of the utility Ui(xi) is randomly
selected in the range of [3, 5], while Cb is assigned to Cax

2
i such

that Ui(0) = 0.
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The asynchronous and inexact DD-DO algorithm is imple-
mented in the NUM problem of the 100-agent system. From
(36) in Theorem 9, the sufficient condition to guarantee the con-
vergence is that the step size α satisfies 0 < α < 0.00035. We
choose a moderate α = 0.0003. Set the parameters k0 = 0 or 8,
εD = 0 or 1000.

Figs. 8–11 show the curves of the violation of the constraints,
the relative errors of the primal and dual objectives, and the
deviation of the primal variable during iterations, respectively.
The solid lines are the real trajectories, while the dashed lines are
the upper bounds calculated by (37)–(40) in Theorem 9. Fig. 8
indicates the convergence of the violation of the constraints, even
if the subproblem solutions are inexact. In Figs. 9 and 10, the
convergence of the primal and dual objective values is verified
to satisfy (38) and (39) in Theorem 9. Fig. 11 shows that the
solution generated by the asynchronous and inexact DD-DO
algorithm converges to a certain neighborhood of the optimal
solution, which verifies the theoretic result (40). The simulation
results also validate that the asynchronous and inexact DD-DO
algorithm is applicable for large-scale systems.

VI. CONCLUSION

In this article, we have studied the DD-DO algorithm in
MASs. It is the first time that both the communication asyn-
chrony and the subproblem solution inexactness are considered
in the dual decomposition algorithm. Due to the asynchronous
communication or nonidentical computation clocks, agents have
to solve their subproblems with the previously stored infor-
mation. Limited by computational accuracy, the subproblem
solutions are inexact. We have proved that values of primal
and dual objectives converge to some neighborhoods of the
optimal values, the solution converges to some neighborhood
of the optimal solution, and the violation of the constraints van-
ishes, all in an O(1/

√
k) rate of convergence. Our convergence

results generalize and unify existing works of dual decompo-
sition algorithms considering only asynchrony or inexactness.
Numerical simulation verifies the convergence performance of
the asynchronous and inexact DD-DO algorithm.

It is expected that this work could provide useful insights and
facilitate the implementations of dual decomposition algorithms
in complicated realistic systems, which would inspire more
applications in a wide broad of fields.

APPENDIX A
PROOF OF LEMMA 1

Proof: Given any λ ∈ Rm
+ , xi(λ) is the optimal solution

defined as (7). From the optimality condition [46, Th. 3.24],
we have

〈∇fi (xi (λ)) +AT
i λ,y − xi (λ)〉 ≥ 0 ∀y ∈ Xi. (A.1)

Replacing y in (A.1) with xi(μ) ∀μ ∈ Rm
+ , we have

〈∇fi (xi (λ)) +AT
i λ,xi (μ)− xi (λ)〉 ≥ 0. (A.2)

Similarly, we have the optimality condition at xi(μ)

〈∇fi (xi (μ)) +AT
i μ,xi (λ)− xi (μ)〉 ≥ 0. (A.3)

Flipping the signs of the two terms of < ·, · > in (A.2) and
adding (A.3), it follows that

〈∇fi (xi (λ))−∇fi (xi (μ)) ,xi (λ)− xi (μ)〉︸ ︷︷ ︸
(Δ5)

≤ 〈AT
i μ−AT

i λ,xi (λ)− xi (μ)〉︸ ︷︷ ︸
(Δ6)

.

From the strong convexity of fi(·), we have

ci ‖xi (λ)− xi (μ)‖2 ≤ Δ5.

From the Cauchy–Schwarz inequality, we have

Δ6 ≤ ‖Ai‖ ‖λ − μ‖ ‖xi (λ)− xi (μ)‖ .
No matter if ‖xi(λ)− xi(μ)‖ = 0 or not, it immediately

follows that

‖xi (λ)− xi (μ)‖ ≤ ‖Ai‖
ci

‖λ − μ‖

which completes the proof. �

APPENDIX B
PROOF OF COROLLARY 2

Proof: 1) Recall that Xi is nonempty and compact, fi(·) is
continuous over X , and xi(λ) is the unique optimal solution to
(7). Invoking [44, Prop. 6.1.1], Di(λ) is differentiable and its
gradient is defined as (10).

To prove the Lipschitz continuity, we have for any λ,μ ∈ Rm

‖∇Di (λ)−∇Di (μ)‖ = ‖Aixi (λ)−Aixi (μ)‖
≤ ‖Ai‖ ‖xi (λ)− xi (μ)‖

≤ ‖Ai‖2
ci

‖λ − μ‖ .

2) Similarly, from [44, Prop. 6.1.1],D(λ) is differentiable and
its gradient is defined as (11). To prove the Lipschitz continuity,
we have for any λ,μ ∈ Rm

‖∇D (λ)−∇D (μ)‖
≤

∑
i∈N

‖∇Di (λ)−∇Di (μ)‖

≤
(∑

i∈N

‖Ai‖2
ci

)
‖λ − μ‖

which completes the proof. �

APPENDIX C
PROOF OF LEMMA 3

Proof: Given λ ∈ Rm
+ , from the strong convexity of Li(·;λ)

in xi, we have

Li (x̃i (λ) ;λ) ≥ Li (xi (λ) ;λ) +
ci
2
‖x̃i (λ)− xi (λ)‖2

+ 〈∇fi (xi (λ)) +AT
i λ, x̃i (λ)− xi (λ)〉︸ ︷︷ ︸

(Δ7)

.
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From (A.1) in Appendix A, (Δ7) is nonnegative, which
completes the proof. �
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