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Abstract

Introduction: The barrier function of the gut is important for many organs and sys-

tems, including the brain. If gut permeability increases, bacterial fragments may enter

the circulation, giving rise to increased systemic inflammation. Increases in bacterial

translocation are reflected in higher values of blood markers, including lipopolysac-

charide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14).

Some pioneer studies showed a negative association between bacterial translocation

markers and brain volumes, but this association remains scarcely investigated. We

investigate the effect of bacterial translocation on brain volumes and cognition in both

healthy controls and patients with a schizophrenia spectrum disorder (SSD).

Materials andmethods:Healthy controls (n=39) andSSDpatients (n=72) underwent

an MRI-scan, venipuncture and cognition assessments. We investigated associations

between LBP and sCD14 and brain volumes (intracranial volume, total brain volume,

and hippocampal volume) using linear regression. We then associated LBP and sCD14

to cognitive function using amediation analysis, with intracranial volume asmediator.

Results: Healthy controls showed a negative association between hippocampal vol-

ume and LBP (b = –0.11, p = .04), and intracranial volume and sCD14 (b = –0.25,

p = .07). Both markers were indirectly associated with lower cognitive functioning in

healthy controls (LBP: b = –0.071, p = .028; sCD14: b = –0.213, p = .052), mediated

by low intracranial volume. In the SSD patients, these associations were markedly less

present.

Conclusion: These findings extend earlier studies suggesting that increased bacterial

translocation may negatively affect brain volume, which indirectly impacts cognition,

even in this young healthy group. If replicated, this finding stresses the importance of

a healthy gut for the development and optimal functioning of the brain. Absence of

these associations in the SSD group may indicate that other factors such as allostatic
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load, chronicmedication use and interrupted educational carrier had larger impact and

attenuated the relative contribution of bacterial translocation.

KEYWORDS

bacterial translocation, brain volume, microbiome-gut-brain axis, MRI, schizophrenia spectrum
disorders

Significant Outcomes

∙ We found negative associations between markers of bacterial

translocation and both brain volume and cognition.

∙ These associations are stronger in healthy participants than in

schizophrenia spectrum disorder patients.

Limitations

∙ The associations we found are not as strong as we hoped, perhaps

due toour youngparticipantswith relatively preservedbrain volume

and cognition.

∙ This study is observational, and cannot infer causality.

1 INTRODUCTION

Recent years have seen a surge of manuscripts discussing the poten-

tial influence of the gut on the brain (Cryan et al., 2019). The relation

between gut and brain is multifactorial and can occur via the vagal

nerve, inflammation, endocrine pathways, and more (Cryan et al.,

2019). Gut permeability has often been implied as a relevant factor

defining the association between gut and brain. The gut can transport

compounds into the periphery through several routes, which can be

divided into paracellular and transcellular pathways (Greenweld-Van

Meerveld et al., 2017; Vanuytsel et al., 2021). In a healthy gut, larger

compounds such as proteins and bacteria can only move across the

gut barrier through transcellular endo- and exocytosis (Greenweld-Van

Meerveld et al., 2017). However, factors such as chronic low-grade

inflammation, psychological stress, and diet choicesmay lead to disrup-

tion of the gut barrier function, increasing gut permeability (Camilleri

et al., 2020; Vanuytsel et al., 2021). Consequently, gut metabolites,

endotoxins like lipopolysaccharide (LPS), and even whole bacteria can

leak out into the blood (i.e., bacterial translocation) (Camilleri et al.,

2020; Vanuytsel et al., 2021). There, they can instigate a persistent

inflammatory response, which may eventually have systemic conse-

quences (Farre & Vicaro, 2017). Notably, increased translocation of

bacteria and LPS has been associated with an array of health prob-

lems, including fatal ones such as liver cirrhosis andmulti-organ failure

(Hollander & Kaunitz, 2020; Vanuytsel et al., 2021). Likewise, gut

permeability has been linked to neurodegenerative and psychiatric dis-

orders, implying that these effects may reach the brain (Maguire &

Maguire, 2019).

In contrast to the plenitude of review articles on this topic, there

is a paucity of data articles that actually support this hypothesized

influence of the gut on the brain, and vice versa. A recent study demon-

strated that gut-microbiome features associated with decreased cog-

nition and altered brain structure were also significantly associated

with inflammatory cytokines in serum (Liang et al., 2022). Preclini-

cal research shows that translocated bacterial peptidoglycan, derived

from gut bacteria, can induce alterations in gene expression in the

brain (Arentsen et al., 2017). Similarly, LPS administered peripherally

can induce changes in brain cytokine and in brain neurotransmitter

levels in pigs (Nordgreen et al., 2018). Research in rats has shown

that LPSmight cross the blood-brain barrier through lipoproteinmedi-

ated transport (Vargas-Caraveo et al., 2017). In mice, peripheral LPS

administration is followed bymicroglial activation, neuroinflammation,

and neurodegeneration, resulting in loss of neuronal cells in the hip-

pocampus and cognitive impairment (Henry et al., 2010; Qin et al.,

2007; Zhao et al., 2019). These microglia play an important role in

brain homeostasis and plasticity (Tay et al., 2017). Aberrant microglial

activation has been linked to reduced brain volume and cognitive dys-

function through neuroinflammation and increased synaptic pruning,

in both different patient groups and in healthy controls (Lui et al., 2017;

Nicastro et al., 2020; Opel et al., 2019). Likewise, microglial activation

has been related to bacterial translocation across various neurodegen-

erative and psychiatric disorders (Baizabal-Carvallo & Alonso-Juarez,

2020; Cerovic et al., 2019; Haq et al., 2018; Yirmiya et al., 2015). As

such, translocation of endotoxins and bacteria may be an important

part of gut-brain pathology, altering brain volume and function through

microglial dysfunction.

How bacterial translocation occurs in a state of increased gut per-

meability is as of yet under debate. Increased paracellular space could

potentially allow bacterial endotoxins, like LPS, to cross the gut wall

(Watsonet al., 2005).However, recentwork inmice and rats shows that

LPS mainly utilizes transcellular endocytosis, mediated via lipid rafts

and cluster of differentiation 36 (CD36), and may not rely on paracel-

lular transport (Akiba et al., 2020). Whole bacteria also likely depend

on endocytosis as they are too large and too lipophilic to cross para-

cellularly (Farre & Vicaro, 2017; Hollander & Kaunitz, 2020). There

are several biomarkers for gut permeability, assessing different path-

ways for crossing the gut wall (van Wijck et al., 2013; Vanuytsel et al.,

2021).Wewill examine translocationof LPS, becauseof its implications

in gut-brain pathology (Nordgreen et al., 2018; Qin et al., 2007). LPS

binding protein (LBP) and soluble cluster of differentiation 14 (sCD14)

are used as markers of LPS in serum, and can be considered mark-

ers of endotoxemia (Stehle et al., 2012; Sun et al., 2010). Both LBP
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and sCD14 are pivotal for eliciting a systemic immune response in

response to bacterial translocation by forming a complexwith bacterial

LPS (Gonzalez-Quintela et al., 2013).

These selected markers of gut permeability also reflect a link

between brain volume and bacterial translocation. LBP is associated

with both decreased white matter volume and cognition in obese peo-

ple (Moreno-Navarrete et al., 2017). sCD14 is negatively related to

brain volumes in people with irritable bowel syndrome (IBS) (Weaver

et al., 2016), supporting the idea that increased bacterial transloca-

tion negatively affects brain volume. Similarly, recent studies in elderly

found that high levels sCD14 and other inflammatory markers are cor-

related to low brain volume, impaired cognition and incident dementia

(Fang et al., 2022; Pase et al., 2020).

The gut-brain axis may play a role in psychiatric disorders such as

schizophrenia spectrum disorders (SSD). SSD have been associated

withdecreasedbrain volumeandmicroglial activation (Kimet al., 2017;

Laskaris et al., 2016; Marques et al., 2019). Following the lead from

preclinical studies, this increased microglial activation could (partly)

result from increased gut permeability. Indeed, SSDpatients are known

to have more frequent stomach complaints, including bloating, consti-

pation and irritable bowel syndrome (IBS) (Lee et al., 2015). Similarly,

IBS patients are at higher risk for SSD and other psychiatric disorders

(Lee et al., 2015). Also, SSD patients are known to have a different

gut microbiome, which may lead to increased bacterial translocation

(Nguyen et al., 2019; Severance et al., 2013). Some studies indeed

found elevated serum markers indicative of bacterial translocation,

including sCD14 and LBP, in SSD (Dzikowski et al., 2020; Safadi et al.,

2021; Severance et al., 2013), although another study could not repli-

cate this (Morch et al., 2019). Serum levels of sCD14, but not LBP,

were elevated prior to schizophrenia diagnosis, which implies that it

may be useful as biomarker for psychosis vulnerability (Weber et al.,

2019). A study determining intestinal permeability using a mannitol

absorption test, which can be viewed as a gold standard, confirmed

that gut permeability was increased in schizophrenia patients (Ishida

et al., 2022). Additionally, increased gut permeability was associated

with decreased cognitive function, but not with positive or negative

symptoms (Ishida et al., 2022). In line with this, a low-grade inflamma-

tory state in SSD has been associated to decreased cognitive function

(Bora, 2021). This low-grade inflammatory state could be linked to bac-

terial translocation. Importantly, alpha diversity (a general measure of

microbiome diversity) has been associatedwith brain volume in SSD (Li

et al., 2021).

To investigate how bacterial translocation from the gut may be

related to the brain, we examined the association of LBP and sCD14

in serum with brain volumes and cognition. We expect that LBP

and sCD14 will negatively correlate to brain volume. This will apply

for intracranial volume (ICV), total brain volume (TBV), and hip-

pocampal volume (HCV), which have been related to gut permeability

or microglial activation (Baizabal-Carvallo & Alonso-Juarez, 2020;

Cerovic et al., 2019; Haq et al., 2018; Laskaris et al., 2016). We expect

this relation in both healthy participants, and in SSD patients. Addi-

tionally, SSD patients will have overall decreased brain volume in our

selected areas (Haijma et al., 2013; Veijola et al., 2014).We expect that

LBP and sCD14 levels will be increased in SSD compared to healthy

participants (Dzikowski et al., 2020; Safadi et al., 2021; Severance et al.,

2013) leading to decreased brain volume, but the interaction between

LBP, sCD14 and brain volume will not differ per group. We expect that

high LBPand sCD14 levelswill be associatedwith lowcognitive perfor-

mance in both healthy controls and SSD, potentially mediated by low

brain volumes.

2 MATERIALS AND METHODS

2.1 Participants

Data from 72 early-phase SSD patients (40 psychotic disorder not

otherwise specified, 25 schizophrenia, 1 schizophreniform disorder,

and 6 schizoaffective disorder) and 39 healthy controls was obtained

from the Simvastatin study (ClinicalTrails.gov NCT0199930) (Som-

mer et al., 2021; Begemann et al., 2015). Onset of psychosis in all

patients was less than 3 years prior to the start of the study. Patients

were recruited in both in- and outpatient settings in the Netherlands,

between November 2013 and February 2019. All procedures followed

were in accordancewith the ethical standards of theMedical Research

Ethics Committee Utrecht and with the Helsinki Declaration of 1964

and its later amendments. Signed informed consent was obtained from

all participants included in the study.

2.2 Assessment of intracranial volume, brain
volume, and hippocampal volume

An MRI was performed at the end of the visit, after taking a blood

sample and conducting clinical rating scales (Begemann et al., 2015).

MRI scans were performed using a Philips Ingenia 3.0 Tesla CX

scanner with a 32-channel SENSE head-coil, located at the Univer-

sity Medical Centre Utrecht. We acquired 3D, high-resolution T1-

weighted structural scanswith a Turbo Field Echo sequence (repetition

time = 10 ms, echo-time = 4.6 ms, flip angle = 8◦, reconstructed

voxel size = 0.75 × 0.75 × 0.8 mm (Vanuytsel et al., 2021), field of

view = 240 mm × 240 mm × 160 mm). Scan processing and assessing

intracranial volumes and brain volumes was done using the Freesurfer

image analysis suite, version 6.0.1 (RRID:SCR_001847) (Fischl et al.,

1999; Reuter et al., 2012). Brain volumes assessed were intracra-

nial volume (ICV), total brain volume (TBV), and hippocampal volume

(HCV). TBV did not include the brain stem or the ventricles.

2.3 Blood sample collection and LBP/sCD14
analysis

Blood samples were obtained through venipuncture and used to quan-

tify LBP and sCD14 levels. Bothmarkersweremeasured in accordance

with the protocol of the manufacturer (Human LBP DuoSet ELISA,

R&D systems, Minneapolis, USA; Human sCD14 DuoSet ELISA, R&D

systems, Minneapolis, USA). LBP was diluted at 1:500 and sCD14 at

1:4000. All assays were performed three times, and we used mean
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values of the three assessments. Variation coefficients were 4.7% for

LBP and 5.1% for sCD14.

2.4 Cognition

Cognitive functioningwas assessed using the Brief Assessment of Cog-

nition in Schizophrenia (BACS) (Keefe et al., 2004). The BACS consists

of several cognitive andmotor domains (verbalmemory, workingmem-

ory, motor speed, verbal fluency, reasoning and problem solving, and

attention and processing speed) which can be combined into a com-

posite score. The composite score can be calculated by averaging the

scores of all domains, followed by standardization. We standardized

BACS scores using data gathered in a healthy population (Keefe et al.,

2008). Here, a score of 0 is considered the population average.

2.5 Statistical analysis

Data were analyzed using Rstudio version 1.4.1106

(RRID:SCR_000432). Results are reported as average ± standard

error of the mean (SEM). Group differences between SSD and healthy

controls were tested using ANCOVA.Differences in brain volumes (i.e.,

ICV, TBV, and HCV) were corrected using age, sex, and Euler number

(a measure of image quality) as covariates. Associations between

brain volume with sCD14/LBP were examined using linear regression

analyses and were corrected using age, sex, and BMI as covariates. In

linear regression, hippocampal volumewas also corrected for intracra-

nial volume. SSD and healthy controls were analyzed together and

separately, by adding an interaction term to the regression analyses.

sCD14 and LBP were included in the analysis as continuous untrans-

formed variables. We tested the mediating effect of brain volume on

the relation between sCD14/LBP and cognition using a mediation

analysis. Brain volumes were added as mediators in the analyses,

which were performed on both groups individually. The mediation

analysis determined a direct, indirect and total effect. The direct effect

is the effect of sCD14/LBP on cognition. The indirect effect is the

mediated effect, or the effect that sCD14/LBP have on cognition by

altering brain volume. The total effect is the indirect effect and the

direct effect taken together. Indirect effects are tested for significance

using bootstrapping, with 1000 bootstrapped samples. Results were

considered significant if p < .05, and were considered a trend if p ≤ .1.

Missing data was excluded from the analysis. With our sample size of

72 SSD patients, an effect size of 0.15 would be adequately powered

with β= 0.8 at α= 0.05.

3 RESULTS

3.1 Cohort characteristics

The characteristics of the selected participants are shown in Table 1.

Data shown are raw data, and the statistical tests were corrected as

described above. Average age in the healthy controls group was lower

compared to the SSD group. As expected, ICV and TBV were signifi-

cantly lower in the SSD group compared to the healthy controls. HCV

did not differ significantly between the groups. BMI, LBP, and sCD14

levels didnot differ betweengroups. LBPand sCD14correlated toeach

other in the healthy controls (adjusted R2 = 0.075, p = .05), but not

in SSD (adjusted R2 = 0.001, p = .31). We observed lower compos-

ite BACS scores in SSD (−1.34 ± 0.14) compared to healthy controls

(0.1± 0.18) (see Table 1), indicating lower cognitive function in SSD.

3.2 Associations of LBP and sCD14 with brain
structure

We found nonsignificant negative associations between ICV and LBP,

seen in Figure 1A (healthy controls, b=−0.09, p= .13; SSD, b=−0.03,

p = .36, adjusted R2 = 0.27). There was no correlation between TBV

and LBP in either group (healthy controls, b = −0.06, p = .31; SSD,

b = −0.04, p = .27, adjusted R2 = 0.34) (data not shown). The negative

correlation between HCV and LBP was significant in healthy controls,

but was absent in SSD, as can be seen in Figure 1B (healthy controls,

b=−0.11, p= .04; SSD, b= 0.005, p= .88, adjusted R2 = 0.40).

There was a negative trend between sCD14 and ICV in the healthy

controls, (b=−0.25,p= .07; SSD,b=−0.14,p= .11, adjustedR2=0.28)

(Figure 1C). There was no association between TBV and sCD14 in

either group (healthy controls, b = −0.17, p = .21; SSD, b = −0.09,

p= .31, adjustedR2=0.39) (datanot shown). Finally,HCVwasnot asso-

ciatedwith sCD14 (healthy controls, b=−0.11, p= .42; SSD, b=−0.08,

p= .36, adjusted R2 = 0.39) (data not shown).

3.3 Association between cognition and brain
structure

Total ICV positively and significantly correlated to BACS scores in

the healthy controls, and ICV positively correlated on a trend level

to BACS scores in the SSD group (healthy controls, b = 2.93 × 10−6,

p= .009; SSD, b= 1.26 × 10−6, p= .099, adjusted R2 = 0.29). TBV cor-

related significantly to BACS scores in both groups (healthy controls,

b = 4.19 × 10−6, p = .037; SSD, b = 2.91 × 10−6, p = .037, adjusted

R2 = 0.32). HCV did not correlate significantly to BACS scores in either

group (healthy controls, b= 2.82× 10−4, p= .22; SSD, b= 2.85× 10−6,

p= .166, adjusted R2 = 0.29).

5.4 Associations of LBP and sCD14 with cognition

BACS scores did not directly correlate with LBP, in healthy controls

nor SSD (healthy controls, b = −0.02, p = .76; SSD, b = 0.04, p = .35,

adjusted R2 = 0.30). Similarly, we did not find an association between

BACS and sCD14 in either group (healthy controls, b = −0.01, p = .88;

SSD, b= 0.02, p= .64, adjusted R2 = 0.27).
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TABLE 1 Cohort characteristics

Group Healthy controls SSD Statistics

Age 24.49 ± 0.79 27.74 ± 0.81 F(1, 109)= 6.8, p= .01*

Number participants (%male) 39 (79%) 72 (78%) NA

Intracranial volume (× 106 mm3) 1.61 ± 0.0289 1.53 ± 0.0228 F(1, 109)= 4.51 p= .036*

Total brain volume (× 106 mm3) 1.20 ± 0.0165 1.15 ± 0.0131 F(1, 109)= 5.66 p= .019*

Hippocampal volume (× 103 mm3) 8.31 ± 0.127 8.18 ± 0.092 F(1, 108)= 0.28, p= .60

BMI (kg/m2) 23.87 ± 0.72 24.23 ± 0.45 F(1, 109)= 0.009, p= .42

LBP (μg/mL) 7.63 ± 0.39 8.26 ± 0.34 F(1, 109)= 1.31, p= .25

sCD14 (μg/mL) 2.51 ± 0.16 2.51 ± 0.14 F(1, 109)= 0.0001, p= .99

PANSS total score NA 58.63 ± 1.67 NA

BACS composite score 0.1 ± 0.18 –1.34 ± 0.14 F(1, 109)= 39.50, p= 6.93× 10−9*

Abbreviations: SSD: schizophrenia spectrum disorder, LBP: lipopolysaccharide binding protein, μg: microgram, mL: milliliters, sCD14: soluble cluster of

differentiation 14, mm3: cubic millimeter, PANSS: positive and negative symptom scale, BACS: Brief Assessment of Cognition in Schizophrenia, NA: not

available.

*Indicates a significant difference between healthy controls and SSD (p< .05).

3.4 Mediation of brain structure on the relation
between LBP, sCD14 with cognition

The mediation analysis (see methods section 2.4 for details) showed

a negative effect of LBP on BACS mediated by decreased ICV in the

healthy controls, but not in SSD (healthy controls, b=−0.071, p= .028;

SSD, b = −0.011, p = .37), and is seen in Figure 2. The total effect was

not significant in either group (healthy controls, b = −0.008, p = .74;

SSD, b=0.076, p= .132). Similarly, we found a negative trend of sCD14

on BACS scores mediated by decreased ICV in healthy controls, but

not in SSD (healthy controls, b = −0.174, p = .068; SSD, b = −0.029,

p = .33). Total effects of sCD14 on BACS scores mediated by ICV was

not significant in either group (healthy controls, b=0.073, p= .77; SSD,

b = 0.093, p = .42). We found no effects of LBP or sCD14 on cognition

whenmediated by other measures of brain volume (see Appendix 1).

4 DISCUSSION

WeexaminedassociationsbetweenLBPand sCD14, brain volumes and

cognition to determine if bacterial translocation markers may affect

structure and function of brain volumes in a young healthy cohort

(n = 39) and early-phase SSD patients (n = 72). As expected, the

SSD group had lower intracranial volume (ICV) and total brain volume

(TBV), but hippocampal volume (HCV) was similar. In extension, cog-

nition was lower in the SSD group. We found that, in healthy controls,

sCD14negatively correlated to ICV, and that LBPnegatively correlated

to HCV. Despite not finding a direct effect of bacterial translocation

markers on cognitive function, LBP and sCD14 did have an indirect

effect on cognitive functioning in healthy controls through decreas-

ing ICV. Unexpectedly, there were no differences in LBP or sCD14

between groups. Additionally, we did not observe any associations

betweenbacterial translocationmarkers andbrain volumeor cognition

in the SSD group.

We hypothesized that bacterial translocation would relate to

decreased intracranial volume, total brain volume and hippocampal

volume. Indeed, LBP correlated significantly with HCV in healthy con-

trols, and sCD14 correlated on a trend level with ICV in healthy

controls. Similar to our results, reduced TBV and HCV was found in

healthy older subjects with increased sCD14 (Pase et al., 2020). Obese

people have been shown to have impaired cognition and low brain

volume, especially in the hippocampus, which has also been linked to

increased gut permeability and neuroinflammation (Olsthoorn et al.,

2021). The link between sCD14with ICV in our study suggests that the

relation between brain and bacterial translocation originates at least

partly during development, as ICV is already determined at a young

age (Haijma et al., 2013; Pfefferbaum et al., 1994). Importantly, intesti-

nal permeabilitymay bemostly stable throughout life, although studies

in children are limited (Wilms et al., 2020). Microglia have been shown

to be sensitive to activation during adolescence, and disturbances dur-

ing this period can lead to alterations in synaptic density and cognitive

function in later life (Schalbetter et al., 2022). As such, our findingsmay

reflect the negative impact of intestinal permeability on the developing

brain.

The impact of the bacterial translocation on cognition seems to be

relatively low in this cohort. Neither LBP nor sCD14 had a direct corre-

lation with BACS scores in either group. However, they were indirectly

negatively correlated to BACS scores in the healthy controls when

mediated by decreased ICV. That this observed effect was specifically

indirect, but not direct, is also consistent with a developmental origin

for the relation between brain and bacterial translocation. Our find-

ings are congruent with findings on sCD14 in an older cohort (Pase

et al., 2020). The significance level of sCD14wasmodest, whichmay be

a consequence of the relatively young age and preserved cognition of

our participants. In our cohort, low brain volume is associated with low

cognition. This correlation between brain volume in these regions and

cognition is well established (Van Loenhoud et al., 2018; Vibha et al.,

2018).
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F IGURE 1 The line represents the linear model, the shade represents the standard error of themean. In both figures, the blue line represents
the healthy controls group, whereas the orange dotted line represent the SSD group. *Indicates a significant relation between ICV/HCV and
LBP/sCD14 (p< .05). Dot indicates a trend between ICV/HCV and LBP/sCD14 (p≤ .1). ICV: intracranial volume, HCV: hippocampal volume, SSD:
schizophrenia spectrum disorder, LBP: lipopolysaccharide binding protein, sCD14: soluble cluster of differentiation 14, mm3: cubic millimeter, NS:
nonsignificant.

Unexpectedly, there were no significant differences in LBP or

sCD14 levels between healthy controls and SSDpatients, thus refuting

the hypothesis that there is more bacterial translocation in this patient

group. Our study is in line with some previous findings of LBP levels

in SSD that did not find an increase in comparison to controls (Sev-

erance et al., 2013), while Morch et al. (2019) even found decreased

levels of LBP in SSD patients. Findings on sCD14 in SSD have been

mixed, with some studies finding increased levels of sCD14 (Severance

et al., 2013; Safadi et al., 2021; Weber et al., 2019), whereas others

did not (Morch et al., 2019). sCD14 is not only a marker for bacte-

rial translocation, but also for monocyte activation (Shive et al., 2016).

Some studies report monocyte activation in SSD, although this is not

a consistent finding (Moody & Miller, 2018; Garcia-Rizo et al., 2019).

Therefore, increased sCD14 levels in SSD found by other studiesmight

have reflected monocyte activation unrelated to increased bacterial

translocation. In support of this argument, LBP and sCD14 were not

correlated in SSD patients in our sample, but were correlated in the

healthy controls. This inconsistency in literature, together with nega-

tive findings from the present study, does not support a strong role for

increased bacterial translocation in SSD.

We could not find associations between brain volumes and LBP or

sCD14 in SSD patients, nor mediating effects on cognition. In our sam-

ple, SSD patients had decreased ICV and TBV compared to controls,

replicating previous findings (Kim et al., 2017; Haijma et al., 2013; Vei-

jola et al., 2014). This suggests that SSD-specific pathophysiological

processes may lead to an extra decrease in brain volumes, potentially

reducing the relative effects of bacterial translocation on the brain. For

example, chronic use of antipsychotics is associated with a decrease

 21579032, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.3011 by U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [26/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 10 SCHEURINK ET AL.

F IGURE 2 Thewhite dots indicate the estimate ACME, the gray
dots indicate the estimate TE. The error bars indicate 95% confidence
intervals. The vertical, light gray, interrupted line goes through effects
on cognition= 0. *Indicates a significant relation between LBP/sCD14
and cognition, mediated by ICV (p< .05). Dot indicates a trend
between LBP/sCD14 and cognition, mediated by ICV (p< .10). ICV:
intracranial volume, SSD: schizophrenia spectrum disorder, LBP:
lipopolysaccharide binding protein, sCD14: soluble cluster of
differentiation 14, ACME: average causal mediated effects, TE: total
effects.

in brain volume (Haijma et al., 2013). Additionally, increased allostatic

load, a result of severe and chronic stressors, is also known to affect

brain volumes in both SSDandhealthy controls (Chiappelli et al., 2017).

As SSD patients are known to have significantly more allostatic load

than healthy controls (Chiappelli et al., 2017), these factors may be

morepronounced than gut-brain interactions in the patient group. Sim-

ilarly, the correlation between markers of bacterial translocation and

cognitive scoreswas absent in theSSDgroup.Other studies have found

similar results, suggesting that serum markers of bacterial transloca-

tion are not related to cognition in SSD (Morch et al., 2019; Tanaka

et al., 2017).

This study is subject to several limitations. First, our SSD group is

young, with relatively preserved cognition. Second, we examine bacte-

rial translocation, which is only one part of gut permeability. Whether

bacteria and their endotoxins cross the gut transcellularly and/or para-

cellularly remains unclear (Hollander & Kaunitz, 2020). Use of other

markers may help differentiate between pathways of crossing the

gut, although current in vivo methods are not able to fully distin-

guish between pathways (Schoultz & Keita, 2020). The tight junction

protein zonulin, a serum marker of gut permeability, may be use-

ful, although commercially available assays may not measure zonulin

properly (Schoultz & Keita, 2020). Alternatively, measuring the con-

centration of orally ingested probes in urine is a demanding, but more

direct and probably more accurate method of assessing intestinal

permeability (van Wijck et al., 2013). Inclusion of other markers con-

cerning inflammatory pathways implicated in SSD pathology may help

to contextualize the role of bacterial translocation in SSD. A potential

candidate would be the toll-like receptor 4 pathway, which includes

sCD14 and LBP, and is implicated in SSD (Gonzalez-Quintela et al.,

2013; García-Bueno et al., 2016). Third, this study had a power of 0.8

to detect effect sizes of 0.15. The detected effect sizes were some-

times smaller than0.15, forwhichare studywasunderpowered. Finally,

because this study is observational,weareunable to infer any causality.

5 CONCLUSION

In conclusion,we found several associationsbetween serummarkers of

bacterial translocation, LBP and sCD14, and the decrease in intracra-

nial volume and hippocampal volume in healthy young participants.

This supports the hypothesis that increased gut permeability nega-

tively impacts brain development. In our healthy group, LBPand sCD14

were indirectly associated with decreased cognition, with intracranial

volume as a mediator. These correlations were not observed in SSD

patients, perhaps because other factors that were absent in controls,

such as disease effects, medication effects, high stress and trauma lev-

els, had stronger influences on brain volumes in this group. Future

research is needed to replicate and extend these findings in larger

groups.
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