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ABSTRACT
Computational chemistry has become an important tool to predict and understandmolecular prop-
erties and reactions. Even though recent years have seen a significant growth in new algorithms and
computationalmethods that speed upquantumchemical calculations, the bottleneck for trajectory-
based methods to study photo-induced processes is still the huge number of electronic structure
calculations. In this work, we present an innovative solution, inwhich the amount of electronic struc-
ture calculations is drastically reduced, by employing machine learning algorithms and methods
borrowed from the realm of artificial intelligence. However, applying these algorithms effectively
requires finding optimal hyperparameters, which remains a challenge itself. Here we present an
automated user-friendly framework, HOAX, to perform the hyperparameter optimisation for neu-
ral networks, which bypasses the need for a lengthymanual process. The neural network-generated
potential energy surfaces (PESs) reduce the computational costs compared to the ab initio-based
PESs. We perform a comparative investigation on the performance of different hyperparameter
optimiziation algorithms, namely grid search, simulated annealing, genetic algorithm, and Bayesian
optimizer in finding the optimal hyperparameters necessary for constructing the well-performing
neural network in order to fit the PESs of small organic molecules. Our results show that this auto-
mated toolkit not only facilitate a straightforward way to perform the hyperparameter optimisation
but also the resulting neural networks-based generated PESs are in reasonable agreement with the
ab initio-based PESs.
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1. Introduction

The application ofmachine learning (ML) algorithms has
grown to encompass many new fields, such as data analy-
sis of voting records [1], enhancing themotor capabilities
in robotics [2] and even in creating fictional stories [3].
In the field of electronic structure theory, ML algorithms
have also seen an increased range of applications. ML is
applied to approximate density functionals [4], generat-
ing the ground-[5, 6] and excited-state potential energy
surfaces (PESs) [7, 8]. A major challenge in applying
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Nijenborgh 4, Groningen 9747AG, The Netherlands
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any ML model is choosing a suitable ML algorithm and
the corresponding optimal hyperparameters [9, 10] (see
Figure 1), for which various optimisation algorithms
exist [11].

Currently, neural networks are among the most com-
monly applied ML algorithms in computational chem-
istry [10]. Most of the applications are centred around
describing the ground-state molecular properties. For
example, SchNet uses a deep learning architecture that is
applied to the QM9 database [5], which consists of 134 k
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Figure 1. Systematic overview of the process of training a ML model (left) and a neural network architecture (right).

stable small organic molecules made of C, H, O, N, and
F atoms [12], to predict a wide range of molecular prop-
erties across chemical space. PauliNet uses deep neural
network quantum Monte Carlo-based approach that is
capable to achieve nearly exact solutions of the electronic
Schrödinger equation [13]. Other examples include sys-
tems that use locality to restrict the input space for the
neural network [14], a hierarchically interacting parti-
cle neural network which learns to transform the input
space into terms describing their interactions [15] or net-
works explicitly designed to be covariant [16]. Message-
passing networks are another successful approach that
uses graph neural networks to make accurate predic-
tions of the quantum mechanical properties of small
organic molecules [17–19]. Other studies have used
kernel-based ML methods, such as kernel-based regres-
sion methods to predict various molecular properties,
such as PES(s), normal modes, internal energy, and heat
capacity [20–23].

For excited-state dynamics, the SchNarc [24] approach
combines SchNet [5] and the non-adiabatic dynamics
package SHARC [25]. This results in a deep learning
approach that can run excited-state dynamics simula-
tions based on the learned important properties, such
as non-adiabatic couplings, gradients, Hessians, and
spin–orbit couplings, to further simplify such simula-
tions. Neural networks have also been used to gener-
ate surfaces for the treatment of the excited states of
Formaldehyde [26], long-term simulation of excited-
states dynamics replacing force field methods [27],
and using kernel ridge regression to provide properties
for decoherence-corrected fewest switches surface hop-
ping [8]. A good overview of the recent works in this field
can be found in Ref. [28].

Although these groundbreakingworks have illustrated
the potential of ML algorithms to accelerate and improve
molecular simulations, a major challenge from the user
perspective, besides accurate and comprehensive training
data and the corresponding computational costs, is find-
ing the suitable ML algorithm and the associated hyper-
parameters out of the wide range of existing ML meth-
ods. Kernel-based ML methods have the advantage that
the hyperparameters can be determined a priori, using
the descriptors without any reference to the target prop-
erty [29]. Although this remains a challenge for neural
network modelling, it has been shown in a comparative
research that neural networks can produce better results,
given the optimal hyperparameters are found [30]. The
open-source PES-Learn package uses the hyperparam-
eter optimizer (HyperOpt) to find the hyperparameters
for neural networks and Gaussian processes [31, 32]. To
the best of our knowledge, comparing hyperparameter
optimisation methods to find optimal hyperparameters
to construct a reliable neural network has not been inves-
tigated, which motivates the idea of introducing an auto-
mated procedure for hyperparameter optimisation that is
the main focus of the present work.

In this work, we investigate the performance of neural
networks in predicting the PESs of a set of small organic
molecules, namely, SO2, Pyrazine, Pyrrole, and Furan.
We investigate the performance of various derivative-free
hyperparameter optimisation schemes [33], as we cannot
directly compute a gradient for the hyperparameter opti-
misation. We, therefore, leave out gradient-dependent
optimisation algorithms such as gradient descent [34].
We perform a cross-comparison of different optimisa-
tion methods, namely grid search (GS) [35], simulated
annealing (SA) [36] genetic algorithms (GA) [37, 38] and
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Bayesian optimisation (BO) [39], to explore the relation-
ship between the performance of neural networks and the
used optimisation technique.We also investigate the rela-
tionship between the molecule that is modelled and the
corresponding hyperparameters, as well as the size of the
training data.

This paper is organised as follows; we first discuss
the structure of the neural networks and the hyperpa-
rameters that are employed. Secondly, we describe the
hyperparameter optimisation algorithms that are used
to find the optimal neural network models. Thirdly, we
compare the results of hyperparameter optimizers and
their respective neural network models in constructing
the PESs of SO2, Pyrazine, Pyrrole, and Furan. Finally,
we discuss the effectiveness and possible extension of the
package.

2. Theory

2.1. Neural networks

Neural networks are comprised of layers of independent
discriminators, named nodes [40], containing an input
layer, one or more hidden layers, and an output layer.
Each node connects to other nodes and has an associ-
ated weight (see Figure 1). These weights are updated by
training the neural network. The performance of a neu-
ral network is determined by the hyperparameters of the
network, e.g. the number of nodes per layer, the num-
ber of hidden layers, the learning rate to only name a few,
which are typically preselected by the user. In this work,
we present the hyperparameter optimisation using a set
of fixed and flexible hyperparameters. The fixed hyper-
parameters can be set by the user in the configuration
file and are unchanged throughout the hyperparameter
optimisation process. For the flexible hyperparameters,
the user defines a range in which the hyperparameter
optimisation algorithm looks for the optimal hyperpa-
rameters. The fixed and flexible hyperparameters that are
used in this work can be found in Table 1 and are further
described in the following.

An important hyperparameter is the activation func-
tion, which is applied to the activation a of every node.
One can write the activation a of a node as the sum of

Table 1. Overview of the fixed and
flexible hyperparameters used in
training the neural networks.

Fixed Flexible

Activation function Number of layers
Loss function Number of nodes
Internal optimizer Learning rate
Epoch number Batch size

Table 2. Overview of the differ-
ent activation functions available
in HOAX.

Name Formula

Sigmoid σ(x) = 1
1+e−x

ReLu ReLu(x) = max(0, x)
TanH TanH(x) = ex−e−x

ex+e−x

Activation functions are applied to the
output of each node in the neural net-
work.

the inputs xi for the node with their respective weights
wi, together with the bias β of the node, as seen in the
following equation

a =
∑

wixi + β (1)

The most commonly used activation functions are cur-
rently supported by the package (see Table 2).

Another important hyperparameter is the loss func-
tion, which determines how the error of a neural network
is calculated. The error is the difference between the out-
put of the neural network and the training (reference)
output, for the given training input. In this research, the
error is the difference between the energy in the database
and the output of the network for each set of coordi-
nates. Implemented in the package are the mean absolute
error (MAE), 1

N
∑

i |Ei|, the mean squared error (MSE),
1
N

∑
i E

2
i , and the root mean squared error (RMSE),√

1
N

∑
i E

2
i as different loss functions. Previous works on

predicting PESs using neural networks used the MAE or
MSE as both the measure when reporting the results on
the reference data and in training the neural network [5,
7, 15]. In this work, we use the MSE for training the
neural network, while using the RMSE and MAE for the
validation step.

The neural network internal optimizer is the
algorithm that modifies the neural network weights after
receiving the error from the loss function. The HOAX
package currently supports two neural network optimiz-
ers; (i) the stochastic gradient descent (SGD) optimizer
and (ii) the adaptive moment estimation (ADAM) opti-
mizer [41]. The SGD uses the gradient of the error mul-
tiplied by the learning rate parameter to calculate the
changes for the weights connected to the output layer
of the network. It then iteratively adjusts the weights in
each previous layer, calculating the error of each individ-
ual node using backpropagation [40]. The ADAM opti-
mizer [41] on the other hand changes the weights in the
network using an adaptive learning rate, depending on
the amount of previous changes for individual weights.
It also looks at the average of the gradients of a weight
over time and uses this average to change the weights. It
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can therefore deal with more noisy and sparse data and
provides better results and training speed than the SGD
optimizer [41].

The epoch number is the maximum number of train-
ing cycles performed. An upper bound is required to
constrain the training time when the network has not
converged to a sufficient minimal error within the pre-
defined training cycles.

The flexible parameters in our package are the num-
ber of layers, the number of nodes within each layer, the
learning rate, and the batch size in the neural network.
The learning rate controls the pace at which the optimizer
updates the weights with respect to the loss function.
It defines how quickly the neural network updates the
weights. The batch size parameter refers to the amount
of training examples that are used per training cycle. A
batch number of 1 indicates the weights of the model
which are updated after each training example. A higher
number indicates the amount of training examples for
generating an average error, which is used to update the
weights.

2.2. Hyperparameter optimisation

In order to approach the problem of using the right
hyperparameters, we can define the problem as optimis-
ing an objective function [42]. An objective function
assumes that we can approach some function f (x) by
some approximate function f̃ (x). We can determine the
f̃ (x) by looking at the difference between the output of
the f̃ (x) and f (x), for some x ∈ X. Here X is the range
that is applied to the approximate function. We call the
difference between f (x) and f̃ (x) the error, E. The aim
then is to minimise the E of the f̃ (x). In physics, we can
think of this as attempting to minimise an energy func-
tion, while in ML models this is also called minimising
the cost function [9]. While a loss function is for a sin-
gle training input, a cost function, on the other hand,
is the average loss over the entire training data set. It
should be noted that anyML algorithm is an optimisation
function in itself [43]. Thismeans a hyperparameter opti-
misation scheme in this case can be described as applying
the objective function f̃ (x) on top of the ML objective
function g̃(x), leading to f̃ (̃g(x)).

Approaching the hyperparameter optimisation for a
neural network in such a fashion has two clear advan-
tages. For one, we can apply existing optimisation tech-
niques frommultiple domains, such as physics in the case
of the SA [36] and artificial intelligence in the case of
the GA [44], BO [39], and GS [35]. The second advan-
tage is that we can split the hyperparameter optimisation
process from the training process of the ML model. This
allows us to use any hyperparameter optimisation with

any ML technique, as we only apply the hyperparameter
optimisation to the result of the cost function. Combin-
ing these two advantages, we can create a package that
can optimise any ML model given a clear cost function.

By implementing various hyperparameter optimisa-
tion schemes a user is able to generate better end results
from the neural network. Currently, HOAX supports
five hyperparameter optimizers, namely the RS(Random
Search), GS, SA, GA, and BO.

In the RS algorithm, a random position in the hyper-
parameter space is selected for the neural network to be
trained. After the training is completed, the algorithm
moves to a new random position. There is no guiding
principle behind these moves, other than the type of ran-
dom function that is called. However, research has shown
that the RS can perform equally well in comparison to
other methods in some error landscapes and can do so
in less computational time [45]. It is therefore a good
inclusion as a baseline function.

In the GS algorithm [46], the set of n hyperparameters
are put in a n dimensional grid. The algorithm defines
the grid by adding a step value for each hyperparameter.
This step value determines the rate for each hyperparam-
eter change. The GS algorithm is an exhaustive search
method. This leads to high computational time for a high
number of hyperparameters. However, more advanced
options for the GS exist, such as the constraining GS [46],
to partially address this issue.

In the SA algorithm (see Figure 2), which is inspired
by the annealing procedure of the metal working [36],
the number of hyperparameters is again divided in a n
dimensional grid. However, the algorithm will not visit
the entire hyperparameter space in this grid. Therefore,
one can choose a larger grid or additional hyperparame-
ters. One starts the algorithm randomly in the hyperpa-
rameter space, withinwhich the neural network is created
and trained on the training set and is validated with the
validation set that gives the minimum error. Then, it
moves to a random neighbouring hyperparameter state.
For each hyperparameter, it is randomly decided if the
parameter is moved or not. If the parameter is moved,
the direction is randomly chosen to be either a one-step
increase or decrease. Using these new hyperparameters
we train a new neural network on the training set that is
again validated with the validation set that gives a new
minimum error. This new state is accepted if the new
error, Enew, is lower than the previous one, Eold. The
temperature, T, is a parameter in the SA that affects the
distance of a next hyperparameter space from the current
state and also the probability of accepting the state with
a higher objective function value. As the T decreases, the
SA reduces the extent of its search to converge to a mini-
mum.There is a probability,P(A), to accept a higher error
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state depending on theT, and the number of iterationsm,
given by the following equation.

P(A) = exp
(−Enew − Eold

T/m

)
(2)

The number of iterations m determines the chance to
accept higher error states, which decreases asm increases.
The SA algorithm explores a large search space initially,
while gradually reducing the search space to find a min-
imum. As it is possible that the predefined grid does not
include the best hyperparameters, the algorithm also uses
an ‘absorbing’ boundary [47]. Any time the algorithm
reaches one of the hyperparameter boundaries of the
grid, it has a certain chance (defined by the user) to
remain at the boundary. This is done so that more time
can be used to explore the other hyperparameters which
have not reached the boundary.

In the GA algorithm (see Figure 2), which is inspired
by the theory of evolution [48] one uses a ‘gene pool’
of six neural networks with random hyperparameters.
After training, each of the neural networks is ranked
by its error. The two networks with the highest error
are removed from the pool. The two with the lowest
error become the parent networks for the next generation
and are used to generate two new offspring neural net-
works. To generate the new networks the value of each
hyperparameter is converted to a bit-string. A point in
this bit-string is selected, called the crossover point. Two
new offspring bit-strings are created by swapping part
of the parent bit-strings, once before and once after the
crossover point for each hyperparameter. For each bit in
the bit-string, there is a chance to mutate. The bit will
then change from one to zero or vice versa. This rate
depends on the bit length of the hyperparameter, which
is shown to give improved results [49, 50]. The process

is repeated with the new ‘gene pool’ until a predefined
minimum error or a maximum number of iterations is
reached.

In the BO algorithm (see Figure 2), the Bayesian statis-
tics [51, 52] is used to create a probabilistic model able to
find the optimal set of hyperparameters. This model is
created by sampling points in the hyperparameter space
and updating the probabilistic model. The model then
uses the statistic distribution to determine the next sam-
pling point. The model consists of two components, the
prior function and the acquisition function. The type of
prior function determines how the probabilistic model
treats uncertainty and the acquisition function deter-
mines how the BO decides which point should be sam-
pled next. In this work, we use Gaussian priors and upper
confidence bounds (UCB) for the prior function and
acquisition functions, respectively [39].

3. Code infrastructure

HOAX (hyperparameter optimisation algorithm
explorer) is an extendable open-source Python package
that automates the hyperparameter optimisation search
for the application of neural network models. HOAX is
an extension of the PySurf [53] package, but can also
be used as a standalone package. The package automates
the process of finding hyperparameters which are typ-
ically done manually by the user. The user provides a
database with training and validation data in the network
common data form (NetCDF) or the hierarchical data
format version 5 (HDF5) [54, 55], which can be gener-
ated by PySurf. The user also provides a configuration
file in the JSON (javaScript object notation) format [56].
This file contains the configuration for processing the
database, constructing the neural networks, initialising

Figure 2. Schematic overview of the SA algorithm (left), the GA algorithm (middle), and the BO algorithm (right).
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Figure 3. Schematic overview of the HOAX package. The package is divided into three parts, the interpreter, the neural network
generator, and the hyperparameter explorer.

the fixed hyperparameters, and choosing the hyperpa-
rameter optimisation algorithm. The package is divided
into three parts; (i) the interpreter, (ii) the neural net-
work generator, and (iii) the hyperparameter explorer. A
schematic overview of theHOAX can be seen in Figure 3.

The interpreter reads the database that consists of the
atom coordinates as input and energies as output. The
package contains a module to translate Cartesian coordi-
nates to internal coordinates when this is specified in the
configuration file. The interpreter then separates the data
into training and validation data sets, according to the
user-specified ratio. The training data set is used to train
the neural networks, while the validation data is used to
measure the performance of the neural network during
training.

The neural network generator initialises the neural
networks, which is implemented by providing an inter-
face to the PyTorch library [57]. Through this interface,
the generator creates neural networks based on the spec-
ifications provided by the user in the configuration file.
The generator trains the neural network with the hyper-
parameters provided by the hyperparameter optimisa-
tion algorithm. When a cycle of training has finished,
the generator provides a summary of the performance
throughout the training, measured using the validation
data. It also provides a fully trained neural network.

The hyperparameter explorer uses the results pro-
vided by the neural network generator to find new hyper-
parameters. To select a new set of hyperparameters, it
uses an optimisation algorithm. Currently implemented
algorithms are the RS, GS, SA, and BO algorithms. The
BO algorithm is implemented using the Bayesian opti-
misation python package [58]. Each of these algorithms
can be chosen to provide hyperparameters to the neu-
ral network generator. The neural network generator

then performs the training sequence again with the new
hyperparameters and provides new performance data to
the hyperparameter explorer. In this way the process of
finding hyperparameters that provides a good fit on the
provided data is automated. The package also includes
a cross-validation module, which can be used to per-
form X-fold cross-validation on individual hyperparam-
eter configurations found. It can also be used for cross-
validation during the training phase while using any of
the hyperparameter optimizers. The HOAX package can
be found at https://github.com/AlbertThie/HOAX.

4. Computational details

To investigate the effect of the hyperparameter optimiz-
ers on neural networks, we used a set of trajectories of
SO2, Pyrazine (C4H4N2) [59], Furan (C4H4O), and Pyr-
role (C4H5N) [60] as a training data set. This training
data set contains the atomic positions of the molecules
as training input and the corresponding ground- and
two excited-states energies as training output. Training
data were created using the PySurf [53] implementation
of the Landau–Zener surface hopping simulations [61]
to propagate trajectories from initial starting conditions
generated by a Wigner sampling [62] based on an initial
optimised geometry.

For the ab initio calculations, different electronic
structure methods were used for the different molecules,
to maximise the number of useful data points and
minimise the computational cost. All electronic struc-
ture calculations were done using the Q-chem 5.4
package [63]. For SO2, time-dependent density func-
tional theory (TDDFT) was used with the B3LYP func-
tional [64] and the 6-31G∗ basis set [65]. For Pyrazine, we
appliedTDDFT at the PBE0/cc-pVDZ level of theory. For

https://github.com/AlbertThie/HOAX


MOLECULAR PHYSICS 7

Pyrrole and Furan, the spin-flip variant of TDDFT [66]
was applied using the BHHLYP functional [67] and the
cc-pVDZ basis set [68].

For each molecule, 100 trajectories were propagated
for 100 fs with 0.5 fs timestep. For SO2 and Pyrazine, the
first three singlet states (S0, S1, and S2) were calculated
at each point of the trajectory. For Pyrrole and Furan,
six states were calculated, and the first three singlet states
(the ground and two singlet excited states) were selected
based on their spin multiplicity (S2). Each of these cal-
culations yielded a database for the training of at most
20.000 data points.However, not all of the 100 trajectories
converged, due to the SCF not converging, and therefore
did not make the maximum of 200 data points per tra-
jectory possible for all molecules. For SO2, a database of
1541 data points was generated, while for Pyrazine the
database contains 20,000 data points. For Pyrrole and
Furan, 19,204 and 14,529 data points were generated,
respectively. Therefore, not only the fitting and optimisa-
tion algorithms are tested on differentmolecular systems,
but also for different levels of theories and the different
sizes of the training data set.

All neural network calculations were performed with
the ADAM optimizer [41], Tanh activation function (see
Table 2), MSE as error function, and each training ses-
sion was fixed to last at most 10,000 epochs. During these
training sessions, 10% of training data was not used for
training, but used as validation data. This validation data
was presented to the network at intervals of 100 epochs.
The best-performing iteration of the neural network dur-
ing the 10,000 epochs was saved and exported by the
package as the best-performing model. This was done
to prevent overfitting and provide a realistic estimate of
the performance of the network on the reference data

points (see Figure 3 of the Supporting Information). The
reference data points correspond to the coordinates and
energies obtained from an independent trajectory with
exactly the same initial condition purely based on ab ini-
tio calculations without any support of the database and
are neither included in the training nor in the validation
set. All networks were trained on a data set containing
internal coordinates as input and energies as output.

5. Results and discussion

To provide a working prototype, a neural network was
trained on the data set of SO2, using the SA hyperpa-
rameter optimizer. The hyperparameters were initially
varied by hand and later explored by the SA optimizer.
A network with 150 nodes per layer, nine hidden layers,
a learning rate of 0.0001, and a batch size of 32 per-
formed best on the data set. This network produced a
RMSE of 0.017 eV on the validation set. The performance
compared with the reference trajectory can be seen in
Figure 4. The results on SO2 show that the neural network
implementation was successful in learning ground- and
excited-state PESs. To test the automated cross-validation
module, we have performed 10-fold cross-validation on
the data set of SO2 using the SA hyperparameter opti-
mizer. The resulting best-performed neural networks,
which are composed of 150 nodes per layer, eight hid-
den layers, a learning rate of 0.0001, and the batch size
of 32, resulted in a RMSE of 0.013 eV on the validation
sets. This new neural network architecture differs only
in the number of hidden layers compared to the neural
networks where no cross-validation was performed (8 vs.
9 hidden layers), and produces a slightly smaller RMSE
(0.013 eV vs. 0.017).

Figure 4. Comparison of neural network-generated PESs (dashed), for the best network found by the SA algorithm for SO2 and reference
ab initio-based PESs (solid). S0 (black); S1 (blue); S2 (orange). A zoomed-in picture is provided on the right, showing the areas where the
S1 and S2 surfaces are close.
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To explore the relationship between the performance
of the neural network and the hyperparameter optimi-
sation techniques, we performed a cross-comparison of
the GS, SA, GA, and BO algorithms on Pyrazine, Pyrrole,
and Furan. We also investigate the relationship between
the molecule that is modelled, the corresponding hyper-
parameters, as well as the size of the training data.

To study the performance of the GS, the flexible
parameters were limited to only two, i.e. the number of
nodes and the number of layers. This was done to pre-
vent an exhaustive search of all hyperparameters, which
is computationally not feasible. Data was accumulated
using the GS with 10 to 90 nodes and 5 to 9 hidden lay-
ers. The training was performed with a batch size of 256
and a learning rate of 0.0001. 10% of the data points were
randomly chosen as validation data points and therefore
not used in training. The results of the GS algorithm
are shown in Figure 5. In each point, the lowest error
on the validation set is plotted. The slopes of the error
descend towards the RMSE of < 0.025 eV. The excep-
tion is the neural networks trained for Furan on half of

the data set. Here the minimum error is 0.034 eV. This
might be attributed to the low amount of data points
available for Furan, leading to a training data set consist-
ing of 6538 data points where the 10% validation data set
is not included. However, themodel performswell for the
Furan full data set. From these results, we can see that a
higher number of layers and nodes has a positive effect
on the error, while the effect of the former seems to be
more pronounced. This can be clearly seen for the Pyr-
role full data set results, where a network with 10 nodes
and 9 layers can produce an error of < 0.025 eV. It can
also be seen that the minimum size of the network dif-
fers between molecules, where a more complex network
is necessary for Pyrazine and Pyrrole compared to Furan.
A possible explanation could be that Furan possesses less
atoms and therefore it requires less complex modelling.
Another explanation could be that the initial parameters
selected for the GS algorithm are closer to the optimal
parameters for Furan.

Extending the GS optimizer beyond node and layer
parameters is computationally costly, as the cost increases

Figure 5. Results of performing the GS between the bounds of 5–9 layers and 10–90 nodes on each molecule. The upper figures show
the result for a full data set. The bottom shows the results of using only half the data set. Red coloured areas indicate a high RMSE while
green areas indicate a low RMSE.
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exponentially with respect to the number of hyperparam-
eters. To this end, and to avoid a full scan of the hyper-
parameter surface, the metaheuristic algorithms SA, GA,
and BO are used [36, 39, 44]. Using these hyperparameter
optimizers, the parameter search space is increased with-
out increasing the computational costs. This allowed us
to include four hyperparameters, i.e. the number of lay-
ers and nodes, learning rate, and batch size, as presented
in Tables 3–5.

The SA and BO results in Tables 3 and 5 were reached
after 20–30 iterations, while the results for the GA in
Table 4 were taken after 10–15 iterations. The slightly
lower iterations for the GA are attributed to the fact
that the GA will generate two new networks at each
iteration, while SA and BO will generate one. On aver-
age the required computational time between the SA,
GA, and BO is comparable, as the computational time
depends on the training of the neural network. The com-
putational time also depends on the hyperparameters
of the neural network and the number of data points.
A larger network increases computational time, while
using a halved data set reduces the computational time.
For all optimizers, 144 hours of training on 4 Intel(R)
Xeon(R) CPU E5-2695(v4) with 2.10GHz generated the

results. All optimizers outperformed the GS in reaching
a lower RMSE. All optimizers need a different configura-
tion of hyperparameters to reach the lowest RMSE. This
could indicate that the error landscape contains many
local minima. It is also the case that the hyperparame-
ters themselves are correlated. For example, the learning
rate found for the neural networks for Pyrrole by the
GA in Table 4 is higher than the one found by SA in
Table 3. However, the batch size is much higher, meaning
the learning updates are performed much less frequently
than in the SA algorithm. In a similar fashion, the Furan
model found by the SA has a higher number of layers but
a smaller number of nodes than the one found by the GA.
We can therefore see that for different molecules, totally
different hyperparameters are necessary to reach a well-
performing network. This is in fact related to the depen-
dency of the hyperparameters to the target property for
the neural network methods and acts as a limiting fac-
tor in the transferability of the optimal hyperparameters
to new molecules. However, finding similarities for the
bounds of the hyperparameter search area for different
molecules helps in narrowing these search bounds and
thus saves time in finding the best hyperparameters for
new molecules with comparable size and complexity. We

Table 3. Hyperparameter configurations for the simulated annealing optimizer.

Simulated annealing results

Pyrazine Pyrazine Half Furan Furan Half Pyrrole Pyrrole Half

Number of nodes 120 60 140 150 60 40
Number of layers 4 5 19 13 6 11
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 64 32 128 128 32 32
RMSE in eV 0.023 0.029 0.020 0.015 0.016 0.029
MAE in eV 0.013 0.015 0.012 0.010 0.010 0.015

Each column shows the lowest error found on the data set and the hyperparameters used in the model.

Table 4. Hyperparameter configurations for genetic algorithm optimizer.

Genetic algorithm results

Pyrazine Pyrazine Half Furan Furan Half Pyrrole Pyrrole Half

Number of nodes 80 100 180 180 70 160
Number of layers 12 18 17 11 14 16
Learning rate 0.0001 0.0001 0.0001 0.0001 0.001 0.0001
Batch size 256 128 256 256 256 32
RMSE in eV 0.027 0.016 0.019 0.016 0.018 0.013
MAE in eV 0.015 0.010 0.012 0.011 0.012 0.010

Each column shows the lowest error found on the data set and the hyperparameters used in the model.

Table 5. Hyperparameter configurations for the Bayesian optimizer.

Bayesian optimisation results

Pyrazine Pyrazine Half Furan Furan Half Pyrrole Pyrrole Half

Number of nodes 90 190 60 190 80 130
Number of layers 14 6 13 5 7 5
Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Batch size 128 128 32 32 32 64
RMSE in eV 0.021 0.018 0.021 0.029 0.017 0.016
MAE in eV 0.014 0.013 0.011 0.014 0.010 0.011

Each column shows the lowest error found on the data set and the hyperparameters used in the model.
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can, however, see a trend where networks with more lay-
ers combined with a large batch size are more likely to
produce more favourable results, whereas smaller net-
works require a smaller batch size to be successful. These
relations reflect the complexity of finding an optimal set
of hyperparameters.

In addition, the hyperparameters are in most cases
dependent on each other, and therefore the resulting high
dimensional error surface that the optimizers have to
navigate through shows many local minima. It is true
that for fully converged optimisations it is expected that
all three optimizers (GA, SA, and BO) lead to similar
results; however, finding these global minima is a chal-
lenge itself and is beyond the scope of this work. In this
work, we focus on finding the optimised hyperparame-
ters leading to an error lower than a given threshold. The
configurational hyperparameter space that the SA, GA,
and BO optimizer visit during the optimisation is given
by their respective algorithm and can be significantly dif-
ferent from each other. This leads in our opinion to the
discrepancy between the optimal found hyperparameters
given the different optimizers.

We can also see that halving the number of data points
results in different hyperparameters, but still workable
neural networks. This shows that the optimizer is capa-
ble of producing workable hyperparameters for different

amounts of data points. It should be noted that the poor
performance of theGS that used twohyperparameters for
the Furan half data set is no longer the case when the SA,
GA, and BO algorithms are used with four hyperparam-
eters.

It is important to check the validity and reliability of
the generated neural network-based PESs that are prereq-
uisites for sound non-adiabatic excited-state dynamics
such as surface hopping simulations. To verify this, in
Figure 6, we show the PESs as functions of time for the
reference ab initio based trajectory (solid) together with
the neural network-generated PESs constructed with the
best hyperparameters (dashed). It is hard to see any dif-
ference as the curves lie on top of each other, reflecting
their excellent agreement. The neural network-generated
PESs are smooth and confirm the shape of the reference
trajectories. The model PESs are able to capture the dif-
ferent characteristics for each molecule, e.g. the higher
energy gap of Furan and the steeper energy landscape of
Pyrrole.

A good model PESs relies on appropriate training
data set that naturally samples the important parts of
the conformational space including the areas of interest
to surface hopping, namely the areas of high hopping
probabilities that is when the PESs are getting close to
each other. Figure 7 shows a close view of the crucial

Figure 6. Comparison of neural network-generated PESs (dashed), for the best network found by the SA algorithm for Pyrazine (left), the
GA algorithm for Furan (middle), and the BO algorithm for Pyrrole (right) and reference ab initio based PESs (solid). S0 (black); S1 (blue);
S2 (orange).

Figure 7. Comparison of neural network-generated PESs (dashed), for the best network found by the SA algorithm for Pyrazine (left),
the GA algorithm for Furan (middle), and the BO algorithm for Pyrrole (right) and reference ab initio-based PESs (solid), zoomed in on the
areas where the S1 and S2 surfaces are close. S1 (blue); S2 (orange).
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areas, i.e. where the S1 and S2 surfaces are close to each
other. It is clear that these important areas are also mod-
elled well. The neural network-generated PESs (dashed)
show a slightly larger energy gap than the reference PESs
(solid). The difference in the energy gap is about 11meV,
which is significantly small considering the fact that neu-
ral network-generated PESs require less human effort and
reduce much of the computational cost associated with
constructing the reference PESs. Analogous Figures for
the best networks found by the GS for Pyrazine, Pyrrole,
and Furan can be found in the Supporting Information
(Figures 1 and 2).

6. Conclusion

The HOAX package is an extendable open-source pack-
age written fully in Python that facilitates the hyperpa-
rameter optimisation search for the application of neural
network models for constructing PESs in an automated
fashion, which bypasses the need for a lengthy manual
process and reduces computational costs compared to
the ab initio based PESs. It uses the PyTorch interface to
generate fast and customised implementations of neural
networks. Additionally, it is currently an extension of the
PySurf package as a newPlugin engine. Thus, it has direct
access to the PySurf database for training and validation
data in the NetCDF and the HDF5 formats. HOAX can
be easily adapted to other packages that provide molecu-
lar data inHDF5 compatible format. The hyperparameter
optimizer could also be extended to perform automated
cross-validation on the best networks found, even during
the neural network training process.

In this work we show that the package can produce
neural network model PESs for SO2, Pyrazine, Pyrrole,
andFuran, using theGS, SA,GA, andBOalgorithms. The
GS algorithm results show that a higher number of layers
and nodes has a positive effect on the error. The BO, SA,
and GA models show similar performance at the same
computational time. All three hyperparameter optimiz-
ers are able to search a four-dimensional hyperparameter
space and consistently find the optimal hyperparameters
configuration. The 50% reduction of the data set still pro-
duces good model PESs, showing the robustness of the
model. The neural network-generated PESs are smooth
and confirm the shape of the reference ab initio based tra-
jectories. Themodel PESs are able to capture the different
characteristics for each molecule. The areas of interest to
surface hopping, namely the areas of high hopping prob-
abilities that is when the PESs are getting close to each
other, are also modelled well.

The HOAX package currently supports the optimi-
sation of neural network hyperparameters, but it can
be extended to other ML models such as, kernel-based

methods [22], Gaussian processes [69], and random
forest regression [70]. Also, different neural network
architectures could be introduced, such as graph neu-
ral networks [18] or convolutional neural networks [71].
The hyperparameter optimizers can also be extended
with additional non-gradient methods, such as a greedy
randomised adaptive search procedure [72]. Different
molecular representations for the training data, such as
Coulomb-matrices or graph representations could be
considered. The modular setup of the package provides
flexibility to add custom functionalities. Work in this
direction is currently in progress in our research team.
The model can also be extended for other types of data,
such as charges, dipole moments, and orbital energies,
as long as the data is provided in the HDF5 or NetCDF
format.
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