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Abstract
We investigate the Coulomb blockade in quantum dots asymmetrically coupled to the leads for
an arbitrary voltage bias focusing on the regime where electrons do not thermalise during their
dwell time in the dot. By solving the quantum kinetic equation, we show that the
current–voltage characteristics are crucially dependent on the ratio of the Fermi energy to
charging energy on the dot. In the standard regime when the Fermi energy is large, there is a
Coulomb staircase which is practically the same as in the thermalised regime. In the opposite
case of the large charging energy, we identify a new regime in which only one step is left in the
staircase, and we anticipate experimental confirmation of this finding.

Keywords: Coulomb blockade, quantum dots, non-equilibrium systems, many-body localisation,
Keldysh techniques

(Some figures may appear in colour only in the online journal)

1. Introduction

The phenomenon of the Coulomb blockade in quantum dots
has been a longstanding topic of interest and many aspects of
it have been studied (see [1–3] for reviews). It arises due to the
strong Coulomb interaction resulting in large charging energy,
Ec = e2/C, that must be overcome in order to add an additional
electron onto the dot of capacitance C. This leads to a number
of notable physical results such as peaks in the conductance as
a function of gate voltage [4–6] and a staircase in the depend-
ence of current on the bias voltage (I–V characteristics) that
has become known as the Coulomb staircase [4, 7, 8].

A prominent approach to understanding transport in meso-
scopic systems is based on the classical master equation
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[5, 7, 9], which has typically assumed full thermalisation on
the dot. However, a master equation approach is not limited to
only dealing with the thermalised case, and the quantum mas-
ter equation provides a full microscopic description by includ-
ing the traced-out leads, with the assumption of thermalisa-
tion being made to simplify calculations. Using this approach,
the full counting statistics of the problem can be calculated
under a Markovian approximation [10–13], with recent pro-
gress in calculating noise for non-Markovian tunnelling to
second order [14]. Other approaches have been successful,
such as using the Ambegaokar–Eckern–Schön action [15] to
study relaxation dynamics on a quantum dot [16]—although
this method cannot be utilised in all regimes [17]. The non-
equilibrium Green’s function approach has also been used to
highlight the relation between the Coulomb blockade and the
zero-bias anomaly [18–21], as well as to calculate the tunnel-
ling density of states of a Coulomb-blockaded quantum dot
near equilibrium [18, 22].

The assumption of thermalisation is justified when the qua-
siparticle decay rate due to the electron–electron interaction,
γ, is much larger than the tunnelling rates to the (left and right)
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leads, ΓL,R, so that the time spent by the extra electrons on the
dot is sufficient for their full thermalisation.

In this paper we consider the regime where one can neglect
thermalisation,

γ ≪ Γ, (1)

otherwise keeping the separation of energy scales character-
istic for the classical Coulomb blockade [3]:

h̄Γ≪∆≪ kBT≪ Ec, (2)

where ∆ is the typical energy level spacing and T is the tem-
perature. The rest of this paper will set the Boltzmann and
reduced Plank constant to equal one, h̄,kB = 1. The regime (1)
is important, in particular, when electrons in the dot exper-
ience localisation in the Fock space [23] (the precursor for
many-body localisation [24]) and is easily reachable in metal-
lic quantum dots with a large dimensionless conductance g.
We additionally consider the regime where there are a large
number of electrons on the dot (N≫ 1). Previously, analytical
calculations for this regime have been performed in the linear
response limit [6], while numerical calculations for an arbit-
rary bias voltage [25] have been limited to the experimentally
important regime [26] when εF ≫ Ec with εF being the Fermi
energy on the dot. The opposite limit of considerable experi-
mental and theoretical interest is that of a few electrons on the
dot, where the lowest energy levels make a strong impact on
the observables (see [27] for a review), and the fine structure
of the Coulomb staircase is resolved [28].

Here we consider a quantum dot in the absence of thermal-
isationwith strong asymmetry in the coupling to the leads (typ-
ically assumed in considerations of the thermalised regime [4,
7–9]) for both large and small ratio εF/Ec. We use the quantum
kinetic equation (QFE)to develop a full analytical solution for
the Coulomb staircase for N≫ 1 at any voltage eV.

The solution crucially depends on the ratio εF/Ec. For
εF≫Ec, the absence of thermalisation does not play a signi-
ficant role and the Coulomb staircase remains practically the
same as in the thermalised regime [4, 7–9], with an equilib-
rium established with the most strongly coupled lead.

However, for εF≪Ec we show that the staircase practic-
ally vanishes. Instead, assuming the traditional anisotropy in
coupling to the leads, ΓR ≪ ΓL, with the voltage V applied
to the left lead, there is a single step in the current equal to
eΓR(N0+1) (with N0 being the number of electrons on the dot
at V = 0) when V increases from 0 to eV∼ Ec. All the fur-
ther steps are of order 1 in the same units of eΓR, i.e. prac-
tically invisible for N≫ 1. This result is complimented with
a numerical calculation using the quantum master equation
approach, showing that features of this very strong charging
energy regime persist even for N≲ 10. This is due to a sig-
nificant contribution of the low energy levels even for a large
number of electrons in the dot.

2. Model

We consider the quantum dot asymmetrically coupled to two
leads with the bias voltage V applied to the left one described
by the Hamiltonian

H= Hd +Hℓ +HT . (3)

Here Hd is the Hamiltonian of the Coulomb-blockaded dot in
the zero-dimensional limit [1–3],

Hd =
∑
n

εnd
†
ndn+

1
2Ec

(
N̂−Ng

)2
, (4)

where εn are the energy levels of the dot, d†n (dn) are the
creation (annihilation) operators of the quantum dot, N̂=∑

n d
†
ndn is the number operator for the dot, and Ng is the

preferable number of electrons on the dot in equilibrium set
by the gate voltage. The leads are described by

Hℓ =
∑
k,α

(εk−µα)c
†
k,αck,α, (5)

where α= L,R labels the lead, c†k,α (ck,α) are the creation
(annihilation) operators for an electron of energy εk, and µα

is the chemical potential of the lead, µL = µ+ eV and µR = µ.
The tunnelling between the dot and the leads is described by
the tunnelling Hamiltonian

HT =
∑
α,k,n

(
tαc

†
k,αdn+ h.c.

)
, (6)

where the tunnelling amplitude tα, which is assumed to be
independent of k and n, defines the broadening of the energy
levels Γ = ΓL +ΓR with Γα = 2πνα|tα|2, with the density of
states να taken to be a constant.

We assume the absence of thermalisation in the dot which
will allow us to use the QFE for a given energy. This is justi-
fiedwhen the inequality (1) is satisfied. For a zero-dimensional
diffusive dot, the quasiparticle decay rate due to the electron–
electron interaction at energy ε is given for ∆≪ T by
[23, 29, 30]

γ(ε)≈∆

(
ε

ETh

)2

, (7)

where ETh = g∆ is the Thouless energy and g≫ 1 is the
dimensionless conductance of the dot. This result is valid
provided that

√
g∆< ε < ETh.

In the equilibrium regime in the absence of the coupling to
the leads, the tunnelling density of states has some interest-
ing features [22] which, intuitively, are preserved if one lead
dominates the behaviour of the system and the chemical poten-
tial on the dot will be determined by that lead. This quasi-
equilibration allows us to solve exactly the case of strongly
asymmetrically coupled leads, either for ΓL/ΓR ≫ 1 when the
jumps in the current exist, or for ΓL/ΓR ≪ 1 when the current
has almost Ohmic behaviour.
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3. Quantum kinetic equation

To analyse the Coulomb blockaded quantum dot in the non-
linear regime we use the Keldysh technique (see, e.g. [31] for
a review) in a way similar to that detailed in [32].

3.1. Quantum dot in the weak coupling limit

In the case of an isolated dot, i.e. totally neglecting the level
broadening Γ, the Keldysh Green’s function can be written as
a sum over all levels, g>,<(ε) =

∑
n g

>,<
n (ε) with the single-

level Green’s functions given by

g>n (t) =−iTR
(
ρ̂0dn(t)d

†
n

)
, g<n (t) = iTR

(
ρ̂0d

†
ndn(t)

)
, (8)

where dn(t) = eiHtdne−iHt and ρ̂0 is the density matrix.
Additionally, the particle number is conserved and the
Green’s functions can be written as sums over the N-particle
subspaces,

g>n (ε) =−2π i
∑
N

δ (ε− εn−ΩN)g
>
N (εn),

g>N (εn) = TRN
(
ρ̂0dnd

†
n

)
, (9)

g<n (ε) =−2π i
∑
N

δ (ε− εn−ΩN−1)g
<
N (εn),

g<N (εn) =−TRN
(
ρ̂0d

†
ndn

)
, (10)

with the normalisation
∑

N (g
>
N (εn)− g<N (εn)) = 1. The char-

ging energy required to add an electron is included above
through ΩN defined as

ΩN ≡ EN+1 −EN = Ec

(
N+ 1

2 −Ng

)
, EN ≡ 1

2Ec(N−Ng)
2.

(11)

The coupling to the leads is included via the QKE, which in
the weak coupling limit (Γ→ 0) can be written for each level
as [32, 33]

g>,<
n (ε) = gRn (ε)Σ

>,< (ε)gAn (ε) . (12)

The self energies for non-interacting leads are assumed to be
independent of the dot level n and are given by

Σ>(ε) =
∑
k,α

|tα|2g>k,α(ε) =−i [Γ− (ΓLfL(ε)+ΓRfR(ε))] ,

(13)

Σ<(ε) =
∑
k,α

|tα|2g<k,α(ε) = i(ΓLfL(ε)+ΓRfR(ε)) . (14)

Above, the Green’s functions for the leads are g>k,α(ε) =
−2π i(1− f(ε−µα))δ(ε− εk+µα) and g<k,α(ε) = 2π i f(ε−
µα)δ(ε− εk+µα), where f(ε−µα) is a Fermi function. The
density of states in the leads, which enters via the tunnelling
rates Γα = 2πνα|tα|2, is given by να =

∑
k δ(ε− εk+µα),

while Γ = ΓL +ΓR. Note that the form of (12), with all func-
tions being considered at the same energy, corresponds to no

thermalisation with γ → 0. This rate must be the smallest scale
in the system for the hierarchy of scales in (1) and (2) to be sat-
isfied, therefore it can be taken to zero with no issues.

Now we rewrite the QKE (12) as

g>n (ε)Σ
<(ε) = g<n (ε)Σ

>(ε). (15)

Substituting in equations (9) and (10) we use the ansatz

g>N (εn) = pN (1−FN(εn)) and g<N (εn) =−pNFN(εn),
(16)

where pN is the probability of having N electrons on the dot
and FN(εn) is the distribution function given N electrons on
the dot which, in the case of complete thermalisation, goes
over to the equilibrium Fermi distribution function. In these
terms, we write the QKE as follows:

pN (1−FN(εn)) f̃(εn+ΩN) = pN+1FN+1(εn)
(
1− f̃(εn+ΩN)

)
,

(17)

where

f̃(ε) =
ΓL

Γ
f(ε−µ− eV)+

ΓR

Γ
f(ε−µ). (18)

This corresponds to the detailed balance equations derived in
[6] for∆≫ T and reproduces the case of complete thermalisa-
tion after the summation over n and making the replacement
FN(ε)→ f(ε− εF). TheQKE (17) should be complemented by
the normalisation conditions,

∑
N pN = 1 and

∑
nFN(εn) = N.

We represent the current going from the dot to the lead α
via pN and FN(εn) as

Iα = eΓα

∑
N

pN
∑
n

(
FN(εn) [1− f(εn−µα+ΩN−1)]

− [1−FN(εn)] f(εn−µα+ΩN)
)
. (19)

Applying current conservation, I= IR =−IL and using µL =
µ+ eV and µR = µ, we express the current as

I= e
ΓLΓR

Γ

∑
N

pN
∑
n

(
FN(εn) [f(εn−µN−1 − eV)− f(εn−µN−1)]

+ (1−FN(εn)) [ f(εn−µN− eV)− f(εn−µN)]
)
. (20)

with µN ≡ µ−ΩN. Assuming a density of states on the dot to
be constant, 1/∆, we convert the sum over n to an integral over
all energies on the dot (counted from zero). Then in the low-T
limit

I= e
ΓLΓR

Γ

∑
N

pN

[ˆ µN−1+eV

µN−1

dεΘ(ε)FN(ε)

+

ˆ µN+eV

µN

dεΘ(ε)(1−FN(ε))

]
, (21)

where Θ(ε) is the Heaviside step function.

3
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3.2. Solution to the QKE

The charging energy strongly penalises states with a wrong
number of electrons on the dot. In the case of strongly asym-
metric leads with ΓL ≫ ΓR, the main contribution to (20)
is given by the two states with N closest to Ng + eV/Ec,
since electrons have time to fill the dot up. In the opposite
case, ΓL ≪ ΓR, the two relevant states are those closest to
Ng. Keeping only the appropriate two states in the QKE (17)
allows us to obtain the following exact solution:

pN =
ZN

ZN+ZN+1
, pN+1 =

ZN+1

ZN+ZN+1
,

FN(εn) =
ZN(εn)
ZN

, FN+1(εn) =
ZN+1(εn)

ZN+1
,

(22)

where

ZN =
∑

{nj=0,1}

∞∏
j=1

[φ(εj+ΩN)]
nj δ(

∑
j nj),N

,

ZN+1 =
∑

{nj=0,1}

∞∏
j=1

[φ(εj+ΩN)]
nj δ(

∑
j nj),N+1,

(23)

with functions φ defined via f̃ in (18) as

φ(εj+ΩN) =
f̃(εj+ΩN)

1− f̃(εj+ΩN)
, (24)

while ZN(εn) in (22) is defined by restricting the sums in (23)
to configurations with the state εn occupied. It is important to
highlight that due to the form of the QKE (17), ZN+1 in (23)
containΩN rather thanΩN+1 so that the relevantN dependence
enters only in the Krönecker delta.

When N≫ 1, the Krönecker delta is equivalent to a delta
function,

δ(
∑

j nj),N
=

ˆ
dθ
2π

eiθ(
∑

j nj−N) , (25)

which allows us to write the sums in (23) in the form

ZN =

ˆ
dθ
2π

eNf(θ), f(θ) =
1
N

∑
j

ln
(
1+φ(εj+ΩN)e

iθ
)
− iθ.

(26)

Now ZN can be evaluated in the saddle-point approximation.
The optimal θ0 is found from the second equation above where
the sum is converted to the integral,

∑
j →∆−1

´∞
0 dε, which

gives

εF = N∆=

ˆ ∞

0
dε

(
e−iθ0

φ(ε+ΩN)
+ 1

)−1

. (27)

AsΩN is unchanged by definition when going between ZN and
ZN+1, (23), the relevant N dependence of θ0 enters only via
εF = N∆. Thus we find that in the saddle-point approximation
ZN = g(θ0)e−iNθ0 , where g(θ0) is a function which depends on
N only via εF. Hence forN≫ 1, this function is approximately

the same for ZN and ZN+1 which allows us to cancel g(θ0) in
calculating pN and FN(εn) in (22). This results in

pN+1

pN
= e−iθ0 , FN(εn)≈ FN+1(εn)≈

(
e−iθ0

φ(ε+ΩN)
+ 1

)−1

.

(28)

The ratio of probabilities can be found by using N=∑
nFN(εn), which corresponds to the saddle point equation

above.
The resulting I–V characteristics turn out to be strikingly

different for the two opposite regimes, when the ratio εF/Ec is
either small or large, as described in the following section.

4. Results and discussion

We begin by reproducing the well-known results of the stand-
ard theory for εF ≫ Ec to show that (i) our approach works and
(ii) the absence of the full thermalisation does not make a sig-
nificant impact on the Coulomb staircase in the case of strong
asymmetry in the coupling to the leads.

Then we show that in the opposite limit, εF ≪ Ec, there
is only one significant step left in the Coulomb staircase if
N≫ 1. Additionally, we present numerical results for small
N which are in full agreement with our analytical results for
N≫ 1.

4.1. Small charging energy, Ec ≪ εF

We start with the linear response regime. Then f̃(ε)→ f(ε−
µ) in (18) so that φ(ε+ΩN)→ exp[−β(ε−µ+ΩN)] in (24).
Hence, using (28) we reduce the saddle point equation (27) to

εF =

ˆ ∞

0

dε
eβ(ε−µN)−iθ0 + 1

= T ln
(
eβµN+iθ0 + 1

)
≈ µN+ iθ0T,

(29)

where the approximate equality holds in the low-temperature
limit, βµN+ iθ0 ≫ 1. The result in (29) leads to iθ0 = β(εF −
µN) = β(εF −µ+ΩN) (with µ being the chemical potential in
the leads and εF in the dot), meaning that the low-temperature
limit corresponds to βεF ≫ 1 satisfying the conditions in (2).
Furthermore, substituting into (28) the expression for iθ0, and
using pN+ pN+1 ≈ 1 results in the following expressions for
the probabilities and distribution function,

pN =
e−β(EN+N(εF−µ))∑
N e

−β(EN+N(εF−µ))
, FN(ε) =

1
eβ(ε−εF) + 1

, (30)

where the sum over N is restricted to the two states with N
closest to Ng. Substituting (30) into the current (20) results in
the following shape of the differential conductance near the
peak, µ−ΩN− εF = 0:

G=
dI
dV

=
e2

2∆
ΓLΓR

Γ

β
2 (ΩN+ εF −µ)

sinh
(

β
2 (ΩN+ εF −µ)

) , (31)

in agreement with [4, 6].

4
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Figure 1. The I–V characteristics for a dot in the regime where N0∆≫ Ec (N0∆= 10Ec) and ΩN0 = Ec/2. The blue line represents our
solution to the QKE and the black dashed line is the solution to the master equation in the standard theory where full thermalisation is
assumed [4, 7, 8]. In both instances, (a): ΓL/ΓR = 103 and (b): ΓL/ΓR = 10−3 an equilibrium is set up with the dominant lead and the
approaches produce the same results.

We now turn to the nonlinear regime and demonstrate, by
reproducing the well-known results [4, 7, 8] for strongly asym-
metric coupling to the leads and εF ≫ Ec, that the absence of
thermalisation has no impact on the Coulomb staircase. For
ΓL ≫ ΓR, the solution to the QKE (17) for any V is given
by (30) provided that we replace µ by µL ≡ µ+ eV and restrict
the sum over N to the two states with N closest to Ng + eV/Ec.
Due to the exponential forms of the probabilities in (30), only
one such state contributes to the current outside some narrow
windows in V. For a given V, this is the state where N obeys
the inequality ΩN−1 ≲ eV≲ ΩN. Noticing that the distribution
function in (30), FN(ε) = f(ε− εF), is a Fermi function with a
chemical potential εF, we see that the second integral in (21)
does not contribute to the current for low T, as the upper limit
of integration µN+ eV≈ εF − (ΩN− eV)< εF.

Consider the contribution of the first integral in (21), start-
ing with the regime that begins in equilibrium (V = 0) and
continues for 0⩽ eV≲ ΩN0 , when there are N0 electrons
on the dot. Then, as ΩN0 ≈ Ec/2 the lower integration limit
µN0−1 ≡ µ−ΩN0−1 ≈ εF +Ec/2> εF so that this integral also
vanishes. The current is therefore zero as expected. With V
increasing beyond ΩN0 , there are N> N0 electrons on the dot.
In this case, having εF ≫ Ec ensures that εF > ΩN for all rel-
evant ΩN and both the integration limits are positive, so the
presence of Θ(ε) is irrelevant. The steps in the current in the
low-T limit are, therefore, given by

I= 0, 0⩽ eV≲ ΩN0 (pN0 = 1),

I= eΓR
ΩN0

∆
, ΩN0 ≲ eV≲ ΩN0+1 (pN0+1 = 1),

I= eΓR
ΩN0+1

∆
, ΩN0+1 ≲ eV≲ ΩN0+2 (pN0+2 = 1),

(32)

and so on. This demonstrates a staircase structure with the
steps separated by eV= Ec and an almost constant height pro-
portional to Ec/∆. The full results, including the windows
around the jumps at eV=ΩN, are obtained by substituting (30)

with the change µ→ µL into (20) and are practically indistin-
guishable from the full thermalisation case [4, 7, 8], as shown
in figure 1(a).

For the opposite asymmetry, ΓR ≫ ΓL, equilibrium with
the right lead (with no voltage applied there) is maintained and
no staircase is observed as pN0 ≈ 1 for all values of V. Instead,
the Ohmic behaviour prevails for eV≳ ΩN0 as the tunnelling
electron gains more energy as shown in figure 1(b).

4.2. Large charging energy, Ec ≫ εF

In this limit, the low-energy states in the dot make a consid-
erable impact on the transport behaviour. The reason is that
the regime εF < ΩN, which was impossible εF/Ec ≫ 1, now
arises.

ForΓL ≫ ΓR, the expressions for pN andFN(ε) are formally
the same as for Ec ≪ εF in (30) with the substitution µ→ µL.
However, as FN(ε) is now an extremely narrow function (on
the scale of Ec) and the integration limits may be negative, the
contributions of the above integrals to the current are severely
restricted in comparison to the case of εF/Ec ≫ 1. Starting
again with N0 electrons on the dot at equilibrium, we make
similar arguments as in the former case to see that only the first
integral in (21) contributes. The crucial difference for N> N0

is that the lower limit of integration, µN−1 ≈ εF −ΩN−1 =
N∆−ΩN−1, is less than zero, so that Θ(ε) becomes relevant.
Therefore, we find the current in the low-T limit to be strik-
ingly different from that in (32). (Note that for the opposite
asymmetry, ΓR ≫ ΓL, the current remains Ohmic for any ratio
εF/Ec.)

I= 0, 0⩽ eV≲ ΩN0 (pN0 = 1),

I= eΓR(N0 + 1), ΩN0 ≲ eV≲ ΩN0+1 (pN0+1 = 1),

I= eΓR(N0 + 2), ΩN0+1 ≲ eV≲ ΩN0+2 (pN0+2 = 1),
(33)

and so on. Crucially the first jump in the current (measured
in units of eΓR) at eV=ΩN0 is equal to N0 + 1 while all the
subsequent jumps equal to 1 in these units.
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Figure 2. The numerical I–V characteristics for a dot with seven states in the regime where N0∆≪ Ec (N0∆≈ 0.01Ec) and ΩN0 = Ec/2.
(a) Increasing the charging energy makes the steps sharper but does not affect the size of the jumps. (b) Increasing the number, N0, of
electrons in equilibrium (with the gate voltage) illustrates that the first jump is equal to eΓR(N0+1). In both cases ΓL = 100ΓR.

For N0 ≫ 1, this means that the staircase practically disap-
pears beyond the first step in contrast to the constant jumps
of size Ec/∆ for large N0∆, see (32). Although we have per-
formed analytical calculations forN0 ≫ 1, the results for εF ≪
Ec turn out to be exactly the same for smallN0 given a constant
charging energy. We demonstrate this by numerically solv-
ing the quantum master equation [34] under the conditions (1)
and (2), for a dot with seven levels. This was achieved by solv-
ing the first order von Neumann equation for a dot that has N
energy levels separated by ∆; the first order equation is suf-
ficient due to the small coupling to the leads. The many-body
states on the diagonal of the density matrix are all the 2N occu-
pations with the appropriate charging energy, Ec(N−Ng)2/2,
added for the occupation of the configuration. There is no dis-
sipation mechanism for a state to decay on the dot, with relax-
ation occurring after tunnelling into the leads, therefore the
numerical calculations are for the case of zero thermalisation
on the dot. The results are shown in figure 2. While all the
steps there are pronounced, all but the first one would practic-
ally disappear for N0 ≫ 1.

5. Conclusion

To summarise, we have analytically calculated I–V charac-
teristics of the quantum dot with a strong asymmetry in the
tunnelling coupling to the leads in the Coulomb blockade
regime (2) in the absence of thermalisation (1).We have solved
the appropriate QFE in the two limits, for either a large or small
ratio, Ec/εF, of the charging energy to the Fermi energy of
electrons in the dot.

We have demonstrated that for a relatively small charging
energy,Ec/εF ≪ 1, the absence of thermalisation in a quantum
dot has practically no impact on the Coulomb staircase as
an equilibrium is established between the dot and the most
strongly coupled lead, see figure 1. This is in agreement with
previous numerical results [25] which assume the distribution
function is the same for all relevant N. We have verified this
assumption in the large N limit when no more than two states
are relevant in (28).

In the opposite limit, Ec/εF ≫ 1, we have analytically
shown that for N≫ 1 the Coulomb staircase has only one pro-
nounced step. With a voltage V applied to the left lead and
ΓL/ΓR ≫ 1, this is a step in the current from 0 to eΓR(N0 + 1)
in a narrowwindow around eV=ΩN0 withΩN0 = Ec/2 ifN0 =
Ng, see (11). All the subsequent current jumps with V increas-
ing have the magnitude eΓR, see (33), i.e. negligible when
the number of electrons at equilibrium N0 ≫ 1. Further to
the analytic results, we have numerically solved the quantum
master equation for a constant Ec to find that the analytical
results (33) proven for N≫ 1 are exactly valid also in the
experimentally attractive regime of N≲ 10, see figure 2. The
reason for such behaviour of the Coulomb staircase is that the
only electrons available for tunnelling are those in an energy
window ∼εF with the voltage window being much larger,
eV∼ Ec. With εF/Ec increasing, more electrons are available
for tunnelling, thus restoring the jumps between the steps to
their full value ∝ Ec/∆ in the usual regime εF ≫ Ec [4, 7, 8]
where electrons from the entire voltage window contribute to
the current.
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