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Abstract
The Laser Interferometer Space Antenna (LISA) has two scientific objectives of
cosmological focus: to probe the expansion rate of the universe, and to understand
stochastic gravitational-wave backgrounds and their implications for early universe
and particle physics, from the MeV to the Planck scale. However, the range of
potential cosmological applications of gravitational-wave observations extends well
beyond these two objectives. This publication presents a summary of the state of the
art in LISA cosmology, theory and methods, and identifies new opportunities to use
gravitational-wave observations by LISA to probe the universe.
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1 Introduction

Contributors: R. Caldwell, G. Nardini.

TheLaser Interferometer SpaceAntenna (LISA) (Amaro-Seoane et al. 2017) is a planned
space-borne gravitational-wave (GW) detector that will open a new frontier on
astrophysics and cosmology in the mHz frequency band. This European Space Agency-
led mission includes participation by ESA member countries and significant contribu-
tions from NASA and space agencies of other countries. Phase A work is on track for
mission adoption in mid 2020s, and is compatible with a launch in the mid 2030s.

LISA will consist of a trio of satellites, located at the vertices of an equilateral
triangle, in an Earth-trailing heliocentric orbit. The 2.5-million km distances between
the satellites will be monitored using precision laser interferometry to detect passing
GWs. Here we consider a nominal mission of six years with a duty cycle of around
75%, although we understand that the instruments will be engineered to a
specification that will enable a possible extension.
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LISAwill be sensitive to GWs from a wide array of sources (Amaro-Seoane et al.
2017). A primary target will be the inspiral and merger of massive binary black holes
(MBBHs), ranging in masses 104–107 M�, at redshifts out to z� 10. A significant
foreground signal will be the many galactic white dwarf binaries, each effectively a
monotone source.

By the time LISA flies, the state of GW observation will have evolved. The
extended Advanced Laser Interferometer Gravitational Wave Observatory (LIGO),
Advanced Virgo, and Kamioka Gravitational Wave Detector (KAGRA) family of
ground-based GW detectors will have begun implementing third-generation
technology demonstration upgrades. The network of pulsar-timing radio telescopes
will have grown to include the Square Kilometer Array (SKA). Yet, LISA will be
different from its predecessors. The size of the detector will enable access to a
completely fresh part of the GW spectrum, leading to observations of new
astrophysical sources as well as a new window on primordial stochastic gravitational-
wave backgrounds (SGWBs). Many sources will produce overlapping signals, owing
to the improved sensitivity. Extracting individual sources and events, and discrim-
inating from an unresolved hum, will be part of the challenge.

According to the mission proposal (Amaro-Seoane et al. 2017), LISA has two
main scientific objectives of purely cosmological bearing. The first is to probe the
expansion rate of the universe, with specific requirements to measure the
dimensionless Hubble parameter by means of GW observations alone, and further
to constrain cosmological parameters through joint GW and electromagnetic (EM)
observations. The second such objective is to understand SGWBs and their
implications for early universe and particle physics. This will entail the character-
isation of the astrophysical SGWB, and subsequently a measurement or bound on the
amplitude and spectral shape of a cosmological SGWB. There are further scientific
imperatives to use LISA to explore the fundamental nature of gravity and to search
for unforeseen sources with relevance for cosmology. There is a wealth of
cosmological information that may be extracted from LISA observations.

We start with Sects. 2 and 3 on standard sirens and weak gravitational lensing;
these are “sure bets” for LISA, based on our current understanding of source
populations. These sections are directly related to LISA science objective SO6
“probe the rate of the expansion universe” (LISA Science Study Team 2018). They
also identify new opportunities to derive cosmological information from GW
astrophysical sources, in connection with LISA science objectives SO1, SO2, SO3
and SO4, which are devoted to understanding the galactic and extragalactic
astrophysical source populations (LISA Science Study Team 2018). We follow with
sections on more exploratory topics, which are potentially profound and revolution-
ary. Sect. 4 discusses the constraints on modified gravity theories that may be
achieved through measurement of GW sources at cosmological distances. Results on
this research subject are aligned with LISA science objectives SO5 “explore the
fundamental nature of gravity and black holes” as well as the aforementioned SO6.
Section 5 introduces the theoretical foundations, observables, and conventions
relevant for subsequent sections. Sections 6, 7 and 8 describe predictions of SGWBs
sourced by first-order phase transitions, cosmic strings, and inflationary processes.
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Section 9 explores how these diverse SGWB signals convey unique information on
the expansion rate of the universe at redshift � 1000 or higher. These latter four
sections touch on topics that are crucial for LISA science objective SO7 “understand
SGWB and their implications”. Inflation not only leads to a SGWB but also to
density perturbations which may give rise to the formation of primordial black holes
(PBHs), which is the subject of Sect. 10. Finally, Sects. 11 and 12 present existing or
planned tools and methods to analyse the GW signals discussed in the previous
sections. Such tools and methods potentially constitute key deliverables for SO1-SO7
as well as LISA science objective SO8 “search for GW bursts and unforeseen
sources”.

We emphasize that the analyses presented in these final sections need to take into
account the superposition between cosmological and astrophysical sources, so that
the identification of a potential cosmological contribution necessarily involves
modeling of the astrophysical signal. While we briefly discuss the current status of
these analyses, we acknowledge that the further development of the astrophysical
modeling is by itself a crucial line of reasearch that, while impacting the
cosmological searches, goes well beyond what is described in the present document.
More in general, certain topics of cosmological interest are intentionally omitted
from this document: dark matter particles, some tests of general relativity (GR),
waveform uncertainties, astrophysical backgrounds, and the astrophysics of discrete
sources such as MBBHs. These and related topics are covered by the Living Reviews
maintained by the LISA Astrophysics (Amaro-Seoane et al. 2023), Data Challenge
(LISA Data Challenge Working Group n.d.), Fundamental Physics (Arun et al. 2022)
and Waveform Working Groups (LISA Waveform Working Group n.d.). Such
reviews complement the picture presented herein, by the Cosmology Working
Group. The goal of all these documents is to both identify LISA science objectives
and corresponding work packages, and to alert the scientific community about novel
research opportunities, or potential gaps. The tests of general relativity of Sect. 4 and
PBH science of Sect. 10 are exemplary cases of why these Living Reviews are
needed. The original LISA proposal (Amaro-Seoane et al. 2017) makes no mention
of these science investigations. But in recent years, as the subjects have evolved, a set
of new science objectives have been proposed to cover them. The possibility that
similar situations arise again justifies the effort and interest for living reviews that
report on the thrilling, blooming, and fast-evolving LISA science.

2 Tests of cosmic expansion and acceleration with standard sirens

Section coordinators: J.M. Ezquiaga, A. Raccanelli, N. Tamanini. Contributors:
D. Bacon, T. Baker, T. Barreiro, E. Belgacem, N. Bellomo, D. Bertacca, C. Caprini,
C. Carbone, R. Caldwell, H-Y. Chen, G. Congedo, M. Crisostomi, G. Cusin,
C. Dalang, W. Del Pozzo, J.M. Ezquiaga, N. Frusciante, J. García-Bellido, D. Holz,
D. Laghi, L. Lombriser, M. Maggiore, M. Mancarella, A. Mangiagli, S. Mukherjee,
A. Raccanelli, A. Ricciardone, O. Sergijenko, L. Speri, N. Tamanini, G. Tasinato,
M. Volonteri, M. Zumalacarregui.
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2.1 Introduction

Broadly speaking, to learn about the universe and its cosmic expansion we need to
measure distances and times. GW astronomy offers a unique perspective in this
matter, since the signal emitted by a compact binary coalescence is well predicted by
GR. Namely, the amplitude of the GW is inversely proportional to its luminosity
distance and it only depends on the masses and orbital inclination of the binary
system source. Since cosmological propagation at the background level (namely,
excluding the effect of perturbations over the Friedmann–Lemaître–Robertson–
Walker (FLRW) geometry) only changes the overall strain amplitude, one can use the
frequency evolution of the GW to unveil the masses of the compact binary and the
relative amplitude of the two GW polarisations to estimate the orbital inclination,
obtaining thus a direct and absolute measurement of the luminosity distance.
However, GW signals alone do not provide a way to relate the time (of merger, for
example) in the observer frame to the one in the source frame. To access this
information, one needs an independent determination of the redshift of the source. In
such a case the GW signal from compact binary coalescence can be considered a
standard siren (Schutz 1986), namely a cosmological event for which a distance
measurement and complementary redshift information are both available. For
example, the binary neutron star (BNS) merger GW170817, observed by the
Advanced LIGO and Advanced Virgo detectors jointly with several EM facilities
which spotted associated EM emissions, has already been used as a proof-of-
principles, low-redshift measurement of H0 (Abbott et al. 2017a). On the other hand,
massive black holes (MBHs) seen by LISAwith an EM counterpart could be used to
map the cosmic expansion up to high redshift (Holz and Hughes 2005; Tamanini
et al. 2016; Tamanini 2017; Belgacem et al. 2019c).

In this section we will present the different standard sirens that LISA will detect
and the information about the cosmological model that they will provide. The section
is organized as follows. We begin by describing the concept of standard siren in
Sect. 2.2, detailing the expected LISA bright and dark sirens. We then consider the
constraints that could be placed in the standard cosmological constant plus cold dark
matter (KCDM) cosmological model in Sect. 2.3. Subsequently, we explore LISA
capabilities to probe different dark energy (DE) models in Sect. 2.4. Next, we show
the synergies of LISA with other EM and GW observatories in Sect. 2.5. Finally, we
describe the benefit of cross-correlating LISA data with large-scale structure surveys
in Sect. 2.6.

2.2 Standard sirens

GW signals from compact binary coalescences are natural cosmic rulers because of
the inverse dependence of the strain with the GW luminosity distance, h / 1=DGW

L .
In GR and over a Friedman–Lemaître–Robertson–Walker (FLRW) background, the
GW luminosity distance is equal to the one of EM radiation and given by
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DGW
L ¼ c

H0

ð1þ zÞffiffiffiffiffiffiffiffijXk j
p sinn H0

Z z

0

ffiffiffiffiffiffiffiffijXk j
p
Hðz0Þ dz0

" #
; ð1Þ

where sinnðxÞ ¼ sinðxÞ; x; sinhðxÞ for a positive, zero and negative spatial curvature
respectively. Assuming a KCDM cosmology, the Hubble parameter is a function of
the matter content Xm, the curvature Xk and the amount of DE XK (radiation at
present time is negligible)

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmð1þ zÞ3 þ Xkð1þ zÞ2 þ XK

q
: ð2Þ

LISA will attempt to measure H0, Xm, Xk and XK using sirens.
GW observations themselves, however, do not provide direct information about

the redshift. Therefore, in order to be able to probe the cosmological evolution we
need additional input. In the case in which the redshift of the GW source is directly
obtained from an EM counterpart, we will refer to the source as a bright siren. A
beautiful example of this kind of multi-messenger event was the LIGO/Virgo event
GW170817 (Abbott et al. 2017d), which provided the first standard siren
measurement of H0 (Abbott et al. 2017a) (see Abbott et al. 2021c for an update
on the measurement of H0 from standard sirens). As we present in Sect. 2.2.1, LISA
will be sensitive to very different bright sirens, but the concept remains the same. On
the other hand, when the redshift information is obtained from an analysis that does
not include EM counterparts, we will refer to the GW sources as dark sirens. In
Sect. 2.2.2 we will present different dark siren classes that LISA will detect and
which can be used to obtain cosmological information by cross-matching the sources
with galaxy catalogues and looking for correlated features in the mass distribution.

Modern analyses of standard sirens are based on Bayesian inference. We refer the
reader to Sect. 11.1 for a glimpse at the actual statistical tools LISA will use and a
detailed discussion of their associated systematic uncertainties. In what follows we
focus mostly on the different GW sources and their potential as standard sirens. LISA
will detect three types of potential standard siren populations: MBBHs at 1.z.8,
extreme mass ratio inspirals (EMRIs) at 0:1.z.1 and SOBBHs at z.0:1. An
example of the expected Hubble diagrams from these three different standard sirens
populations can be found in Fig. 1. The details regarding each of these populations
will be presented in the following.

2.2.1 Bright sirens: MBBHs with electromagnetic counterpart

LISA will detect the coalescence of MBBHs up to redshift z ’ 15–20. However, the
mass and redshift distributions of the events are still uncertain. Currently, our
knowledge of MBHs is limited to cases where either an active galactic nucleus is
present or to quiescent MBHs in nearby galaxies (Kormendy and Ho 2013; Graham
2016; Greene et al. 2020). The population of MBBHs accessible by LISA might be
considerably different from our current expectations. Several groups have attempted
to address this question with hydrodynamics simulations (Salcido et al. 2016; Katz
et al. 2020; Volonteri et al. 2020) or semianalytic formation models (Volonteri et al.
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2003; Barausse et al. 2020; Ricarte and Natarajan 2018; Trinca et al. 2022; Valiante
et al. 2018). While the former are able to handle more naturally hydrodynamical,
thermodynamical, and dynamical processes, the latter are computationally efficient
and can be used to explore a larger parameter space.

Two main sources of uncertainties affect the expected redshift and mass
distribution of merging MBBHs: black hole seeding and delay time prescription
(Klein et al. 2016). If MBHs grow from the remnants of metal-poor population-III
stars, the population of MBBHs accessible by LISA is expected to peak at the total
mass Mtot ’ 103 M�. However if MBHs arise from the monolithic collapse of gas in
protogalaxies, the mass distribution is expected to range from 104 M� up to few
107 M�. We note that additional formation mechanisms have been proposed and that
they would further modulate the distribution of merging MBHs. Moreover, delay
times, between the merger of two galaxies and the merger of their central MBHs,

Fig. 1 Examples of LISA standard siren data sets at different redshift ranges. Data from low-redshift dark
sirens, defined by SOBBHs, are reported in the bottom-left plot. Data at intermediate redshifts correspond
to EMRIs and are reported in the top plot. High-redshift data are provided by standard sirens from MBBHs
and are reported in the bottom-right plot. Note how SOBBHs and EMRIs, being dark sirens, can only
provide broad likelihood regions in the Hubble diagram, while MBBHs, being bright sirens, provide
precise data points thanks to the unique redshift association coming from the EM counterpart identification.
Images reproduced with permission from [top] Laghi et al. (2021), [bottom left] Del Pozzo et al. (2018),
and [bottom right] Speri et al. (2021), copyright by the author(s)
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shape the redshift distribution, with short delays leading to more mergers at higher
redshift. Further uncertainties arise from the gas inflow to the halo centre, its
efficiency and the geometry of accretion. Even if LISA will be able to distinguish
different formation scenarios (Sesana et al. 2011), the aforementioned uncertainties
reflect in a broad interval for the number of events detected and their distributions (e.
g. mass, mass ratio, spins, redshift).

Combining these uncertainties, LISA should be able to detect between a few and
several tens of MBBH events per year (Klein et al. 2016). Multiple-body interactions
among a MBH binary and one or more intruder MBHs, arising naturally from the
hierarchical galaxy formation process, might still produce ’ 10�20 events per year
(Bonetti et al. 2019).

LISAwill also provide exquisite accuracy on MBBH parameters. For the search of
a possible EM counterpart, the sky position accuracy is of paramount importance.
Taking into account the full inspiral-merger-ringdown GW signal, MBBHs from few
105 M� to few 106 M� can be localised within 0:4 deg2 up to z ’ 3 (Mangiagli et al.
2020), but with high accuracy obtained only at merger. For these sources the
posterior on the sky position is expected to be Gaussian; however, for more massive
and distant sources, the recovered sky position is expected to present multimodalities
(Marsat et al. 2021). For heavy systems with total mass Mtot [ 107 M� the ringdown
portion of the signal might carry most of the information for the source localisation
(Baibhav et al. 2020). For cosmology applications, also the estimate on the
luminosity distance plays a fundamental role: due to the typical large signal-to-noise
ratio (SNR) value for these sources, LISA should be able to constrain the luminosity
distance to better than 10% for most of the events at z\3 (Tamanini et al. 2016).

If MBBHs evolve in gas-rich environment, EM radiation might be produced by
the accretion of gas onto the MBHs close to or after merger. The orbital motion of the
binary is expected to open a cavity in the circumbinary disk. Hydrodynamical
simulations show that minidisks generally form around each BH from the stream of
gas from the circumbinary disk (Farris et al. 2015; Tang et al. 2018).

This leads to pre-merger EM emission across all wavelengths (D’Ascoli et al.
2018), which can be identified if the pre-merger sky localisation is good (Dal Canton
et al. 2019). In the optical band, the Vera C. Rubin Observatory (formerly known as
Legacy Survey of Space and Time) (Abell et al. 2009) will reach a magnitude limit of
24.5 in 30 s of pointing over a field of view of ’ 10 deg2. This survey speed enables
the Vera C. Rubin Observatory to cover a sky area of ’ 100 deg2 allowing for
possible pre-merger EM detection, though the number of detected counterparts is
expected to be low (Tamanini et al. 2016). At or after merger, several transients have
been proposed, from spectral changes and brightening (Schnittman and Krolik 2008;
Rossi et al. 2010) to jets (Palenzuela et al. 2010; Khan et al. 2018; Yuan et al. 2021).
In X-ray, Athena (Nandra et al. 2013), with a field of view of 0:4 deg2 and a limiting
flux of � 3� 10�16erg cm�2 s�1 in 100 ks, will be optimal to search for possible
post-merger signatures. Similarly, in radio, SKA (Dewdney et al. 2009) will observe
the launch of putative post-merger radio jets with an initial field of view of 1 deg2.

A counterpart detection strategy has been proposed (Tamanini et al. 2016)
consisting in first localising the source in the radio with the SKA, and subsequently
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to proceed to a redshift determination of the host galaxy in the optical with the
Extremely Large Telescope.1 This strategy is more promising than direct optical
identification with the Vera C. Rubin Observatory. Depending on the seed and
dynamical evolution models, LISA will detect between ’ 10 and ’ 25 MBBH
events with EM counterpart during a mission assumed to be of five year (Tamanini
et al. 2016). These estimates are however affected by several astrophysical
uncertainties that have as yet not been properly characterised. It is, however, robust
to expect that MBBH bright sirens will all be detected at relatively high redshift: one
study finds standard sirens distributions peaking at around z� 2� 3 and extending
up to z� 8 (Tamanini et al. 2016; Tamanini 2017). Therefore, MBBH bright sirens
will be of great relevance to test the KCDM model, and possible deviations from it,
in a redshift range so far scarcely probed by EM observations. In Sects. 2.3 and 2.4
we review the cosmological constraints that LISAwill be able to impose both at low
and high redshift.

2.2.2 Dark sirens: SOBBH, EMRIs, IMBBHs

In addition to observing the EM counterpart of individual events, there are other
methods that one can employ to obtain information about the redshift of the GW
source. The most common and widely-used among these methods relies on statistical
matching the inferred position of the GW source with a catalogue of galaxies with
known redshift (see Abbott et al. 2021c for the application of this method to the
Advanced LIGO-Advanced Virgo-KAGRA data). GW events for which an EM
counterpart cannot be identified, but which can still be used to extract cosmological
information statistically, are usually referred to as dark standard sirens. In this section
we outline how dark sirens are treated by correlating galaxy catalogues with the
localisation of the source, statistical dark sirens, and using properties of their mass
distribution, spectral sirens. Generally speaking, dark standard sirens have the
advantage to be applicable to all kind of GW sources for which a distance
measurement can be retrieved (not exclusively those emitting EM counterpart
signals), although a large number of them are necessary to achieve precise
measurements through solid statistics.

In the absence of an EM counterpart, redshift information can be extracted by
putting a prior on potential hosts from a galaxy catalogue, assuming that galaxies are
good tracers of binary black hole (BBH) mergers. In order to do that (see more details
on statistical methods in Sect. 11.1.2), one associates the GWevent with every galaxy
within the 3D localisation error of the event, assigning to each of them a certain
probability of being the true host galaxy of the GW event. In this way, by stacking
together the information gathered from several dark sirens, one can statistically infer
the true values of the cosmological parameters. For this method to be effective, one
requires a large number of events to combine statistics or a very small localisation
volume. Errors in the luminosity distance scale with the SNR, DDL=DL � 1=q, while
the localisation depends also on the duration of the source, since LISA orbital
modulation can be used to help disentangle the location in the sky. One complication

1 https://elt.eso.org/.
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is given by the fact that galaxy catalogues are in general not complete, especially at
high redshift. This requires one to include information on the missing galaxies within
the catalogue, and the catalogue prior must be supplemented by a suitable “comple-
tion” term (Chen et al. 2018; Fishbach et al. 2019; Gray et al. 2020; Finke et al. 2021)
(again see Sect. 11.1.2 for more details). This aspect will remain a limiting factor
until catalogues with very large completeness are available. The availability of
complete galaxy catalogues, small GW localisation regions and accurate redshift
determination—including characterisation of the uncertainty due to peculiar
velocities for low-redshift binaries (Howlett and Davis 2020; Mukherjee et al.
2021c; Nicolaou et al. 2020)—will be crucial in order for the statistical method to
give competitive constraints on cosmological parameters. At the time when LISA
will be taking data, galaxy catalogues will be available from a plethora of current and
future experiments, providing observations of different types of galaxies, with
varying number density and sky coverage, over different redshift ranges. In
particular, the completed observations from Euclid and Dark Energy Spectroscopic
Instrument (DESI), with the addition of redshift-deep catalogues from the Subaru
Prime Focus Spectrograph project and the Roman Space Telescope, should be
available before LISA is launched. Additionally, the Vera C. Rubin Observatory
should have observed hundreds of millions of galaxies, and deep and wide catalogues
should be available from SPHEREx. Finally, on time-scales comparable with LISA,
the full SKA2 and the ATLAS satellite should provide extremely deep and full-sky
catalogues of the sky. Moreover, there are plans to build a next-generation billion-
galaxies survey as a successor of DESI. These future surveys are expected to provide
well-complete galaxy catalogs up to z ¼ 1 and possibly beyond.

Stellar-origin black holes (SOBHs) are guaranteed dark sirens for LISA. From the
observations with current LIGO/Virgo detectors (Abbott et al. 2021e), we know that
there is a population of BBHs with masses between � 5M� and � 50M� that LISA
will see in their early inspiral. Some of those events will be subsequently detected by
ground-based detectors becoming in this way “multi-band” events (see Sect. 2.5.2).
SOBBHs with good enough localisation can be used as dark sirens (Kyutoku and
Seto 2017; Del Pozzo et al. 2018). Because of their low masses, cosmologically
useful SOBHs could only be seen by LISA up to z� 0:1, probing essentially the local
expansion rate H0. In practice, only those events with better than 20% accuracy in the
luminosity distance and with a typical sky-localisation error better than � 1deg2 will
be useful as dark sirens. According to current forecasts, LISA could detect � 10–
100 dark sirens (Del Pozzo et al. 2018), though uncertainties on the LISA noise level
at the high-frequency end of its band (Amaro-Seoane et al. 2017), on the detection
threshold (Moore et al. 2019) and merger rate of these systems (Abbott et al. 2021e),
might well invalidate the most optimistic expectations. In Sects. 2.3 and 2.4 we will
review the cosmological constraints that LISA can impose with SOBBHs as dark
sirens.

LISAwill also be able to use EMRIs as statistical dark sirens. They will in fact be
detected at cosmological distances, possibly in high numbers, though the rates are so
far extremely uncertain. EMRIs detected by LISA are expected to be broadly peaked
around 0:5\z\2, potentially reaching z� 4 (Babak et al. 2017). A recent
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investigation showed that events up to z� 0:7 can safely be used to estimate H0

(Laghi et al. 2021), provided they can be detected with high SNR. These events can
reach relative uncertainties on DDL=DL below 0.05 and typical sky-localisation errors
less than 1 deg2, representing the best well-localised events suited for a statistical
approach on the inference of the GW redshift, comparable to, if not better than, what
future third-generation ground-based detectors can achieve (Iacovelli et al. 2022). As
we will see in Sects. 2.3 and 2.4, according to the analysis of Laghi et al. (2021),
LISA will be able to use from a few to several tens of EMRIs to extract useful
cosmological information.

Redshift information on a GW source can also be obtained in a statistical way
performing a population analysis when there are distinctive features in the source
mass distribution. This is simply because GW observatories are only sensitive to the
redshifted or detector frame masses, which directly relate to the source masses via

mz ¼ ð1þ zÞm: ð3Þ
Therefore, if the mass distribution presents a known feature, e.g. a peak or a drop, at
a reference scale which is invariant under cosmic evolution, by observing this feature
in the GW events at different luminosity distance bins one can infer their redshift,
becoming spectral sirens. If such a feature exists, this would be a very convenient
probe of the cosmic expansion because it only requires GW data. In case of a time
evolution of the reference mass scale, using the full mass distribution helps cali-
brating against astrophysical uncertainty (Ezquiaga and Holz 2022).

A good example of such features occurs in the mass spectrum of SOBBHs. This is
because as stars become more massive, a runaway process induced by electron-
positron pair production known as pair-instability supernova (PISN) is triggered
(Barkat et al. 1967; Fowler and Hoyle 1964; Heger and Woosley 2002; Fryer et al.
2001; Heger et al. 2003; Belczynski et al. 2016). These PISN result in complete
disruption of the stars, preventing the formation of remnant BHs and thus inducing a
gap in the mass spectrum starting at around 50M�. Nonetheless, for sufficiently
massive stars the PISN process is insufficient to prevent direct collapse, and a
population of BBHs with masses larger than � 120M� could arise. Therefore, the
theory of PISN predicts a gap in the BBH mass spectrum with two edges that act as
reference scales.2 While the lower edge of the gap lies within the main sensitivity of
present LIGO/Virgo detectors and could lead to precise measurements of H(z) (Farr
et al. 2019; Ezquiaga and Holz 2022), LISAwill be more sensitive to the upper edge
if a population of “far side” binaries in fact exists (Ezquiaga and Holz 2021). These
alternative methodologies are currently under development and will need to be
further investigated in the future, especially in the framework of GW cosmology with
LISA.

Finally, we mention another effect that in principle allows one to access the
redshift information directly from the GW signal alone. The variation of the
background expansion of the universe during the time of observation of the binary
induces an effectively �4 post-Newtonian term in the waveform phase, whose
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amplitude directly depends on the redshift and on the value of the Hubble parameter
both at the source and at the observer (Seto et al. 2001; Nishizawa et al. 2012).
Unfortunately, redshift perturbations due to the inhomogeneous distribution of matter
between the source and the observer also depend on time, and therefore also
contribute to the extra terms in the phase (Bonvin et al. 2017). Among these, the
time-varying peculiar velocity of the GW source centre of mass may dominate the
signal, effectively preventing the extraction of the redshift information from the
amplitude of the dephasing—but possibly allowing a measurement of the binary’s
peculiar acceleration (Tamanini et al. 2020; Inayoshi et al. 2017).

2.2.3 Systematic uncertainties on standard sirens

Bright and dark sirens will suffer from some common systematic uncertainties. The
measurements of the binary luminosity distances are affected by the detector
calibration uncertainty (Karki et al. 2016; Chen et al. 2021a) and the accuracy of the
waveform models (see Abbott et al. 2019b for discussions in the context of LIGO/
Virgo observations). Accurate waveforms will be particularly needed for the high
SNR sources that LISA will detect. Moreover, high redshift sources will be affected
by weak lensing uncertainties (Holz and Linder 2005; Hirata et al. 2010; Cusin and
Tamanini 2021) (see Sect. 3 for more details). In addition, the parameter estimation
of the luminosity distance will be subject to degeneracies with the orbital plane
inclination and other parameters, though for long duration signals or when higher
harmonics are measured (Baibhav et al. 2020), this degeneracy can be broken. In
general, these parameter degeneracies will lead to larger statistical errors but not
systematic biases. Finally, our understanding of the possible observational selection
effect (Chen 2020) as well as the astrophysical rate evolution (see e.g. Fig. 12 of
Finke et al. (2021) for an application to LIGO-Virgo data) are critical to the accuracy
of standard siren analysis as well. Not many investigations have so far assessed the
systematic uncertainties affecting standard siren measurements with LISA. A
thorough exploration of all these effects, needed to consolidate our confidence on
LISA cosmological observations, will be necessary in the future.

2.3 Constraints on KCDM

In this subsection we present how well LISA will be able to constrain the
cosmological parameters of the standard KCDM model, by using different classes of
standard sirens as presented in Sect. 2.2. We first focus on the Hubble constant H0

and consider constraints on additional parameters afterwards. We conclude the
subsection with a discussion on consistency tests of KCDM at high-redshift with
LISA MBBH standard sirens.

2 Recent analyses have shown however that both the lower end of the gap (Farmer et al. 2019) and its
width (Farmer et al. 2020) are robust against ambient factors and nuclear reaction rates.
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2.3.1 H0 tension and standard sirens

The standard model of cosmology is extremely successful and allows one to describe
the universe from the time of BBN to the present time of cosmic acceleration.
Remarkably, it contains only six parameters, one of which, the present-day Hubble
constant H0 describes the expansion rate of the universe. At small redshifts, it relates
the luminosity distance and the redshift of a source such that DLðz � 1Þ ¼ cz=H0.
Consistency of the model requires the inferred value of H0 to be independent of the
probe and any deviations should be seen as a sign of unaccounted for systematics or
more excitingly, new physics.

In recent years, two sets of values for H0 have emerged from so-called early or
late measurements of H0 depending on the origin of the calibration. As the error bars
shrink, it becomes increasingly clear that the two values are in tension, reaching 4–5r
disagreements (Verde et al. 2019). The most precise measurement of H0 from the
early universe comes from the cosmic microwave background (CMB) (at recom-
bination redshift z� 1100) with an inferred value of H0 ¼ 67:4� 0:5 km s�1 Mpc�1

at 68% C.L. assuming a flat KCDM cosmology (Aghanim et al. 2020). In this case
the H0 value is inferred from the angle upon which the scale associated to the horizon
at the last scattering surface is projected, which is obtained from the measurement of
the density fluctuations. Compatible values of H0 are obtained also from the Atacama
Cosmology Telescope and WMAP5 for which H0 ¼ 67:6� 1:1 km s�1 Mpc�1 at
68% C.L. (Aiola et al. 2020) and from the joint analysis of Dark Energy Survey
(DES) clustering and weak lensing data with baryon acoustic oscillations (BAO) and
big bang nucleosynthesis (BBN), H0 ¼ 67:2þ1:2

�1:0 km s�1 Mpc�1 at 60% confidence
(Abbott et al. 2018c).

In contrast, several teams have measured a significantly higher value of H0 in the
local universe with redshifts z	 1 in a model independent fashion. For example, the
SH0ES team used Cepheid calibrated supernovae type Ia to measure H0 ¼ 74:03�
1:42 km s�1 Mpc�1 (Riess et al. 2019) (see also recent updates, Riess et al. 2022).
The H0LiCOW collaboration used strong lensing time delays of background quasars
to infer H0 ¼ 73:3þ1:7

�1:8 km s�1 Mpc�1 (Wong et al. 2020). The Megamaser
Cosmology project used very long baseline interferometric observations of water
masers in Keplerian orbits around MBHs to measure H0 ¼ 73:9� 3:0 km s�1 Mpc�1

(Pesce et al. 2020). The Carnegie-Chicago Hubble Program collaboration used tip of
the red giant branch measurements in the large Magellanic cloud to calibrate 18
supernovae type Ia, instead of Cepheids, and found a slightly lower H0 ¼ 69:8� 2:6
km s�1 Mpc�1 (Freedman et al. 2019).

GWs offer an independent test of the tension using bright or dark sirens as
described in Sect. 2.2.1 and Sect. 2.2.2. The LIGO-Virgo collaboration used the first
bright siren, namely GW170817, to infer H0 ¼ 70þ12

�8 km s�1 Mpc�1 at 1r (Abbott
et al. 2017a), which lies somewhat in between the early and late universe values but
with a worse precision if compared to current EM results. Furthermore, current dark
siren measurements reached an inferred value of H0 ¼ 75þ25

�22 km s�1 Mpc�1 at 1r
(Fishbach et al. 2019; Finke et al. 2021; Abbott et al. 2021a). The rather large error

bars are expected to shrink as 1=
ffiffiffiffi
N

p
, where N indicates the number of well-localized
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events. Percent-level precision on H0 is expected in the 2020s with BNS mergers
detected by Advanced LIGO-Virgo and their EM counterpart observations (Nissanke
et al. 2013; Chen et al. 2018). Bright sirens in the era of the third generation of
ground-based GW detectors could further constrain other cosmological parameters,
such as Xm and w0 (Sathyaprakash et al. 2010; Zhao et al. 2011; Cai and Yang 2017;
Jin et al. 2020; Chen et al. 2021a) and usher us into the era of precise GW
cosmology.

LISA will offer an alternative and complementary probe of KCDM which might
as well provide useful information on the Hubble tension. In the following, we
explore the potential of LISA to probe H0 and beyond.

2.3.2 LISA forecast for H0

LISAwill be able to contribute measurements of H0 coming from different classes of
standard siren sources (see Sect. 2.2). For the time being, the literature has described
only measurements coming from individual classes of sources. A complete analysis
combining the constraining power of different LISA GW sources is still missing.

By considering SOBBHs, and by cross-matching with simulated galaxy
catalogues, Kyutoku and Seto (2016), Del Pozzo et al. (2018) found that constraints
on H0 can reach the few % level. In particular, in the study presented in Del Pozzo
et al. (2018), several different instrumental configurations for LISA were investi-
gated, as well as several coalescence rate models within the range allowed by the
LIGO-Virgo observations from O1. This analysis also had Xm as a free parameter,
although due to the low-redshift of the sources results are not informative. The
SOBBHs entering the analysis were selected to have SNR [ 8, a cosmological
redshift \0:1 and an uncertainty on the luminosity distance smaller than 20%. No
other selection criteria were applied. With the aforementioned selections, the number
of SOBBHs considered ranged from a pessimistic case of 7, yielding an accuracy on
H0 of 7% to a most optimistic case of 259, yielding an accuracy of 1%, see left panel
in Fig. 2.

A similar analysis can be done also with EMRIs. A first investigation (MacLeod
and Hogan 2008) pointed out that �20 EMRIs detected at z� 0:5 could be enough
to constrain H0 at the 1% level. The analysis provided in MacLeod and Hogan (2008)
employed however a simplified approach to estimate cosmological forecasts with
LISA, and moreover assumed the more optimistic mission design considered at the
time. A recent, more detailed analysis has been performed with LISA EMRIs (Laghi
et al. 2021). Using only the most informative, high-SNR ([ 100) EMRIs up to
redshift z	 0:7, cross-matching with the galaxy catalogue obtained from the
simulated sky of Henriques et al. (2013), it is shown that constraints at the few % can
be forecast for H0. An analysis of three different EMRI population models taken from
Babak et al. (2017), representing a pessimistic, a fiducial, and an optimistic scenario,
points out that in a 4-year LISA mission lifetime constraints are expected to be at
3.6%, 2.5%, and 1.6% (68% CL), respectively, while in case of a 10-year mission H0

can be constrained at the 2.6%, 1.5%, and 1.1% accuracy (68% CL). The different
accuracy in the various scenarios reflects the different number of useful EMRIs
available in each model, which in case of 10 years of observation and after the SNR
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selection, ranges from �5 (in the worst scenario), passing to �30 (in the fiducial
scenario), up to �70 (optimistic scenario), see right panel in Fig. 2.

Finally the last standard siren class that LISA can employ to constrain H0 are
MBBHs. Although these events are expected to be detected at high-redshift (z[ 1),
by assuming KCDM one can set bounds on H0, i.e. on the cosmic evolution at low-
redshift. By simulating different populations of MBBH mergers, performing (simple)
parameter estimations over the expected GW signal, and by simulating the emission
and detection of possible EM counterparts, recent works showed that constraints at
the few % level can be imposed on H0 (Tamanini et al. 2016; Tamanini 2017;
Belgacem et al. 2019c). These studies predict around four useful standard sirens with
observed EM counterpart, per year. Their redshift distribution peaks between redshift
2 and 4, with tails up to z ’ 8. The dominant contribution on the distance uncertainty
of these events is not the LISA measurement error, but rather the systematic effect
due to week lensing which dominates at high-z providing an estimated average
uncertainty of up to 5-10% (Hirata et al. 2010; Cusin and Tamanini 2021).
Nevertheless even if LISAwill detect only a few MBBH standard sirens, the fact that
these will be at high redshift, with relatively precise distance determination, and of
course with the single redshift value identified with the EM counterpart, will allow
for interesting constraints on H0 at the few percent level (Tamanini et al. 2016;
Tamanini 2017; Belgacem et al. 2019c). This is comparable with what is expected for
low-redshift, more numerous LISA dark sirens such as SOBBHs and EMRIs. As we
will show below, MBBHs will however be more interesting for cosmological
analyses beyond the simple measurement of H0.

The joint-inference on H0 resulting from the combination of the analyses
described above for SOBBHs, EMRIs and MBBHs, is expected to provide
interesting constraints, possibly reaching the 1% level, or better. Such a combined
investigation however has not yet been performed and will be the focus of future

Fig. 2 Left panel: 90% (black) and 68% (red) credible intervals for H0/km s�1 Mpc�1 for each of the LISA
configurations considered in Del Pozzo et al. (2018). The credible regions are averaged over the galaxy
hosts realisations. Right panel: 90% (black) and 68% (red) percentiles, together with the median (red dot)
of h for the pessimistic, fiducial, and optimistic EMRI models (M5, M1, M6, respectively) and for two
different LISA observational scenario (4 and 10 years). Here h ¼ H0=ð100 km s�1Mpc�1Þ and the blue
dashed horizontal line denotes the true cosmology (set at h ¼ 0:73 in Del Pozzo et al. 2018; Laghi et al.
2021). For each data point, we also report the average number N of EMRIs considered in the analysis.
Images reproduced with permission from [left] Del Pozzo et al. (2018) and [right] Laghi et al. (2021),
copyright by the author(s)
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studies. Note also that a further class of standard sirens for LISA could be provided
by intermediate-mass binary black holes (IMBBHs), ranging from Oð100Þ to
Oð1000Þ solar masses. Although recent LIGO/Virgo observations may point towards
the existence of this class of BBHs (Abbott et al. 2020b), their merger rate and
population properties are completely unknown at the moment (Toubiana et al. 2021),
making current LISA forecasts too uncertain to be seriously considered. Given their
high-mass and redshift range, IMBBHs could nevertheless well represent the best
class of LISA dark sirens if they can be detected in high numbers. Moreover the
association with possible EM counterparts, which for these systems are being
realistically considered (Graham et al. 2020), could well turn the LISA IMBBH
detections that merge within the LIGO/Virgo band in a relatively short time, into
useful multi-band bright sirens with a great potential to yield precise cosmological
measurements (Muttoni et al. 2022).

By surveying the considerations made above, we can expect LISA to deliver
constraints on H0 at the few percent level or better, similarly to what ground-based
detectors may produce on comparable timescales (Chen et al. 2021a). The robustness
of these constraints against uncertainties in the overall analysis, including for
example calibration and waveform modelling issues, will be something to carefully
assess in the future. In any case, a precise and accurate measurement of H0 with
LISA will provide useful insights on the Hubble tension, should the tension still
persist. On the other hand, a further independent and complementary measurement of
H0 will help strengthen our confidence in the value of the Hubble constant, especially
if hints of physics beyond KCDM appear.

2.3.3 KCDM beyond H0

The relatively high-redshift reach for some of the standard sirens sources detected by
LISA, will allow the inference on cosmological parameters beyond H0. In particular
MBBHs will be extremely useful to test the cosmic expansion at high-redshift (z.8)
while EMRIs could be useful for cosmological applications up to z� 1, or more
generally up to the redshift at which we will be able to employ fairly complete galaxy
catalogues.

As shown in Tamanini et al. (2016), Tamanini (2017), MBBH mergers with an
identified EM counterpart could be used by LISA to infer the values of Xm and Xk ,
albeit with large uncertainties. Assuming KCDM, constraints on Xm are forecast to
reach the � 10% level (68% C.L.) only in the most optimistic scenarios (Tamanini
et al. 2016; Belgacem et al. 2019c; Spergel et al. 2015), while allowing for spatial
curvature degrades these estimates for Xm to � 25% and yields a measurement of Xk

at similar precision (Tamanini et al. 2016). Needless to say these results will certainly
not be competitive with EM observations, but will at least provide an independent
and complementary measurement.

Similarly, EMRIs will be able to provide information on Xm only in the most
optimistic scenarios. In fact recent estimates (Laghi et al. 2021) indicate that using
the loudest Oð70Þ events, as predicted in an optimistic population scenario, it is
possible to get constraints with � 20% accuracy (68%CL) on Xm when jointly
inferred with H0. Even though this result is not expected to compete with current and
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future EM observations (Amendola et al. 2018b; Scolnic et al. 2018), it is somehow
not surprising since the EMRIs used in Laghi et al. (2021) are distributed up to
z.0:7. Future analysis, possibly including a larger number of events, thus including
low-SNR events which are typically coming from high redshifts, are expected to give
more informative results on cosmological parameters beyond H0.

Preliminary investigations of the full KCDM cosmological model where the
curvature term Xk is not fixed to 0, seem to indicate that, even for moderate redshift
sources such as the loudest EMRIs (SNR [ 100) at z.0:7, LISA will provide some
simultaneous constraints on all cosmological parameters. In the fiducial scenario of
Laghi et al. (2021), Xk can be constrained with an accuracy of � 30%, while Xm can
be constrained with an accuracy of � 55%, while retaining an accuracy on H0 of
� 2% (all 68% CL) (Laghi 2021). These results will need to be further investigated
in the future, however they are suggestive that a possible simultaneous inference of
different cosmological parameters with LISA standard sirens will indeed be possible.
In particular the full LISA cosmological analysis with results obtained from the
combination of all classes of LISA standard sirens, namely SOBBHs, EMRIs and
MBBHs, should substantially increase the accuracy of the estimates on Xm and Xk

above, thanks especially to the combination of cosmological datasets from different
redshift ranges which might break some of the degeneracy between the cosmological
parameters. A future combined investigation will thus be needed to thoroughly assess
the ability of LISA to constrain parameters beyond H0.

2.3.4 Tests of KCDM at high-redshift

The most interesting class of LISA standard sirens are MBBHs, not only because
they are expected to produce detectable EM counterparts (bright sirens) but also
because they will be detected at high redshift and thus can be employed to test the
cosmic expansion at early epochs largely unexplored by current EM cosmological
surveys. As we will show in Sect. 2.4 and in Sect. 4, MBBHs will have the potential
to test different cosmological models alternative to KCDM. Here we briefly mention
how well LISA can test KCDM itself at high z, taking into account possible general
deviations (to be discussed shortly) and by comparing with EM probes at similar
redshifts. Note also that in analogy to EM distance observations, LISA MBBHs can
as well be employed to probe the fundamental assumptions of KCDM, e.g. the
cosmological principle (Cai et al. 2018).

Let us first of all recall how well MBBHs can test KCDM. As shown in the
previous section, in the most optimistic cases Xm can be tested at the � 10% level,
which reflects the fact that at zJ1 the universe is expected to be matter dominated
and thus to provide information mainly on Xm. Any deviation from the standard
matter-dominated evolution at redshift 1.z.4 however will be constrained by LISA,
at a level not attained by current EM observations.

To put in context the potential of LISA we can compare its constraining power
with other EM measurements of the cosmic expansion at high z. LISA will in fact
provide independent and complementary data which will not only deliver useful and
accurate information on deviations from KCDM but will also be used to check and
cross-validate EM measurements, expected to be sparse and inaccurate at such high-
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redshift. As a clear example, LISA can successfully compete with quasar
cosmological observations at z� 2 and above (Speri et al. 2021). Current quasar
distance measurements indicate possible issues in the Hubble diagram at zJ2, where
deviations from KCDM have already been claimed (Risaliti and Lusso 2019) (see
also Velten and Gomes 2020; Yang et al. 2020b; Banerjee et al. 2021). To understand
if such apparent deviations are due to systematic effects or are indeed due to new
physics beyond KCDM, complementary measurements at the same redshift range
will be needed. As shown in Speri et al. (2021), four MBBH standard sirens detected
by LISA are on average enough to unequivocally confirm or rule out the apparent
deviation claimed in Risaliti and Lusso (2019), and thus to reveal if indeed this is due
to systematics in the quasar Hubble diagram or to new physics. Standard siren
observations will play a crucial role to test deviations from the KCDM.

GW observations provide a more reliable distance luminosity measurement than
other EM observations, such as quasars. Standard sirens rely in fact on fundamental
predictions of GR and not on phenomenological relations between observed
quantities. Although the quasar Hubble diagram will become more precise and
accurate in the time between now and when LISA will fly, for example with
observations by the eROSITA (Merloni et al. 2012) and Euclid (Amendola et al.
2018b; Barnett et al. 2019) missions, intrinsic systematics on the quasar cosmolog-
ical measurement might still be unresolved. LISA will thus provide a unique
complementary test of the cosmic expansion at zJ2, which not only will yield
accurate measurement of deviations from KCDM but it will also be used to cross-
validate any results obtained by other EM observations at the same redshift range,
notably with quasars.

2.4 Probing dark energy

This subsection discusses how LISA can probe the fundamental nature of DE
through GW standard sirens. Here only simple alternative DE models are considered,
and in particular we assume that the underlying gravitational theory remains GR.
Models of DE based on modification of GR are discussed in details in Sect. 4.

2.4.1 Equation of state of dark energy: w0 and wa

Deviations from the standard cosmological model include the presence of a DE fluid
with effective equation of state (EoS) given by: pDE ¼ wDEðaÞqDE, where pDE and
qDE are the effective pressure and density of the DE fluid respectively. Although the
functional dependence of wDEðaÞ may be very non-trivial (see e.g. self-accelerating
cosmologies), for practical purposes we consider here only a simple phenomeno-
logical parametrization introduced by Chevalier-Polarski-Linder (CPL) (Chevallier
and Polarski 2001; Linder 2003):

wDEðaÞ ¼ w0 þ wað1� aÞ; ð4Þ
where w0 and wa are constants and indicate, respectively, the value and the time
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derivative of wDE today. We refer to Sect. 4 about modified gravity for more com-
plicated, model dependent forms.

In all the scenarios studied by Belgacem et al. (2019c) (which depend on the BH
seeds and on the assumptions about the error on redshift), the GW sources considered
are expected not to contribute relevantly to improve the knowledge on w0, with
respect to what is already known from current cosmological observations. More
precisely, the 1r error Dw0 only goes from Dw0 ¼ 0:045 (using CMB, type Ia
supernovae and BAO data) to Dw0 ¼ 0:044 adding MBBH standard sirens to the
datasets, even in the best scenario where LISA alone can only reach a 20% relative
1r uncertainty on w0 (Tamanini 2017). It is important to remark, however, that these
outcomes are based on a mission duration of 4 years and sources are limited to
MBBHs with EM counterparts. Significant improvements are expected by extending
the data taking time or by combining with information from other sources, notably
EMRIs.

Indeed, recent investigations (Laghi et al. 2021) suggest that EMRIs will deliver
constraints on w0 of the order of � 10%, when inferred simultaneously with wa.
When assuming prior knowledge of H0 and Xm, constraints on w0 are estimated at
the � 7% level in a realistic EMRI scenario, reaching � 5% in the best case (all 90%
C.L.). These results are better than what expected with dark sirens analysis for 3 G
ground-based detectors (Belgacem et al. 2018b), and compatible with what they can
achieve with bright sirens (Belgacem et al. 2019b). While relevant information on w0

can be obtained with moderately low-redshift events, wa is expected to be measurable
only with higher-redshift events, which in the joint cosmological inference of w0 and
wa of Laghi et al. (2021) are not considered, and thus no relevant measurement of wa

is obtained.
Although from these estimates it seems that LISA standard sirens will not be

competitive with future EM observations, we stress that they will anyway provide
independent and complementary measurements which will increase our confidence
on any insight on the nature of DE. This is strikingly important for modified gravity
models of DE, where GWs can indeed provide orthogonal information with respect
to EM observations; see Sect. 4.

2.4.2 Alternative dark energy models

The CPL phenomenological parametrization discussed in the previous subsection
constitutes only a simple approach for detecting deviations from the KCDM. The
theoretical description of DE may require more sophisticated models. Here, we
briefly discuss such a possibility focusing on scenarios that change the background
cosmological expansion with respect to KCDM. We assume the standard evolution
equation for GWs. Possible modifications to GW propagation through cosmological
spacetimes—motivated by modified graviton dispersion relations, or non-minimal
couplings of the dark-energy sector with curvature—are described in Sect. 4.

Models for DE can include quite a large number of parameters, leading to rich
dynamics for the DE sector as a function of redshift. Some investigations aim to
dynamically explain the puzzling small value for the present-day acceleration rate,
leading to a time-dependent evolution of the DE density. These include quintessence
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scenarios (Wetterich 1988; Zlatev et al. 1999), which can be generalised to
kinetically-driven (Armendariz-Picon et al. 2000) and kinetic-braiding models
(Deffayet et al. 2010) without modifying the propagation properties of GWs. Other
scenarios aim to alleviate the coincidence problem relating DE with DM at
intermediate redshifts, for example in the DE-DM interacting models (Wetterich
1995; Amendola 2000), or in Chaplygin gas cosmology (Kamenshchik et al. 2001).
More exotic possibilities include holographic DE, associating the present-day
acceleration of the universe with the size of the particle horizon (Li 2004). See e.g.
Copeland et al. (2006b), Li et al. (2011), Ishak (2019), Huterer and Shafer (2018) for
reviews, including analysis of cosmological implications and observational prospects
of DE scenarios. A recent resurgence of interest on DE model building, based on the
previous approaches, has been motivated by the H0 tension discussed in Sect. 2.3.1;
see Di Valentino et al. (2021) for a review. Among many examples, such tension can
be alleviated in scenarios with DM-DE interactions or with features at small or
intermediate redshifts (Di Valentino et al. 2017, 2016; Keeley et al. 2019; Raveri
2020), in ranges that might be probed with GW sirens. See e.g. Knox and Millea
(2020) for a comprehensive discussion on this topic, including comparison between
theoretical ideas and existing cosmological constraints.

These theoretical models suggest that distinctive DE effects can occur at different
redshifts, from very small to relatively large values of z. The capability of LISA to
probe cosmological expansion in a large range of redshifts, as discussed in the
previous sections, provides invaluable opportunities for building independent
cosmological tests (see Sect. 2.3.4) and thus to probe different DE scenarios, in a
complementary way with respect to EM probes. A clear example is given by the
investigations of Cai et al. (2017), Caprini and Tamanini (2016) where LISA
forecasts for testing cosmological models allowing for DE-DM interactions or for
early DE have been produced using MBBH as bright sirens. Similar analyses using
LISA dark sirens are still missing in the literature and will constitute material for
future explorations. By considering the results obtained with both SOBBHs and
EMRIs for standard cosmological models (see Sect. 2.3), it would be very interesting
to further develop these studies by designing an efficient, unified method to
reconstruct the redshift dependence of DE with GWs, similar for example to what
already done with EM observations; see e.g. Sahni and Starobinsky (2006).
Assumptions going beyond the linear CPL parameterisation discussed in the previous
section might be better suited to test specific alternative scenarios, or for improving
the DE reconstruction in a wider redshift interval, e.g. through polynomial fitting
(Alam et al. 2003). Alternatively, methods based on a principal component analysis
of a binned parametrization of the signal as a function of redshift, as proposed in
Huterer and Starkman (2003), might be adapted and applied to GWobservations with
LISA.

Besides the alternative DE models already considered in the literature, there are
plenty of others that can still be tested by LISA and for which detailed analyses will
be needed in the forthcoming years in order to understand how well LISA will
constrain them and thus to better assess and expand the science case of the mission.
We conclude by mentioning again that the nature of DE can be further investigated if
this is connected to an underlying gravitational theory beyond GR. In this case new
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observational signatures might appear, giving rise to a richer phenomenology and to
more promising LISA results. Such models and analyses will be discussed in Sect. 4
in the context of modified theories of gravity (Baker et al. 2021).

2.5 Synergy with other cosmological measurements

GW observations by LISA will provide a wealth of cosmological information as we
have seen in the previous sections. But LISA will not be alone in the quest of
understanding the cosmic history. It is thus of great importance to assess how LISA
could complement with other facilities. In what comes next, we discuss LISA
synergies with EM observatories and other GW detectors.

2.5.1 Integration with standard electromagnetic observations

To date, most studies constraining cosmological parameters with GWs have focused
on the Hubble parameter, see Sect. 2.3.2. This is because the cosmological
information in GW amplitudes is primarily held in the luminosity distance of the
source, DL, which for low redshifts (z � 1) can be approximated to DL ’ cz=H0.
The majority of LISA sources will exist at higher redshifts where this approximation
breaks down. Instead the full expression for the luminosity distance must be used
(see Eq. (1)) and so GW amplitudes in principle have sensitivity to further
cosmological parameters traditionally measured electromagnetically, such as the
fractional densities Xm and XK, and the DE EoS parameters w0 and wa, see
Sects. 2.3.3 and 2.4.

A key outstanding question is whether specific combinations of EM and GW
probes have the ability to improve constraints on these parameters and break
degeneracies between them. Details about the galaxy surveys co-temporal with LISA
are not available at present, but as a conservative approach we can consider ‘Stage
IV’ experiments planned over the next decade, such as DESI, Euclid, the Vera C.
Rubin Observatory, and the Roman Space Telescope (Aghamousa et al. 2016;
Laureijs et al. 2011; Schmidt et al. 2020; Spergel et al. 2015). The corresponding
CMB data will come from the LiteBIRD mission (Hazumi et al. 2012). Direct cross-
correlation of GW sources with galaxy catalogues will be considered in Sect. 2.6.
Here we focus instead on probe combination, though we note that there is a lack of
comprehensive studies on this topic in the current literature.

One advantage leveraged by Stage IV galaxy surveys is the ability to combine
multiple probes from the same instrument. Most commonly the main probes are shear
power spectra from galaxy weak lensing, BAO measurements from galaxy
clustering, supernovae, and, additionally, strong gravitational lenses in some
analyses. As examples of the expected constraints, Zhan and Tyson (2018) provides
forecasts for standard cosmological parameters using weak lensing, BAO and
supernovae data from the Vera C. Rubin Observatory, combined with current Planck
CMB data. The resulting 68% confidence intervals on w0;waf g and xm ¼ Xmh2 are
7:05� 10�2; 1:86� 10�1
� �

and 7:73� 10�4 respectively, with h being the
normalised Hubble parameter. Similar results are expected from the Euclid space
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mission, which should yield 68% confidence intervals around
3� 10�2; 1:3� 10�1
� �

for w0;waf g. Comparing these values to the forecasts using
LISA EMRI detections presented in Laghi et al. (2021), it seems unlikely that LISA
will be able to offer competitive constraints on Xm. However, in mildly optimistic
scenarios they may offer moderate constraints on the DE parameters, with (Laghi
et al. 2021) forecasting 95% confidence intervals on w0;waf g of approximately
6:5� 10�2; 6:5� 10�1
� �

for a four-year LISA mission and optimistic MBH
population models.

An alternative strategy is to find probe combinations where GW data can break
degeneracies existing between EM probes. One such example is put forwards in Qi
et al. (2021), which determines forecasts for the combination BNS data from the
DECihertz Interferometer Gravitational wave Observatory (DECIGO) with mea-
surements of redshift drift (the Sandage–Loeb effect, Loeb 1998) from the SKA and
the European-Extremely Large Telescope (E-ELT). Redshift drift measurements use
high-resolution spectroscopy of the HI emission line (SKA) or Lyman-a absorption
lines in quasar spectra (E-ELT) over long time frames (10 years?) to directly
measure tiny shifts the line frequencies. Although experimentally challenging, this
constitutes a direct measurement of H(z), as opposed to the integrated effect of H(z)
probed by luminosity distances; see Eq. (1).

GWs can likewise offer a direct measurement of H(z) through the dipole of the
luminosity distance. Equation (1) gives the luminosity distance-redshift relation in a
perfectly homogeneous and isotropic universe; in fact small corrections to this are
induced by gravitational lensing and peculiar velocities. As shown in Bonvin et al.
(2006a), Bonvin et al. (2006b) for the EM case (see e.g. Nishizawa et al. 2011 for the
GW case), the peculiar motion of our Galaxy with respect to the CMB frame induces
a dipole mode in the luminosity distances. This dipole moment is given by

Dð1Þ
L ðzÞ ¼ jv0j ð1þ zÞ2

HðzÞ ; ð5Þ

where v0 is the dipole anisotropy in the CMB, estimated to be approximately
369:1� 0:9 km/s. Combining measurements of this dipole from DECIGO BNS
sources with the redshift drift measurements above, Qi et al. (2021) finds substantial
breaking of degeneracies in the H0 � Xm plane, leading to 1-r bounds on fH0;Xmg
of f0:78 km s�1Mpc�1; 0:006g, competitive with current bounds. Mild improve-
ments on the constant DE EoS were also obtained (rw0 � 0:03), though no mean-
ingful constraint on wa was possible. Further analyses are needed to properly
understand if such method can equally be applied to LISA.

On cosmological scales, a bias prescription is used to model how GW events trace
the large-scale DM distribution. Analogously to galaxy bias, the GW bias is
modelled as scale-independent on large scales. Using the parameterisation
bGWðzÞ ¼ b0GW ð1þ zÞa, Mukherjee et al. (2021d) finds the parameters b0GW and a
to be uncorrelated with H0 and Xm for a KCDM model (w0 ¼ �1 fixed). This
suggests cautious optimism that combined GW and EM constraints on cosmological
parameters should not be strongly sensitive to the GW bias prescription.
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2.5.2 Complementarity with other gravitational-wave observatories

In addition to the synergies with other cosmological surveys, LISA will also build
new synergies with other GW detectors. In particular, LISAwill be able to detect the
early inspiral phase of compact binary coalescences that later merge within the
frequency bands of Earth-based interferometers. Some example signals are displayed
in the left panel of Fig. 3. Because the same signal is detected across different
frequencies, these events are known as multi-band. Different populations of BBHs
could become multi-band sources. Most notably, the SOBBHs that current LIGO/
Virgo detectors are observing could have been seen if LISA was online a few years
before these detections (Sesana 2016). Nonetheless, LISA high frequency sensitivity
limits their number (Moore et al. 2019). If present in nature, IMBBHs would be more
promising candidates (Amaro-Seoane and Santamaria 2010; Jani et al. 2019; Sedda
et al. 2020), and possibly yield interesting cosmological results (Muttoni et al. 2022).
There is however a limit to their masses, because if they are too heavy they will
merge before reaching the frequencies of ground-based detectors. (This limitation
could be removed with a deci-Hertz observatory (Sedda et al. 2020).)

The right panel of Fig. 3 displays the fraction of multi-band events, defined as the
subset of LISA detections merging within 10 years and being detected by a ground-
based instrument (Ezquiaga and Holz 2021). For concreteness we consider Advanced
LIGO (aLIGO), its possible upgrade (A?), Voyager and the third-generation
detectors Cosmic Explorer (CE) and Einstein Telescope (ET). Interestingly, the
multi-band fraction peaks where the upper end of the PISN mass gap is expected to
be found, implying that far-side binaries could be promising multi-band sources
(Ezquiaga and Holz 2021). As noted in Gerosa et al. (2019), for Mtot.100M�, there
is no difference for the multi-band ratio between 2 G and 3 G detectors because the
fraction is limited by LISA high-frequency range. On the contrary, for
Mtot [ 200M� the difference among ground-based detectors are sizeable and
depends mostly on their low frequency sensitivity.

Besides individual sources, LISA and ground-based detectors could share
SGWBs. For example the background of unresolved SOBBHs could be within the
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reach of LISA detectability (Sesana 2016). Similarly, binaries above the PISN gap
could leave an additional background (Mangiagli et al. 2019).

Finally, LISA could also complement other space-based detectors. In particular,
there are several proposals such as Taiji (Ruan et al. 2020a) and TianQin Wang et al.
(2020a) that could potentially fly at the same time as LISA. These additional
detectors would help improve the cosmological inference (Wang et al. 2022a, b;
Baral et al. 2020; Zhao et al. 2020). Moreover, any further detector in the deci-Hertz
frequency band would be an excellent addition to LISA science (Sedda et al. 2020).

Altogether, LISA and the other GW observatories will all contribute to a standard
siren measurement of H(z) across a broad redshift range.

2.6 Cross-correlation and interaction with large scale structure

GW maps of resolved events or SGWB can be cross-correlated with other large-
scale-structure (LSS) tracers to perform a variety of astrophysical and cosmological
measurements. Here we focus on the use of the SGWB measurements while
technicalities about this signal are postponed to Sec. 5.

2.6.1 Cross-correlations with resolved events

The analysis of the cross-correlations between galaxy surveys and resolved GW
events from compact object mergers has a rich scientific potential (Laguna et al.
2010). From binary mergers with an EM counterpart, such an analysis can constrain
DE and modified gravity models (Camera and Nishizawa 2013). A similar analysis
for sources as the first ones detected by LIGO/Virgo, yields constraints on the
distance-redshift relation, the Hubble constant and other cosmological parameters
(Oguri 2016). PBH scenarios as well as different astrophysical models can also be
tested (Raccanelli et al. 2016; Raccanelli 2017; Scelfo et al. 2018, 2020).

The cross-correlation of the resolved GW sources with galaxies is a further
promising avenue. It enables the measurement of the redshift of the GW sources that
do not have EM counterpart. This technique makes it possible to measure the value
of Hubble constant, the matter density, the DE EoS and its redshift evolution from the
GW sources. Along with probing the expansion history of the universe, it also
provides evidence on the relation between the GW sources and DM distribution
through the redshift-dependent galaxy bias parameter b(z) (Oguri 2016; Raccanelli
et al. 2016; Scelfo et al. 2018; Mukherjee and Wandelt 2018; Mukherjee et al.
2021d).

The observable considered for such studies is the (3D) angular power spectrum:

CGW;LSS
‘ ðz1; z2Þ ¼ 2

p

Z
dkk2PðkÞWGW

‘ ðkÞWLSS
‘ ðkÞ: ð6Þ

The two WX
‘ ðzÞ kernels encapsulate the physical processes in place:
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WX
‘ ðkÞ ¼

Z
NX ðzÞbX ðzÞDðzÞW ðzÞDX

‘ ðk; zÞ dz; ð7Þ

where X stands for either GW or LSS when considering one or the other observable,
and W(z) are the observational window functions related to the experiment specifi-
cations. The D‘ðk; zÞ terms are the observed overdensities including effects from the
intrinsic clustering, velocity effects (redshift-space distortions and Doppler), lensing
and gravitational potentials, respectively, and they include information on galaxy
clustering, gravity, and of course cosmological and astrophysical parameters:

D‘ðk; zÞ ¼ Dden
‘ ðk; zÞ þ Dvel

‘ ðk; zÞ þ Dlen
‘ ðk; zÞ þ Dgr

‘ ðk; zÞ ; ð8Þ
for the complete expression of those terms, see e.g. Bonvin and Durrer (2011), Scelfo
et al. (2018). In particular, this correlation can constrain DE and modified gravity
models (Camera and Nishizawa 2013; Raccanelli 2017). In this case, the modifica-
tions due to different models of gravity and DE enter in the W‘ kernels, and the
advantage of using the GW-LSS cross-correlation comes from the complementarity
with other measurements as well as the potentially higher redshift range for the GW
bin.

The fact that GW events trace the LSS allows us to also test and constrain
astrophysical models (Scelfo et al. 2020; Libanore et al. 2021). In this case, the
change in the model C‘ will be in the merger rate, the redshift distribution and the
bias of the compact objects’ hosts.

Merging of BHs that are the endpoint of stellar evolution happens almost
exclusively in galaxies that had sufficient star formation, and therefore in halos with a
relatively large galaxy bias (bg [ 1). Conversely, PBHs preferentially merge in lower
biased objects, and thus have a lower cross-correlation with luminous galaxies (Bird
et al. 2016). Therefore, the cross-correlation of GW maps with galaxies, which can
measure the bias of the BBH hosts, provides information on the abundance of PBHs
(Raccanelli et al. 2016; Scelfo et al. 2018) (for more details on PBHs, see Sect. 10).

Further correlations contain other useful information. The tomographic shear
maps and the number density distribution of GW sources, combined with shear-shear
and GW-GW auto-correlations, also constrain the cosmological parameters (Osato
2018), though these require a large number of GW detections which LISA is not
expected to observe. Nevertheless thanks to GW-LSS cross-correlations with LISA
and future galaxy survey data, the detection of GW weak lensing seems viable
(Mukherjee et al. 2020b). The cross-correlation between GW weak-lensing and
CMB-lensing might also allow to test fundamental predictions of GR (Mukherjee
et al. 2020a).

2.6.2 Cross-correlations with the stochastic gravitational-wave background

A complementary study to the cross-correlation between GW resolved sources and
LSS is the cross-correlation with the astrophysical SGWB. There are at least two
astrophysical backgrounds that LISA will detect: one contribution generated by the
galactic binary (GB) mergers, which is expected to dominate at low frequencies (up
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to � 10�3 Hz), and one coming from extragalactic BBH inspirals, expected to be
relevant at larger frequencies (� 10�3–10�2 Hz). Several phenomena in the early
universe also source a stochastic signal whose strength is poorly predicted (see
Sect. 5 and subsequent sections). The SGWB is then expected to be a combination of
an astrophysical and a cosmological component, and a priori any of the two can
dominate the SGWB signal in the LISA band. In order to be sensitive to both of
them, it is of fundamental importance to find ways to disentangle the two signals. The
spectral shape of each contribution is a standard tool to try to disentangle the
components, however, due to the richness of sources expected in the LISA band, it is
worth finding other ways to characterise the SGWB contributions. A promising
approach consists in cross-correlating the SGWB with matter distribution at late
times. Since, as we will see, the GW energy density depends on cosmological
perturbations (besides astrophysical dependencies), it correlates with other cosmo-
logical probes. Some analyses and forecasts of the cross-correlation signals between
GW observatories and future galaxy surveys, as e.g. Euclid and SKA, are presented
in Contaldi (2017), Cusin et al. (2017), Cusin et al. (2018b), Cusin et al. (2018a),
Jenkins et al. (2019a), Jenkins and Sakellariadou (2018), Jenkins et al. (2018), Cusin
et al. (2019b), Cusin et al. (2020), Jenkins and Sakellariadou (2019), Jenkins et al.
(2019b), Bertacca et al. (2020), Pitrou et al. (2020), Mukherjee and Silk (2020),
Alonso et al. (2020b). These cross-correlations not only can be useful to disentangle
the origin of the SGWB, but represent completely new observables to infer
cosmological information. For instance, along with the spatial fluctuation of the
astrophysical SGWB, its temporal fluctuation provides a measurement of the high
redshift merger rate of the astrophysical sources contributing to the SGWB
(Mukherjee and Silk 2020).

As for the case of resolved events, the observable quantity is the angular cross
power spectrum, between the galaxies overdensity and the energy density of the
astrophysical SGWB, hereafter labelled AGWB:

CAGWB�LSS
‘ ¼ 2

p

Z
k2dkPfðkÞDAGWB

‘ ðkÞDLSS
‘ ðkÞ; ð9Þ

where PfðkÞ ¼ As k=kpivot
� �ns�1

is the scale-invariant curvature power spectrum, with
As and ns the amplitude and tilt respectively, while kpivot is the pivot scale. The two

transfer functions, DAGWB
‘ ðkÞ and DLSS

‘ ðkÞ, contain astrophysical and cosmological
information (see the previous section). The astrophysical information can be included
focusing on the anisotropies of the astrophysical SGWB energy density. The total
GW energy density per logarithmic frequency fo and solid angle Xo along the line-of-
sight n of a SGWB is (Cusin et al. 2017; Bertacca et al. 2020)

XTOT
GW fo; nð Þ ¼ fo

qc

dqtotGW

dfodXo
: ð10Þ

It contains both a background (monopole) contribution in the observed frame
�XGWðfoÞ, which is homogeneous and isotropic, and a direction-dependent contribu-
tion XGWðfo; nÞ. Starting from these, we can define the total relative fluctuation
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as DTOT
AGWBðfo; n̂Þ ¼ XTOT

AGWB � �X
TOT
AGWB

� �
= �X

TOT
AGWB. The contributions to the astro-

physical SGWB energy density fluctuation are computed in Contaldi (2017), Cusin
et al. (2017), Cusin et al. (2018b), Cusin et al. (2018a), Cusin et al. (2019a), Jenkins
et al. (2019a), Jenkins and Sakellariadou (2018), Cusin et al. (2019b), Cusin et al.
(2020), Jenkins and Sakellariadou (2019), Jenkins et al. (2019b), Bertacca et al.
(2020), Pitrou et al. (2020), Alonso et al. (2020b). Here, following Bertacca et al.
(2020), we report its expression in the Poisson gauge

DXAGWBðfo; n̂; hÞ ¼
X
½i


Z
dzW ðzÞF ½i
ðfo; z; hÞ

(
b½i
D

þ b½i
evo � 2� H0

H2

	 

n̂ � V� 1

H
okðn̂ � VÞ � ðb½i
evo � 3ÞHV

þ 3� b½i
evo þ
H0

H2

	 

Wþ 1

H
U0 þ 2� b½i
evo þ

H0

H2

	 
Z vðzÞ

0
d~v U0 þW0ð Þ

þ b½i
evo � 2� H0

H2

	 

Wo �H0

Z s0

0
ds

WðsÞ
1þ zðsÞ

����
o
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ð11Þ
where the density, velocity, gravity and observer terms, in the first, second, third and
fourth line, respectively contain all the cosmological information. On the other hand,

the function F ½i
ðfo; z; hÞ contains all the astrophysical dependencies: e.g. the mass
and spin distribution of the binary, the emitted GW energy spectrum, the clustering
properties of GW events and the details of the GW detectors. The functions b½i
ðz; hÞ
and b½i
evoðz; hÞ are the bias and the evolution bias of the i-th type of GW source, which
specify the clustering properties of GW sources and characterise the formation of
sources.

The cross-correlation analysis of the astrophysical SGWB (from sources at all
redshifts along the line of sight) with galaxy number counts at a given redshift leads
to a tomographic reconstruction of the redshift distribution of the sources (Cusin
et al. 2018a; Mukherjee and Silk 2020; Cañas Herrera et al. 2020; Alonso et al.
2020b; Cusin et al. 2019b; Yang et al. 2020a). Subtleties about the noise and other
characteristics of the detector play an important role, so that cross-checks on the
detector performances are possible by means of this analysis (Bertacca et al. 2020;
Alonso et al. 2020b). Overall, the cross-correlation analysis shows that the
combination of galaxy surveys with the astrophysical SGWB can be a powerful
probe for GW physics and multi-messenger cosmology.

2.6.3 Large-scale structure effects on gravitational-wave luminosity distance
estimates

Here we discuss the effect of cosmological perturbations and inhomogeneities on
estimates of the luminosity distance of compact object binary mergers through GWs.
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It is important to account for such effects on GW propagation to obtain robust
measurements for precision cosmography.

The main attempts to investigate perturbation effects on GWs involve the
integrated Sachs–Wolfe effect (Laguna et al. 2010), peculiar velocities or acceler-
ations (Kocsis et al. 2006; Bonvin et al. 2017; Tamanini et al. 2020; Mukherjee et al.
2021c; Nicolaou et al. 2020), lensing (Pyne et al. 1996; Wang et al. 1996; Takahashi
and Nakamura 2003; Sathyaprakash et al. 2010; Dai et al. 2017; Takahashi 2017;
Baker and Trodden 2017; Dai and Venumadhav 2017; Haris et al. 2018; Dai et al.
2018; Oguri 2018; Contigiani 2020; Ezquiaga and Zumalacárregui 2020; Ezquiaga
et al. 2020b) and environmental effects (Barausse et al. 2014). Coherent peculiar
velocity of the binaries at low redshift and weak gravitational lensing by intervening
inhomogeneities can affect the identification of the hosts’ redshift. This introduces
changes of typically a few percent (but occasionally much larger) in the flux, while
not significantly affecting the redshift, and thus provides a source of noise in the
DLðzÞ � z relation (Sathyaprakash et al. 2010; Hirata et al. 2010). Using the local
wave zone approximation to define the tetrads at source position (Maggiore 2007),
the corrections to the luminosity distance read (Bonvin et al. 2017; Bertacca et al.
2018)3

DDL

�DL
¼ 1� 1

H�v

	 

vk �

Z �v

0
d~v

�v� ~vð Þ
~v�v

MXUþ

þ 1

H�v
U� 2 1� 1

H�v

	 
Z �v

0
d~vU0 � 2Uþ 2

�v

Z �v

0
d~vU;

ð12Þ

where prime denotes the derivative with respect to g and H ¼ a0=a,
MX � �v2 �r2

? ¼ �v2ð �r2 � �o
2
k � 2�v�1�okÞ ¼ ðcot oh þ o2h þ ou= sin2 hÞ. We can recog-

nise in Eq. (12) the presence of a velocity term (the first term), followed by a lensing
contribution, and the final four terms account for the Sachs–Wolfe, Integrated Sachs–
Wolfe, volume and Shapiro time-delay effects.

The additional DL uncertainty due to the inclusion of perturbations is expected to
peak at low-z due to velocity contributions; however, velocity effects rapidly
decrease and lensing takes over (Bertacca et al. 2018). Those results indicate that the
amplitude of the corrections could be important for future interferometers such as
LISA.

In presence of DE or modifications of gravity, the GW luminosity distance might
differ from the EM signals also for large-scale fluctuations (Garoffolo et al. 2020;
Dalang et al. 2020; Jana et al. 2021; Dalang et al. 2021). In particular, linearised
fluctuations of the GW luminosity distance contain contributions directly propor-
tional to the clustering of the DE field (Garoffolo et al. 2020, 2021) and by
combining luminosity distance measurements from GWand supernovae sources, it is
possible to uncover field inhomogeneities detecting them directly. see e.g. Van
Den Broeck et al. (2010) for an analysis of weak lensing effects in the measurement
of the DE EoS with LISA.

3 For simplicity, we have dropped all contributions evaluated at the observer, assuming concordance
background model, and work in Poisson Gauge.

123

Cosmology with the Laser Interferometer Space Antenna Page 31 of 254     5 



3 Gravitational lensing of gravitational-wave signals

Section coordinators: D. Bacon, M. Zumalacarregui. Contributors: D. Bacon,
G. Congedo, G. Cusin, J.M. Ezquiaga, S. Mukherjee, M. Zumalacarregui.

3.1 Introduction

Similarly to EM radiation, GWs feel the gravitational potential of both massive
objects and also the LSS while traveling across the universe. This opens the
possibility of both probing the distribution of structure in the cosmos and the
fundamentals of the underlying gravitational interactions. LISA will offer a unique
perspective since it will detect high-redshift GWs in a lower frequency band
compared to ground-based detectors, increasing the lensing probabilities and the
detectability of diffraction effects.

GW lensing phenomena are characterized by two properties: the convergence j4

(governing whether there is weak or strong gravitational lensing) and a dimensionless
frequency w (governing whether wave optics or geometric optics is relevant). The
convergence, j, is defined as the integral along the line of sight of the redshift-
weighted second derivative of the Newtonian potential. Depending on the strength of
the gravitational potential, two gravitational lensing regimes exist: weak (j � 1) or
strong (j ’ 1). In the first case, the main observable effect is magnification or
demagnification of the observed flux (or equivalently a change in the inferred
luminosity distance). In the second case the effect can be both a magnification/
demagnification and also production of multiple signals with a time delay that is a
function of the lens properties. We will examine both regimes in Sects. 3.2 and 3.3
below.

The low frequency and phase coherence of GWs allows the observation of wave
effects. It is convenient to define the dimensionless frequency

w ¼ 8pGMLf ¼ 4p
ML

108M�

	 

f

mHz

	 

; ð13Þ

as well as a magnification factor FðwÞ ¼ hðwÞlensed=hðwÞunlensed, where ML is the
redshifted lens mass. GW lensing is accurately described by geometric optics only if
w  1 (more precisely, wD~tj  1 for all images). Then, the amplification factor (the
ratio between the lensed and unlensed waveform) is a sum over multiple images j:

FðwÞ ¼
X
j

jljj1=2 expðiwD~tj � ipnjÞ; ð14Þ

where lj is the magnification, D~tj is the time delay (in units of 4GML) evaluated on
the j-th image position. Here nj is the Morse phase of the image, respectively 0, 1/2, 1
for minima, saddle point and maxima of the time delay function (Schneider et al.

4 Because GW sources are effectively point-like, no image distortions are observable and shear influences
GW observations only through its effect on the magnification. This is very different from lensing of
galaxies, where shear distortions are directly observable.
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1992; Takahashi and Nakamura 2003). These image types are also known as type I,
II and III respectively.

For low (w considerably less than 1) or intermediate (w� 1) frequencies it is
necessary to consider the wave optics regime, where the amplification factor is

FðwÞ ¼ w

2pi

Z
dx2 expðiwD~tðx~; b~ÞÞ; ð15Þ

where the time delay D~tðx~; b~Þ is now a function of the (normalized) lens plane

coordinate x~ and source location b~. (see Takahashi and Nakamura 2003 for details).
The low frequency limit w � 1 corresponds to F � 1, or no magnification. This can
be understood as a wave not being sensitive to an object whose effective size is
smaller than its wavelength. The high frequency limit corresponds to the geometric
optics result Eq. (14), as can be obtained from a Gaussian expansion around the
images, which correspond to the extrema of the time delay d~t (sub-dominant cor-
rections to geometric optics can be computed (Takahashi 2004)). We will discuss
wave effects in gravitational lensing and LISA opportunities in Sect. 3.4.

3.2 Weak lensing

The first regime that GWs will undergo is weak lensing. Because of the relatively
deep observations LISA will be able to achieve (median z� 2, reaching out much
deeper depending on source types) most of the observed events (if not all) will be
subjected to lensing by the large scale structure. In recent years weak lensing has
become one of the primary tools in cosmology to study the distribution of DM and
the nature of DE (through the evolution with redshift). Galaxy lensing surveys such
as KiDS (Heymans et al. 2021) and DES (Troxel et al. 2018) are now providing
tighter constraints on cosmological parameters, such as geometry parameters (H0,
Xm, and XK) and matter clustering parameters (r8 and nS) to a few percent level.
Soon Euclid (Blanchard et al. 2020) and the Vera C. Rubin Observatory (Abell et al.
2009) will further constrain those parameters, extending the analysis to DE (w0 and
wa) and various models beyond KCDM, down to the percent level. Most likely, the
study of systematic errors affecting those measurements will be the topic of the next
decade or so. GWs have the potential to revolutionize the field with virtually bias-
free measurements of the luminosity distance. In fact, LISAwill give us the first deep
luminosity distance measurements that will be both accurate (as this relies on
assuming GR is the correct theory) and also precise with typical errors up to a few
percent depending on source type and position in the sky. At the same time, the
typical root-mean-squared error due to lensing is 0.02 for z\1 and ramping up quite
rapidly with redshift (Cusin and Tamanini 2021). This will be a source of unwanted
bias and extra noise in the Hubble diagram inference, which must be accounted for in
the analysis. However, if modelling of the lensing is introduced, then this systematic
error can become a new piece of useful information. For these reasons LISAwill also
establish the groundwork for planned second generation space-based detectors.
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3.2.1 As a source of noise and bias for standard sirens

Magnified sources are easier to detect than de-magnified sources. This simple fact
biases the distribution of lensing magnifications of an observed source sample.
Lensing selection effects are often neglected when estimating the lensing-induced
uncertainty on the cosmological distance measurement from high-redshift GW
sources. However, when selection effects are included, flux conservation is no longer
enforced, and the mean of the magnification distribution is shifted from 1 for
sufficiently high-redshift sources. This introduces an irreducible (multiplicative) bias
on the distance reconstruction, independent of the sample size. in Cusin and
Tamanini (2021) the effect of selection bias on a population of MBBHs is examined,
for different scenarios of MBH formation. It is shown that, while the effect of the bias
on the distance estimator for sources with an EM counterpart is typically below the
variance threshold, it becomes relevant for high redshift sources when the statistics of
detectable events is large (e.g. when MBHs form at high redshift from remnants of
Population III stars), and it should be taken into account in population studies.

3.2.2 As a probe complementary to standard sirens

Thanks to the variety and large number of sources, LISAwill be able to probe a wide
range of redshifts with sufficient statistical significance to constrain cosmological
parameters. LISA will be able to measure luminosity distances to within a few
percent with optimistic estimates pushing this limit down to one percent. Hence,
weak lensing by the LSS will be expected to dominate the error budget of any
luminosity distance measure for most sources with EM counterparts (e.g. MBBHs),
whose median redshift is � 2 (Caprini and Tamanini 2016). This has to be taken into
account in geometric analyses, such as the luminosity distance-redshift relationship
as illustrated in the previous sections. Here we explore an avenue to extract
additional cosmological information: it is well known that the weak lensing signal for
background objects is correlated with foreground large scale structure. Foreground
over- (under-) densities will magnify (demagnify) the observed luminosity distance
to background sources by a small factor. This can be expressed in terms of the
convergence via

D0
L ¼ ð1� jÞDL; ð16Þ

where DL is the (unknown) unlensed distance, j is the projected 2D convergence,
and D0

L is the (observed) lensed distance. The observed luminosity distance now
incorporates information about the convergence field, which in turn is cosmology
dependent. In fact its power spectrum has cosmological information imprinted into it
that can be extracted from data. It was long ago speculated that this signal could be
exploited if large enough statistics (very high number densities and very precise
distance measurements) were available in the future with second generation space
detectors such as BBO (Cutler and Holz 2009). This approach was then applied to
third-generation ground based detectors and deci-Hz space detectors to prove that the
method would in principle be applicable to DE and modified gravity in a
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tomographic analysis (Camera and Nishizawa 2013). More recently, it was shown
that a joint analysis of lensing and distance-redshift on a combined dataset of LISA
and third generation ground detectors would allow us to jointly constrain geometry
parameters (such as H0 and density) and clustering parameters (r8 and ns) at the same
time with percent precision (KCDM with curvature, nominal distance errors, and
nominal number density) (Congedo and Taylor 2019; Mpetha et al. 2023). This is
because a geometry probe such as distance-redshift can act as a strong prior to break
degeneracies that are usually present in lensing. LISA will have good enough
statistics to prove that such analysis is indeed possible, bringing in independent
constraints on additional cosmological parameters such as r8. LISA will be able to
perform a combined analysis of this type with other third-generation ground-based
detectors such as ET, as well as proposed space-borne detectors operating in other
bands (One such proposal is a deci-Hz detector currently under evaluation by ESA
(Baker et al. 2021)). In this way LISA will provide an independent measurement of
weak lensing, and expand the field of statistical cosmology to GWs in the mHz
range.

3.3 Strong lensing

The probability that a GW is lensed depends on the redshift of the source and the
distribution of lenses. The merger rate at high redshift depends on the astrophysical
formation channels which can affect the event rate of well detected events and the
sub-threshold lensed events observed by LIGO/Virgo (Mukherjee et al. 2021a) or, in
future, by CE and ET (Piórkowska et al. 2013; Biesiada et al. 2014; Ding et al. 2015).
One of the robust ways to predict the lensing event rate is by using the detection or an
upper bound on the amplitude of the SGWB (Mukherjee et al. 2021b; Buscicchio
et al. 2020). For high-redshift GWs, the intervening matter between the source and
the observer magnifies the GW signal, thereby introducing a systematic error in the
luminosity distance determination. Correcting for this weak lensing effect is relevant
when inferring cosmological parameters from GW standard sirens (Hughes and Holz
2003; Hirata et al. 2010); see Sect. 3.2. But a fraction of these GW events pass close
enough to the lens so that lensing produces multiple images of the same event. LISA
could detect a few strongly-lensed massive BBH during its mission (Sereno et al.
2010). The detection of multiple lensing events could provide new means for
cosmography with LISA (Sereno et al. 2011). Owing to its better sky localization and
parameter estimation, LISA may be less susceptible to strong lensing false alarms
(unlensed events that mimic lensing due to coincidental overlap of parameters)
compared to the LIGO/Virgo detector network.

In the strong lensing regime the time delay between the images increases linearly
with the mass of the lens, reaching delays of months for a 1012 M� galaxy lens. Each
of the lensed images has a different magnification, but they also acquire a fixed phase
shift depending on how many times the image has crossed a lens caustic (Schneider
et al. 1992); recall the ipnj term in Eq. (14). The origin of this phase shift can be also
understood from the folding of the wavefront, which in strong-lensing configurations
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produces a phase of the waveform associated with the properties of the lensing
potential (Schneider et al. 1992; Dai and Venumadhav 2017).

In the case of minima of the lensing potential (type I images), there is no phase
shift and the lensed waveform reproduces exactly (modulo magnification) the shape
of the emitted signal. For maxima (type III), there is an overall change of the sign,
e�ip ¼ �1, but the morphology of the signal remains intact. However, for saddle
points (type II), the associated phase shift can distort the waveform, since the
frequency-independent phase shift will introduce a frequency-dependent time delay
that will differentially transform the GW signal (Ezquiaga et al. 2021). For non-
precessing, quasi-circular orbits of equal mass binaries the emitted GWs are
dominated by a single quadrupole radiation mode (22). In that case, the lensing phase
shift accounts for a p=4 shift of the coalescence phase (Dai and Venumadhav 2017;
Ezquiaga et al. 2021). Nonetheless, whenever higher modes, precession or
eccentricity are relevant, the lensed waveform is modified so that it does not
conform with expectation from (unlensed) templates in GR (Ezquiaga et al. 2021).
This sets up the possibility that type II images near the detection threshold might be
missed with standard template bank searches, but also offers the opportunity of
identifying strongly lensed events with a single type II image if the SNR is high
enough. Explorations of the capabilities of third generation ground-based detectors to
identify type II images are performed in Wang et al. (2021b).

Precise measurement of the phase of long duration signals by LISA could be key
in distinguishing different types of lensed images (Ezquiaga et al. 2021). The
observation of very high SNR MBBHs and sources with very asymmetric masses,
such as IMRIs and EMRIs, could give LISA a unique opportunity to identify
strongly lensed events, even when detecting a single image, i.e. one term in Eq. (14),
if the other images are received outside of the observing window or are too faint to be
recovered.

Another very strong lensing effect can exist for LISA MBBH sources. If we
observe these in EM during the inspiral, we expect self-lensing flares to occur when
the two BHs are aligned with the line-of-sight (to within about an Einstein radius). In
a recent pair of papers (Davelaar and Haiman 2022a, b), a binary emission model was
ray-traced, and a distinct feature was found in the light curve imprinted by the BH
shadow from the lensed BH. A dip occurs in the lightcurve when the foreground BH
lenses the shadowed part of the background BH. This could make it possible to
extract BH shadows that are spatially unresolvable by high-resolution very-long
baseline interferometry. These shadows are another probe of the metric around the
MBH.

3.4 Wave effects

GWs can be emitted at low frequencies (w.1), allowing the observation of wave
diffractive phenomena. For typical LISA sources, wave optics as in Eq. (15) needs to
be considered for lenses with masses ML � 106 � 109 M�, cf. Eq. (13). In contrast,
wave effects in gravitational lensing are not observed for EM sources, due to the
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finite size of these sources and their high EM frequencies (w  1), cf. Figs. 12, 13 of
Oguri (2019).

Wave effects produce a frequency-dependent amplification factor F. At very low
frequencies w � 1 no magnification occurs, F � 1, as a wave is not affected by an
object smaller than its wavelength. As the frequency increases, an oscillatory pattern
emerges, caused by the superposition of different images. This pattern persists for
GWs even in the geometric optics limit w  1 through the exponents in Eq. (14). We
do not see this pattern for optical EM sources due to incoherent emission and lack of
time resolution. Note that diffraction prevents the magnification for GWs from
diverging, even for perfectly aligned, symmetric lenses with normalized impact

parameter jb~j=RE ! 0. An inspiralling binary sweeps through a range of frequencies
before coalescence; a gravitational lens imprints the frequency-dependent amplifi-
cation factor into the waveform. These effects are shown in Fig. 4.

Several studies address the detectability of wave effects by LISA. Sereno et al.
(2010) estimates that a handful of strongly lensed events (.5) will be observed in a 5
year mission. Because the lensing probabilities are dominated by galactic halos with
ML � 1012 M�, wave effects are likely to be unimportant for most strongly lensed
LISA sources. However, frequency-dependent diffraction effects in the weak lensing
regime may be detectable for a small fraction of sources: (Gao et al. 2022) find that
0:1�1:6% of LISA’s MBBH with total mass 105�106:5 M� and redshift 4�10 may
present detectable wave-optics. LISA provides new opportunities to observe these
frequency-dependent effects and use them to probe the large-scale structure of the
universe at the scale of sub-halos.

Wave effects can help identify GW signals (or groups of them) as lensed events
and characterize gravitational lenses. We discuss both possibilities below.

3.4.1 Identification of lensed signals

Diffraction-induced features in the gravitational waveform could be used to identify
the event as lensed. The main target for ground detectors is the first diffraction peak,
appearing at low frequencies (Dai et al. 2018). These diffraction effects can be

10−3 10−2

Frequency [Hz]

10−19

G
W
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itu
de

magnification
onset (w ∼ 1)

diffraction pattern

Unlensed signal 105M , q = 1

lensed signal ML = 2·108M , b = 2RE

LISA sensitivity

Fig. 4 GW lensing and wave effects. Left panel: Amplification |F(w)| caused by a point lens in the wave
optics regime. Low frequency signals w � 1 undergo no magnification. An oscillatory pattern emerges at
higher frequencies. Right panel: Imprint of strong lensing on a MBBH source, as observed by LISA. The
frequency dependence (onset of magnification, diffraction pattern) carries information about the
gravitational lens
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detected even for impact parameters comparable to the Einstein radius bJRE, for
which there is only one image in the geometric optics limit. Orbital parameters are
expected to have some degeneracies with diffraction, but it is in principle possible to
distinguish them. Spin precession creates a modulation that affects the amplitude
more than the phase (while diffraction affects both equally). Orbital eccentricity can
be distinguished by higher harmonics in GWs, which are not induced by gravitational
lensing.

Wave effects may produce systematic errors in different analyses. Diffraction-
induced distortions make the GW phase appear to arrive earlier than an unlensed EM
signal (Takahashi 2017; Morita and Soda 2019), although this is only an apparent
superluminality (Suyama 2020; Ezquiaga et al. 2020b). This effect has to be taken
into account (Ezquiaga et al. 2020b) when, for example, inferring constraints on the
speed of gravity from the possible pre-merger modulated EM brightness of a MBB
(Haiman 2017).

The interplay between wave optics and gravitational polarizations may provide
alternative means to characterize lensed GWs. This has been investigated using low-
frequency corrections to geometric optics. These corrections cause the polarization
plane defined in geometric optics to become blurred due to diffraction effects, which
leads to the rise of apparent vector and scalar polarization modes (Cusin and Lagos
2020). Moreover, GWs in curved space propagate on different geodesics depending
on their circular polarization (an effect known as the gravitational spin hall effect)
(Yamamoto 2018; Andersson et al. 2021). These effects might provide means to
characterize lensed GWs. As they are suppressed by factors of the GW frequency,
these phenomena are more important for LISA than for ground-based detectors.

3.4.2 Reconstruction of large scale structure and lens properties

GW diffraction is sensitive to the power spectrum of matter density fluctuations on
very small physical scales (Oguri and Takahashi 2020). Ground detectors are
sensitive to this power spectrum at wavenumbers where baryonic effects are smallest,
k� 106hMpc�1 for f � 0:1� 1Hz. Individual high SNR sources at high redshift,
such as LISA observed MBBHs, may be sensitive to frequency-dependent
modulations of the GW phase and amplitude (SNR J500 at mHz frequency,
zS � 3, cf. Fig. 12 of Oguri and Takahashi (2020)). Lensing induced diffraction can
be enhanced substantially in non-standard scenarios that affect the small-scale power
spectrum (e.g. PBHs).

Wave effects can then improve the chances of detection and provide additional
information about the lens. Inspiralling binaries detectable by LISA sweep through a
range of frequencies that might include the onset of diffraction for w� 1 and/or the
characteristic diffraction pattern for w[ 1; see Eq. (13). For the case of LISA
MBBHs lensed by point masses and singular isothermal spheres, diffraction allows
for a determination of lens mass and source position at the level of 10% to � 0:1%
for ML.107 M� and MLJ108 M� for SNR � 1000 (Takahashi and Nakamura
2003). Point lenses can be identified for large impact parameters b=RE �Oð10Þ
(rather than � 1), increasing significantly the likelihood of detection / b2.
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Diffraction is also sensitive to cuspy (or singular) matter distributions, producing an

image with magnification l�ðGMf Þa�3 for a profile with central density q� r�a

(0\a	 2) (Takahashi 2004). Frequency-dependent wave effects can be used to
individually detect DM subhalos with M.107 M� and even measure their mass
profiles, although LISA might not provide enough events with sufficiently high SNR
(Choi et al. 2021).

Investigations of microlensing (the effect of small-scale structure, such as stars, on
the images produced by a large lens) have focused on LIGO-Virgo sources.
Microlenses have masses such that wave diffraction effects are important at LISA
frequencies, and would normally not leave an observable imprint (magnification
� 1). However, they can be observed if they are present in regions of high
magnification of the macrolens, such as caustics (Diego et al. 2019). Nevertheless, in
most situations the macrolens model will be a sufficient description (Cheung et al.
2021). GW microlensing is also sensitive to the stellar mass function, particularly in
regions of high magnification (Mishra et al. 2021).

4 Constraints on modified gravity theories

Section coordinator: D. Vernieri. Contributors: T. Baker, E. Belgacem, G. Calcagni,
M. Crisostomi, N. Frusciante, K. Koyama, L. Lombriser, M. Maggiore, S. Mukherjee,
M. Sakellariadou, I. D. Saltas, D. Vernieri, F. Vernizzi, M. Zumalacarregui.

4.1 Models and theories

GWastronomy offers a new window to test gravity complementing cosmological and
astrophysical tests. GWs detectors can allow to measure the cosmological expansion,
thus providing independent measurements of both the equation of state of dark
energy and Hubble parameter. In particular, in the latter case, it can be used to help
resolving the Hubble tension. Furthermore there are keys features in the propagation
of GWs in theories beyond GR, such as the modification in the friction term,
difference in the speed of propagation, additional polarizations, etc, which will
provide unique ways for testing signatures of new physics beyond GR.

To test GR using the propagation of GWs, it is useful to compare it to other
models that predict observational deviations. The simplest case that one can consider
is the presence of an additional scalar interaction, e.g. a so-called scalar-tensor theory
of gravity. Over the years, increasingly more general theories devoid of Ostrogradsky
instabilities (Ostrogradksi 1850) have been introduced with the aim to account for the
most general modification in this setup. The advent of the Galileon field theory
(Nicolis et al. 2009) quickly led to its covariant generalization (Deffayet et al. 2011)
and so to the reappraisal of the Horndeski theory (Horndeski 1974), i.e. the most
general scalar-tensor theory with second order field equations. Relaxing this last
assumption in a suitable way, has resulted in the beyond-Horndeski (Zumalacárregui
and García-Bellido 2014) or Gleyzes–Langlois–Piazza–Vernizzi model (Gleyzes
et al. 2015a, b), and subsequently degenerate higher-order scalar-tensor theories
(Langlois and Noui 2016; Crisostomi et al. 2016; Ben Achour et al. 2016).
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At low energy, those relevant for cosmology, the Lagrangian of these theories
schematically reads (Pirtskhalava et al. 2015)

L ¼
X1
n¼0

X3
m¼0

cn;mð/ÞK4
2

ðo/Þ2
K4

2

 !n
h/

K3
3

 !m

þ � � � ; ð17Þ

where cn;mð/Þ are dimensionless coefficients that depend mildly on /, K2 corre-
sponds to the spontaneous Lorentz breaking scale, K3 is related to the ultraviolet
(UV) cut-off of these scalar-field theories while the ellipses refer to suitable gravi-
tational terms necessary to keep the equations of motion of the propagating degrees
of freedom of second order. Higher derivative terms with m[ 0 have been intro-
duced in cosmology to explain the accelerated expansion without a cosmological
constant and simultaneously pass Solar System tests (Luty et al. 2003; Nicolis et al.
2009) using the so-called Vainshtein screening mechanism (Vainshtein 1972; Babi-
chev and Deffayet 2013). In this case, the two scales must be chosen as

K2 �ðMPlH0Þ1=2 and K3 �ðMPlH2
0 Þ1=3, where MPl is the Planck mass and H0 the

value of the current Hubble constant.
The above models represent low energy effective field theory (EFT) whose cut-off

scale can be chosen according to the certain type of phenomenology they aim to
describe, e.g. DE. An alternative path to follow is to work out cosmological
phenomena in a top-down way (Calcagni 2020) starting from a fundamental theory
of gravitational and matter interactions, such as quantum gravity.

Quantum gravity is a generic name applied to any theory where the gravitational
interaction is consistent with the laws of quantum mechanics. Exploring the
cosmological implications of these theories is important to assess how LISA can
contribute to our knowledge of fundamental physics.

The corrections to cosmological dynamics and evolution of the universe arising in
quantum-gravity scenarios are expected to be very small since they dominate at
Planck scales ‘Pl or high curvature, compared to horizon scales H�1

0 � 1060‘Pl or low
curvature. However, this may hold true for perturbative curvature corrections to GR,
while other mechanisms may enhance deviations from classical gravity either by
inflation of metric fluctuations to cosmic scales at early times or by non-perturbative
cumulative effects on the propagation of GWs. The former mechanism will be
explored in Sect. 9.3, while the latter will be developed in this section in parallel with
the other models. In particular, the dimension of spacetime in quantum gravity
changes with the scale probed and this can affect both the dispersion relation of GWs
and the luminosity distance of GW astrophysical sources (Calcagni et al. 2019a, b).

Quantum effects can also manifest themselves as non-local terms in the quantum
effective action, and these can affect the long-distance dynamics of the theory. In
particular, assuming a non-local term that corresponds to a dynamical generation of a
mass for the conformal mode leads to a predictive model that passes all current
cosmological constraints (Maggiore 2014; Belgacem et al. 2018c, 2020) and predicts
modified GW propagation. In this model the effect can be quite large, leading, at the
redshifts accessible to LISA, to deviations from GR that can be as large as 80%
(Belgacem et al. 2019a, 2020).
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The gravitational interaction can be modified by considering a Lagrangian
constructed with a general function of the scalar associated with non-metricity Q, i.e.
f(Q) (Nester and Yo 1999; Beltrán Jiménez et al. 2020b; Bajardi et al. 2020). In this
theory at least two additional scalar modes are introduced with respect to GR. The
equivalent of GR is obtained when the Lagrangian coincides with the non-metricity
scalar (Beltrán Jiménez et al. 2019). The f(Q) theory modifies the propagation
equation of GWs due to an additional scale-independent friction term which is related
to a time-dependent effective Planck mass (Beltrán Jiménez et al. 2018). As a
consequence, the GW luminosity distance, DGW

L , differs from the standard EM
luminosity distance, Dem

L (Frusciante 2021). For a specific model it has been shown
(Frusciante 2021) that at the redshifts relevant for LISA, the deviations with respect
to the standard cosmological model can be relevant depending on the value of the
free parameter and that GW detectors such as LISA show a strong power in
constraining it.

4.2 General expression for modified cosmological gravitational-wave
propagation

4.2.1 Modified cosmological gravitational-wave propagation

The GW propagation over cosmological distances for generalised theories of gravity
and other extensions of KCDM can be parametrised by the wave equation (Saltas
et al. 2014; Gleyzes et al. 2015c; Lombriser and Taylor 2016; Nishizawa 2018;
Belgacem et al. 2018a; Ezquiaga and Zumalacárregui 2018; Lombriser 2018;
Belgacem et al. 2019c)

h00A þ 2 1� dðg; kÞ½ 
H h0A þ c2T ðg; kÞ k2 þ m2
T ðg; kÞ

� 
hA ¼ PA; ð18Þ

where the primes indicate derivatives with respect to conformal time g. Here, we
assume that the GW propagates far away from the source in the form of a plane
wave. The modified friction (d), speed (c2T ), mass (m2

T ) and the source (PA) are in
general assumed to be functions of both time and wave-number k.5 Furthermore,
parity-violating theories could also introduce a dependence of these quantities on the
polarization index A.

As regards the friction term, within theories beyond GR next to the standard
Hubble friction, one may encounter an extra contribution described through d. The
latter can for instance parametrise an effective Planck mass evolution rate or the
impact of extra dimensions, or the effect of other modifications of GR at the
cosmological scale. The wave propagation may further be modified by a deviation in
its speed cT and the mass of the graviton mT . Finally, in standard GR the source term
is due to the anisotropic stress tensor (a typical mechanism that can generate it is
neutrino free streaming, see e.g. Section 19.5.3 of Maggiore (2018)), and in modified
gravity can in general get further contributions (as is the case for instance in bimetric
theories (Hassan and Rosen 2012)). In several modified gravity theories, the only

5 The function d is also indicated with other names in the literature, such as m and aM , related to d by
m ¼ aM ¼ �2d. Here we follow the notation of Belgacem et al. (2019c).
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modification is in the friction term and is wavenumber-independent, so that Eq. (18)
reads

h00A þ 2H½1� dðgÞ
h0A þ k2hA ¼ 0: ð19Þ
In that case, the effect of the modification is such that, from the measurement of the
waveform of the inspiral of a coalescing binary, we do not get the standard lumi-
nosity distance obtained from EM signals (that, in this context, we will denote by
Dem

L ), but rather a GW luminosity distance, DGW
L :¼ 1=hA defined as the inverse of

the strain amplitude, up to a constant coefficient. In the case of Eq. (19), this quantity
is related to Dem

L by (Belgacem et al. 2018a)

DGW
L ðzÞ ¼ Dem

L ðzÞ exp �
Z z

0

dz0

1þ z0
dðz0Þ

� �
: ð20Þ

For the purpose of comparison with the data, it is convenient to have a simple
parametrization of this effect in terms of a few parameters, rather than a full function
of redshift (similarly to the ðw0;waÞ parametrization of the DE EoS). In practice, just
as for the DE EoS, a parametrization is useful only if it is quite economical, with at
most two parameters, otherwise it will be difficult to extract them from the data. For
modified GW propagation, a convenient choice is (Belgacem et al. 2018b)

DGW
L ðzÞ

Dem
L ðzÞ ¼ N0 þ 1� N0

ð1þ zÞn ; ð21Þ

which depends on the two parameters ðN0; nÞ. This parametrization reproduces the
fact that, as z ! 0, the ratio DGW

L =Dem
L must go to one since as the redshift of the

source goes to zero, there can be no effect from modified propagation. In the opposite
limit of large redshifts, in Eq. (21) DGW

L =Dem
L goes to a constant value N0. This

reproduces what happens in typical DE models, where deviations from GR only
appear in the recent cosmological epoch, so that dðzÞ goes to zero at large redshift
and DGW

L ðzÞ=Dem
L ðzÞ saturates to a constant. Equation (21) indeed fits the explicit

results from a large class of modified gravity models (Belgacem et al. 2019c). The
modification in the luminosity distance shown in Eq. (21) can be tested from
observations by combining with EM observational probes such as the BAO and
CMB. By combining the BAO angular scale hBAOðzÞ with the measured luminosity
distance from the GW sources and the sound horizon scale from CMB rs, one can
write a unique relation to measure the parameters N0 and n (Mukherjee et al. 2021e):

DGW
L ðzÞhBAOðzÞ ¼

�
N0 þ 1� N0

ð1þ zÞn
�
ð1þ zÞrs: ð22Þ

If GR is the correct theory of gravity, the above equation indicates that the product of
hBAOðzÞ and DGW

L ðzÞ should scale as ð1þ zÞrs as a function of redshift. Otherwise, it
will exhibit a departure from ð1þ zÞrs which can be explored to reconstruct the
parameters N0 and n for both bright and dark standard sirens as a function of redshift
(Mukherjee et al. 2021e).
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The ðN0; nÞ parametrization is the one in terms of which have been written explicit
codes and Markov Chain Monte Carlo (MCMC), in order to assess the sensitivity of
LISA to modified GW propagation, including the degeneracies of N0 with other
parameters such as w0, see below. Other two-parameter parametrizations can be
found in Belgacem et al. (2019c), Calcagni et al. (2019b).

4.2.2 The damping term (standard sirens)

Late-time constraints on the modified damping term have been forecasted in
Lombriser and Taylor (2016), Belgacem et al. (2018a), Amendola et al. (2018a),
Belgacem et al. (2019c), Baker and Harrison (2021), Mukherjee et al. (2021e),
Frusciante (2021) based on standard siren tests (Schutz 1986; Holz and Hughes
2005), and early-time modifications can be constrained by CMB B-modes
(Amendola et al. 2014). However, the dark sirens detected by LIGO and Virgo
already impose some actual limits on N0 (Arai and Nishizawa 2018; Belgacem et al.
2018b; Lagos et al. 2019; Finke et al. 2021). The modified friction term can also be
constrained with GW data only analyzing the mass distribution of compact binaries
(Ezquiaga 2021), similarly to the methods developed to bound H0 and other
cosmological parameters (Farr et al. 2019; Ezquiaga and Holz 2021; Mastrogiovanni
et al. 2021). So far there has not been much exploration of a possible frequency
dependence of d. (See, however, Belgacem et al. (2019c) for forecasts on oscillations
in the GW amplitude.)

In specific models of modified gravity, the parameters effecting the GW
luminosity distance also impact EM observables. For the Horndeski family of
theories, constraints of this type can be found in Alonso et al. (2017), Spurio Mancini
et al. (2019), Bonilla et al. (2020), Allahyari et al. (2022), and the combination of
EM?GW constraints in Noller and Nicola (2019), Baker and Harrison (2021).

In certain theories GWs can decay via interactions. This effect is induced by non-
linear couplings from m ¼ 2 in Eq. (17), as the spontaneous violation of Lorentz
symmetry allows GWs to decay into two scalar excitations perturbatively (Creminelli
et al. 2018) or with resonant enhancement (Creminelli et al. 2019) for which,
importantly, LISA will probe a different and complementary region of the parameter
space already constrained by LIGO/Virgo.

4.2.3 The gravitational-wave speed

The GW speed cT is constrained by a variety of measurements. The detection of ultra
high energy cosmic rays implies a strong constraint on gravitational Cherenkov
radiation from subluminal propagation of the waves, as otherwise the radiation would
decay away at a rate proportional to the square of their energy Oð1011 GeVÞ before
reaching us (Moore and Nelson 2001; Caves 1980; Kimura and Yamamoto 2012).
For galactic Oð10 kpcÞ or cosmological Oð1 GpcÞ origin, the relative deviation in cT
is constrained to be smaller than Oð10�15Þ or Oð10�19Þ, respectively. This bound,
however, only applies for subluminal propagation, redshifts of z.0:1, and
modifications in the high-energy regime.
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Another constraint on cT at the subpercent level can be inferred from the energy
loss in binary pulsar systems (Beltran Jimenez et al. 2016; Brax et al. 2016).
Constraints on cT have also been discussed as forecasts for potential arrival time
comparisons with nearby supernovae emissions (Nishizawa and Nakamura 2014;
Saltas et al. 2014; Lombriser and Taylor 2016; Brax et al. 2016), which are however
very rare, for LISA eclipsing binary systems (Bettoni et al. 2017), or the weak
bounds that can be inferred without counterpart emissions from BBH mergers
(Cornish et al. 2017), from the comparison of the GW arrival times between the
terrestrial detectors (Blas et al. 2016), or the CMB B-mode power spectrum (Raveri
et al. 2015) for early-time modifications. A stringent and prominent direct constraint
on deviations of cT=c ¼ 1 of .Oð10�15Þ was obtained from the arrival times of the
GWs from the LIGO/Virgo event GW170817 (Abbott et al. 2017d, c) and its EM
counterparts. As anticipated, the measurement left a strong impact across a wide
range of cosmic acceleration models (Lombriser and Taylor 2016; McManus et al.
2016; Lombriser and Lima 2017; Creminelli and Vernizzi 2017; Sakstein and Jain
2017; Ezquiaga and Zumalacárregui 2017; Baker et al. 2017). This can be observed

from Eq. (17): for _/
2 �K4

2 and H
_/�K3

3, a cT very close to c implies a fine tuning of
the coefficients cn;2 and cn;3 for all n.

Importantly, however, the constraint only applies to low redshifts of z.0:01 and
the LIGO/Virgo frequency range (Battye et al. 2018; de Rham and Melville 2018). In
particular, it was argued that UV completion terms for modified gravity theories
naturally recover a luminal speed of gravity in the high-energy limit tested by
GW170817 while allowing deviations at lower energies relevant to modifications that
could drive cosmic acceleration (de Rham and Melville 2018). LISA will provide a
threefold improvement over a GW170817-like bound. With the detection of GWs
from massive BBHs up to z� 10 and their EM counterparts cT will be tested across
much larger distances, tightening the current constraint. Additionally, a more robust
measurement of arrival-time delays can be achieved (Mangiagli et al. 2020; Haiman
2017; Tang et al. 2018). Furthermore, LISA tests the frequency range below the
expected UV transition of modified gravity models (de Rham and Melville 2018).
Besides providing a new test of GR at different energy scales, a measurement of the
speed of GWs with LISA is thus of particular relevance to cosmic acceleration
models. Another way to relax the constraints on cT is by considering larger values of

K3 or smaller values of _/
2
. For instance, it was noted that by raising K3 in Eq. (17)

by three orders of magnitudes is enough to agree with most of the constraints
discussed in this section (Noller et al. 2020). Although this means that cosmological
effects of these theories become irrelevant, their consequences could become
manifest in compact astrophysical objects, potentially probed by LISA.

4.2.4 Dispersion

An energy E dependent GW velocity is also introduced with non-vanishing graviton

mass mg ¼ lh=c2 6¼ 0, where the group velocity becomes ðvg=cÞ ’ 1� ðmgc2=EÞ2.
The combination of current LIGO/Virgo sources yields a constraint of mg 	 1:76�
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10�32 GeV=c2 (Abbott et al. 2021f). More distant and more massive sources are
generally more effective in constraining the dispersion relation and the lower energy
range of LISA will be favourable for tightening the bounds on mg. Currently, the
strongest bound on the mass of the graviton with mg 	 7� 10�41 GeV=c2 is inferred
from weak gravitational lensing (Choudhury et al. 2004).

Frequency dependent modifications in the velocity term of Eq. (18) can also more
generally be parametrised with the group velocity
ðvg=cÞ ’ 1þ ða� 1ÞAaEa�2 þOðA2

aÞ, where a and Aa may parametrise quantum-
gravity effects, extra dimensions, or Lorentz invariance violations (Mirshekari et al.
2012). The parametrisation recovers for instance the effect of a massive graviton for
a ¼ 0 with A0 ¼ m2

gc
4. In quantum gravity, the parameter a depends on the

dimension of spacetime and of momentum space (Calcagni et al. 2019b).

4.2.5 Interaction terms and gravitational-wave oscillations

Finally, the presence of a source term P 6¼ 0 further modifies the GWamplitude with
an oscillatory correction of order Pcij=ðHkÞ (Nishizawa 2018). This effective source
term appears naturally in theories with multiple tensor fields. These tensor fields
could have a fundamental origin like in bigravity (de Rham et al. 2011; Hassan and
Rosen 2012) or they could be an effective field arising from a combination of
multiple vector fields as in Yang-Mills (Cervero and Jacobs 1978; Galtsov and
Volkov 1991; Darian and Kunzle 1997), Abelian multi gauge fields in a gaugid
configuration (Piazza et al. 2017) and multi Proca fields (Armendariz-Picon 2004;
Hull et al. 2015; Allys et al. 2016; Beltran Jimenez and Heisenberg 2017). (see
Beltrán Jiménez et al. 2020a for a survey of the theory landscape.) The induced GW
oscillations have been studied in concrete examples such as (Max et al. 2017, 2018)
and gauge field DE (Caldwell et al. 2016; Caldwell and Devulder 2019). The
presence of additional tensor modes can leave an imprint in the luminosity distance,
introduce waveform modulations and chiral effects (Beltrán Jiménez et al. 2020a).

The effect of GW oscillations on the luminosity distance can be constrained with
LISA standard sirens (Belgacem et al. 2019c) (see Sec. 3.3). In the coherent regime,
GW oscillations appear as frequency dependent modulations of the waveform and
can thus be tested without the need of redshift information, cf. Fig. 11 in Belgacem
et al. (2019c). GW oscillations in bigravity depend on a mixing angle (defining the
interaction between the two spin-2 fields) and are suppressed by the graviton mass as
~m2
g=f

2. The lower frequency range and high SNR will allow LISA to improve

constraints on mg to mg.2 � 10�25eV, an improvement by 3 orders of magnitude with
respect to current LVK bounds (mg.10�22Þ eV (Max et al. 2017).

4.2.6 Polarisation effects, gravitational-wave lensing and triple systems

GW propagation beyond GR can lead to effects on standard (þ;�) or novel GW
polarizations (e.g. scalar and vector waves). Due to Lorentz symmetry and parity, on
the homogeneous FLRW background h�; hþ interacts only with additional tensor
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polarizations, either fundamental (bigravity, multigravity) or composite (multiple
vector fields), leading to the effects discussed in Sect. 4.2.5. Theories including
parity-violating interactions can lead to propagation effects on left/right polarized
GWs (Alexander et al. 2008; Okounkova et al. 2022).

Interactions between standard and novel polarizations in parity-preserving theories
occur beyond the homogeneous background, leading to new phenomena in GW
lensing beyond GR (Ezquiaga and Zumalacárregui 2020). Locally, the propagating
field is a superposition of the þ;� and novel polarizations, known as propagation
eigenstates. Propagation eigenstates evolve independently with a well defined speed
that can depend on the position and direction. In general, each propagation eigenstate
has a different speed, leading to birefringence (polarization dependent arrival time
and deflection angles). Birefringence causes very distinct effects when the (total)
time delay between different polarizations is shorter than the duration of the signal in
the observable band. Long signals at high redshift (e.g. MBBHs) will allow LISA to
probe birefringence in ways complementary to ground detectors.

GW lensing beyond GR can be particularly powerful in configurations in which
the source and the lens are in close proximity. Interesting targets for LISA are stellar
mass binaries in the vicinity of a MBH (a scenario suggested by the possible EM
counterpart to GW190521, Graham et al. 2020). GW birefringence effects can be
strongly enhanced by the strong gravity, potentially allowing tests of Horndeski
theories at even higher precision than GW170817 (cf. Sect. 4.2.3 and Fig. 16 in
Ezquiaga and Zumalacárregui 2020). GW emission by a binary near a MBH can be
affected by the scalar hair of the central body (Brax et al. 2020). A stellar-mass
binary orbiting a MBH undergoes a characteristic Doppler shift and (possibly) a
strong lensing pattern that can be used to identify the triple system (Toubiana et al.
2021). Those systems can excite the quasi-normal modes of the central BH during
the inspiral, with stellar-mass binaries detected by LISA sensitive to central masses
M � 106 M� (Cardoso et al. 2021). These configurations will allow LISA to perform
novel tests of GR, either through the confirmation of the triple-nature of the system or
by direct detection of quasi-normal modes.

4.2.7 Relation to ppE framework

The modifications in Eq. (18) can also be cast into the parameterized post-Einsteinian
(ppE) framework (Yunes and Pretorius 2009), introduced to parametrise the effects of
GR departures in the dynamical strong-field regime on the gravitational waveforms
from the binary coalescence of compact objects,

hðf Þ ¼ 1þ
X
j

aju
j

 !
ei
P

k
bku

k

hGRðf Þ; ð23Þ

where u � ðpMf Þ1=3 with chirp massM and frequency f. The GR waveform hGRðf Þ
is reproduced for vanishing aj and bk . The series in aj can be expressed as an integral
over d whereas the series in bk may be expressed as an integral involving cT and mT

(Nishizawa 2018). In the ppE subclass of the generalised inspiral-merger-ringdown
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waveform model hðf Þ ¼ eidUgIMRhGRðf Þ (Li et al. 2012) (see e.g. (Nishizawa 2018)
for the deatils of this parameterization) the modification is hence independent of d.
The above parametrization has been further extended to include parity violating
effects and then used to put constraints on parity violation in gravity by using the
LIGO/Virgo O1/O2 catalog (Yamada and Tanaka 2020).

4.3 Open problems

An interesting open problem is the mixture of propagation and source effects for
extended theories of gravity and the role of screening mechanisms. A post-
Newtonian expansion for the source emission in screened regimes can be performed
using a scaling relation (McManus et al. 2017; Renevey et al. 2020). For some GR
extensions the relevant modification in m are in fact determined by the screened
environments of emitter and observer rather than the cosmological background
whereas for cT screening effects may safely be neglected.

In addition to the effects on the propagation of GWs, modified gravity theories can
also affect the generation of GWs. Shift-symmetric scalar-tensor theories are
particularly suited for describing DE since they mediate a long range (massless)
interaction. However, in these theories, there is a no-hair theorem that proves that the
only BH solution is locally isometric to Schwarzschild (Hui and Nicolis 2013;
Creminelli et al. 2020a). One way to avoid the no-hair theorem is to consider a time
dependent scalar field solution and a number of hairy BH solutions have been found
in Horndeski, beyond-Horndeski as well as degenerate higher-order scalar-tensor
theories (Babichev et al. 2016). Another possibility for hairy BH solutions is to
involve the coupling with the Gauss–Bonnet invariant (Sotiriou and Zhou 2014). A
no-hair theorem also exists for neutron stars (Barausse and Yagi 2015; Lehébel et al.
2017). Again the time dependence of the scalar field can evade this no-hair theorem
(Sakstein et al. 2017; Ogawa et al. 2020). It is still an open question whether these
hairy solutions can be formed dynamically and how they modify the generation of
GWs such as BH ringdown (Noller et al. 2020). We note that even if modified gravity
theories predict the same BH solutions in static environments, this is not necessarily
the case in dynamical situations, and also their perturbations are different in different
theories (Barausse and Sotiriou 2008; Tattersall et al. 2018).

An interesting possibility to evade such no-hair theorems, at least for neutron
stars, is to allow for a conformal coupling with matter. The conformal coupling
breaks the shift symmetry, but so long as this is Planck suppressed, this breaking will
be soft. In this case non-trivial solutions featuring screening exist (Babichev et al.
2009) and, most importantly, pass the test of non-linear numerical evolution (ter Haar
et al. 2021).

These modified gravity theories admit the existence of scalar GWs. A detection of
scalar GWs is a smoking gun for the deviation from general relativity (Scharre and
Will 2002). Screening mechanisms are expected to suppress the generation of scalar
GWs (Dar et al. 2019), however, very recently, numerical relativity simulations have
been performed, which point at a partial breakdown of the screening in BH collapse
(ter Haar et al. 2021; Bezares et al. 2021) and in the late inspiral and merger of BNSs
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(Bezares et al. 2022). In more detail, stellar collapse seems (quite surprisingly) to
produce a very low frequency signal potentially detectable by LISA, while
waveforms from BNSs seem to deviate from their GR counterparts at the quadrupole
(but not dipole) multipole order.

Finally, there are various theoretical constraints on modified gravity models
considered in this section. A notable one is the decay of GWs into scalar field
perturbations (Creminelli et al. 2018, 2019). This is due to the low strong-coupling
scale of the theory, which is close to the energy scale probed by LIGO/Virgo. Other
constraints can be placed in terms with m ¼ 1 and m ¼ 2 in Eq. (17), and come from
avoiding instabilities in the scalar field sector that can be induced by passing GWs
(Creminelli et al. 2020b). If new states are present at a scale parametrically below the
cut-off, the theory is of no use for the GWs predictions at LIGO/Virgo (de Rham and
Melville 2018). LISA will detect GWs at much lower frequencies and will play an
essential role in constraining these theories.

5 Stochastic gravitational-wave background as a probe of the early
universe

Section coordinator: S. Kuroyanagi. Contributors: N. Bartolo, C. Caprini, G. Cusin,
D.G. Figueroa, S. Kuroyanagi, M. Peloso, S. Renaux-Petel, A. Ricciardone.

5.1 Introduction

The SGWB contains information on the GW events that occurred across the whole
history of the universe. Its measurement has an immense value for cosmology. It
gives access to stages of the early universe that cannot be directly probed by either
EM or neutrino observations. The universe before the CMB epoch was indeed not
transparent to photons, and neutrinos produced in the very early universe are too
weak to be detected at current or forthcoming experiments. We now introduce some
key concepts about the SGWB and its observables, while we focus on the physics of
its cosmological sources in the subsequent sections.

5.1.1 What is a stochastic gravitational-wave background?

Early universe phenomena that emit GWs typically lead to the production of a
background of GWs of stochastic nature. This means that the tensor perturbation
hijðx; tÞ that defines the background is a random variable with different realisations
everywhere in space. SGWBs can therefore be characterised only at a statistical level,
by means of ensemble averages. As there is only one observable universe, what is
customary in cosmology is to invoke the ergodic hypothesis, stating that either
spatial or temporal averages are equivalent to an ensemble average of the underlying
statistical distribution. In other words, we interpret that, by observing today a large
region of the universe (or for this matter a given region for long enough time), we
have access to many realisations of the system. This holds under two conditions: 1) if
the universe is almost homogeneous and isotropic at the time of the GW production,
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so that the initial condition for the generation of GWs is the same (in a statistical
sense) everywhere; 2) if the GW source respects causality. Under these circum-
stances, the properties of SGWBs from the early universe can be studied by means of
the ergodic hypothesis.

Due to causality, a cosmological GW source acting at a given time in the early
universe cannot produce a signal correlated at length and time scales larger than the
cosmological horizon at the moment of GW generation. If we denote with a subscript
p the time of production, the (physical) correlation scale of the emitted GWs must
satisfy ‘p 	H�1

p .6 Equivalently, the GW signal cannot be correlated at time scales

larger than Dtp 	H�1
p . At the present time we have access to much larger length and

time scales than today’s redshifted scale associated with H�1
p , so a SGWB signal in

our detectors is perceived as the superposition of many signals uncorrelated in time
and space. The number of independent signals in a given region today can be actually
counted, knowing the evolution of the universe and the details of the GW generation
mechanism.

We note that the above arguments remain valid also for causal sources
continuously emitting GWs over a long period, say during several Hubble times.
The paradigmatic example of this is the case of a cosmic string network, which emits
GWs continuously, all the way from the moment of the phase transition that created
it, till today. The SGWB signal in this case is mostly dominated (at least in the
Nambu Goto (NG) approach to strings, see Sect. 7) by the superposition of the GWs
emitted by sub-horizon string loops. This GW signal is perceived today as a
background formed by the superposition of many GW emissions at different times of
cosmic history, and from many different regions. Therefore the observation of this
signal today cannot be resolved beyond its stochastic nature, exactly for the same
reasons discussed above. The main difference in fact between a continuously sourced
background and one arising from a source localised in time, is rather that the former
extends over a long frequency range, precisely because its source has been emitting
during many Hubble times.

In the case of inflation, the above arguments do not apply, as the causal horizon
grows exponentially during the inflationary phase. Yet, it is well known that inflation
produces a SGWB, as we discuss in Sects. 8 and 9. The inflationary background of
GWs is actually considered to be stochastic because of the intrinsic quantum nature
of the generating process. In particular, this background originates during inflation
due to the quantum vacuum fluctuations of tensor metric perturbations, which
become a random variable. The tensors become effectively classical during the
inflationary accelerated expansion as their wavelengths are exponentially stretched to
super-Hubble scales, where they acquire very large occupation numbers. (See the
discussion e.g. in Caprini and Figueroa (2018).) This transition after Hubble-crossing
renders the tensor perturbation a stochastic variable. When the tensor perturbations
re-enter the Hubble radius during cosmic evolution after inflation, they form a GW
signal that is intrinsically stochastic.

6 Let us note that we have used the inverse Hubble rate H�1
p as the cosmological horizon, as that is a good

approximation for most of the cosmological evolution of the universe, except during inflation.
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Finally, let us notice that the superposition of astrophysical GWs also forms a
SGWB, which will act as a foreground for cosmological SGWBs. We will briefly
review possible astrophysical background contributions expected in the mHz band in
Sect. 5.2.2.

5.1.2 How do we characterize a stochastic gravitational-wave background?

Since we speak about random tensor variables, the Fourier modes hrðk; tÞ are also
considered to be random variables. For statistically homogeneous and isotropic,
unpolarised and Gaussian GW backgrounds, we define the tensor amplitude power
spectrum as

hhrðk; tÞ h�pðq; tÞi ¼
8p5

k3
dð3Þðk � qÞ drp h2cðk; tÞ; ð24Þ

with hc a dimensionless real function, depending only on the time t and the comoving
wave-number k ¼ jkj. The previous factor 8p5 has been chosen so that we can write

hhijðx; tÞ hijðx; tÞi ¼ 2

Z þ1

0

dk

k
h2cðk; tÞ; ð25Þ

with the factor 2 in the RHS as a convention motivated by the fact that the LHS
involves the contribution from two independent polarisations. It is then clear that
hcðk; tÞ represents the characteristic tensor amplitude per logarithmic wave-number
interval and per polarisation state, at a given time t. It is common to denote the

combination hcðk;tÞ2
2 � Phðk; tÞ as power spectrum. This last quantity is used in Secs. 8

and 9.
Another relevant quantity to characterise a SGWB is the spectrum of GW energy

density per logarithmic wave-number interval, dqGW=dlogk, defined as

qGW ¼ h _hijðx; tÞ _hijðx; tÞi
32pG

¼ hh0ijðx; gÞ h0ijðx; gÞi
32pGa2ðgÞ ¼

Z þ1

0

dk

k

dqGW
dlogk

; ð26Þ

where in the second equality we have converted the derivatives with respect to the
physical time t into derivatives with respect to the conformal time g. An expression
for the GW energy density power spectrum dqGW=dlogk valid for free waves inside

the Hubble radius, can be found using the simple relation h0c
2ðk; gÞ ’ k2 h2cðk; gÞ,

where the prime symbol (0) represents the derivative with respect to the conformal

time, and h0c
2ðk; gÞ characterises the expectation value

hh0ijðx; gÞ h0ijðx; gÞi ¼ 2
Rþ1
0

dk
k h0c

2ðk; gÞ. Using this, we arrive at (Caprini and Fig-

ueroa 2018)

dqGW
dlogk

¼ k2 h2cðk; gÞ
16pGa2ðgÞ : ð27Þ

As hcðk; gÞ / 1=aðgÞ for sub-Hubble modes, the GW energy density is diluted as
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radiation with the expansion of the universe, qGW / a�4, as expected for massless
degrees of freedom.

Finally, in order to connect the above expressions with experimental observables,
we need to re-express the GW spectra today in terms of the present-day physical
frequency, f ¼ k=ð2p a0Þ, associated with the comoving wave-number k. In order to
do this, we first write the characteristic tensor amplitude per logarithmic frequency
interval today as hcðf Þ ¼ hcðk; t0Þ. We then define the one-sided spectral density of a
SGWB as

Shðf Þ ¼ h2cðf Þ
2f

; ð28Þ

which has dimensions Hz�1. The reason to define this quantity is that it is directly
comparable to the noise in a detector, parametrised by Snðf Þ. On the other hand, it is
convenient to normalise the spectrum of the GW energy density per logarithmic
frequency interval like

XGWðf Þ ¼ 1

qc

dqGW
dlogf

; ð29Þ

where qc ¼ 3H2=ð8pGÞ is the critical energy density at time t. The quantity tradi-
tionally considered by cosmologists is then

Xð0Þ
GWðf Þ ¼

4p2

3H2
0

f 3 Shðf Þ; ð30Þ

which corresponds to the normalised energy density spectrum today. In terms of the
dimensionless amplitude hc ¼

ffiffiffiffiffiffiffiffiffiffi
2f Sh

p
, we can also write the following relations

Shðf Þ ¼7:98� 10�37 Hz

f

	 
3

h2 XGWðf Þ 1

Hz
; ð31Þ

hcðf Þ ¼1:26� 10�18 Hz

f

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 XGWðf Þ

p
: ð32Þ

5.1.3 Current constraints by other observations

There are several ways to place constraints on the SGWB energy density. We briefly
review different types of observations which provide constraints on the SGWB at
different frequencies.

BBN places a bound on a primordial (i.e. prior to BBN) SGWB as the latter
contributes to the total energy density of extra relativistic species and affects the
expansion rate of the universe during BBN. In order not to spoil BBN by changing
the resulting light-element abundances, the energy density of the SGWB should
satisfy (Caprini and Figueroa 2018; Allen 1996)
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Z
dðln f ÞXGWðf Þh2 	 5:6� 10�6 N ðupperÞ

eff � 3:046
� �

; ð33Þ

where N ðupperÞ
eff is the upper bound on the effective number of relativistic degrees of

freedom Neff . Applying the 2r upper limit for Neff from BBN (obtained by obser-

vations of 4He and D) as N ðupperÞ
eff ¼ 3:41 (Cyburt et al. 2016), we obtain

XGWh2\2:3� 10�6 for a logarithmic frequency bin. This constraint is valid for
GWs generated before the BBN epoch T � 1 MeV.

The CMB is also a powerful tool to constrain the primordial SGWB. CMB
anisotropies on large scales, both in temperature and in polarisation (E and B modes),
can be induced by the tensor metric perturbations. Non-detection of such anisotropies
provides a bound on the tensor-to-scalar ratio r and the current best bound is given by
the combined Planck and BICEP2/Keck data up to 2018: r\0:036 at k ¼
0:05Mpc�1 (Akrami et al. 2020; Ade et al. 2018; Tristram et al. 2021; Ade et al.
2021), which corresponds to XGWh2\1:5� 10�16 at f ¼ 7:7� 10�17 Hz. On small
scales f [ 10�15 Hz, GW modes are well inside the cosmological horizon and
behave like massless neutrinos, contributing to Neff , thus affecting the growth of
density perturbations as well as the expansion rate at recombination (Smith et al.
2006; Sendra and Smith 2012; Clarke et al. 2020). The updated constraint from the
temperature anisotropy is XGWh2\1:7� 10�6 for adiabatic initial conditions and
XGWh2\2:9� 10�7 for homogeneous (non-adiabatic) initial conditions at the 95%
confidence level (Clarke et al. 2020). In the case of adiabatic initial conditions, GW
perturbations evolve in the same way as neutrino perturbations. Most known sources
of a SGWB produce an unperturbed background and we should impose homoge-
neous initial conditions, which assume no initial density perturbation.

Ground-based interferometer experiments, which have sensitivity to the frequency
range of 10� 100Hz, are rapidly improving the upper limit on a SGWB. The latest
constraint by the O3 run of LIGO/Virgo gives XGW\5:8� 10�9 (with h ¼ 0:679) at
the 95% confidence level for a flat (frequency-independent) SGWB (Abbott et al.
2021g). The limit is obtained by combining data from the earlier O1 and O2 runs and
99% of the sensitivity comes from the frequency band 20� 76:6 Hz.

Pulsar timing arrays probe low-frequency GWs at a frequency range of 10�9 and
10�6 Hz. Millisecond pulsars are known to have an extremely stable pulse frequency.
GWs affect the pulse propagation and change the pulse times of arrival, thus their
presence can be tested by regularly monitoring pulse frequencies. Radio telescope
projects, such as NANOGrav (Alam et al. 2021), EPTA (Desvignes et al. 2016), and
PPTA (Kerr et al. 2020), have been updating the upper limit on the GW amplitude,
and recently reported the possible detection of a SGWB (Arzoumanian et al. 2020;
Chen et al. 2021b; Goncharov et al. 2021). The strain amplitude for a f �2=3 power-
law spectrum inferred by the two experiments has central value at hc ¼ 1:92� 10�15

and hc ¼ 2:95� 10�15 at f ¼ 1 yr�1, respectively, which correspond to
XGWh2 ’ 2–5� 10�9 at f ¼ 3:2� 10�8 Hz. A confirmation of quadrupolar spatial
correlations in the signal is needed to establish the detection.
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A SGWB at lHz frequencies can in principle be observed in binary pulsars as well
as in Earth–Moon-like or Earth–Satellites-like systems. The binary system’s orbits
indeed exhibit resonant interactions with the SGWB in some regimes. Current
estimates show that such binaries permit to rule out the existence of a SGWB with
XGWJ6� 10�6 at frequencies f � 1 lHz, with improvement to XGWJ5� 10�9 by
late 2030s (Blas and Jenkins 2022a, b).

5.2 Generation mechanisms

5.2.1 Cosmological

Among the targets of the LISA mission there is the cosmological SGWB, which
includes different sources active in the early universe. Such a background is
characterised by the spectral energy density XGWðf Þ defined in Eq. (29) and by some
peculiar features, which will be described in next sections, that can be useful in the
process of characterisation and disentanglement from the astrophysical background,
like chirality, non-Gaussianity, anisotropies and so on. A very well known example of
a cosmological SGWB is the irreducible GW background due to quantum vacuum
tensor fluctuations produced during inflation, which spans a large range of
frequencies with an almost scale-invariant spectrum. For the simplest realisation of
inflation, it has an amplitude that is too small to be detected by LISA. Besides this,
there are several primordial mechanisms which can lead to a non-flat cosmological-
SGWB frequency profile at the scales probed by GW interferometers (from 10�5 to
102 Hz): from models where the inflaton is coupled with extra (gauge) fields
(Sect. 8.2) (Barnaby and Peloso 2011; Cook and Sorbo 2012; Sorbo 2011; Barnaby
et al. 2012; Dimastrogiovanni et al. 2017; Peloso et al. 2016; Domcke et al. 2016) to
models with features in the scalar power spectrum (Sect. 8.3) (Flauger et al. 2010;
Braglia et al. 2020; Fumagalli et al. 2021a), models where spacetime symmetries are
broken during inflation (Sect. 8.4) (Endlich et al. 2014; Koh et al. 2013; Cannone
et al. 2015a, b; Bartolo et al. 2016a; Ricciardone and Tasinato 2017; Bartolo et al.
2016a; Cannone et al. 2015b; Akhshik et al. 2014; Akhshik 2015), or scenarios
where non-attractor phases characterise the universe evolution (Leach et al. 2001;
Namjoo et al. 2013; Mylova et al. 2018). GWs sourced by second-order scalar
fluctuations (Sect. 10.3) can further be associated with PBH formation (Sect. 10).
These models are characterised by an amplitude which, still respecting the CMB
bounds, have a large amplitude and a peculiar frequency shape which may enable
detection by LISA. A dedicated analysis for the potential of the LISA space-based
interferometer to detect the SGWB produced from different inflationary models has
been performed in Bartolo et al. (2016b). This analysis has shown how LISAwill be
able to probe inflationary scenarios, in a complementary way to CMB experiments.
Besides these, there are some post-inflationary mechanisms which can also generate
GWs with a large amplitude at LISA scales: for instance several setups beyond the
standard model of particle physics (BSM) exhibit a first-order phase transition
(FOPT) around the TeV energy scale that peaks in the LISA frequency window (see
Sect. 6). A dedicated analysis for the detection of a cosmological SGWB from
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FOPTs have been done in Caprini et al. (2016), Caprini et al. (2020). Also cosmic
defects can generate a cosmological SGWB which crosses the frequency window of
the LISA detector. More precisely the GW signal from cosmic defects can be
detected if the energy of the phase transition that created the defects is at the right
scale (see Sect. 7). A recent analysis to probe the ability of LISA to measure this
background, considering leading models of the string networks has been done in
Auclair et al. (2020). In the most optimistic case, LISA might be able to probe
cosmic strings with tensions GlJOð10�17Þ. It has been recently pointed out
(Boileau et al. 2022) that, depending on different assumptions on the astrophysical
background and the galactic foreground, LISA will be able to probe cosmic strings
with tensions GlJOð10�16 � 10�15Þ.

The detection of any of these SGWBs from the early universe, would allow us to
test high energy scales beyond the reach of particle colliders, like the Large Hadron
Collider (LHC).

In Fig. 5 we collect GW cosmological signals expected to peak in the LISA
frequency band and we compare them with the sensitivity of present and future GW
detectors. To this end we use the PLS curves (Thrane and Romano 2013) designed to
graphically assess the ability of a given detector to probe SGWBs: a power-law
frequency spectrum crossing these curves is detected, provided it is not masked by a
greater foreground.

10 15 10 10 10 5 1 105
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10 16
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10 10

10 8

f Hz

GW Energy Density vs Detector Sensitivity

Vacuum GW
Cosmic Strings
Axion Inflation
PBH
Phase Transition

LISA
Einstein Telescope
LIGO Design
NANOGrav
SKA
DECIGO
Planck
LITEBird

Fig. 5 SGWB energy density h2XGW for different cosmological sources compared to the sensitivity of
different GW detectors. As cosmological signals we have the vacuum GW contribution coming from
inflation (grey dashed line) with r ¼ 0:044 and nT ¼ �r=8, the signal expected in axion inflation models
(cyan), the signal generated by cosmic string networks with Gl ¼ 10�10 (brown), the signal generated by a
FOPT with vw ¼ 0:9, a ¼ 0:1, b=H� ¼ 50, g� ¼ 100, T� ¼ 200GeV (pink) and the signal generated at
second-order by the formation mechanism of PBHs with fPBH ¼ 1, r ¼ 0:5, k� ¼ kLISA (orange). For GW
detectors we report the sensitivity of Planck (darker green), LITEBird (green), EPTA (blue), SKA (darker
blue), LISA (red), DECIGO (purple), LIGO Design (black) and ET (darker black)
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5.2.2 Astrophysical

The astrophysical SGWB results from the incoherent superposition of signals emitted
by numerous unresolved astrophysical sources from the onset of stellar activity until
today. As any other background of radiation, the astrophysical SGWB is quantifiable
through its isotropic energy density level and through the spatial angular power
spectrum encoding its anisotropy. Many different astrophysical sources contribute to
the astrophysical SGWB, including SOBBHs and BNSs (Abbott et al. 2016a;
Regimbau et al. 2017; Mandic et al. 2016; Dvorkin et al. 2016a; Nakazato et al.
2016; Dvorkin et al. 2016b; Evangelista and Araujo 2014), merging MBBHs (Kelley
et al. 2017), rotating neutron stars (Surace et al. 2016; Talukder et al. 2014; Lasky
et al. 2013), stellar core collapse (Crocker et al. 2017, 2015) and population III
binaries (Kowalska et al. 2012). The astrophysical information that can be extracted
from the intensity and polarisation maps of the astrophysical SGWB, are the
collective properties of a given population of astrophysical sources (redshift and
mass distribution, local properties of galactic environment,...).

The astrophysical SGWB from BBHs is expected to be dominant in the LISA
band (Dvorkin et al. 2016a) and below, and may become a source of confusion noise
for other sources and cosmological background emissions. Observations with LISA
will allow for the study of some aspects of BBH populations that are difficult to
observe with ground-based interferometers. For example, at the mHz frequencies
accessible to LISA, some of the binaries may not be fully circularised, and their
residual eccentricities may provide an indication to their formation channel. In
particular, binaries formed through dynamical processes in dense stellar clusters can
have measurable eccentricities. These can be constrained for the subset of resolved
merger, and in addition the distribution of eccentricities of the entire population may
also affect the resulting astrophysical SGWB.

The detection of the BNS merger by the LIGO/Virgo network (Abbott et al.
2017d, e, 2020a) and the estimated rate of mergers in the local universe of R ¼
13� 1900 Gpc�3 yr�1 (Abbott et al. 2023) led to the conclusion that in the Hz band
these sources may have a comparable contribution to the astrophysical SGWB
relative to BBHs (Abbott et al. 2018b, 2021g). We may therefore expect that their
contribution to the anisotropies of the astrophysical SGWB will also be important
also for LISA. While it will be difficult to disentangle the relative contributions of
BBHs and BNSs to the overall astrophysical SGWB, especially in view of the large
modelling uncertainty in the BNS merger rates (Chruslinska et al. 2018; Giacobbo
and Mapelli 2019), it is interesting to note that their host galaxies are expected to
have different properties. In the isolated BH formation scenario discussed e.g. in
Cusin et al. (2019b), BH masses are heavily influenced by the metallicity of their
progenitor stars. Specifically, metal-poor stars retain most of their mass throughout
their evolution and collapse to form heavier BHs. As a consequence, these BHs form
preferentially in high-redshift and/or low-mass galaxies (Lamberts et al. 2016; Cao
et al. 2018; Mapelli et al. 2018; Artale et al. 2019). In contrast, NSs can also form in
metal-rich environments. In view of the different clustering properties of the host
galaxy populations, BBHs and BNSs can in principle give rise to very different
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anisotropic components of the astrophysical SGWB (Cusin et al. 2019b). Note that,
to put this into practice, we need to understand better the time delays between
formation and merger, which can change the host galaxy property if delays are long.

Finally, LISA will also allow one to study the astrophysical SGWB from other
types of sources such as close white dwarf binaries (see e.g. Vecchio 2002), which
may also produce anisotropies in the galactic plane (Ungarelli and Vecchio 2001;
Kudoh and Taruya 2005). We refer the reader to Amaro-Seoane et al. (2023) for an
in-depth discussion on the astrophysical populations leading to this and the
aforementioned astrophysical SGWBs.

5.3 Characteristics of the stochastic gravitational-wave background

5.3.1 Frequency profile of the stochastic gravitational-wave background

As described above, there are many different mechanisms to generate a SGWB both
of cosmological and astrophysical origin. The question that arises is, how to
determine the origin of the SGWB, once it is detected. Identifying the SGWB source
is a challenging but crucial task, essential to extract physical information from the
SGWB detection. One of the most useful properties at this aim is the spectral shape
of the SGWB. More specifically, one aims at reconstructing XGW as a function of
frequency, since the frequency profile of the SGWB depends on the generation
mechanisms, thus providing a way to disentangle different SGWB sources. For
example, the SGWB formed by the superposition of extragalactic BBHs and BNSs
has a characteristic frequency profile of XGW / f 2=3, reflecting the frequency
dependence of the inspiral phase of each event, thus enabling us to infer the origin.
Also, see Kuroyanagi et al. (2018) for a list of astrophysical and cosmological
sources, and examples of their frequency profiles. Reconstructing the frequency
profile in detail also allows to explore the possibility that several sourcing
components contribute to the SGWB within the same frequency band, leading to a
complicated spectral shape arising from their superposition.

While the spectral shape of the primordial signal depends very much on the detail
of the source properties, some fairly general considerations on the expected
frequency profile of the cosmological SGWB are still possible, based essentially on
causality (Caprini et al. 2009a). Sources active on a (conformal) time-scale Dt.H�1

p ,

where H�1
p denotes the Hubble time when the source starts operating (we assume

here that this occurs during the radiation dominated era), typically lead to peaked
SGWB signals in terms of the variable XGWðkÞ. On (comoving) wavenumbers
k.1=Dt, in fact, the SGWB source is expected to be uncorrelated both in time and in
space, since k.1=Dt� v=L\1=L for v and L the typical speed and size of the
anisotropic stresses. These latter are the part of the source energy momentum tensor
leading to the GW generation. Since XGWðkÞ is the GW energy density per
logarithmic wave-number, white-noise anisotropic stresses (flat in k) lead to XGWðkÞ
increasing as k3. This increase is expected to change at around kp � 1=Dt� v=L, and
the subsequent behaviour depends on the detail of the time and space structure of the
source (Caprini et al. 2009a). The SGWB spectrum either peaks around kp, and
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decreases for k[ kp with a slope depending on the source characteristics; or it takes
a shallower, but positive slope, in which case the peak occurs at a higher wave-
number. This latter can correspond to an inverse length L�1, though other time and
length scales can also be relevant and show up in the XGWðkÞ spectrum: for example,
the characteristic time-scale over which the source is coherent s\Dt (as opposed to
the source duration Dt), or different length-scales, relevant in the space distribution of
the anisotropic stresses, other than L.

Notable peaks in the spectrum are then expected for SGWB sources characterised
by a finite, short duration Dt.H�1

p . In particular, one example of sources giving rise

to peaked spectra that are relevant for LISA (since they are typically peaking in the
LISA band), are FOPTs related to the electroweak symmetry breaking, as described
in Sect. 6. On the other hand, for generation mechanisms that turn on at a given time
H�1

p in the radiation era, but continue to source GWs throughout the universe

evolution Dt  H�1
p , the region of k3 increase is less and less relevant, being pushed

towards the horizon today. One expects a wide frequency region over which the
signal features a slower increase with k or, in some cases, is constant. The most
noteworthy example for LISA is the SGWB produced by topological defects in the
scaling regime, such as a NG cosmic strings network, which is exactly scale-invariant
in the LISA band for wide regions of the model parameter space (see e.g. Figueroa
et al. 2013 and the discussion in Sect. 7).

Another almost scale-invariant SGWB is the one generated by slow roll inflation.
This constitutes, however, an exception with respect to the cases described above.
The SGWB is in fact generated as the tensor perturbations reenter the horizon during
the radiation and matter eras, and therefore the spectral shape does not depend on the
causal evolution properties of some source anisotropic stresses, but on the
amplification of vacuum tensor perturbations during inflation. In some scenarios in
which the inflaton is coupled to an external field, the SGWB is indeed produced by
the field anisotropic stresses, and one can obtain blue-tilted spectra whose tilt
depends on the model. GWs actively generated at second order in perturbation theory
from large scalar fluctuations could also have peculiar features depending on the
inflaton dynamics. The scenarios pertaining to these categories that are relevant for
LISA are presented in detail elsewhere in this paper (cf. Sects. 8, 10.4, 10.3, and for a
review see Caprini and Figueroa (2018) and references therein).

5.3.2 Anisotropies and propagation effects

Angular anisotropies in the energy density of the SGWB can be an efficient way to
characterise its physical origin and properties. They provide a further tool to help in
disentangling a SGWB of cosmological origin from an astrophysical one, besides the
exploitation of their different frequency dependence. Angular anisotropies can be
imprinted both at the epoch of the SGWB generation and at later times, during its
propagation across cosmological perturbations. As such the anisotropies in the
SGWB can provide a new way to characterise and distinguish various generation
mechanisms of primordial SGWB and they allow one to probe the evolution of
cosmological perturbations. Because the universe is transparent to GWs for sub-
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Planckian energies, the case of a cosmological SGWB represents a privileged
observable to probe the physics of the early universe, and its anisotropies can
preserve the memory of the initial conditions of the universe right after inflation.

We are interested in anisotropies and inhomogeneities in the energy density of the
SGWB, therefore we allow the monopole Eq. (30) to be dependent on space and
direction of observation

XGW ¼ 1

4p

Z
d2n̂xGWðg; x~; q; n̂Þ; ð34Þ

thus defining the energy density contrast as

dGW � dxGWðg; x~; q; n̂Þ
�xGWðg; qÞ ¼ xGWðg; x~; q; n̂Þ � �XGWðq; gÞ

�XGWðq; gÞ
; ð35Þ

where q ¼ 2pf . Various approaches have been adopted to compute the angular
anisotropies and their statistics (such as the angular power spectrum) both for the
cosmological and astrophysical SGWB (Alba and Maldacena 2016; Contaldi 2017;
Geller et al. 2018; Bartolo et al. 2019a, 2020b; Cusin et al. 2017, 2018b, 2019a;
Pitrou et al. 2020; Bertacca et al. 2020; Cusin et al. 2018a; Jenkins et al. 2018, 2019a;
Cusin et al. 2019b, 2020; Bartolo et al. 2020a; Valbusa Dall’Armi et al. 2021). Away
to compute the SGWB anisotropies is to adopt a Boltzmann equation approach,
similarly to CMB anisotropies (Contaldi 2017; Bartolo et al. 2019a, 2020b; Cusin
et al. 2019a; Pitrou et al. 2020). In such an approach one considers the generation of
high-frequency GW modes and their propagation across a background of lower
frequency (large-scale) cosmological perturbations (which can be either scalar or
tensor in nature). As for CMB photons, therefore, the propagating GWs become the
cosmological carrier of the underlying cosmic inhomogeneities. Such an approach
allows one to put in evidence at least two distinguishing features for a cosmological
SGWB (Bartolo et al. 2019a, 2020b): first the anisotropies imprinted at the pro-
duction epoch can be characterised by a strong frequency dependent contribution;
secondly, if primordial non-Gaussianity are present in the background large-scale
cosmological perturbations, then they will be left imprinted into the SGWB aniso-
tropies. The bispectrum of the angular anisotropies of dGW turns out therefore to be a
new probe of primordial non-Gaussianity, potentially measurable at interferometers,
beyond the CMB and large-scale structure measurements (Bartolo et al.
2019a, 2020b). For these reasons, besides the information they provide for a SGWB
from inflation, anisotropies can be a new probe for a whole series of phenomena.
They can be produced at the epoch of generation of GWs from a phase transition
(Geller et al. 2018; Kumar et al. 2021), and they can characterise also the SGWB
which is unavoidably produced by second-order curvature perturbations in PBH
formation scenarios (Bartolo et al. 2020a). Specific imprints in the SGWB aniso-
tropies can be also generated by decoupled relativistic particles in the early universe,
thus reinforcing the SGWB as a new window into the particle physics content of the
universe (Valbusa Dall’Armi et al. 2021).

For a SGWB of astrophysical origin, the analytic derivation of energy density
anisotropies can be found in Contaldi (2017), Cusin et al. (2017), Cusin et al.
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(2018b), Cusin et al. (2019a), Pitrou et al. (2020), Bertacca et al. (2020). When
adopting a Bolzmann-like description, one needs to add an emissivity term to the
Vlasov equation for the graviton distribution function, accounting for the generation
process at galactic scales (Cusin et al. 2019a; Pitrou et al. 2020). For extragalactic
background components, the primary contribution to the energy density anisotropy
comes from clustering (sources are embedded in the cosmic web), while a secondary
source of anisotropy is due to line of sight effects (e.g. lensing, kinematic and volume
distortion effects). Predictions for the energy density angular power spectrum have
been presented in Cusin et al. (2018a), Jenkins et al. (2018), Jenkins et al. (2019a),
Cusin et al. (2019b), Cusin et al. (2020), Bertacca et al. (2020) in the Hz band and in
Cusin et al. (2020) in the mHz band. Anisotropies are typically suppressed by a factor
10�1–10�2 with respect to the monopole, the range of variability depending on the
underlying astrophysical model for star formation and collapse, and the angular
power spectrum scales as ‘�1 on large scales. Different physical choices for the
process of BH collapse and mass distribution lead to differences up to 50% on the
angular power spectrum in the mHz band, non degenerate with a global scaling
(Cusin et al. 2020). With LISA it may be possible to constrain the dipole and
quadrupole components of the angular power spectrum, for sufficiently high SNR
detection (i.e. sufficiently high monopole) (Alonso et al. 2020a; Contaldi et al. 2020).

As shown in Sect. 2.6, where we have described how to compute the angular
cross-spectrum between GW and other cosmological probes, the study of the cross-
correlation of the SGWB energy density fluctuation with the LSS (e.g. galaxy
distribution) is an interesting subject to examine to distinguish the origin
(cosmological versus astrophysical) of a given background component. Unlike a
cosmological SGWB, the extragalactic astrophysical background is expected to be
highly correlated with the large-scale structure (see e.g. Cusin et al. 2017, 2018b, a;
Jenkins et al. 2019a; Jenkins and Sakellariadou 2018; Jenkins et al. 2018; Cusin et al.
2019b, 2020; Jenkins and Sakellariadou 2019; Jenkins et al. 2019b; Bertacca et al.
2020; Pitrou et al. 2020; Mukherjee and Silk 2020; Alonso et al. 2020b; Adshead
et al. 2021; Ricciardone et al. 2021; Braglia and Kuroyanagi 2021; Valbusa Dall’Armi
et al. 2022). Ways to exploit this feature are discussed in Sect. 3.

5.3.3 Polarisations

As any background of radiation, a SGWB is fully characterised in terms of Stokes
parameters, intensity (proportional to the background energy density), and Q, U, V
parameters describing polarisation. Classical diffusion of GW radiation from massive
objects can generate a net polarisation out of an unpolarised flux, playing a role
analogue to Thomson scattering for CMB photons (Cusin et al. 2019a). The amount
of polarisation that can be generated depends on the GW frequency, and it is more
effective for large wavelength modes, for which wave effects are expected to be more
important in an astrophysical context. An order of magnitude estimate of the effect
gives that, in the mHz band, the net amount of polarisation generated by diffusion is
suppressed by several orders of magnitude with respect to anisotropies in the
intensity (Cusin et al. 2019a). As polarisation cannot be effectively generated during
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propagation and astrophysical background components are expected to be statisti-
cally unpolarised at emission, the detection of a highly polarised background
component is a smoking gun of its cosmological origin.

As we review in Sect. 8.7.1, several inflationary mechanisms have been proposed
that could produce a net circularly polarised SWGB, which is characterised by Stokes
V parameter. A net chiral polarisation can be measured with a network of ground-
based (Seto and Taruya 2007, 2008; Crowder et al. 2013; Smith and Caldwell 2017)
or space-based (Orlando et al. 2021) interferometers.7

The measurement is more problematic in the case of a single planar instrument

such as LISA. In this case, a left-handed GW with wave-vector k~ produces the same

effects as a left-handed GW with wave-vector k~p, where k~p has been obtained from k~

with a reflection on the plane of the detector. Therefore a difference between the two
polarisations cannot be detected in the case of an isotropic SGWB.

A net polarisation can however be detected also by a planar instrument if the
SGWB is not isotropic. As discussed in the previous subsection, It is natural to
expect that a SGWB of cosmological origin has a dominant monopole component,
with large-scale anisotropies of magnitude comparable to that of the CMB ones. This
statement is, however, frame-dependent, and the most natural expectation is that the
SGWB is isotropic in the CMB rest-frame. As seen in the CMB, the motion of the
Solar System in this frame, with a velocity v ’ 10�3, produces a dipole anisotropy,
with an amplitude suppressed by a factor v with respect to that of the monopole. Seto
(2006), Domcke et al. (2020b) studied how the dipole signal might allow one to
measure a net chirality with LISA. This can be done through the cross-correlation
between the A and E channels, which vanishes both in the case of isotropic and of
unpolarised SGWB. As estimated in Domcke et al. (2020b), the SNR associated with
this measurement is

SNR ’ v

10�3

P
k kXk

GW h2

1:4 � 10�11

���� ����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T

3 years

s
; ð36Þ

where k ¼ �1 refers to the right and left chirality, respectively, and where T is the
observation time.

5.3.4 Non-Gaussianity

There are two types of non-Gaussianity discussed in the context of GWobservations.
One is the non-Gaussianity of inhomogeneities, which is defined in position or
momentum space (see e.g. Sect. 8.7.3). GWs generated at sub-horizon scales cannot
produce correlation across the horizon due to causality, thus the SGWB is Gaussian.
Non-Gaussianity typically appears in GWs generated in the context of inflation,
which could produce non-trivial spatial correlations stretched over the horizon (see
Sects. 8 and 10.2.3). See Bartolo et al. (2019a, 2020b) for a detailed derivation of the
non-Gaussianity expected in the SGWB, which is simply generated by the evolution

7 The detection of a circularly polarised SWGB at CMB scales was studied in Gluscevic and
Kamionkowski (2010), Smith and Caldwell (2017), Gerbino et al. (2016), Thorne et al. (2018).
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through the background large-scale underlying inhomogeneities, similarly to what
happens for CMB photons. This is computed through the angular bispectra (i.e. the
three point function) of the graviton energy density.

The other type of non-Gaussianity is the one in the time signal (sometimes
referred to as a SGWB in the “popcorn” or “shot noise” regime), which could be a
useful statistical measure for a SGWB formed by overlapped short-duration events,
such as the astrophysical background. If GW events are not frequent enough to
overlap in time, the observed strain has a non-Gaussian distribution. Among the
cosmological sources, the SGWB from cosmic strings could show this non-Gaussian
feature (Regimbau et al. 2012) (see Method II in Sect. 7.3). For non-Gaussianity of
astrophysical sources, see Sect. 12.2.

6 First-order phase transitions

Section coordinators: J. Kozaczuk, M. Lewicki. Contributors: M. Besancon,
C. Caprini, D. Croon, D. Cutting, G. Dorsch, O. Gould, R. Jinno, T. Konstandin,
J. Kozaczuk, M. Lewicki, E. Madge, G. Nardini, J.M. No, A. Roper Pol, P. Schwaller,
G. Servant, P. Simakachorn.

6.1 Introduction

Cosmological FOPTs are one of the most attractive sources of GWs in the early
universe (Witten 1984; Hogan 1986). A FOPT can occur when the Higgs or any other
scalar fields are trapped in a metastable vacuum in the early universe. As the universe
cools down, thermal or quantum fluctuations drive the field over or through the
potential barrier, resulting in bubbles of the stable phase nucleating in the sea of
metastable phase. These bubbles then expand and collide with each other to complete
the transition. The collision of the bubbles and the fluid motion around them produce
a SGWB. Since the generated GWs propagate to the present nearly without
interaction, they maintain information about the processes that produced them at the
time of generation. Their detection may therefore reveal some of the properties of the
high-energy universe.

In the standard model of particle physics (SM) there are in principle two phase
transitions, at two energy scales: the scale of the electroweak gauge symmetry
breaking, and that of the chiral symmetry breaking in quantum chromodynamics
(QCD). Given the coupling constants and the mass of the Higgs boson in the SM, it
is known that the electroweak symmetry breaking is a crossover (Kajantie et al.
1996b; Csikor et al. 1999). Moreover, at almost zero quark chemical potential, the
QCD phase transition cannot be first-order (Stephanov 2006). However, FOPTs are
predicted in a number of extensions of the SM aimed at addressing open questions
such as the origin of the observed baryon asymmetry (Kuzmin et al. 1985; Rubakov
and Shaposhnikov 1996), the nature of DM, and the hierarchy problem.

The millhertz-band GWs that LISAwill measure are in the best frequency band to
explore FOPTs occurring between the electroweak and the multi-TeV scales.
Therefore, it is important to understand how FOPTs source GWs, how such
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transitions arise from microphysics, and consequently to appreciate the implications
that the detection of GWs from FOPTs has for particle physics. We provide an up-to-
date understanding on these topics in the following.

6.2 Determination of the relevant parameters

The main features of the SGWB spectrum can be determined from knowledge of four
parameters related to the FOPT: the temperature T� of the plasma when the bubbles
percolate, the transition strength a, the inverse duration of the phase transition b, and
the wall velocity vw. These macroscopic parameters crucially depend on the
underlying microscopic model, linking particle physics and cosmology. We dedicate
this section to a discussion of how to compute the parameters entering the SGWB
spectrum from the underlying microphysics.

The temperature at which the FOPT occurs is determined by the interplay between
the nucleation of bubbles of the true-vacuum phase and the expansion of the
universe. The nucleation rate per unit volume is given by C ¼ AðtÞ exp½�ScðtÞ
,
where Sc is the critical bubble action. For thermally-induced nucleation, we have
A� T4 and Sc ¼ S3=T with S3 being the three-dimensional Euclidean action of the O
(3) symmetric bounce solution.8 The onset of the FOPT then occurs at the nucleation
temperature Tn, at which on average one bubble is nucleated per horizon volume. It is
roughly given by the temperature at which Sc � 140. The characteristic temperature
for GW production is however the temperature T� at which the bubbles percolate,
when approximately one third of the comoving volume has transitioned to the true
vacuum. For moderately strong transitions, these temperatures are typically
sufficiently close to take T� � Tn. More precise formulas for the determination of
the nucleation and percolation temperatures in from the critical action can be found in
Caprini et al. (2020).

The transition strength parameter a describes the amount of energy released as a
fraction of the radiation energy qrad. Different definitions are used throughout the
literature, corresponding to different ways of mapping the particle physics model to
the bag EoS commonly used for determining the efficiency of converting the released
energy into bulk motion of the fluid (Espinosa et al. 2010). A simple but reasonably
accurate definition of a in terms of a given particle particle physics model is obtained
from the difference of the trace h of the energy-momentum tensor between the
phases,

a ¼ Dh
qrad

; Dh ¼ DV ðTÞ � T

4

oDV ðTÞ
oT

; ð37Þ

where V(T) is the thermal effective potential. See Giese et al. (2020, 2021) for a
comparison of other conventions regarding the transition strength as well as gener-
alisations beyond the bag model. The efficiency factors for the conversion of the
energy released in the transition into bulk motion can then be calculated from the
transition strength a and the wall velocity (Espinosa et al. 2010; Giese et al. 2021).

8 For quantum tunnelling, Sc ¼ S4 is the Euclidean action of the O(4) symmetric bounce in four
dimensions.
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The calculation of the thermal effective potential, starting from an underlying
particle physics model, is itself a nontrivial task. Due to the infrared (IR) sensitivity
of bosonic fields at high temperature, perturbation theory must be re-summed. As a
consequence, the effective expansion parameter increases g2 ! g (or even
g2 ! ffiffiffi

g
p

), and the expansion converges more slowly. Typical one-loop calculations
utilise daisy re-summation (Parwani 1992; Arnold and Espinosa 1993) to include the
leading Oðg2Þ and Oðg3Þ contributions to the potential, while methods to include
still higher order contributions have been developed (Parwani 1992; Arnold and
Espinosa 1993; Farakos et al. 1994; Braaten and Nieto 1995; Kajantie et al.
1996a, 2003; Croon et al. 2021; Ekstedt and Löfgren 2020; Gould 2021; Ekstedt
et al. 2023). In addition to the slow convergence of the perturbative expansion, there
are true IR divergences at Oðg6Þ (four-loop order) which re-summation does not
resolve (Linde 1980), underlying the importance of nonperturbative calculations
(Gould et al. 2019; Kainulainen et al. 2019; Niemi et al. 2021; Halverson et al. 2021;
Huang et al. 2021).

The bubble nucleation rate can be expanded around the percolation time t� as

C� T4e�S3=T ¼ C�e�bðt�t�Þ; ð38Þ
and adiabaticity of the expansion of the universe yields dT=dt ¼ �TH , so

b
H�

¼ T�
dðS3=TÞ

dT

����
T�

: ð39Þ

This parameter determines whether the transition will complete mostly by the
expansion of a few nucleated bubbles or by the nucleation of new bubbles every-
where in space. Indeed, the larger b=H� is, the faster the nucleation rate increases in
time, the more bubbles will nucleate inside a Hubble horizon before the completion
of the phase transition, and the smaller will their radii be when they collide, since
there had not been much time for them to expand before meeting a neighbour. Thus
one can expect an inverse relation between b and the amplitude of the GW spectrum.
Moreover, b enters in the determination of the SGWB peak frequency. Note that, for
very strong transitions, the definition above may become inappropriate and should be
reformulated (Huber and Konstandin 2008b; Jinno et al. 2017).

As with a, the calculation of the bubble nucleation rate, C, is affected by the IR
sensitivity of bosonic fields at high temperatures. The spatial inhomogeneity of
bubbles, as well as the time dependence of their creation, raises additional
challenges. While much effort has gone into overcoming these challenges (Gleiser
et al. 1993; Bodeker et al. 1994; Berges et al. 1997; Surig 1998; Strumia and Tetradis
1999; Moore and Rummukainen 2001; Garbrecht and Millington 2015; Gould and
Hirvonen 2021), the theoretical uncertainties present in calculations of the bubble
nucleation rate are less well understood than those for the effective potential.

The determination of the wall velocity from first principles is a much more daunting
task. The passage of the wall perturbs the equilibrium of particles in the plasma, so that
the temperature, velocity and chemical potential of each species are different from the

background. The distribution function of each species can be written as fi ¼ f
eq
i þ dfi,
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and the perturbations can be calculated by solving the corresponding Boltzmann
equation (Moore and Prokopec 1995; Konstandin et al. 2014),

ðplol þ KloplÞ f þ C½f 
 ¼ 0; ð40Þ
where Kl is (related to) the force term felt by the particles due to the passage of the
bubble, and C[f] are collision terms that must be computed from the microphysics of
the model under consideration, taking into account the mutual interactions of par-
ticles present in the plasma at the electroweak phase transition (EWPT); see e.g.
Moore and Prokopec (1995), Kozaczuk (2015). The Higgs equation reads (Kon-
standin et al. 2014)

h/þ dV ð/; TÞ
d/

þ
X
i

dm2
i

d/

Z
d3p

ð2pÞ32Ep

dfi ¼ 0; ð41Þ

and the term with fluid perturbations dfi acts as a friction countering the bubble
expansion. From this equation one obtains the wall velocity and the wall width,
typically by using an ansatz for the Higgs profile

/ðzÞ ¼ /0

2
1� tanh

z

Lw

	 
� �
ð42Þ

and solving for the width Lw and the velocity vw. Although the wall velocity has been
computed from first principles for a few models, such as in SUSY extensions (John
and Schmidt 2001; Kozaczuk et al. 2015), Higgs plus singlet setups (Kozaczuk 2015;
Lewicki et al. 2022) and two Higgs doublet models (Dorsch et al. 2017), the
determination of vw as a function of the parameters of the underlying theory remains
an open issue for most of the interesting models discussed in the literature. Crucially,
the collision terms appearing in the Boltzmann equation (40) have been calculated
only for a few models, such as the SM (Moore and Prokopec 1995) and singlet
extensions (Kozaczuk 2015), and even then are known only at a leading-log
approximation. For most models, additional collision terms involving interactions of
new particles among themselves and with the SM sector have not yet been computed.
Altogether, it is fair to say that our current tools allow only for an estimate of the wall
velocity, and there is still a large room for improvement on this front.9

6.3 GW sources

A FOPT in the early universe occurs when at least one scalar field gets trapped at the
symmetric metastable vacuum. As the universe cools down, the scalar field tunnels
through or thermally fluctuates over the barrier into the lower-energy vacuum, and at
a certain temperature bubbles in the broken phase start to nucleate in the sea of the
symmetric phase. The latent heat released in the transition drives these bubbles to

9 In this respect, a promising alternative direction is the use of a string theory-inspired method (Maldacena
1998) known as gauge/string duality, or holography. The power of this tool is that it allows for a first-
principle determination of out-of-equilibrium observables in a four-dimensional quantum field theory. It
was used in (Bea et al. 2021b; Bigazzi et al. 2021; Bea et al. 2022) to compute the bubble wall velocity in a
family of strongly-interacting, four-dimensional gauge theories.
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expand further, and the transition completes when these bubbles collide and merge
with each other. During bubble expansion, the latent heat is converted into the energy
of the bubble wall and the thermal and kinetic motion of the surrounding plasma.
However, due to spherical symmetry of the bubbles, no GWs are generated during
this expansion period. It is only when the bubbles collide, at the end of the FOPT,
that GWs are produced from the kinetic energy of the scalar field and the fluid. Since
there are numerous independent collision regions today within the typical resolution
of GW detectors, the resulting spectrum is stochastic.

The amount of GWs generated during a cosmological FOPT is quantified by the
fractional energy density of these waves in the universe, qGW, compared to the

critical energy density, qc � 3H2=ð8pGÞ, where H is the Hubble constant. One can
rephrase the GW density parameter in Eq. (29) as

XGW � 1

qc

dqGW
d ln k

: ð43Þ

For a stochastic source, the spectrum is proportional to the two-point correlation of

the metric perturbations h _hðk; tÞ _hðk0; tÞi � ð2pÞ3dð3Þðk � k0ÞP _hðkÞ, as

XGW ¼ k3

24p2H2
P _hðkÞ: ð44Þ

Since sufficiently distant regions could not have exchanged information with one
another during the FOPT, the correlation function for low jkj corresponds to white
noise, i.e. P _hðk; tÞ� constant, and the spectrum grows as k3. This growth cannot
continue forever, so this pattern must eventually be broken and the spectrum must
decrease at some point, for the total energy in GWs must be finite. Therefore, the
SGWB spectrum must contain a peak. A typical shape is illustrated in Fig. 6 created
using data from PTPlot version 1.0.1.10

There are three main sources of GWs from bubble collisions: (i) the kinetic energy
of the scalar field along the bubble walls, (ii) coherent motion of the plasma
generated by the bubble expansion, also known as “sound waves”, and (iii) turbulent
motion of this fluid, typically expected to occur at late times after the fluid develops
vortical motion. The total contribution to GW energy from FOPTs in the early
universe is therefore the sum

XGW ¼ XðcollÞ
GW þ XðswÞ

GW þ XðturbÞ
GW : ð45Þ

How these three contributions arise in principle depends on the detail of the model.
However, as discussed in the previous section, it is known that a few parameters
determined from microphysics are enough to discuss cosmological consequences:
transition strength a, nucleation speed b, wall velocity vw, and the transition tem-
perature T�. These parameters determine the fluid profile of the expanding bubbles

10 Since the release of PTPlot version 1.0.0 there have been several modifications of PTPlot. This includes
taking into account the recent erratum from Hindmarsh et al. (2017a) which led to the amplitude of the GW
signal being overestimated by a factor of 10. For a more complete list of changes in version 1.0.1,
see ptplot.org.
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and the energy budget of the transition (Espinosa et al. 2010; Wang et al. 2021a;
Giese et al. 2020).

The transition dynamics can vary dramatically for different a. In typical
transitions, in which a is moderate, the friction on the wall balances against the
pressure from the released energy before bubbles collide, and as a result the walls
approach a constant terminal velocity. In this case most of the energy released in the
transition is transferred to the surrounding plasma, and only a negligible fraction
remains in the scalar field. Macroscopically the energy transferred to the plasma can
be classified into heat and bulk kinetic motion of the fluid. The bulk motion takes the
form of compression waves, or sound waves. As long as the linearity of the fluid
equation holds, i.e. the kinetic energy in play is sufficiently low, sound waves from
different bubbles continue to propagate even long after the transition completes, and
they overlap to create random velocity field with typical length scale of the sound
shell lshell. This phenomenon is found in numerical simulations (Hindmarsh et al.
2014, 2015, 2017a), and (Hindmarsh 2018; Hindmarsh and Hijazi 2019) provide a
corresponding analytic model based on the picture of an ensemble of overlapping
shells. Interestingly, the velocity field sources GWs at the constant scale lshell even
well after the completion of the transition (provided that the transition is not too
strong). Therefore, it works as an efficient source of GW production. The resulting

GW spectrum XðswÞ
GW contains two important characteristic scales of the bubble size

and the fluid shell thickness. A hybrid scheme to calculate the GW spectrum from
this phenomena has been proposed recently (Jinno et al. 2021).

The sound waves are expected to decay through the formation of non-linearities in
the flow, after which the fluid enters a turbulent phase. The non-linearities develop on
a time scale ssh, which is inversely proportional to the kinetic energy in the fluid. It
has been shown that, even for weak transitions, ssh is typically smaller than a Hubble
time (Ellis et al. 2020b), with ssh becoming smaller as a increases. The decay of
sound waves produced during a FOPT and the subsequent development of a turbulent
flow has not been studied so far using direct numerical simulations and remains a
major source of uncertainty when determining the GW spectrum. This holds in
particular for strongly FOPTs, when the fluid kinetic energy is expected to be high,
and the contribution of kinetic turbulence to the SGWB signal is expected to be
relevant. Within the sound wave regime, typically the larger the transition strength
the greater the production of GWs. FOPTs with smaller b which produce fewer,

10 5 10 4 0.001 0.010 0.100 1
10 14

10 13

10 12

10 11

10 10Fig. 6 An example of the GW
power spectrum from a FOPT,
along with the LISA power-law-
sensitivity (PLS) curve of
SNR ¼ 10. The model
parameters used in this example
are vw ¼ 0:9, a ¼ 0:1,
b=H� ¼ 50, T� ¼ 200 GeV,
g� ¼ 100
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larger bubbles are also preferred. For a detailed discussion on the dependence of the
SGWB spectrum from sound waves on a and b (see Caprini et al. 2020).

For deflagrations with a�Oð0:1Þ the sound shell picture breaks down (Cutting
et al. 2020). In such transitions, substantial vorticity can be generated during the
initial collision of sound shells and bubbles. Furthermore, hot high pressure regions
of the metastable phase can form during the transition. These hot regions suppress
further bubble nucleation and decrease the wall velocity at the initial stage of the
transition (Konstandin and No 2011; Mégevand and Ramírez 2018), while they form
droplets at the later stage, extending the duration of the transition and suppressing the
production of kinetic energy. Both the generation of vorticity and the formation of
droplets can modify the GW spectrum, either by speeding up the decay of sound
waves or by reducing the fluid kinetic energy and thus GW spectrum amplitude.
Further study is required in this regime to map out the production of vorticity and
study the evolution of flows with mixed modes, as well as to find the suppression of
kinetic energy from droplets in a wide range of parameter space. It is however worth
noting that the wall velocity still needs to be computed as a function of parameter
space for many BSM models. It is therefore unclear if there are many realistic models
that would give rise to the strong transitions with subsonic wall velocities which
would be affected by these results.

Another interesting scenario is extremely strong transitions, inwhicha  1 is realized
(Randall and Servant 2007; Espinosa et al. 2008; Konstandin and Servant 2011a;
Hambye and Strumia 2013; Jaeckel et al. 2016; Jinno andTakimoto 2017b;Marzola et al.
2017; Iso et al. 2017;Chiang andSenaha2017; vonHarling andServant 2018;Bruggisser
et al. 2018a, b; Hambye et al. 2018; Baldes and Garcia-Cely 2019; Hashino et al. 2019;
Prokopec et al. 2019; Brdar et al. 2019b; Marzo et al. 2019; Breitbach et al. 2019;
Baratella et al. 2019; Fairbairn et al. 2019) but the bubble walls still reach a terminal
velocity because of the higher-order friction terms on thewall (Bodeker andMoore 2017;
Höche et al. 2021). In this case the relevant hydrodynamical solution is strong detonation.
While the dominant GW source comes from fluid kinetic motion, we must note several
things: first, the onset of turbulence is earlier in this type of model (Ellis et al. 2020b);
second, the overlap of sound shells, which is one of the requirements for the linear growth
of the GW spectrum, may be somewhat delayed (Jinno et al. 2019b). Finally, in typical
models there exists a maximum a for which transitions complete. Above this, vacuum
energy dominates and themetastable state begins to inflate, prohibiting the percolation of
the bubbles of the true vacuum (Ellis et al. 2019b).11

When a exceeds a certain threshold, or simply in vacuum transitions, the bubble
walls continue to accelerate until they collide (“run away”). While recent studies of
the next-leading friction terms on bubble walls (Bodeker and Moore 2017; Höche
et al. 2021) suggest that the parameter space for runaway is much smaller than
previously thought (Bodeker and Moore 2009), such behaviour can still occur in
extremely strong transitions (Ellis et al. 2019c, 2020c). In this case the only

11 In cases where the phase transition through thermal bubble nucleation fails other mechanisms such as
vacuum fluctuations (Lewicki et al. 2021) or spinodal instability (Bea et al. 2021a) can lead to completion
of the transition which would have a very different phenomenology and clearly distinguishable GW
spectra.
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contribution is from the bubble wall XðcollÞ
GW . The expanding and colliding bubble

walls are highly relativistic and much thinner compared to the typical bubble size.
This observation motivates the so-called envelope approximation (Kosowsky et al.
1992; Kosowsky and Turner 1993), in which the shear stress is approximated to be
localised in an infinitesimally thin shell at the bubble wall and disappears upon
collision (Huber and Konstandin 2008a; Jinno and Takimoto 2017a). However,
recent studies revealed that for runaway and vacuum transitions the collided region of
intersecting bubbles has a rich structure and cannot be neglected (Weir 2016; Cutting
et al. 2018, 2021; Jinno et al. 2019a). The GW spectrum that takes collided regions
into account has been actively studied numerically for two bubble (Lewicki and
Vaskonen 2020a, b) and many bubble collisions (Cutting et al. 2018, 2021) as well as
(semi)-analytically (Jinno and Takimoto 2019; Konstandin 2018). One of the
implications is that, while the peak of the spectrum does not grow in amplitude after
collisions as occurs for sound waves, the spectrum may have a growing structure
towards the IR, which enhances the detection prospect by LISA.

In addition to the aforementioned sources, magnetic fields could be present prior
to or generated during a thermal FOPT. In the presence of a magnetic field, the
turbulent motion of the primordial plasma would become dynamically coupled to the
magnetic field, leading to MHD turbulence Brandenburg et al. (2017), Brandenburg
et al. (1996), Christensson et al. (2001). Moreover, the hydrodynamic turbulent
motion induced by the expansion of the bubbles arises in an ionised plasma, and this
fact in itself can lead to MHD turbulence. The dynamical coupling between the
velocity and the magnetic field plays an important role in determining the shape of
the GW signal. The latter is affected by the presence of the magnetic field both
through the aforementioned dynamical coupling, and because the magnetic
anisotropic stresses produce GWs on their own, as studied in early analytic works
(Deryagin et al. 1986; Kosowsky et al. 2002; Caprini and Durrer 2006; Gogoberidze
et al. 2007; Caprini et al. 2009b). So far, the hydrodynamical simulations of thermal
FOPTs have neglected magnetic fields. The early analytic works on the subject
require one to make assumptions on the temporal correlation functions of the
turbulence velocity and the magnetic field, which strongly affect the SGWB spectral
shape (Caprini et al. 2009a). Previous analytical works were extended with updated
modelling of the MHD turbulence in Niksa et al. (2018). Numerical simulations
avoid resorting to analytical modelling of the MHD turbulence evolution, since they
compute directly the solution to MHD equations (Roper Pol et al. 2020; Kahniashvili
et al. 2021). Recent numerical simulations and previous analytic estimates agree on
the shape of the GW spectrum at high frequencies, scaling as f �8=3. However, the
dynamical evolution of the magnetic field during the GW production can affect this
slope (Roper Pol et al. 2020). At intermediate frequencies, the numerical simulations
of Roper Pol et al. (2020) predict a spectrum XGWðf Þ / f , that eventually is expected
to turn to f 3 at frequencies in the super-horizon range, due to causality (Caprini et al.
2009a). XGWðf Þ evaluated from the numerical simulations grows as f 3 at early times,
shifting to a linear increase / f as the time progresses and GWs are building up. The
detail of the transition from f to f 3 is an active topic of research. Combining
numerical simulations with our theoretical understanding of the MHD turbulence
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dynamics will help to obtain an accurate prediction of the spectral shape of the
SGWB produced by MHD turbulence in the future. As is the case for other sources,
the SGWB by MHD turbulence also depends on the parameters of the FOPT. The
strength of the FOPT and the size of the bubbles can be related to the kinetic energy
density, and to the characteristic scale of turbulence, respectively.

This picture can get more complicated in the case of magnetic field production
during the FOPT, and it would require an appropriate treatment of the magnetic field
in both the false and true vacuum regions, which are dynamically converting through
the bubble-driven FOPT. During the FOPT, inhomogeneities of the Higgs field give
rise to the production of magnetic fields (Vachaspati 1991; Ahonen and Enqvist
1998; Stevens et al. 2008; Vachaspati 2021; Zhang et al. 2019; Yang and Bian
2022).12 The previous mechanism does not require CP violations, however these are
expected in relation to baryogenesis through spontaneous lepton number symmetry
breaking at a FOPT (Cohen et al. 1991). This parity violation leads to the production
of helical magnetic fields (Vachaspati 1991; Cornwall 1997; Vachaspati 2021;
García-Bellido et al. 2003). Such parity-violating turbulent sources lead to the
production of circularly polarised GWs, studied analytically in Kahniashvili et al.
(2005), Kahniashvili et al. (2008), Kisslinger and Kahniashvili (2015), Ellis et al.
(2020a), and computed numerically in Kahniashvili et al. (2021). Further studies are
required in this direction for a clear understanding of the GW and the polarisation
signals produced from MHD turbulence as a function of the FOPT parameters, and a
computation of turbulence in the plasma from first principles.

6.4 Discovery prospects beyond the standard model

GWs are a unique probe of the physics of the early universe. Unlike photons,
gravitons were not in thermal equilibrium at early times, and may therefore directly
encode information about events long before the time of last scattering. The
characteristic broken power-law spectrum from a FOPT peaks at a frequency which
can be related to a temperature and a time in the early universe via its redshift.
Figure 7 shows this relation using the frequency peak of the acoustic spectrum,
described in Caprini et al. (2020). It is seen that for appropriate fiducial values, a
FOPT at the electroweak scale temperature, T � 102 GeV, sources a SGWB spectrum
peaking at frequencies to which LISA has its best sensitivity (Grojean and Servant
2007; Caprini et al. 2016, 2019). The sensitivity to weak scale physics implies an
opportunity to study FOPTs of several different kinds. In particular, several proposals
for FOPTs that supply the out-of-equilibrium circumstance for baryogenesis are
anchored to the weak scale. However, LISA is also sensitive to energy scales much
beyond the electroweak scale: for exceptionally strong FOPTs the peak can fall
outside the LISA sensitivity region but the tail of the signal still has a high SNR. In
this case, FOPTs even at the MeVor PeV scale can be detected. This feature opens up
potential complementary access in other experiments, as will be described in the next
section.

12 Current studies consider vacuum FOPTs. The extension to a thermal FOPT is not straightforward, and it
requires further analysis.
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6.4.1 First-order phase transitions in the LISA window

FOPTs are studied in the context of a variety of models, which can be divided into
two main categories: the spontaneous breaking of a gauge symmetry, and
confinement due to the strong coupling of a gauge symmetry (and the related chiral
symmetry breaking). The EWPT, which is particularly interesting in light of
electroweak baryogenesis (see Sect. 6.4.2), is an example of the former. The
transition temperature associated with electroweak symmetry breaking implies that
the peak frequency of the GW spectrum falls within the LISA sensitivity window, as
seen in Fig. 7. As is well known, the EWPT is a crossover transition in the SM.
Therefore, new physics is required to induce a FOPT that can produce a SGWB.
FOPTs can be studied in a model-independent effective-field-theory approach,
adding non-renormalisable operators to the Higgs potential. These analyses show that
for the EWPT to be sufficiently strongly first-order, the cut-off scale must be rather
low, below the TeV scale (Zhang 1993; Grojean et al. 2005; Delaunay et al. 2008;
Chala et al. 2018), therefore studies of the EWPT in SM extensions generically
require the introduction of at least one new degree of freedom at the Oð100Þ GeV
scale.

A weak-scale hidden sector featuring the spontaneous breaking of a gauge
symmetry could also lead to a SGWB in the LISAwindow. An observable amplitude
of the signal implies a significant fraction of the radiative degrees of freedom must
have participated, hinting at a connection with DM (Schwaller 2015; Jaeckel et al.
2016; Croon et al. 2018; Bertone et al. 2020). The spectral form of such a signal is
unlikely to give away much of its origin, though it can be related to particle spectra in
specific models (Croon et al. 2018). Complementary search strategies may be applied
if such a spectrum is detected—more about this in Sect. 6.5.

Confining gauge theories are thought to feature a FOPT if the confined degrees of
freedom either only include the gauge fields themselves, or if confinement implies
the breaking of a chiral symmetry SUðNf Þ � SUðNf Þ and the number of chiral
fermions (dynamical at the transition temperature) exceeds Nf � 3. The foundation
for this insight dates back to an argument based on the linear sigma model (Pisarski
and Wilczek 1984) and has since been supported in part by lattice simulations

Fig. 7 LISA sensitivity to the SGWB frequency peak of FOPTs in the early universe. Here the fiducial
values vw ¼ 1 and g ¼ 106 are used to relate the frequency peak of the acoustic spectrum (Caprini et al.
2020) to a time and temperature in the early universe, as a function of the transition rate parameter b=H
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(Iwasaki et al. 1996). Studying the phenomenology of the transition is challenging, as
effective theories either apply to the low-temperature (confined) phase and the high-
temperature free phase. Moreover, an important role is played by the instantons of the
strongly coupled theory. Initial explorations based on the linear sigma model indicate
stronger SGWB are found for gapped spectra (Croon et al. 2019b). However, the
predictions depend on the chiral symmetry breaking model used (Helmboldt et al.
2019).

Another alternative is solitosynthesis, a FOPT resulting from the growth of non-
topological solitons stabilised by a conserved global charge (Griest and Kolb 1989).
Unlike phase transitions resulting from the nucleation of critical bubbles, stable sub-
critical populations of such solitons—Q-balls—exist, and accumulate charge until
they reach a critical size and grow. This slow process may imply supercooled
transitions still complete (Kusenko 1997; Croon et al. 2020). This scenario typically
relies on the existence of a global symmetry under which the universe is
asymmetrically charged. It has therefore been studied in the context of supersym-
metry (Kusenko 1997; Postma 2002; Pearce 2012) and asymmetric DM (Huang and
Li 2017; Croon et al. 2020).

As described in the previous section, the SGWB due to a cosmological FOPT can
be described in terms of a small number of thermal parameters: characteristic
temperature, bubble wall velocity, latent heat and a dynamical parameter such as a
nucleation rate. These thermal parameters then predict a spectrum with a shape in
most cases primarily defined by just two parameters: the peak frequency and peak
amplitude. Therefore, the SGWB-inverse problem typically features degeneracies.
However, resolution of the full spectrum and in particular the peak gives a unique
picture of a crucial stage of the early universe, and may play an important role in
answering some of the most fundamental questions. Further resolution of the
underlying BSM physics can also be accomplished through complementary
experimental observation.

6.4.2 Connection with baryogenesis

An (electroweak) FOPT may also be responsible for the generation of the observed
baryon asymmetry. This provides an appealing connection between baryogenesis and
the direct probe of the electroweak epoch in the early universe through GWs
especially since the corresponding signals would peak in the LISA band. At such a
first order EWPT, satisfying simultaneously the three Sakharov conditions for
baryogenesis (baryon number violation, CP violation and a departure from thermal
equilibrium) becomes possible: baryon number is not an exact symmetry of the SM,
violated via non-perturbative processes involving gauge and Higgs fields.13 In the
presence of CP violation, these processes are biased towards producing more baryons
than anti-baryons, and because the FOPT introduces a departure from thermal
equilibrium, the reverse mechanism is suppressed, ensuring that the generated
asymmetry is not washed-out and remains to the present day.

Among these electroweak baryogenesis mechanisms, those most widely studied
are non-local ones, involving charge transport (see Morrissey and Ramsey-Musolf
2012; Konstandin 2013 for reviews): CP violation in the scatterings of plasma
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particles with the phase transition boundary yields an excess of fermion handedness,
which diffuses into the electroweak symmetric phase and is there converted to a
baryonic excess via SM baryon number violating processes known as sphalerons; the
expansion of the FOPT bubbles then leads the net baryonic excess inside the bubble,
where the asymmetry is frozen-out up to the present day. This last condition depends
on the sphaleron rate inside the bubble, Csph� e�Esph=T (with Esph the sphaleron

energy). Sufficient suppression of Csph for successful baryogenesis (i.e. Csph much

smaller than the Hubble expansion rate) yields the condition of a strong EWPT,
v=TJ1, where v is the electroweak vacuum expectation value after the phase
transition.

Up to very recently it has been assumed that these electroweak baryogenesis
scenarios, as they rely on diffusion of particles in the plasma, were not effective for
fast moving bubble walls (i.e. faster than the speed of sound of the plasma, with the
bubbles consequently expanding as detonations). On the other hand, GWs are more
favourably produced by stronger transitions resulting in faster bubble walls. This
seemed to put a tension between the generation of a sizeable GW background from
the FOPT (e.g. large enough to be observable by LISA) and successful baryogenesis.
However, recent works (Cline and Kainulainen 2020; Laurent and Cline 2020;
Dorsch et al. 2021) indicate that while diffusion is not as efficient for supersonic
bubble walls, it still allows for successful electroweak baryogenesis. It has also been
shown that the production of a large GW signal can be made compatible with
electroweak baryogenesis for bubbles expanding as subsonic deflagrations (Dorsch
et al. 2017), yet in this case the plasma friction against the moving wall must be large
enough that even quite strong transitions remain subsonic, which requires the
presence of sub-TeV particles with relatively large coupling to the Higgs—a tightly
constrained scenario by now.

The strongest bound on non-local electroweak baryogenesis comes from the non-
observation of an electric dipole moment (EDM) of the electron by highly precise
experiments (Andreev et al. 2018). The additional sources of CP violation required
by these transport mechanisms typically impact the electron EDM already at 2-loop
order via Barr-Zee diagrams (Engel et al. 2013)—two orders above the SM CP
violation contribution, which manifests itself only when all three families of quarks
are involved, thus affecting EDMs at 4-loop only, being therefore highly suppressed
and unconstrained by EDMs. Whether electroweak baryogenesis is still viable under
such tight bounds remains to be investigated. There are, however, models in which it
might be possible to avoid those constraints. One possible example involves coupling
the CP violation to a vacuum expectation value of an additional scalar field which
vanishes after the transition rendering the model safe from EDM constraints
(Espinosa et al. 2012; Cline and Kainulainen 2013; Vaskonen 2017; Huang et al.
2018; Cline et al. 2021). Alternatively, CP violation can be secluded in a dark sector,
and communicated to the visible sector in a way that the corresponding EDM
contribution is suppressed or absent (Cline et al. 2017; Carena et al. 2019, 2020). Yet

13 More precisely, the baryonic current JlB is anomalous, and the anomaly olJ
l
B ¼ ðNcg2Þ=ð32p2ÞFlm eF lm

allows for the creation of baryons through the dynamics of the non-abelian gauge fields.
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another way is to increase the temperature of the EWPT from symmetry non-
restoration phenomena (Baldes and Servant 2018; Glioti et al. 2019; Matsedonskyi
and Servant 2020; Biekötter et al. 2021; Carena et al. 2021). The observable effect is
a GW peak position shifted towards higher frequencies.

Finally, there are also local baryogenesis mechanisms where baryon production
and CP violation occur at the same point in space, involving non-trivial gauge and
Higgs field dynamics (Tranberg 2011; Konstandin and Servant 2011b). However,
these mechanisms are highly inefficient at electroweak scale temperatures (Lue et al.
1997), although they can still be relevant in more exotic scenarios of very
supercooled FOPTs. The main advantage of such cold electroweak baryogenesis
mechanisms is their ability to generate the observed baryon asymmetry with just the
SM CP violation from the Cabibbo-Kobayashi-Maskawa matrix (Tranberg 2011), or
from the strong CP phase (Servant 2014), thus avoiding the tight bounds from EDMs
(Andreev et al. 2018). Since the thermal plasma is very diluted at the end of the
transition due to the supercooling, the GWs are sourced mainly by the kinetic energy
of the bubbles.

6.5 LISA complementarity to other experimental tests

The potential of LISA to explore FOPT is complementary to other experimental tests
such as searches for beyond SM physics at colliders, tests from flavour physics
including neutrinos physics and B mesons physics or searches for signals from the
dark sector. LISA detection of SGWB from FOPTs can not only explore the
electroweak energy scale but could explore higher energy scales which could be
inaccessible to present and future colliders. The other GW observatories available at
the time that LISA flies, can also strengthen and complement the LISA findings.

Figure 8 sketches the FOPT energy scales that LISA can probe with SNR [10 as
well as its complementarity with other GWobservatories expected in the early 2040s.
The figure also displays the parameter region ruled out by current BBN, pulsar
timing array (PTA) and LIGO/Virgo data.14

The EWPT in the SM is a second order phase transition. However, there is a
wealth of BSM scenarios in which the EWPT is of the first order leading to sizeable
SGWB signals. Without claiming to be exhaustive, one can for example mention the
extension of the scalar sector of the SM with extra singlet(s) (Craig et al. 2013;
Profumo et al. 2015; Craig et al. 2016; Hashino et al. 2017; Beniwal et al. 2017;
Kang et al. 2018; Matsui 2018; Alves et al. 2018; Beniwal et al. 2019; Ahriche et al.
2019; Chala et al. 2019; Chiang and Lu 2020; Alves et al. 2020, 2021; Shajiee and
Tofighi 2019; Morais et al. 2020; Morais and Pasechnik 2020) (although some could
come without collider traces, Ashoorioon and Konstandin 2009), some having been
discussed in the context of LIGO (Balazs et al. 2017), or doublet(s) (Fromme et al.
2006; Dorsch et al. 2013, 2014; Laine et al. 2017; Wang et al. 2020b; Zhou and Bian
2022) (see also Fujikura et al. 2018 for an example from twin Higgs models),

14 The figure assumes that the SGWB hints arising in the present PTA analyses, are not of primordial
origin. The energy scales detectable by LISA result broader than in Fig. 7 since scenarios with the SGWB
frequency outside the LISA band can still fulfil the SNR [10 requirement; see Figueroa et al. (2018),
Megias et al. (2020) for details.
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composite Higgs models (Chala et al. 2016; Bruggisser et al. 2018b; De Curtis et al.
2019; Bian et al. 2019; Xie et al. 2020), so-called fermionic extensions of the SM
involving for example SUð2ÞL doublet and/or two SUð2ÞL singlet vector-like leptons
strongly coupled to the Higgs boson (Angelescu and Huang 2019) or the various
supersymmetric extensions of the SM (Davies et al. 1996; Apreda et al. 2002; Huber
and Konstandin 2008b; Huang et al. 2015; Kozaczuk et al. 2015; Huber et al. 2016;
Demidov et al. 2018).

There is also a wealth of theoretical BSM setups in which a FOPT can occur at a
higher energy scale than the EW energy scale. These setups for example encompass
extensions of the scalar sector (Jinno et al. 2016; Alanne et al. 2020; Baldes and
Servant 2018), classical conformal approaches (Brdar et al. 2019b) or nearly
conformally invariant field theories in which the generation of neutrino masses is
linked to spontaneous scale symmetry breaking (Agashe et al. 2020), gauge
extensions of the SM such as models including Uð1ÞB�L (Madge and Schwaller
2019; Ellis et al. 2019c; Hasegawa et al. 2019; Dev et al. 2019; Bian et al. 2020; Ellis
et al. 2019a, 2020c), left-right symmetries (Brdar et al. 2019a; Fornal 2021) or even
mbigger symmetries (Huang and Zhang 2019), grand unified theories, non-
supersymmetric (Croon et al. 2019a; Huang et al. 2020; Buchmüller et al. 2020a;
Corianò et al. 2020; Okada et al. 2021) or supersymmetric (Haba and Yamada 2020),
extra-dimension models and in particular the one including warped spacetimes
(Randall and Sundrum 1999; Goldberger and Wise 1999; Rattazzi and Zaffaroni
2001; Creminelli et al. 2002; Garriga and Pomarol 2003; Randall and Servant 2007;
Nardini et al. 2007; Konstandin et al. 2010; Konstandin and Servant 2011a; Bunk
et al. 2018; Megías et al. 2018a, b) (often coming together with a stabilisation
mechanism such as the Goldberger–Wise mechanism (Goldberger and Wise 1999)
and holographic duals of the Composite Higgs models mentioned above) or gauge-
Higgs unification approaches (Adachi et al. 2020).

Many of these BSM models are being explored at current particle colliders such as
the LHC. Searches performed at the LHC experiments such as ATLAS and CMS

Fig. 8 The parameter reach of
present and future GW
observational network for phase
transitions in a runaway-like
regime with vw ’ 1 and a  1.
In each shaded area the
corresponding experiment (see
labels) detects the FOPT signal
with SNR [10. The region
labelled BBN, PTA and aLIGO
O3 are ruled out. Image adapted
from Figueroa et al. (2018),
Megias et al. (2020)
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using the data from Run1 and Run2 did not find any evidence for BSM signals and
have allowed one to put constraints on masses and couplings of their corresponding
predicted new particles.

These BSM models could possibly be further explored at future colliders such as
the high-luminosity phase of the LHC or the Future Circular Collider,15 either by
direct detection of new particles or due to their impact on precision measurements of
many observables, such as masses and couplings in the different SM sectors (scalar,
gauge or fermionic). Still, most models have parameter space corners which will
remain inaccessible to present and near-future colliders, but whose early universe
dynamics results in GWs detectable by LISA. Figure 9 illustrates this complemen-
tarity in a singlet extension, showing the values of a and b=H� for different parameter
points and their prospective detection by LISA and HL-LHC.

Another exciting possibility of complementary observations comes from astro-
physics and more specifically gamma ray observations. These are connected with
intergalactic magnetic fields, as the latter would lead to pair production cþ B !
eþe� followed by scattering of the charged particles off the magnetic field:
e� þ B ! e� þ c, to produce a secondary c. This process leads to a dilution of the
spectra observed from distant blazars, which recently enabled a lower bound on the
magnitude of intergalactic magnetic fields (Tavecchio et al. 2010; Ando and Kusenko
2010; Neronov and Vovk 2010; Essey et al. 2011; Chen et al. 2015; Ackermann et al.
2018). Due to the lack of astrophysical processes to account for magnetic fields in
intergalactic voids, explanations through a primordial origin have been put forward.
One possibility is inflationary magnetogenesis (Turner and Widrow 1988; Ratra
1992; Martin and Yokoyama 2008; Kobayashi 2014) although it has been pointed out
recently that models where magnetic fields are produced before the EWPT
generically lead to problems with baryon isocurvature constraints (Kamada et al.
2021). Another interesting possibility involves a FOPT (Vachaspati 1991; Sigl et al.
1997; Tevzadze et al. 2012). While there are many differences between the magnetic
fields produced by both scenarios, notably involving the uncertainty of their
evolution after the transition (Durrer and Neronov 2013), the magnetic field is
governed by the same basic parameters as the GW signal. In particular this means
that the transition in question has to be strong enough to produce a magnetic field
amplitude above the known lower bounds. This, of course, leads to a certain
correlation between the two possible signals, and it was found that the parameter
space predicting a GW signal observable by LISA can also facilitate generation of a
magnetic field strong enough to explain the observed diffusion of the blazar spectra
for some models predicting a first order EWPT (Ellis et al. 2019a). Moreover, the
presence of helicity in the magnetic fields produced at a FOPT plays a crucial role on
its dynamical evolution, playing a crucial role in the resulting restrictions on the
strength of the FOPT (Brandenburg et al. 2017, 2019), as well as providing circularly
polarised SGWB. Such polarisation can also be measured by LISA providing a
distinct signal of this scenario (Ellis et al. 2020a; Domcke et al. 2020b).16

15 Although many of them can be elusive to collider physics (Addazi et al. 2019).
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7 Cosmic strings

Section coordinators: M. Lewicki, L. Sousa. Contributors: P. Auclair, J.J. Blanco-
Pillado, C-F. Chang, Y. Cui, D.G. Figueroa, A. Jenkins, S. Kuroyanagi, M. Lewicki,
M. Sakellariadou, K. Schmitz, L. Sousa, D. Steer, J. Wachter.

7.1 Introduction

Cosmic defects are stable energy configurations that can be formed in early universe
phase transitions, usually due to a spontaneous symmetry-breaking process driven by
some scalar field(s) acquiring a non-zero expectation value within a (topologically
non-trivial) vacuum manifold. If the symmetry broken is global, all non-constant
field configurations produce energy-momentum, and are loosely referred to as global
defects. When the broken symmetry is gauged, we speak of local defects instead.
Here we will focus on cosmic strings, which correspond to stable one-dimensional
defect solutions of field theories (Nielsen and Olesen 1973), independently of
whether they are global or gauge. Alternatively, cosmic strings can also be identified
with cosmologically stretched fundamental strings from String Theory, formed e.g. at
the end of brane inflation (Dvali and Vilenkin 2004; Copeland et al. 2004).

The energy per unit length of a string is l� g2, with g a characteristic energy
scale. The string tension, at least for the simplest cases, is typically of order l. In the
case of topological strings, g represents the energy scale of the phase transition. A
network of strings formed in the early universe emits GWs throughout most of the
history of the universe, generating a SGWB from the superposition of many

Fig. 9 Typical values of a and b=H� for the general singlet model, superimposed with LISA SNR curves
for T� ¼ 50 GeV (solid lines). The models in blue (orange) are unlikely (likely) to be probed by the high-
luminosity LHC. The dotted straight lines are the contours of the fluid turnover time quantifying the effect
of turbulence. In the grey shaded region the decay of sound waves into turbulence is less important than the
Hubble damping and the SNR curve reflects this effect. Image reproduced with permission from Caprini
et al. (2020), copyright by IOP/SISSA

16 Other proposed measures for detecting magnetic helicity in voids involve exploring the twisting of
photon paths coming from multiple blazar sources (Vachaspati 2021; Tashiro and Vachaspati 2015;
Kahniashvili and Vachaspati 2006).
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uncorrelated emissions. Here we forecast the constraints that LISA may put on the
dimensionless combination

Gl� 10�6 g
1016 GeV

� �2
; ð46Þ

where G ¼ 1=M 2
p is Newton’s constant, and Mp ¼ 1:22� 1019 GeV the Planck

mass. We note that various potential observational signatures of cosmic string net-
works, other than GW emission, have been discussed in the literature. These include
anisotropies in the CMB (Ade et al. 2014; Charnock et al. 2016; Lizarraga et al.
2016; Ringeval 2010), lensing events (Vilenkin 1984; Bloomfield and Chernoff
2014), and cosmic ray emission (Brandenberger 1987; Srednicki and Theisen 1987;
Bhattacharjee et al. 1992; Damour and Vilenkin 1997; Wichoski et al. 2002; Peloso
and Sorbo 2003; Sabancilar 2010; Vachaspati 2010; Long et al. 2014). (see Hind-
marsh and Kibble 1995; Vilenkin and Shellard 2000; Sakellariadou 2007; Vachaspati
et al. 2015 for a review.) Currently, CMB data from the Planck Satellite (Ade et al.
2014) imply Gl\10�7 for NG, Abelian-Higgs, and semi-local strings. The most
stringent bounds, however, come from searches for the SGWB, with PTA con-
straining Gl for NG strings to be Gl.10�11 (Blanco-Pillado et al. 2018a; Ringeval
and Suyama 2017), and LIGO-Virgo observations constraining it to be as low as
Gl\2� 10�14, depending on the string network model (Abbott et al.
2019c, 2018a). As we will show, LISA will be sensitive to string tensions with
GlJ10�17 for NG strings, improving current upper bounds by � 10 orders of
magnitude relative to CMB constraints, by � 6 orders of magnitude relative to
current PTA constraints, and even by � 3 orders of magnitude relative to future
constraints from next generation of PTA experiments. One important caveat is that
these predictions do not include the impact the astrophysical background of GWs.
Boileau et al. (2022) shows that, depending on different assumptions on the galactic
and extragalactic astrophysical foregrounds, the forecast sensitivity of LISA should
be reduced to roughly GlJOð10�16 � 10�15Þ. There is ongoing work in the con-
sortium aimed at providing a refined pipeline for cosmic strings and sharpening these
predictions.

As the characteristic width d� 1=g of a cosmic string is much smaller than the
size of the horizon, in the following we mainly assume that strings are well described
by the NG action, which is the leading-order approximation when the curvature scale
of the strings is much larger than their thickness. We refer to such strings as NG
strings (we focus on string networks without junctions). Cosmic string networks are
expected to reach an attractor solution known as scaling, for which the energy
density of the network remains a fixed fraction of the background energy density in
the universe. When strings within the network collide, they intercommute (i.e.
“exchange partners”) and reconnect after the collision (technically speaking this
corresponds to an intercommutation probability P ¼ 1, which we mainly assume,
though we will also comment briefly on the case P\1). As a result, loops are formed
whenever a string self-intersects or two curved strings collide. Sub-horizon sized
loops decouple from the cosmological evolution and oscillate under their own
tension, emitting GWs in this process. The relativistic nature of the strings typically
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leads them to form cusps, corresponding to points on the string momentarily moving
at the speed of light (Turok 1984). Furthermore, intersections of strings will also
generate discontinuities in their tangent vector known as kinks. Cusps and kinks
generate GW burst emissions (Damour and Vilenkin 2000, 2001), which add up all
throughout cosmic history to form a SGWB.

Besides sub-horizon loops, the network also contains long strings that that stretch
across a Hubble volume. These are either infinite or super-horizon loops, and they are
also expected to emit GWs. However, the dominant contribution is generically
produced by the superposition of radiation from many sub-horizon loops along each
line of sight.

Cosmic string networks are expected to create one of the largest SGWB of
cosmological origin known. In the following we analyse the ability of LISA to probe
the SGWB emitted by a network of cosmic strings, considering leading models of the
string networks as described in the literature. The prospects for detection or,
alternatively, for setting up new stringent constraints on string parameters, are very
encouraging.

7.2 Network modelling

The SGWB generated by cosmic string networks in a given frequency f has, at the
present time, contributions from all the loops created throughout the history of the
universe that have emitted GWs that have a frequency f today. The number density
nðl; tÞ of non-self-intersecting, sub-horizon, cosmic string loops of invariant length l
at any cosmic time t is then the crucial ingredient in this computation. In this section,
we review the models for the loop number density that have been proposed in the
literature.

7.2.1 Model 1

We start by considering an analytical approach—originally developed in Kibble
(1985) and later extended in Caldwell and Allen (1992), DePies and Hogan (2007),
Sanidas et al. (2012), Sousa and Avelino (2013)—which is based on two
assumptions. The first assumption is that the production of loops is the dominant
energy-loss mechanism in the evolution of the long string network. In this case, as we
shall see, the loop production function f(l, t) dl—which gives us the number density
of loops of lengths between l and l þ dl produced per unit time and per unit volume
—is determined by the large-scale evolution of the long string network. Here, we
shall use the approach introduced in Sousa and Avelino (2013) and use the Velocity-
dependent One-Scale model (Martins and Shellard 1996, 2002) to describe its
evolution. This model provides an analytical description of the evolution of the

characteristic length L � ðl=q1Þ1=2—where q1 is the energy density of the long
string network—and of the root-mean-squared velocity �v of the network (Martins and
Shellard 1996, 2002):
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d�v

dt
¼ 1� �v2
� � kð�vÞ

L
� 2H�v

� �
; ð47Þ

dL

dt
¼ 1þ �v2
� �

HLþ ~c

2
�v; ð48Þ

with

kð�vÞ ¼ 2
ffiffiffi
2

p

p
1� �v2
� �

1þ 2
ffiffiffi
2

p
�v3

� � 1� 8�v6

1þ 8�v6
: ð49Þ

The curvature parameter kð�vÞ accounts (to some extent) for the effects of small-scale
structure (Martins and Shellard 2002).

Here, ~c is a phenomenological parameter that quantifies the efficiency of the loop-
chopping mechanism, that may be calibrated with simulations (for NG strings, ~c ¼
0:23� 0:04 fits both radiation and matter era simulations (Martins and Shellard
2002)). Using Eq. (48), we find that the energy lost as a result of loop production is
given by

dq1
dt

����
loops

¼ ~c�v
q1
L

¼ l
Z 1

0
lf ðl; tÞdl; ð50Þ

and determines the normalisation of loop production function.
The second assumption of this model (which will be somewhat relaxed later) is

that all the loops are created with a length l that is a fixed fraction of the characteristic
length of the long string network: l ¼ aLL, where aL\1 is a (constant) free-
parameter of the model. We then have

f ðl; tÞ ¼ F

fr

	 

~c

l

�v

L3
d l � aLLð Þ; ð51Þ

where �v and L are given by Eqs. (47) and (48). Here the normalisation of f(l, t) is
determined using Eq. (51), except for the correction factor fr and F . The first factor,

fr �
ffiffiffi
2

p
, is introduced to account for the energy lost as a result of the redshifting of

the peculiar velocities of loops (Vilenkin and Shellard 2000). Also, since in general
we do not expect all loops to be created with exactly the same size but to follow a
distribution of lengths, a second factor F is included to account for the effect of the
spread of the distribution (see Sanidas et al. 2012; Sousa et al. 2020 for a detailed
analysis of this effect.) For NG strings, F is estimated to be Oð0:1Þ (Blanco-Pillado
et al. 2014).

Note that Eq. (51) is valid throughout any cosmological era, even during the
radiation-to-matter and matter-to-dark-energy transitions (in which the network is not
in a linear scaling regime). As a result, it allows us to compute f(l, t) through cosmic
history in a realistic cosmological background (Sousa and Avelino 2013). The
number density of loops nðl; tÞ at all times may then be found by solving
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nðl; tÞ ¼
Z t

ti

dt0f ðl0; t0Þ aðt0Þ
aðtÞ

	 
3

; ð52Þ

while accounting for the decrease in the length of loops caused by the emission of
GWs l ¼ l0 þ CGl ðt0 � tÞ (where C is a dimensionless constant characterising GW
emission efficiency—that we define more precisely in Sect. 7.3—, l is the length of a
loop created at a time t0 with a length l0 at a later time t[ t0).

The loop-size parameter aL may either be calibrated with numerical simulations
(as we shall do in Sect. 7.4), but may be also be treated as a free parameter of the
model to explore a wider variety of scenarios (as in Sect. 7.5.4). Although aL is the
natural parameter of this model, we will express our results in terms of a ¼ aLnr
(where nr is the value of L/t in the radiation era) in order to ease comparison with
other loop distribution models.

7.2.2 Model 2

The second model we consider is a loop number density distribution, nðl; tÞ,
extracted from large scale numerical simulations of the string networks (Blanco-
Pillado et al. 2014). These number densities were first obtained from the integration
of the loop production function f(l, t) of non-self-intersecting loops computed directly
from the simulation. Recently, these loop number densities were also determined
directly from simulations without the intermediate use of a loop production function
(Blanco-Pillado and Olum 2020). Both approaches produce the same result.

In the following we give the resulting distributions for three types of loops: those
created in the radiation era, emitting GWs in the radiation era; those created in the
radiation era, emitting GWs in the matter era; and those created in the matter era,
emitting GWs in the matter era.

With Xrad the fraction of the critical density in radiation, and understanding the
redshift z to be a function of time, we can write

nr;rðl; tÞ ¼ 0:18

t3=2ð1þ CGltÞ5=2
Hð0:1� l=tÞ ; ð53aÞ

nr;mðl; tÞ ¼ 0:18ð2 ffiffiffiffiffiffiffiffi
Xrad

p Þ3=2ð1þ zÞ3
ðl þ CGltÞ5=2

Hð0:09 teq=t � CGl� l=tÞ ; ð53bÞ

nm;mðl; tÞ ¼ 0:27� 0:45ðl=tÞ0:31
t2ðl þ CGltÞ2 Hð0:18� l=tÞ ; ð53cÞ

where HðxÞ is the Heaviside step function, and the subscript “r,m” indicates “loops
produced in the (r)adiation era, emitting in the (m)atter era”, and so on. For
Eqs. (53a) and (53c), the cutoffs are due to the maximum size of loop which can be
produced in these eras. For Eq. (53b), there is an additional term in the cutoff which
models the decay due to GWemission; that is, a loop formed in the radiation era must
have some minimum size in order to survive into the matter era. Equation (53)
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contains all the information necessary to compute the SGWB due to decaying loops,
as outlined in Sect. 7.3.

Analysis of Eq. (53c), in comparison to Eqs. (53a) and (53b), shows it to be
negligible for Gl.10�10 and thus for cosmic string tensions of interest to LISA. The
cosmic string generated SGWB potentially to be observed by LISA will be for
radiation-era loops, integrated up to the present. Of particular interest are radiation-
era loops emitting in the matter era; these loops contribute to a “bump” in the SGWB
spectrum which may, depending on Gl, fall within the LISA band (see Sect. 7.4). For
this particular reason, but also more broadly, it is important to understand how
gravitational backreaction affects the evolution of loops. At present, the decay of
loops into GWs is accounted for by CGl terms, but this does not take into account
potential changes to the loop population due to, e.g. loop fragmentation as a result of
backreacted trajectories. While current theoretical studies (Blanco-Pillado et al.
2018b, 2019b), and numerical studies of simple models (Robbins and Olum 2019),
suggest that the change to loop trajectories will be small, it is important to keep in
mind that no current, simulation-inferred network model incorporates gravitational
backreaction directly.

7.2.3 Model 3

The third model we consider is based on the analytical studies of the small-scale
structure and the correlation functions of individual infinite strings (Dubath et al.
2008; Polchinski and Rocha 2007, 2006). This analysis predicts a power-law loop
production function in terms of scaling units, whose slope is parametrised by a
parameter v linked to the fractal dimension of the strings. The production of cosmic
string loops is suppressed by gravitational back-reaction, on scales below

cc ¼ !ðGlÞ1þ2v; ð54Þ
in which ! ¼ Oð20Þ. The characteristics of the loop production function were later
inferred from measurements of the loop number density in large-scale simulations of
NG strings (Ringeval et al. 2007; Lorenz et al. 2010).17 The numerically inferred
loop-production function is then extended from large scales down to the gravitational
back-reaction scale, resulting in an extra population of small loops.

The loop number density of Model 3 can be approximated by the following
expressions

17 Note that the relationship between the loop number density and the loop production function is not
always one-to-one, see Auclair et al. (2019) for a review.
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t4nr;rðl; tÞ ¼

0:08

ðcþ CGlÞ3�2vr
if CGl\c

0:08ð1=2� 2vrÞ
ð2� 2vrÞCGlc2�2vr

if cc\c\CGl

0:08ð1=2� 2vrÞ
ð2� 2vrÞCGlc2�2vr

c

if c\cc

8>>>>>>>><>>>>>>>>:
ð55Þ

t4nm;mðl; tÞ ¼

0:015

ðcþ CGlÞ3�2vm
if CGl\c

0:015ð1� 2vmÞ
ð2� 2vmÞCGlc2�2vm

if cc\c\CdGl

0:015ð1� 2vmÞ
ð2� 2vmÞCGlc2�2vm

c

if c\cc

8>>>>>>>><>>>>>>>>:
ð56Þ

t4nr;mðl; tÞ ¼ t

teq

	 
4 1þ z

1þ zeq

	 
3

t4eqn
ð3Þ
rad

ct þ CdGlðt � teqÞ
teq

� �
ð57Þ

in which ðvr; vmÞ ¼ ð0:2; 0:295Þ. This extra population of small loops dominates the
SBGW in the high frequency spectrum as discussed in Abbott et al. (2018a), Auclair
et al. (2020), Abbott et al. (2021b) and hence can lead to very different constraints on
Gl to that of the two above-mentioned models. The energy density of these small
loops is very large and the question of energy balance, in the context of the one-scale
model, has been raised in Blanco-Pillado et al. (2019a).

7.2.4 Field theory

The above modellings are all based on NG strings, which are infinitely thin. Cosmic
strings appear however naturally as solitonic solutions of classical field theory
models (Nielsen and Olesen 1973), so in principle they can decay not only by GW
radiation but also directly into excitations of their elementary constituents. For
example, it has been observed with numerical simulations that global (axionic)
strings decay into the massless Goldstone modes present in the vacuum of the theory
(Davis and Shellard 1989). For local strings with no long-range interactions, the
excitations in the vacuum are however massive, and hence are naturally expected to
be suppressed for long wavelengths comparable to the length of the strings (Martins
et al. 2004; Olum and Blanco-Pillado 2000, 1999). Furthermore, recent simulations
of individual loops in the Abelian-Higgs model (Matsunami et al. 2019) report that
extrapolating their results to large loop sizes, the GW emission should be expected to
dominate over particle emission for loops larger than a certain critical length scale.

In contrast, large-scale field theory simulations of Abelian-Higgs strings (Vincent
et al. 1998; Hindmarsh et al. 2009; Daverio et al. 2016; Hindmarsh et al. 2017b)
observe that the network of long strings reaches a scaling regime, thanks to energy
loss into classical radiation of the scalar and gauge fields involved. As a consequence
of this, sub-horizon loops formed during the network evolution decay very promptly.
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This intriguing discrepancy has been under debate for over twenty years, but the
origin of this radiation is not currently understood.

The similarities and differences between field theory and NG simulations of string
networks can then be summarised as follows: the infinite strings are rather similar in
curvature radius and length density, but loops decay into field modes in the field
theory simulations. In field theory simulations, the string energy density goes into
radiated modes of the fields, which do not belong to the string network anymore. As
a consequence, the string loops decay within a Hubble time, and hence do not
continue to contribute as a source of GWs. In the NG picture, this channel does not
exist, and instead the energy of the infinite strings goes into loops, which then decay
via GWs. Our analysis in the following is mostly based on the NG classical evolution
of strings. We assume, as supported by NG simulations, that loops are formed
throughout cosmic history, and they decay into GWs. Our discussion about the
ability of LISA to measure a GW background from cosmic strings is therefore based
on this fundamental assumption.

7.3 Computation of the gravitational-wave spectrum from loops

The incoherent superposition of GWs emitted from oscillating cosmic string loops
leads to a SGWB. The calculation of the SGWB from the cosmic string networks
have been widely studied in the literature (Vachaspati and Vilenkin 1985; Blanco-
Pillado et al. 2014; Blanco-Pillado and Olum 2017; Blanco-Pillado et al. 2018a;
Ringeval and Suyama 2017; Vilenkin 1981; Hogan and Rees 1984; Accetta and
Krauss 1989; Bennett and Bouchet 1991; Caldwell and Allen 1992; Siemens et al.
2007; DePies and Hogan 2007; Olmez et al. 2010; Sanidas et al. 2012, 2013;
Binetruy et al. 2012; Kuroyanagi et al. 2012, 2013; Sousa and Avelino 2013, 2014;
Cui et al. 2019; Chang and Cui 2020; Jenkins and Sakellariadou 2018; Gouttenoire
et al. 2020a). The generic form of a GW spectrum in logarithmic intervals of
frequency, introduced in Eq. (29), also applies to the case with cosmic strings. For the
cosmic string application, Eq. (29) is implemented by integrating over the GW
emission from all the loops throughout cosmic history that contribute to a certain
frequency.18 In the following subsections, we review two methods of calculating
SGWB from string loops that have been developed in the literature along with recent
updates. There are ingredients that are common to both approaches. The first
ingredient is nðl; tÞ, the number density of non-self-intersecting, sub-horizon, cosmic
string loops of invariant length l at cosmic time t, As shown in Sect. 7.2, nðl; tÞ can
be estimated by analytical or simulation-based methods. Another characteristic
function is the gravitational loop power spectrum PGWðf ; lÞ, which may be
determined as an average based on simulations, or approximated by focusing on the
analytical high-frequency behaviour of particular events on the strings, e.g. cusps and
kinks.

18 We neglect the GW contribution from long (horizon-spanning) strings as being subdominant to the GW
contribution from loops for NG strings. See Buchmüller et al. (2013), Matsui and Kuroyanagi (2019).
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7.3.1 Method I

The first method to calculate XGWðt0; f Þ (Vachaspati and Vilenkin 1985; Blanco-
Pillado et al. 2014; Blanco-Pillado and Olum 2017; Blanco-Pillado et al. 2018a;
Caldwell and Allen 1992; Siemens et al. 2007; DePies and Hogan 2007; Olmez et al.
2010; Kuroyanagi et al. 2012, 2013; Sousa and Avelino 2013; Cui et al. 2019)
assumes that PGWðf ; lÞ takes the form of

PGWðf ; lÞ ¼ Gl2lPðflÞ; ð58Þ
where P(f, l) is an averaged function that can be computed from an ensemble of loops
of length l (but of different shapes) based on simulations.

Integrating all emissions throughout the history of the universe and taking into
account the redshift effects, the GW energy density for a particular frequency f as
measured today is

dqGW
df

ðt0; f Þ ¼ Gl2
Z t0

0
dt

aðtÞ
a0

	 
4Z 1

0
dl l nðl; tÞP a0

aðtÞ fl
	 


: ð59Þ

The GW radiation power of an isolated loop of length l can be computed using the
standard formulae in the weak gravity regime (Vachaspati and Vilenkin 1985;
Vilenkin and Vachaspati 1987; Garfinkle and Vachaspati 1987). As a simple
approximation, we assume that the loops evolve in flat space in a periodic manner,
and thus emit GW at discrete frequencies

xn ¼ 2pn=T ; ð60Þ
where T ¼ l=2 is the oscillation period, and the harmonic modes n ¼ 1; 2; . . .. As a
consequence, we replace P(fl) by Pn, a discrete function of the harmonic mode
number. For an individual loop, a simple (monochromatic) power spectrum can be
obtained assuming the emission is dominated by specific events (e.g. cusps, kinks)
(Vachaspati and Vilenkin 1985; Burden 1985; Garfinkle and Vachaspati 1987;
Binetruy et al. 2009)

Pn ¼ C
fðqÞ n

�q; ð61Þ

where fðqÞ is Riemann zeta function and C ¼P1
n¼1 Pn is the total power of emis-

sion, which is found to be highly peaked around C� 50 (Blanco-Pillado et al.
2015, 2014; Blanco-Pillado and Olum 2017; Wachter and Olum 2017; Blanco-Pil-
lado et al. 2018b; Chernoff et al. 2019; Blanco-Pillado et al. 2019b). The power law
parameter q is 4/3, 5/3, or 2 for GW emissions dominated by cusps, kinks, or kink-
kink collisions, respectively.19 With this method, the GWenergy density today can be
calculated by summing over loop harmonic modes (Blanco-Pillado and Olum 2017;
Blanco-Pillado et al. 2014).

19 We should keep in mind that the these simple power laws may not be a good approximation at low n. In
this case, the entire loop’s structure becomes important.

123

    5 Page 84 of 254 P. Auclair et al.



dqGW
df

ðt0; f Þ ¼ Gl2
X1
n¼1

Cnðf ÞPn; ð62Þ

where

Cnðf Þ ¼ 2n

f 2

Z 1

0

dz

HðzÞð1þ zÞ4 n
2n

ð1þ zÞf ; tðzÞ
	 


: ð63Þ

Note that in practice, only a finite number of modes need to be included in calcu-
lations, but the necessary number of modes to ensure a good convergence for a
reliable result depends on the background cosmology. For standard cosmology
XGWðt0; f Þ converges by summing over 103 � 105 modes (depending on the value of
q) (Sanidas et al. 2012). However, recent studies (Cui et al. 2020; Gouttenoire et al.
2020a; Blasi et al. 2020) demonstrated that more than 105 modes may be necessary
to ensure a convergence to the correct power law at high frequency. For instance, in
the presence of an early matter dominated era, summing over a small number of
modes gives f �1 at high f while an f �1=3 relation emerges with higher modes
included.

7.3.2 Method II

The second method analytically estimates PGWðf ; lÞ based on unresolved burst
events on the strings (Ringeval and Suyama 2017; Abbott et al. 2018a; Siemens et al.
2007; DePies and Hogan 2007; Kuroyanagi et al. 2012, 2013; Jenkins and
Sakellariadou 2018; Auclair et al. 2020). The cosmic string GW emission may be
dominated by cusps, kinks, or kink-kink collisions. The contribution to the SGWB
from unresolved bursts is given by

dqGW
df

ðt0; f Þ ¼ f 2
Z 1

zmin

dz

Z 1

0
dl h2ðl; z; f Þ d

2Rðz; lÞ
dzdl

; ð64Þ

where d2Rðz;lÞ
dzdl denotes the burst rate per unit loop length l and per unit redshift z which

is proportional to nðl; tÞ. zmin will be defined shortly. The amplitude h(l, z, f) is the
Fourier transform of the waveform of the bursts (Siemens et al. 2007; Damour and
Vilenkin 2000, 2001; Binetruy et al. 2009) and reads

hðl; z; f Þ ¼ Aqðl; zÞf �q; ð65Þ
with

Aqðl; zÞ ¼ gðqÞ1

GlH0l2�q

ð1þ zÞq�1urðzÞ
; urðzÞ � H0

Z z

0

dz0

Hðz0Þ dz: ð66Þ

Again the power q is equal to 4/3, 5/3 and 2 for cusps, kinks and kink-kink collisions,

respectively. The calibration constant gðqÞ1 accounts for loop geometry effects on
different bursts. Since the cusps and kinks radiate non-isotropically, the above
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waveform is only valid for directions near the cusp or kink direction. A cutoff angle
hcutoff is thus introduced to account for the geometric beaming effect:

hcutoff ðl; z; f Þ ¼ 1

g2f ð1þ zÞl
	 
1=3

; ð67Þ

with g2 ¼
ffiffi
3

p
4 . The burst rate is then given by (Damour and Vilenkin 2000, 2001;

Olmez et al. 2010)

d2Rðz; lÞ
dzdl

¼ 2
4pu2

r ðzÞ
ð1þ zÞ3HðzÞH2

0

nðl; tðzÞÞ
lð1þ zÞ

	 

Dðl; z; f Þ ; ð68Þ

where the quantity

Dðl; z; f Þ ’ hcutoff ðl; z; f Þ
2

	 
3ð2�qÞ
H 1� hcutoff ðl; z; f Þð Þ; ð69Þ

represents the fraction of observable bursts (Olmez et al. 2010).
Earlier burst events that cannot be resolved at a GW detector thereby contribute to

a SGWB. Integrating over z and l, the spectrum due to a given type of burst is

XGWðf Þ ¼
gðqÞ1

� �2
gq�2
2

24�3q

Nq

3

ðGlÞ2
H2

0

ð2pf Þ3
Z 1

0
dx

Z 1

zminðx;f Þ
dz

ðftðxÞÞ�2�q

ð1þ zÞ4þq x
1�q nðxÞ

HðzÞ ;

ð70Þ
where x � l=t, zmin is the solution to hcutoff ðl; zmin; f Þ ¼ 1, and Nq �Oð1Þ is the
average number of bursts per oscillation in a loop (Ringeval and Suyama 2017;
Jenkins and Sakellariadou 2018; Abbott et al. 2018a). An alternative calculation of
XGWðf Þ by integrating over z, h is shown in Cui et al. (2020).

More recent bursts of large amplitude could be resolved individually and thus
detected as transient events by GW detectors, which is a different type of signal
relative to a SGWB. If a burst is to be resolved in a given frequency band f, it must
produce a strain greater than the experimental sensitivity h[ hexp with rate less than
f. The rate of such events is (Siemens et al. 2006; Auclair et al. 2020)

Rexpðf Þ ¼
Z z�

0
dz

Z hmax

maxðhmin;hexpÞ
dh

d2R

dz dh
ðh; z; f Þ; ð71Þ

where z� enforces the rate condition and is given by

f ¼
Z z�

0
dz

Z hmax

hmin

dh
d2R

dz dh
ðh; z; f Þ: ð72Þ

For a given cosmic string model, the SGWB channel is usually more sensitive than
individual bursts, providing stronger constraints on parameters such as Gl (Abbott
et al. 2018a). Nevertheless in certain motivated scenarios, such as string formation

123

    5 Page 86 of 254 P. Auclair et al.



before or during inflation, a SGWB could be suppressed and burst events would
become the leading channel for discovery (Cui et al. 2020).

In addition to the Gaussian SGWB and the resolvable burst events as discussed
above, an unresolved string signal from a set of infrequent bursts at low redshift
z � 1 emits a distinct non-Gaussian and non-continuous popcorn-like signal. This
effect is negligible on the current pulsar timing limit Gl\10�11Regimbau et al.
(2012), Olmez et al. (2010), and has no effect on the SGWB that is emitted from a
large loop size a� 0:1 (Blanco-Pillado and Olum 2017; Siemens et al. 2007; Olmez
et al. 2010; Binetruy et al. 2012). However, if the burst occurs in our neighbourhood
with strong amplitude, then GW detectors may be able to identify the signal
(Chernoff and Tye 2018; Helfer et al. 2019). Such a coherent signal may provide a
complementary detection mechanism: cosmic strings may generate a non-negligible
amount of GW memory (Aurrekoetxea et al. 2020) that would not be captured by
SGWB probes (Jenkins and Sakellariadou 2021).

7.3.3 Templates for the stochastic gravitational-wave background generated
by cosmic string loops

Models 1 and 2 An analytical approximation for the contribution of each of three
loop populations—loops that decay in the radiation era, radiation-era loops that
survive into the matter era, and loops created in the matter era—to the SGWB was
derived in Sousa et al. (2020). Therein, they found that radiation-era loops give rise
to a SGWB of the form

Xr
GWðf Þ ¼

128

9
pArXr

Gl
�r

f ð1þ �rÞ
BrXm=Xr þ f

	 
3=2

�1

" #
; ð73Þ

where we have defined �r ¼ a=ðCGlÞ and

Ai ¼ ~cffiffiffi
2

p F
vi
n3i

and Bi ¼ 2H0X
1=2
i

miCGl
; ð74Þ

and where the labels i ¼ r;m are used to refer to the values of the corresponding
variables in the radiation and matter eras, respectively. In the radiation era, we have
mr ¼ 1=2, nr ¼ 0:271, vr ¼ 0:662 and Ar ¼ 5:4F . This contribution dominates the
high-frequency region of the SGWB spectrum (for f  BrXm=Xr), giving rise to a
plateau of amplitude

Xplateau
GW h2 ¼ 128

9
pArXrad h

2 Gl
�r

�r þ 1ð Þ3=2�1
h i

’ 1:02� 10�2 Gl
�r

�r þ 1ð Þ3=2�1
h i

:

ð75Þ
The contribution of the loops that are created in the radiation era but survive into the
matter era is of the form
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Xrm
GWðf Þ ¼ 32

ffiffiffi
3

p
p XmXrð Þ3=4H0

Ar

C
ð�r þ 1Þ3=2

f 1=2�r

Xm
Xr

� �1=4
Bm

Xm
Xr

� �1=2
þf

	 
1=2
2þ f

Bm
Xm
Xr

� �1=2
þf

264
375

8>>><>>>:
� 1

Bm þ fð Þ1=2
2þ f

Bm þ f

� �)
;

ð76Þ
and gives rise to a peak in the low-frequency portion of the spectrum (for
f � BrXm=Xr).

Matter-era loops also give rise to a peak-like contribution in the same frequency
range, albeit with a different shape:

Xm
GWðf Þ ¼ 54pH0X

3=2
m

Am

C
�m þ 1

�m

Bm

f

2Bm þ f

BmðBm þ f Þ �
1

f

2�m þ 1

�mð�m þ 1Þ þ
2

f
log

�m þ 1

�m

Bm

Bm þ f

	 
� �
;

ð77Þ
where �m ¼ �rnm=nr and we have mm ¼ 2=3, nm ¼ 0:625, vm ¼ 0:583 and
Am ¼ 0:39F . The shape of the SGWB generated by cosmic string loops in this
frequency range is then determined by the interplay between these two contributions.
For larger values of a, Xrm

GW dominates, although its relative importance decreases as

a decreases (since Xrm
GW � a1=2). So, for small enough a, the contribution of matter-

era loops dominates the SGWB spectrum in the low-frequency range.
It was demonstrated in Sousa et al. (2020) that the SGWB is well described by an

approximation of the form

XGWðf Þ ¼ Xr
GWðf Þ þ Xrm

GWðf Þ þ Xm
GWðf Þ ð78Þ

for aJCGl and f\3:5� 1010=ð1þ �rÞ Hz (larger frequencies are outside the
sensitivity windows of the current major GW experiments; see however (Sousa et al.
2020) for a description of how to extend these results for larger frequencies). For
a.CGl, loops survive significantly less than a Hubble time and decay effectively
immediately on cosmological times scales. In this case, no loops produced in the
radiation era are expected to survive into the matter era and, as a result, the contri-
bution Xrm

GW should be switched off. However, for small enough a (i.e. a.0:1CGl),
this approximation further simplifies to (Sousa and Avelino 2014; Sousa et al. 2020)

XGWðf Þ ¼ 64p
3

GlXrAr þ 54p
H0X

3=2
m

�mC
Am

f
1� Bm

�m

1

f

� �
: ð79Þ

Note that, since Model 1 may be calibrated to describe Model 2 (Auclair et al. 2020),
Eq. (78) can also be used as a template for this model by setting F ¼ 0:1 and
a ¼ 0:1.20 Note also that, although these approximations only provide a description
of the SGWB generated by the fundamental mode of emission, one may use it to

20 As discussed in Sect. 7.2.2, for Gl.10�10, the contribution from matter-era loops Xm
GW is negligible

and does not need to be included.
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construct an analytical approximation up to an arbitrary number of modes of emis-
sion n� for any q using

XGWðf ; q; n�Þ ¼
Xn�
j¼1

j�q

E
XGWðf =jÞ; ð80Þ

with E ¼Pn�
m m�q (Fig. 10).

Model 3 A first review of the SGWB of Model 3 was conducted in Ringeval and
Suyama (2017), and we present below analytical approximations derived in Auclair
et al. (2020). The loop distribution of Model 3 is similar on large scales to the two
above-mentioned models, but is also characterised by an extra population of small
loops with invariant lengths smaller than CGlt. This extra population is treated
separated from the rest of the loop distribution resulting in five contributions, i.e. the
extra populations of small loops emitting GWs either during the radiation era or the
matter era, and the three populations mentioned in the previous section.

The contribution from radiation-era loops is given by

Xr
GW ¼ 64pCrXr

3Cð2� 2vrÞ
ðCGlÞ2vr 1þ 4Hrð1þ zeqÞ

f CGl

	 
2vr�2

; ð81Þ

where Cr ¼ 0:08 and vr ¼ 0:2. This formula is characterised by a plateau at high
frequency. The loops produced during radiation-era that survive during matter era
also contribute to the SGWB

Xrm
GW ¼ 54pCrHmXm

Cf ðCGlÞ1�2vr
ð1þ zeqÞ3ð2vr�1Þ=2

x2�6vr

2� 6vr
2F1ð3� 2vr; 2� 6vr; 3� 6vr;�

3Hmx

f CGl
Þ

� � ffiffiffiffiffiffiffiffiffi
1þzeq

p

1

:

ð82Þ

Matter-era loops give rise to a SGWB given by

Xm
GW ¼ 2� 32vmpCmXm

H2�2vm
m Cf 2vm�2

ðCGlÞ2

x2vm�4

2vm � 4 2F1ð3� 2vm; 4� 2vm; 5� 2vm;�
f CGl
3Hmx

Þ
� � ffiffiffiffiffiffiffiffiffi

1þzeq
p

1

;

ð83Þ

where Cm ¼ 0:015 and vm ¼ 0:295, and 2F1 is the Gauss hypergeometric function.
The extra population of small loops plays an important role in determining the

SGWB, particularly at high frequencies. Due to their small size (\CGlt) their
contribution is cutoff at low frequencies and their lifetime is too short for them to
survive from the radiation-era to the matter-era. The contribution of the extra
population of small loops emitting GWs during the radiation era is given by the
piece-wise formula
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Xr;epsl
GW ¼ 64pCrXrð1=2� 2vrÞ

3ð1� 2vrÞð2� 2vrÞ
Glc2vr�1

c

�
0 if f\4ð1þ zeqÞHrðCGlÞ�1

4ð1þ zeqÞHr=ðccf Þ
� 2vr�1� CGl=ccð Þ2vr�1 if f\4ð1þ zeqÞHrc�1

c

ð2� 2vrÞ � 4ð1þ zeqÞHrð1� 2vrÞ=ðccf Þ � CGl=ccð Þ2vr�1 if f [ 4ð1þ zeqÞHrc�1
c

8>><>>:
ð84Þ

and the contribution of the extra population of small loops emitting GWs during the
matter era is given by the piece-wise formula

Xm;epsl
GW ¼ 54pCmHmXmð1� 2vmÞ

ð3� 2vmÞð2� 2vmÞf
Glc2vm�2

c

3Hm

ccf

	 


�

0 if f\4HmðCGlÞ�1

3Hm

ccf

� �2vm�3

1� 3Hm=ðCGlf Þ½ 
3�2vm
n o

if f\4Hm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq

p ðCGlÞ�1

3Hm

ccf

� �2vm�3

1� ð1þ zeqÞ�ð3�2vmÞ=2
h i

if f\4Hmc�1
c

ð3� 2vmÞf cc=ð3HmÞ þ ð2vm � 2Þ � f cc
3Hm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq

p !3�2vm

if f\4Hm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq

p
c�1
c

3Hm

ccf

� ��1

ð3� 2vmÞ 1� ð1þ zeqÞ�1=2
h i

if f [ 4Hm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zeq

p
c�1
c

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

:

ð85Þ
Similarly to the previous section, these approximations assume that the GW are
emitted by the fundamental mode, ie. by the oscillations of the loop. One can use
Eq. (80) to construct predictions with an arbitrary number of modes (Fig. 11).

7.4 LISA detection prospects

Searches by current GW experiments (by LIGO/VIRGO and PTAs) on power spectra
of the form XGWðf Þ ¼ Af n have provided upper bounds on the amplitude A for
different fixed values of the spectral index n (Abbott et al. 2019c; Lentati et al. 2015;

Fig. 10 Analytical approximation to the SGWB generated by cosmic string networks with Gl ¼ 10�10

and different values of a for Model 1. The solid lines represent the approximation to the SGWB in Eq. (78),
while the dashed lines correspond to the SGWB obtained numerically. Image reproduced with permission
from Sousa et al. (2020)
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Arzoumanian et al. 2018). Very recently, the NANOGrav and EPTA collaborations
have even reported an excess that might be due to a SGWB signal (Arzoumanian
et al. 2020; Chen et al. 2021b), although the origin is still uncertain. As no statistical
significant evidence of the expected quadrupolar spatial correlations has been found,
the detected signal can still be ascribed to some unknown systematics. More data is
needed in order to discern whether this signal is a real SGWB or not, and if it is,
whether it is due to BSM scenarios (Ellis and Lewicki 2021; De Luca et al. 2021b;
Neronov et al. 2021) or to astrophysics (Sesana 2016).

The PLS curve (Thrane and Romano 2013) is a useful construction that
graphically quantifies the ability of a detector to measure a SGWB with a spectrum
characterised by a power-law in frequency (the extension to a generic frequency-
dependence of the signal is discussed in Sect. 9). Specifically, we use the LISA PLS
as introduced by Thrane and Romano (2013), but using the most updated LISA
sensitivity curves based on the final configuration of LISA and new knowledge of its
noise. (see LISA 2023 for all current LISA documentation.)

Claiming detection of a given SGWB from cosmic string loops (say for a given
tension and other fixed string network parameters), can be roughly interpreted as the
detection of the signal after 3 years of accumulated data (corresponding to 4 years of
LISA operation), with a SNR � 10. Since the shape can be more complicated than a
simple power law, a more elaborated analysis following (Caprini et al. 2019; Flauger
et al. 2021) is required to assess the SNR for a given detection, see also Karnesis
et al. (2020). Here, for the moment, we simply quantify the parameter space
compatible with a detection, without quantifying the SNR associated to such a
detection. We do not reconstruct such parameter space with appropriate statistical
techniques, though such work is already in the pipeline of coming work from the
LISA collaboration.

In Figs. 12 and 13, we present numerical results for the SGWB generated by
cosmic string loops, in a standard cosmological background. The LISA band is well

Fig. 11 Figure to demonstrate the validity of the templates for Model III. The dark dashed line is the result
from numerical integration with only the fundamental mode and GðzÞ ¼ 1
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suited to set strong constraints on the string tension, thanks to the natural shift of the
“bump” in the SGWB to larger frequencies as Gl decreases. This effect can be
clearly seen in these figures, where we show a sequence of SGWB spectra over the
LISA PLS, as we vary the string tension. We can find in this way the lowest Gl for
which an intersection between the SGWB spectrum and the PLS still takes place.
While the exact bound depends on our choice of model and Pn, in the regime LISA
will probe, all three models—Model 2 and Model 3, as well as Model 1 (when
calibrated to describe NG simulations by setting a ¼ 0:1 and F ¼ 0:1)—predict a
string tension bound of Oð10�17Þ. We note that the trailing edge of the bump of the
SGWB (that scales as XGW / f 3=2) will be the last part of the spectrum to pass
through the LISA sensitivity band.

Note also that for string tensions Gl[ 10�16, LISAwill probe the high-frequency
side of the SGWB bump, the particular shape of which depends on how the number
of particle degrees of freedom change across the universe history. This is relevant
because while the three models predict roughly equal lower bounds for the LISA
window, Models 1 and 2 disagree with Model 3 at high frequencies. These discrepant
regions will pass through the LISA band and hence, in the event of a detection, we
could discern among the different models.

7.4.1 Anisotropies in the stochastic gravitational-wave background

GW sources with an inhomogeneous spatial distribution would lead to anisotropies in
the SGWB, in addition to the anisotropies induced by the nature of spacetime along
the line of propagation of GWs. The formalism (Jenkins and Sakellariadou 2018) to
study anisotropies induced by the distribution of string loops was consequently
applied for the string distribution of Models 2 and 3. It has been shown that the

Fig. 12 Solid red curves show cosmic string SGWB curves for a range of Gl values. From the darkest
most high up line to the lightest lowest one these read: Gl ¼ 10�10, Gl ¼ 10�13, Gl ¼ 10�15 and
Gl ¼ 10�17. The Pn used in computation of these spectra was inferred from simulations (Blanco-Pillado
and Olum 2017), and the loop number density is from Model 2. The dashed orange curve shows the
sensitivity of EPTA. The dark orange dash-dotted line shows the projected SKA sensitivity. The dotted
black line shows the LISA PLS of SNR ¼ 10
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angular spectrum of the 2-point correlator is relatively insensitive to the particular
choice of the string loop model: regardless of the model, the anisotropies are driven
by local Poisson fluctuations in the number of loops, and the resulting angular power
spectrum is spectrally white (i.e. C‘ ¼ constant with respect to ‘) (Jenkins and
Sakellariadou 2018).

In Fig. 14 we show the amplitude of the SGWB angular power spectrum for
models 2 and 3 as a function of Gl. We also include Model 1 with a small value of
the initial loop size a, as this has been studied in the literature as a source of
significant anisotropies in the PTA frequency band (Kuroyanagi et al. 2017). We find
that, regardless of the loop model and the string tension, the predicted C‘ spectrum is
unfortunately far too small to be detected with LISA.

7.5 Extended and alternative considerations

In the previous sections we focused on GW signals from cosmic string loops in most
conventional scenarios, i.e. NG strings evolving in the standard cosmology
background with particle content of the SM. Nevertheless there are well motivated
variations encoding new physics that can lead to subtle or dramatic deviations to the
standard prediction of string SGWB spectra that we have demonstrated. In this
section we review a few representative cases. We will start with the fact that long
strings also radiate a SGWB that add up to the previously discussed SGWB from
loops. We will also consider cosmic string scenarios with different loop sizes and
forecast the parameter space available for exploration with LISA. We will then move
on to the possible signals from networks of cosmic strings formed during a global
symmetry breaking which as we will see are quite distinct as then particle production
and not GW production becomes the dominant emission mode. Next we will turn to
cosmic strings emerging from superstring theory and in particular the possibility of
smaller reconnection probability they can feature. We finally consider the case of
metastable cosmic strings.

Fig. 13 Identical to Fig. 12, however, Pn / n�4=3 and using the loop number density from Model 3
(Lorenz et al. 2010)
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Another key aspect is that the general broad band nature of cosmic strings SGWB
enables cosmic archaeology which would allow us to probe the expansion history
prior to BBN as well as new particles beyond the SM that are difficult to access by
other means. We will not cover this method here, instead referring the interested
reader to Sect. 9 where methods of probing the expansion history are discussed and
specifically to its Sect. 9.2.3 dealing with cosmic strings.

7.5.1 Long strings

We have focused so far on the GW emission by sub-horizon size string loops. Long
strings, however, either infinite or super-horizon loops, emit also GWs. One
contribution to this signal originates due to the relativistic motion of the long strings,
as the network energy-momentum tensor adapts itself to maintain scaling during
cosmic evolution. As a result, an emission of GWs sourced by the anisotropic stress
of the network, takes place around the horizon scale at every moment (Krauss 1992;
Jones-Smith et al. 2008; Fenu et al. 2009; Figueroa et al. 2013). This SGWB
background is actually expected to be emitted by any scaling network of cosmic
defects, independently of the topology and origin of the defects (Figueroa et al.
2013). It represents an irreducible background generated by any defect network (that
has reached scaling). For NG cosmic string networks, such irreducible background
represents however a sub-dominant signal compared to the background emitted from
the loops discussed before. In the case of field-theory string networks (for which
simulations to date indicate the absence of “stable” loops (Vincent et al. 1998;

10−20 10−18 10−16 10−14 10−12

Gμ

10−28

10−26

10−24

10−22

10−20

10−18

10−16

10−14

10−12

√ C

model 1, α = 10−12
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model 3

Fig. 14 Amplitude of the SGWB anisotropies for different cosmic string network models, as a function of
the string tension. We use a representative LISA-band GW frequency of 1 mHz. Note that the spectra here
are not normalised with respect to the monopole, so

ffiffiffiffiffi
C‘

p
is proportional to XGW. We note that the angular

spectrum is constant with respect to ‘, since the anisotropies are driven by local Poisson fluctuations in the
number of loops
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Hindmarsh et al. 2009; Daverio et al. 2016; Hindmarsh et al. 2017b, 2021)), it is
instead the dominant GW signal emitted by the network.

The energy density spectrum of this irreducible SGWB from long strings is
predicted to be scale-invariant for the modes emitted during radiation domination
(RD) (Figueroa et al. 2013). The amplitude of the background depends on the fine
details of the so called unequal-time-correlator of the network’s energy-momentum
tensor, which can be only accurately obtained from very large scale lattice
simulations of defect networks. In the case of global defects, the scale-invariant GW
power spectrum has been analytically estimated in Jones-Smith et al. (2008), Fenu
et al. (2009). The amplitude of the spectrum plateau for global strings has been
recently calibrated in lattice field theory simulations (Figueroa et al. 2020), obtaining

h20X
ð0Þ
GW ’ 3:13 � 10�13 Gl

10�6

	 
2

: ð86Þ

Using the latest Planck CMB constraints (Lopez-Eiguren et al. 2017), Figueroa et al.
(2020) finds that the amplitude of the plateau satisfies

h2Xð0Þ
GW\9:7 � 10�15; ð87Þ

with the number in the right hand side of the inequality corresponding to the

amplitude when the CMB bound 1012ðGlÞ2 	 0:031 is saturated. The amplitude in
Eq. (87) is larger, for instance, than the maximum amplitude expected (as bounded
by current CMB constraints (Ade et al. 2021)) for the quasi-scale invariant GW

background in slow-roll inflation (Caprini and Figueroa 2018), h20X
ðinf Þ
GW .10�16. It is

however, still too small to be observed by LISA, and it is clearly subdominant when
compared to the amplitude of the dominant GW signal from the long lived NG loops,

which scales as ðGlÞ1=2.
One can also consider the contribution to the GW spectrum coming from the

accumulation of small-scale structure on long strings. These kinks are the product of
the multiple intercommutations that infinite strings suffer over the course of their
cosmological evolution, and were noticed early on in numerical simulation of cosmic
networks (Bennett and Bouchet 1988; Sakellariadou and Vilenkin 1990). The
emission of GW from individual infinite strings modulated by kinks has been
calculated in Sakellariadou (1990), Hindmarsh (1990). Using these results, one can
also compute the spectrum produced by these kinks on a network assuming the
simple model in which their characteristic scale is given by at. At high frequencies
one can then estimate that the radiation-era plateau of this contribution should be
(Vilenkin and Shellard 2000)

h2XGW ’ 128p2

3n2a
h2XradðGlÞ2; ð88Þ

which, for a � 0:1 and nr ¼ 0:271, shows a rough agreement with the value obtained
from field theory simulations. On the other hand, recently, Matsui and Kuroyanagi
(2019) has calculated the GW spectrum produced by kink-kink collisions on long
strings, and found that the amplitude is larger than in previous estimates. This is
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because the characteristic scale a turns out to be much smaller than 0.1 according to
their semi-analytic estimation of the kink number distribution.

7.5.2 Agnostic approach to loop size

In Sect. 7.4, we have analyzed the detection prospects for NG strings using either
Model 1 (calibrated to NG simulations) or simulation-inferred Models 2 and 3. Here,
we extend the analysis a bit further, by using Model 1 to study scenarios with
different loop sizes. As we have seen in Sect. 7.3.3, although the typical shape of the
SGWB spectrum generated by cosmic strings is roughly independent of a, the
amplitude of the radiation-era plateau and the characteristics of the peak—its shape,
height and broadness—are highly dependent on the size of loops. As a matter of fact,
the amplitude of the spectrum generally decreases with decreasing a and, therefore,
LISA should, in general, be less sensitive to scenarios in which loops are created with
a smaller size.

The ða;GlÞ parameter space available for exploration with LISA—which we plot
in Fig. 15—is characterized in Auclair et al. (2020). This analysis finds that LISA
should be able to probe about 16 orders of magnitude in loop size and, thus, it will
have a good capability to detect string models that deviate from the standard NG
scenario. Note, however, that the projected constraints on cosmic string tension are
also less stringent as the loop size decreases. Nevertheless, LISA shall be able
(conservatively) to probe cosmic string scenarios in which loop production is
significant up to tensions

Gl\8� 10�12; ð89Þ
independently of loop size (Auclair et al. 2020). This corresponds to an improvement
of almost 5 order of magnitude over current equivalent constraints (Sanidas et al.

Fig. 15 Projected constraints on Gl of the LISA mission for cosmic string scenarios characterised by
different loop-size parameter a for n� ¼ 1 (dashed line) and n� ¼ 105, with q ¼ 4=3 (dash-dotted line).
The shaded area corresponds to the region of the ða;GlÞ parameter space that will be fully available for
exploration with LISA. The dotted line corresponds to scenarios for which a ¼ CGl, so that the region
above this line corresponds to cosmic string models in which loops are small, while the region bellow
corresponds to the large loop regime. Image reproduced with permission from Auclair et al. (2020),
copyright by IOP/SISSA
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2012) and of more than 2 orders of magnitude over the projected SKA constraints
(Sanidas et al. 2013).

7.5.3 Global strings

Global cosmic strings are generically predicted in BSM frameworks with e.g. a post-
inflationary global U(1) symmetry breaking which may be associated to axion-like
DM. The GW emission from global strings have been less actively studied than that
from NG strings, with only few papers having addressed an explicit computation of
the SGWB from global/axion strings (see Jones-Smith et al. 2008; Fenu et al. 2009;
Giblin et al. 2012; Figueroa et al. 2013; Chang and Cui 2020; Gouttenoire et al.
2020a; Figueroa et al. 2020; Gorghetto et al. 2021). Studying this topic is however
particularly timely given the increasing interest in axion DM. In the following we
review the semi-analytical approach taken in the recent work (Chang and Cui 2020).

The approach taken in Chang and Cui (2020) systematically follows a similar
procedure as for NG strings which is reviewed in Sect. 7.2.1 but there are a few key
differences for global strings. First, global strings have a time-dependent string
tension (Copeland et al. 1990; Dabholkar and Quashnock 1990; Vilenkin and
Shellard 2000)

lðtÞ ¼ 2pg2ln L=dð Þ � 2pg2N ; ð90Þ

where L ’ H�1n�1 is the string correlation length, n is the number of long strings per

horizon volume, d ’ 1=g is the string thickness, and N � ln L=dð Þ ’ lnðgn�1tÞ is
time-dependent. Once reaching the scaling regime, the long string energy density
evolves as

q1 ¼ nðtÞ lðtÞ
t2

; ð91Þ

where nðtÞ quickly approaches a constant for NG strings, yet needs to be determined
for global strings. In addition, global string loops have an additional significant decay
channel, through Goldstone emission. Taking these into account, the evolution
equations of a global string network are as follows based on a Velocity-dependent
One-Scale model (Martins 2019; Vilenkin and Shellard 2000):

2� 1

N

	 

dL

dt
¼ 2HL 1þ v2

� �þ cvþ r
v

N
;

dv

dt
¼ 1� v2
� � k

L
� 2Hv

� �
; ð92Þ

where k� 0:28 is a momentum parameter, v� 0:57 is the averaged long string
velocity, c� 0:5 is the loop chopping parameter and r� 5:83 is the Golstone radi-
ation parameter. These values are obtained (Chang and Cui 2020) from recent
simulation results (Gorghetto et al. 2018; Kawasaki et al. 2018; Hindmarsh et al.
2020; Klaer and Moore 2017).

As presented in Eq. (90), reliable numerical simulations of global string networks
require a huge scale separation in string length L / 1=HðtÞ and core width d. Thus
the global string simulation is much more challenging. Nevertheless, it has seen rapid
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development in recent years (Gorghetto et al. 2018; Kawasaki et al. 2018; Hindmarsh
et al. 2020; Klaer and Moore 2017; Buschmann et al. 2020; Figueroa et al. 2020),
while uncertainties remain to be resolved with future higher resolution simulations.
Due to the lack of dedicated simulation results for global string loop distribution at
formation time, a reasonable benchmark inspired by Model 2 for the NG case is
considered while the effects of alternative possibilities of loop distribution are
discussed in Chang and Cui (2020).

Once formed, a loop oscillates and loses energy by the rate (Vilenkin and
Vachaspati 1987; Battye and Shellard 1996, 1994; Vilenkin and Shellard 2000)

dE=dt ¼ �CGl2 � Cag
2; ð93Þ

where the right hand side represents GW and Goldstone radiation in order. Studies
show that C ’ 50 (Vilenkin 1981; Blanco-Pillado et al. 2011, 2014; Blanco-Pillado
and Olum 2017), Ca ’ 65 (Vilenkin and Shellard 2000). Consequently the length of
a loop after its formation time ti would evolve as

‘ðtÞ ’ ati � CGlðt � tiÞ � jðt � tiÞ; ð94Þ
where j � Ca=ð2pNÞ. The SGWB from global strings can be computed following
the similar procedure of computing the SGWB for NG strings while taking into
account these distinctions. Figure 16 illustrates the results with varying symmetry
breaking scale g, assuming standard cosmic history, with the NG string GW spectra
shown in contrast. As can be seen, the global string amplitudes are more sensitive to

scale g, i.e. Xglobal
GW / g4 and the NG string XNG

GW / g. The spectrum falls off at
f � 1

t0
� 10�17 Hz due to the last GW emissions, today. Meanwhile, in the late matter

domination period, it follows the frequency dependence Xglobal
GW ðf Þ / f �1=3 for

summation of higher oscillation normal modes n  105 as demonstrated in very
recent studies (Cui et al. 2020; Blasi et al. 2020). Then, at f � 10�8 Hz, the loga-
rithmic time dependence of l made a gradually, logarithmically declining plateau
towards high f on the GW spectrum, instead of a large plateau in NG strings in RD
period.

= 1015, 5 × 1014, 1014 GeV

LISA

Fig. 16 SGWB spectrum from a global (solid) and gauge (dashed) string network in standard cosmology
with loop length parameter a ¼ 0:1, and symmetry breaking scale g ¼ 1015; 5� 1014; 1014 GeV for red,
green, blue, respectively. The grey region is the LISA sensitivity
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In very recent simulation studies (Saurabh et al. 2020), they have concluded that
the global string loop lifetime is of the order the loop initial length l� at which is in a
good agreement with the prediction of Eq. (94) by energy conservation. However, the
amplitude of the SGWB from large-scale simulations of global string networks from
Figueroa et al. (2020), Figueroa et al. (2013), c.f. Eqs. (86) and (87), obtain an
amplitude of the SGWB notably smaller than the above semi-analytical prediction.
More work is therefore needed, with further investigation and improvements on both
global string simulation and analytical analysis, in order to understand the origin of
this discrepancy.

7.5.4 Cosmic superstrings

Several brane-inflationary scenarios predict the copious production of cosmic
superstrings (see e.g. Copeland et al. 2004; Dvali et al. 2001; Jones et al. 2003):
fundamental strings—or F-strings—and 1-dimensional Dirichlet branes—or D-
strings—that grow to macroscopic sizes and play the cosmological role of cosmic
strings. These cosmic superstrings, as a result of their quantum nature, do not always
exchange partners when they collide: strings may simply pass through each other
without intercommutation. In other words, the probability of intercommutation P is
—unlike that of ordinary strings (Shellard 1987; Verbiest and Achucarro 2011)—
smaller than 1. In fact, it was shown that 10�3.P.1 in collisions between F-strings
and 10�1.P.1 for D-string collisions (Jackson et al. 2005).

Cosmic superstring networks are then expected to lose energy less efficiently and,
consequently, to be significantly denser than networks of ordinary cosmic strings and
to generate a SGWB with a higher amplitude as a result. As a matter of fact, the loop-
chopping parameter—which quantifies the energy that is lost in the form of loops—is
expected to be such that ~c / Pc, where c[ 0.21 For such weakly interacting
networks, with ~c � 1, the amplitude of the SGWB is expected to roughly scale as
(Avelino and Sousa 2012; Sousa and Avelino 2016)

XGW / ~c�2 / P�2c: ð95Þ
The constraints on Gl derived on the previous sections for P ¼ 1 are then conser-
vative for cosmic superstrings: for P\1 the bounds should necessarily be tighter.

Note, however, that the length of loops produced by cosmic superstring networks
is not known, since the precise number density of loops was not yet measured in
simulations.22 Nevertheless, conservative “a-independent” constraints on cosmic
superstring tension—obtained using the radiation-era plateau of the SGWB generated
by small loops—can be derived. In fact, LISAwill be able to probe cosmic strings up

21 The exact value of the exponent c is still a matter of debate—c ¼ 1=2 was observed in NG simulations
in Minkowski space (Sakellariadou 2005) and c ¼ 1=3 in both radiation- and matter-era simulations
(Avgoustidis and Shellard 2006)—and, thus, here we discuss the effects of P (mostly) qualitatively.
22 There is some evidence that the reduction of the intercommuting probability is more efficient in
suppressing the production of large loops than that of small loops (Avgoustidis and Shellard 2006), which
seems to indicate that smaller a (�CGl) may be favoured for these networks.
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to a tension of Gl� 10�12; 10�13; 10�14, for P ¼ 10�1; 10�2; 10�3 respectively
(Auclair et al. 2020).23

Note also that there are relevant aspects of cosmic superstring dynamics that were
not taken into account when deriving these constraints. In particular, when
superstrings of different types collide, they are expected to bind together to create
a (heavier) third type of string. This is expected to lead to networks with junctions
and a hierarchy of tensions—whose dynamics differ from that of ordinary string
networks (Copeland et al. 2004, 2006a, 2007, 2008; Avgoustidis and Shellard 2008;
Rajantie et al. 2007; Sakellariadou and Stoica 2008; Avgoustidis and Copeland 2010;
Avgoustidis et al. 2015) – and to have an impact on the shape and amplitude of the
SGWB (Pourtsidou et al. 2011; Sousa and Avelino 2016). Moreover, there are
several other important aspects regarding the GW emission by cosmic superstrings
that need to be clarified—most notably the number and strength of the cusps (Elghozi
et al. 2014) as well as the possible coupling of superstrings to other fields—before a
detailed study of the parameter space available to LISA can be performed.

7.5.5 Metastable strings

Up to this point, the discussion in this section focused on stable cosmic strings, i.e.
cosmic superstrings or strings whose stability is protected by the nontrivial vacuum
topology in the underlying field theory. However, in certain scenarios, cosmic strings
can become metastable, with important implications for the expected signal in GWs.
In the following, we will discuss metastable strings in models with an enlarged gauge
group at higher energies, as they often arise in the context of grand unified theories.
For other models resulting in cosmic strings with a finite lifetime, see e.g. Kamada
and Yamada (2015b), Kamada and Yamada (2015a), Bettoni et al. (2019).

Consider a U(1) model giving rise to cosmic strings and its embedding in a gauge
group G with symmetry breaking pattern G ! H 0 � Uð1Þ ! H . The second
symmetry breaking step will still produce cosmic strings as before. However, if G
and H are such that the vacuum manifold of the broken subgroup G/H is simply
connected, these cosmic strings are metastable, i.e. classically stable, but quantum
mechanically unstable against the nonperturbative Schwinger production of
monopole–antimonopole pairs (Vilenkin 1982; Preskill and Vilenkin 1993; Martin
and Vilenkin 1996, 1997). These monopoles are the topological defects associated
with the first symmetry breaking step, G ! H 0 � Uð1Þ. They nucleate along the
strings, such that the network breaks apart into individual string segments with a
monopole on the one end and an antimonopole on the other end. These dumbbell-like
objects (Nambu 1977) keep losing energy via the emission of GWs, until the defect
network has fully disappeared. This late-time contribution to the GW spectrum
requires further investigation. In the following, we will neglect it and focus on the
emission of GWs from string loops prior to their decay.

Models based on the symmetry breaking pattern G ! H 0 � Uð1Þ ! H have
recently been investigated in Buchmüller et al. (2020a), Buchmüller et al. (2020b),

23 For larger loop sizes, the strength of the constraints may increase by up to 6 orders of magnitude
(Auclair et al. 2020).
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Buchmüller (2021). While Buchmüller et al. (2020a), Buchmüller et al. (2020b)
consider the breaking chain SOð10Þ ! GSM � Uð1ÞB�L ! GSM, with GSM denoting
the SM gauge group, Buchmüller (2021) studies the breaking of G ¼ SUð2ÞR �
Uð1ÞB�L in an extended electroweak sector down to the hypercharge group H ¼
Uð1ÞY via H 0 ¼ Uð1ÞR � SUð2ÞR. In both cases, Uð1ÞB�L is the Abelian gauge
symmetry associated with baryon-minus-lepton number, B�L, and both models thus
predict the production of a network of metastable cosmic B�L strings.24

The lifetime of the collapsing string network is controlled by the monopole–
antimonopole nucleation rate per unit length (Leblond et al. 2009) (see also Monin
and Voloshin 2008),

Cd ¼ l
2p

e�pj; j ¼ m2

l
; ð96Þ

where l denotes the cosmic string tension and m is the mass of the monopoles
nucleating on the string. The parameter j can, at least in principle, be calculated in
terms of the parameters of the grand unified theory model; see Buchmüller (2021) for
an example. The string network then decays around a redshift zd , which can be
estimated by equating the decay rate of an average-sized string with the expansion
rate (Buchmüller et al. 2020a; Leblond et al. 2009),

zd ’ 8:4 CGl
Cd

H2
0

	 
1=4

: ð97Þ

Here, C� 50 is defined in Eq. (61) and H0 is the present-day Hubble parameter. In
order to compute the SGWB signal from the collapsing string network, the lower
boundary in the redshift integral in Eq. (63) needs to be replaced by zd. Fixing
Gl ¼ 2� 10�7, this results in the GW spectra shown in the left panel of Fig. 17.
These spectra saturate the CMB bound on Gl and are close to the sensitivity reach of
existing ground-based interferometers; see the right panel of Fig. 17. At high fre-
quencies, the SGWB signal exhibits the usual plateau, while going to lower fre-
quencies, it decays in proportion to f 3=2. For

ffiffiffi
j

p .6, the string network is only short-
lived, such that the signal dies off at frequencies above the LISA band, whereas forffiffiffi
j

p
J8, LISA will not be able to distinguish the signal from a standard string signal.

In this case LISA will be able to access Gl values that would otherwise be excluded
by PTA measurements. A LISA detection of a standard string signal at Gl in excess
of current PTA bounds would therefore point to metastable strings with

ffiffiffi
j

p .8. In
fact, values of

ffiffiffi
j

p ’ 8 are probed by existing PTA observations (Buchmüller et al.
2020b). Even larger values of

ffiffiffi
j

p
can leave an imprint in CMB spectral distortions

(Kite et al. 2021). The most interesting value from the perspective of LISA isffiffiffi
j

p � 7, which can be easily achieved in realistic models (Buchmüller 2021). Forffiffiffi
j

p � 7, LISA will see the turnover in the spectrum caused by the collapse of the

24 Both models also predict the production of a monopole gas during the first symmetry breaking step.
These monopoles are, however, diluted by a stage of inflation preceding the production of the
metastable string network and are hence irrelevant.
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string network and hence uncover valuable information on new physics close to the
energy scale of grand unification.

8 Inflation

Section coordinators: E. Dimastrogiovanni. Contributors: D. Comelli, E. Dimastro-
giovanni, M. Fasiello, D.G. Figueroa, J. Fumagalli, L. Iacconi, A. Malhotra,
S. Matarrese, A. Mazumdar, L. Pilo, S. Renaux-Petel, A. Ricciardone, R. Rollo,
G. Tasinato, V. Vennin, D. Wands, L. Witkowski.

8.1 Introduction

Can LISA detect GWs produced at the time of the big bang? This section aims to
investigate such a possibility focusing on cosmic inflation.

Inflation is the leading paradigm for describing the very early phases of cosmic
expansion. Furthermore, it offers a mechanism for GW production that can be probed
with GW experiments. The inflationary era is a short phase of accelerated expansion
believed to have occurred within the first instants of the history of our universe and
leading to the hot big bang phase, which characterises the standard cosmological
evolution. This framework was initially proposed and developed to solve basic
problems within the standard big bang cosmology (Guth 1981; Starobinsky 1980;
Linde 1982; Albrecht and Steinhardt 1982). After the original proposal, it was soon
realised that inflation comes equipped with a mechanism of particle production, an
inevitable consequence of quantum mechanics applied to an accelerating cosmolog-
ical spacetime. The same mechanism is responsible for generating both the
primordial scalar anisotropies (Mukhanov and Chibisov 1981; Hawking 1982;
Starobinsky 1982; Guth and Pi 1982; Bardeen et al. 1983) that source the evolution

Fig. 17 Left panel: SGWB signals from a metastable string network for Gl ¼ 2� 10�7 and a ¼ 0:1, for
different values of

ffiffiffi
j

p
; see Eq. (96). The solid lines represent the numerical result, the dashed lines show

the analytical approximation in terms of a flat plateau at high frequencies and an f 3=2 rise at low
frequencies. Right panel: Existing and future constraints on the metastable string parameter space. The
hashed vertical band marks the prediction of the Uð1ÞB�L model in Buchmüller et al. (2020a), where both
plots appeared for the first time. Copyright by the author(s)
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of cosmic structures at large scales, and a SGWB of primordial GWs (Grishchuk
1974; Starobinsky 1979; Rubakov et al. 1982; Fabbri and Pollock 1983).

The basic setup of GW production during inflation is as follows. Consider the
dynamics of spin-2, transverse-traceless fluctuations hijðt; x~Þ around a flat FLRW line
element

ds2 ¼ �dt2 þ a2ðtÞ dij þ hijðt; x~Þ
� 

dxidxj; ð98Þ
with a(t) being the scale factor. During inflation one typically assumes that the
Hubble parameter H ¼ _a=a is nearly constant, leading to a quasi-exponential
expansion. The dynamics of spin-2 fluctuations is obtained by expanding the Ein-
stein-Hilbert action at quadratic order in hij around the homogeneous FLRW solution
above. Cosmological perturbations can be quantized according to the basic rules of
quantum field theory (see e.g. Birrell and Davies 1984). Quantum mechanics con-
verts the large gradients characterising the spacetime geometry, associated with the
rapid cosmological expansion, into the production of spin-2 quanta whose amplitude,
at wavelengths larger than the Hubble horizon H�1, freezes to a nearly scale-in-
variant value

PhðkÞ ’ 2

p2
Hinf

MPl

	 
2 k

k�

	 
nT

; ð99Þ

with k� a pivot scale, Hinf is the inflationary Hubble scale when k� exited the Hubble
radius during inflation and Ph is the dimensionless tensor power spectrum (here MPl

is the reduced Planck mass). In an exact de Sitter background, the tensor spectrum
would be exactly scale invariant, nT ¼ 0. In slow-roll inflation, however, a small

(“slow-roll suppressed”) red tilt is developed, nT ’ �2�, where � � M2
p

2
1
V

d V
d/

� �2
is a

slow roll parameter (and V is the potential of the inflaton field /).
After inflation ends, the Hubble scale starts to increase, reaching the size of the

wavelength of the fluctuations produced during inflation. The latter re-enter the
horizon with a very large occupation number, behaving as classical stochastic
variables, and forming a primordial SGWB (see e.g. Caprini and Figueroa 2018;
Maggiore 2018 for reviews). A detection of the (as of today undetected) inflationary
SGWB would provide key information on the physics of the early universe.
Moreover, it would be the first direct experimental evidence of the quantization (see
Riotto 2003 for a review and Polarski and Starobinsky 1996 for a discussion on the
transition to a semi-classical behaviour) of spin-2 gravitational interactions: the
production of GWs is based on quantum mechanical notions applied to cosmology.

The simplest class of inflationary models relies on a single scalar field, the
inflaton, characterised by a standard kinetic term and driving the acceleration. In this
configuration, the inflaton homogeneous and time-dependent profile rolls slowly
down an almost flat potential throughout the inflationary phase (Liddle and Lyth
2000; Baumann 2011). Such scenarios are associated to rather specific predictions in
terms of the inflationary SGWB properties. They consist in an almost scale-invariant
spectrum, whose amplitude is too small for detection by direct GW experiments such
as LISA and whose slope is slightly red-tilted (the amplitude decreases as frequency
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increases). At present the most promising path to detection of an inflationary SGWB
from standard single-field slow-roll models is through its footprints on the B-mode
polarisation of the CMB radiation (see e.g. Kamionkowski and Kovetz 2016 for a
review).

There are nevertheless plenty of good reasons to go beyond vanilla models of
inflation. Such a step is motivated for example by the need to embed inflationary
physics in the broader context of particle physics and especially within quantum
theories of gravity. Upon exploring a richer inflationary dynamics, one must also
revisit the corresponding predictions of primordial GW properties.

Particularly relevant for this work is the fact that in scenarios beyond single-field
slow-roll, the amplitude of the primordial SGWB can be enhanced, and this may well
occur in the LISA frequency band. As a result, LISA has the potential and the
opportunity to probe our understanding of the early universe and, in particular, of the
inflationary phase. In this section we expand on such a possibility. We refer the
reader to Bartolo et al. (2016b) for previous work on the topic by the LISA
Cosmology Working Group.

We shall consider here the following scenarios:

● When embedding inflation in particle physics and string theory setups (Lyth and
Riotto 1999; Baumann and McAllister 2015), several additional fields may enter
the game thereby changing the basic predictions of inflation. As we shall see in
Sect. 8.2, the presence of extra degrees of freedom brings about the possibility of
enhanced cosmological correlators and associated signatures. Of particular
interest for us will be the case where such dynamics affects the tensor sector
and leads to an amplification of the primordial GW signal. Additional properties
of the SGWB that may reveal a multi-field mechanism include chirality, non-
Gaussianity, and specific frequency profiles that can help distinguish the
primordial signal from its astrophysical counterpart.

● A SGWB with sufficiently large amplitude to allow detection by LISA can be
induced at second order in perturbations by a boosted scalar power spectrum. The
mechanism leading to such enhancement typically gives rise also to oscillatory
features. In Sect. 8.3 we discuss the characteristic oscillatory frequency profiles of
the SGWB that can be probed in the LISA frequency ranges. In the process, we
discuss novel methods to identify the different signatures associated to a number
of inflationary models.

● The inflationary mechanism can be realised in scenarios with alternative
spacetime symmetry breaking patterns, in which the background of the fields
driving inflation depends also on space coordinates. As we discuss in Sect. 8.4,
the dynamics of the corresponding tensor sector are different than in standard
scenarios, and can lead to a primordial SGWB signal within reach of LISA.

● Explicit UV completions of inflation motivated by non-local versions of

Starobinsky’s Rþ aR2 model are discussed in Sect. 8.5. There we also show
how considering such approaches reflects on the properties of the primordial GW
spectrum.
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● Inflation is an early period of accelerated expansion that must come to end so as to
give way to cosmological evolution within the framework of standard big bang
cosmology. In the transition phase the inflaton field couples with or decays into
SM particles. This process may lead to GW production and to a SGWB spectrum
whose properties are investigated in Sect. 8.6.

● All the scenarios mentioned above point to the fact that the primordial SGWB
from inflation can be produced by qualitatively distinct mechanisms, all of which
are markedly different from astrophysical processes. Section 8.7 aims to put
together and investigate the features of the inflationary SGWB—chirality,
frequency profile, anisotropies—that can be probed by LISA.

8.2 Gravitational waves sourced by additional fields during inflation

8.2.1 Axion-gauge field inflation

Ubiquitous in particle physics, the existence of axion-like particles driving inflation
has received considerable attention (see Pajer and Peloso 2013 for a comprehensive
review) starting with the well-known natural inflation proposal (Freese et al. 1990;
Adams et al. 1993). The appeal of such a setup relies in part on their approximately
shift-symmetric potential protecting the inflaton mass from large corrections. As a
result of non-perturbative contributions from gauge field configurations (instantons),
the potential acquires the typical cosine profile

V ðvÞ ¼ K4

"
1þ cos

v
fv

	 
#
: ð100Þ

The axion-like field v is driven by a potential at a scale K and with decay constant fv.
In the absence of other fields, a nearly scale-invariant scalar spectral index, as
required by CMB observations, leads to a large axion decay parameter fv �MP. On
the other hand, a number of reasons favour inflationary realisations with a sub-
Planckian fv: (i) quantum gravity effects are expected to break the shift symmetry, as
well as any global symmetry, at the Planck scale through the formation of a (virtual)
BH; (ii) in typical string theory constructions one finds fv\MP (Banks et al. 2003). It
follows that a field content allowing for a smaller decay constant whilst preserving
the naturalness of the potential, is of interest in this context. Coupling the axion-
inflaton with gauge fields is a simple and intriguing possibility. Perhaps the most
studied example is that of a Chern–Simons-type coupling

L � k
4 fv

vF ~F; ð101Þ

which preserves the shift symmetry and “dissipates” some of the inflaton kinetic
energy into the gauge sector, in so flattening its effective potential without the need to
resort to a large fv. Several specific axion-gauge fields realisations are found in the
literature, employing both Abelian (Anber and Sorbo 2010) and non-Abelian
(Adshead and Wyman 2012) gauge modes. Their phenomenology is a rich one, but
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we shall focus here mostly on the gravity (i.e. tensor) sector. The Abelian and non-
Abelian scenarios share some key features:

� Inspection of the equations of motion for the gauge sector in Eqs. (102) and
(103), reveals that the effect of the coupling to the axion-like inflaton depends also on
the popularisation of the gauge field, and it is controlled by the parameter
n � k _v=ð2fvH). More specifically, denoting by A� the mode functions of the two
circular polarisations of the gauge field, one has (Garretson et al. 1992; Anber and
Sorbo 2010; Maleknejad and Sheikh-Jabbari 2011; Adshead and Wyman 2012)

Abelian case : A00
� þ k2 � 2k

s
n

	 

A� ¼ 0 ; ð102Þ

non-Abelian case: t00� þ
"
k2 þ 2

s2
mQn� ksðmQ þ nÞ� �#

t� ’ 0 ; ð103Þ

where s is conformal time. The quantity t in Eq. (103) is the wave-function asso-
ciated with the tensor degrees of freedom tia, stemming from choosing SU(2) as the
gauge group (Maleknejad and Sheikh-Jabbari 2013); the parameter mQ is defined as
mQ � gQ=H where g is the gauge coupling, H the Hubble rate, and Q the back-
ground of one of the (three) gauge sector scalar modes. We note the slow roll relation
n ’ mQ þ 1=mQ, so that the two parameters that control the production in the
Abelian and non-Abelian case coincide in the large n limit.

It is intuitively clear then that the effect of the Chern–Simons coupling, driven by
n, is stronger as one approaches the end of inflation where a large kinetic term _v
breaks the slow-roll condition.

� Given that the amplitude of the relevant gauge degrees of freedom is enhanced
by the coupling, and that these modes source GWs, the tensor power spectrum is
typically blue in these scenarios. This makes them of immediate interest for GW
detectors, such as LISA (see e.g. Figs. 18 and 19, respectively for the Abelian and for
the non-Abelian cases).

The fact that minimal single-field slow-roll scenarios predict instead a slightly red-
tilted GW power spectrum, well below the sensitivity of LISA and possibly of the
proposed BBO, is very much relevant here. A detection of a primordial GW signal at
small scales will strongly point to a multi-field inflation mechanism such as the ones
discussed in this and the next subsection (Fig. 20).

� Polarisation-dependent equations of motion and solutions for gauge fields feed
directly into a polarisation dependent GW spectrum. If the sourced contribution is
comparable or larger than the ever-present vacuum tensor fluctuations the GW
spectrum will be a chiral one. This is particularly interesting a signature because (i) it
is testable with LISA by means of the kinematically induced dipole (Domcke et al.
2020b) and (ii) is rather uniquely associated with a Chern–Simons-type coupling, at
least in terms of chirality of primordial origin.

Further characterisation of these inflationary scenarios necessarily includes the study
of their scalar sector, especially vis a vis CMB constraints as well as scalar, tensor and
mixed higher-point functions. The possibility of large tensor non-Gaussianity (i.e. the
GW bispectrum) (Anber and Sorbo 2012; Namba et al. 2016; Agrawal et al. 2018) is

123

    5 Page 106 of 254 P. Auclair et al.



worth mentioning here, with the reminder that its shape function is typically very
similar to the so-called equilateral template. As a result, it is best tested at CMB scales
(namely by studying the impact on the CMB of modes with wavelength not much
smaller than the present horizon), rather than at higher frequencies where propagation
effects strongly suppress the signal (Bartolo et al. 2019b). Moreover, models with
axions and gauge fields can also produce a SGWB peaked at scales relevant for various
GW detectors, Domcke et al. (2016), García-Bellido et al. (2016) including aLIGO/
AVirgo/Kagra, LISA and PTAs. They can also produce peaked density perturbations
that can seed an abundance of PBHs compatible with that of DM (Bugaev and Klimai
2014; García-Bellido et al. 2016; Domcke et al. 2017; García-Bellido et al. 2017), as we
briefly touch upon in Sect. 8.2.3. We shall also point to the intriguing possibility of
similar scenarios being responsible for thematter–antimatter asymmetry of the universe
(Maleknejad 2014; Caldwell and Devulder 2018).

For the sake of completeness we should also mention some caveats one may extract
from recent literature on the subject as well as several emerging new research paths.
Coupling the axion with the gauge sector allows for a sub-Planckian dynamics by
essentially feeding the axion kinetic energy into the gauge sector. This effect is regulated
by the coupling k. The ensuing flattening of the inflaton effective potential makes for a
viable scalar spectral index ns at large scales. At the same time, the (enhanced) gauge
sector also sources GWs. It turns out that the parameter space granting the appropriate ns
may correspond to an overproduction of GWs (Dimastrogiovanni and Peloso 2013).

In addition, the amplified gauge fields also source scalar density perturbations, and it
challenging to generate observableGWwithout overproducing scalarmodes (Barnaby and
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Fig. 18 Axion-Abelian gauge field coupling can produce a large amplitude and varying width GW
background depending on the evolution of fields during inflation. One can have a bump/Gaussian peak at
scales where the axion rolls fast. The figure shows three examples that are relevant for current and
forthcoming/future interferometers, namely PTA (frequencies around 10�10–10�7 Hz), LISA (frequencies
10�5–10�1 Hz) and Advanced LIGO-Advanced Virgo-KAGRA (around 1-100 Hz). In all those examples,
the upper limit of the GW background is set by constraints from enhanced curvature perturbations and
PBH bounds. Interestingly, density perturbations peaked at PTA and LISA scales can also generate PBHs
which can be phenomenologically relevant and possibly constitute some fraction of DM. Image adapted
from García-Bellido et al. (2017), Ünal (2019)
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Peloso 2011;Namba et al. 2016; Papageorgiou et al. 2018, 2019). Several routes have been
explored to preserve the intriguing GW phenomenology of these models whilst also
satisfying CMB and PBH bounds. One of the most economical choices is to introduce a
spectator scalar field (Namba et al. 2016; Dimastrogiovanni et al. 2017; Obata and Soda
2016). This weakens the production of density perturbations and the corresponding scalar
sector constraints on the axion-likeparticle anddelivers viable scenariosboth in theAbelian
and non-Abelian cases. The back-reaction dynamics (Peloso et al. 2016; Maleknejad and
Komatsu 2019) as well as the requirements stemming from perturbativity bounds (Ferreira
et al. 2016; Peloso et al. 2016; Dimastrogiovanni et al. 2018; Papageorgiou et al.
2018, 2019) have been recently studied for these setups.
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Fig. 19 The GW energy density XGW as a function of frequency sourced by SU(2) axion-gauge field
setups (solid blue line and yellow dashed line). A signal outside the reach of certain probes may still be
accessed via LISA at small scales (and e.g. LiteBIRD at very large scales). The vertical bars are the
expected 1r error bars estimated with and without the presence of astrophysical foregrounds (light and
dark shared areas, respectively). Different colours are used for LiteBIRD (green), SKA (orange), LISA
(blue), and ET (purple). Logarithmic binning in wavenumber is employed with D ln k ¼ 1:2. For the sake
of comparison, the tensor spectrum predicted in some illustrative single-field slow-roll scenario (dashed
lines) are displayed, including their BICEP2/Keck/Planck upper bound r ¼ 0:06. The quantity kp is the
pivot scale and the quantity r in the upper left box is a parameter of the SU(2) model, typically of order 1–
10. Image reproduced with permission from Campeti et al. (2021), copyright by IOP/SISSA

γ

γ

γ

γt

t
Aµ Aµ

Fig. 20 Feynman diagrams for the GW power spectrum. Left panel: The gauge fields Al source GW non-
linearly in the Abelian case. Right panel: The SU(2) scenario, where gauge tensor degrees of freedom tij
source GWs already at tree level
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The possibility of Schwinger pair production has been explored in the same context as
well as the coupling with fermionic fields (Domcke andMukaida 2018; Mirzagholi et al.
2020b). In the same spirit, it is natural to investigate couplingswith SMparticles (Ferreira
andNotari 2017;Domcke et al. 2020a).Alsoofnote are several successful embeddings of
axion gauge fields models within supergravity and string theory constructions
(Dall’Agata 2018; McDonough and Alexander 2018; Holland et al. 2020).

8.2.2 Non-minimally coupled (spinning) fields

As a useful approach that is complementary to the one in the previous section, we
will briefly expand here on a recently introduced EFT of non-minimally coupled
(spinning) fields (Bordin et al. 2018). The presence of multiple fields during inflation
is completely natural from the top-down perspective (Baumann and McAllister
2015). The benefit of an effective approach to such dynamics lies in the fact it
provides a general, unified, description of the inflationary field content and the
ensuing cosmological signatures. It is well-known that the presence of spinning fields
makes for a richer phenomenology,25 one that is certainly worth exploring.

The presence of increasingly demanding unitary constraints as one goes up the
spin ladder, typically implies that higher ðs� 2Þ spin fields decay within of a few e-
folds during inflation, to the detriment of their imprints on early universe
observables. This is remedied by coupling the extra spinning content directly to
the inflaton: the background breaks de Sitter isometries and weakens the related
unitarity constraints, thus allowing for a lighter (more long-lived) particle content. As
a result, extra spin-2 fields can for example directly source the GW spectrum
providing the leading contribution to the signal (Bordin et al. 2018).

It is instructive to report a few of the leading operators in the Lagrangian coupling
an extra spin-2 field r with the standard tensor modes cij and the Goldstone boson p,
related to the scalar curvature f via f� � Hp:

S � S
ð2Þ
free þ S

ð2Þ
int þ S

ð3Þ
int ¼

Z
dt d3x a3 Lð2Þfree þ Lð2Þint þ Lð3Þint

� �
Lð2Þfree ¼

1

4

�
ð _rijÞ2 � c22a

�2ðoirjkÞ2 � 3

2
ðc20 � c22Þa�2ðoirijÞ2

� m2ðrijÞ2
�

Lð2Þint ¼ � qffiffiffiffiffi
2�

p
H
a�2oiojpcrij þ 1

2
q _cc ijr

ij

Lð3Þint ¼ � q
2�1H2MPl

a�2ðoipcojpc _rij þ 2HoipcojpcrijÞ

� lðrijÞ3 þ � � � ;

ð104Þ

where ci is the sound speed for the helicity-i mode of the spin-2 particle r. The first
line of Eq. (104) contains the free quadratic Lagrangian for r whilst the second and
third lines respectively describe the quadratic and cubic mixing of r with standard

25 For example, scalar and mixed non-Gaussianities display a characteristic extra angular behaviour in the
squeezed limit (Arkani-Hamed and Maldacena 2015). Even more relevant in this context is the fact that
extra tensor modes, such as those of spin-2 particles, can directly source GWs.
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scalar and tensor modes. In addition to vacuum fluctuations, the GW power spectrum
receives a contribution proportional to the quadratic coupling q, which may well be
the leading one. Upon allowing a time dependent q or a time dependent helicity-2
sound speed c2, it is possible to obtain a blue GW spectrum (Iacconi et al. 2020a, b)
and, more in general, one with a non-trivial scale dependence (see Fig. 21). There is a
substantial portion of parameter space in this EFT that delivers a GW power spec-
trum detectable by LISA.

Further, even within bounds ensuring perturbativity control, lack of gradient
instabilities, and compliance with CMB bounds, this setup supports large squeezed
non-Gaussianities, including the purely tensorial three-point function. It follows that
the EFT field content may also be tested by probing GWanisotropies (see Sect. 8.7.3)
as well as via cross-correlating the SGWB with the CMB (see Sect. 8.7.4 below).

8.2.3 Models that produce peaks in the power spectrum of scalar perturbations

Primordial density waves in the early radiation-dominated universe interact
gravitationally with GWs and therefore generate a SGWB (Mollerach et al. 2004;
Ananda et al. 2007; Baumann et al. 2007). As discussed in Sect. 10.3, LISA is
sensitive to GWs with frequency f generated from primordial density perturbations
with power spectrum Pfðf Þ � 10�4 which re-entered the Hubble-horizon at a
temperature T � 105ðf =mHzÞ GeV. These density waves can be generated from
quantum fluctuations that are swept up by the accelerated expansion during a
preceding period of inflation and exit the Hubble-scale N e-folds before the end of
inflation. By assuming instantaneous reheating (a finite period of reheating can
reduce this number), one obtains

Fig. 21 The GW energy density of the EFT when including the contribution of an extra spin-2 field whose
helicity-2 mode has a time-dependent sound speed. The two colours correspond to different values of q=H ,
respectively ð3� 10�3; 4� 10�4Þ, supporting a signal within reach for both SKA and LISA, or for LISA
only. In generating both lines, the time dependence of the sound speed has been kept constant to
s2 � _c2=ðHc2Þ ’ �0:2. Image reproduced with permission from Iacconi et al. (2020b)
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N � 22þ ln
V 1=4
�

1015 GeV

 !
� ln

f

mHz

	 

; ð105Þ

where N ¼ R H dt is the integrated expansion, and V� is the energy density during
inflation.

It is often assumed that the power spectrum of primordial density perturbations
from inflation can be described by a power law, Pf / f n�1, whose amplitude and
spectral index are fixed by observations on CMB scales, where Pf � 10�9 and n\1.
This is not general (Chluba et al. 2015). However, within slow roll, the deviation
from a simple power law (running of the spectral index) is limited (second order in
slow-roll parameters) and thus a significant enhancement in the primordial power
spectrum on the scales probed by LISA requires the breakdown of the usual slow-roll
approximations.

Quantum fluctuations in the fields driving the accelerated expansion naturally
generate primordial density fluctuations in the subsequent radiation era, and there
may be additional fluctuations from fields that, although subdominant during
inflation (so-called spectator fields), affect the subsequent evolution between the end
of inflation and the epoch when modes re-enter the Hubble-horizon. The
dimensionless density contrast, f, can be identified with the perturbation in the
local integrated expansion, f ¼ dN . In the large-scale limit (neglecting spatial

gradients) this can be related to the field fluctuations at first order f ¼ ðoN=oU~Þ � dU~,
where NðU~Þ corresponds to the background expansion as a function of the local field

values, U~, during inflation.
For a single inflaton field (or more generally for adiabatic field fluctuations in a

multi-field setting (Liddle et al. 1998; Gordon et al. 2000)) oN=ou ¼ H= _u while the
amplitude of quantum field fluctuations at Hubble exit are given by Pdu ’ H=2pcs,
where cs is the sound speed. Given that the Hubble rate at Hubble-exit (k ¼ aH)
necessarily decreases during inflation, there are essentially two ways to boost the
primordial density perturbations in single field models. Either one can decrease the
speed of the inflaton, _u faster than the slow-roll evolution, known as ultra-slow roll
(Inoue and Yokoyama 2002; Kinney 2005), or one can rapidly decrease the sound
speed, cs, e.g. due to non-decoupling of massive fields (Achucarro et al. 2011). Ultra-
slow roll describes a regime where the potential gradient becomes negligible and the
field becomes friction dominated, _u / e�3N , which can occur in models with a near-
inflection point in the potential. Typically the ultra-slow roll phase is transient,
leading to a localised step (Starobinsky 1992; Leach et al. 2001) or broad peak
(García-Bellido and Ruiz Morales 2017) in the power spectrum. In some cases the
departure from slow-roll may interrupt inflation, before inflation restarts in an ultra-
slow roll phase (Roberts et al. 1995; Leach and Liddle 2001; Ragavendra et al. 2021).

If the energy scale of inflation is as low as V 1=4
� � 106 GeV then LISA could be

sensitive to physical processes that end inflation and reheat the universe. The
coherent oscillation of the inflaton (and, possibly, other field) that characterised this
stage may lead to resonant amplification of scalar metric perturbations near the
Hubble scale at the end of inflation, a phenomenon known as metric preheating
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(Nambu and Taruya 1997; Finelli and Brandenberger 1999; Jedamzik et al. 2010;
Easther et al. 2011). Density perturbations produced close to the Hubble scale at this
stage may become large in models where inflation ends due to an instability,
triggering a phase transition. This may be second-order, as in hybrid inflation models
(Linde 1994; Copeland et al. 1994), where a tachyonic instability in a second
“waterfall” field leads to the rapid growth of quantum fluctuations, or in the
geometrical destabilisation of inflation, due to a geometrical instability in a
negatively-curved field-space (Renaux-Petel and Turzyński 2016). A FOPT at the
end of inflation requires the rapid nucleation of bubbles of a broken symmetry phase,
whose collisions both reheat the universe and can generate GWs (Caprini et al.
2016).

More generally fluctuations in fields orthogonal to the instantaneous trajectory in
field-space, and hence independent of the adiabatic field fluctuations, can enhance the
primordial scalar power spectrum, Pf, after Hubble exit (Wands et al. 2002). Any
non-geodesic “turn” in field space during inflation converts isocurvature field
perturbations at Hubble-exit into an additional source of curvature perturbations on
super-Hubble scales (Gordon et al. 2000; Groot Nibbelink and van Tent 2002; Palma
et al. 2020; Fumagalli et al. 2023). In a different mechanism, spectator axion fields
might also exhibit a brief phase of fast roll during inflation, generating a localised
peak in the power of density perturbations (Namba et al. 2016). Alternatively, the
effect of spectator fields may be completely subdominant during inflation but boost
the primordial power spectrum after the end of inflation as in the curvaton (Enqvist
and Sloth 2002; Lyth and Wands 2002; Moroi and Takahashi 2001) or other
modulated reheating (Dvali et al. 2004; Kofman 2003) scenarios. Quite generally we
expect otherwise light scalar fields present during inflation to acquire effective
masses of order the Hubble scale during inflation (Dine et al. 1995; Baumann and
Green 2012), suppressing their fluctuations on large scales, leading to a steep blue
tilt, dominating the power spectrum on small scales, as in the axion-like curvaton
model (Kawasaki et al. 2013).

8.3 Small-scale primordial features

Embeddings of inflation in high energy theory motivate the exploration of
inflationary mechanisms beyond the single-field slow-roll framework. For example,
UV completions of inflation in string compactifications typically introduce many
new degrees of freedom that ultimately contribute to the inflationary dynamics. Thus,
from the UV point of view, single-field slow roll models have the semblance of toy-
models that capture the essence of inflation without being fully realistic.

Avenues for going beyond single-field slow-roll are plentiful and, as a result, a
large number of models have been constructed. However, instead of proceeding
model by model, there is also a more systematic way for going beyond the simplest
version of inflation. The idea is to characterise departures from single-field slow-roll
in terms of their effect on the scalar power spectrum.

These signatures of a departure from single-field slow-roll have been termed
“features” after corresponding characteristic properties of the scalar power spectrum.
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See Chen (2010), Chluba et al. (2015), Slosar et al. (2019) for reviews on this topic.
Using the language of features, departures from single-field slow-roll inflation can be
assigned to one of the two following broad classes26:

1. A so-called “sharp feature” is characterised by an oscillation in the scalar power
spectrum that is periodic in the wavenumber k. This arises whenever there is
some sudden transition during inflation, like e.g. a step in the inflation potential
or a sharp turn in the trajectory.

2. A so-called “resonant feature” denotes an oscillation in the scalar power
spectrum in logðkÞ. It arises when some components of the background oscillate
with a frequency larger than the Hubble scale, inducing a resonance with the
oscillations of the quantum modes of the density perturbations, a typical example
being axion monodromy inflation (Silverstein and Westphal 2008; Flauger et al.
2010).

Over the relevant range of scales, the scalar power spectrum corresponding to each
class can be written as

Sharp: PfðkÞ ¼ P0ðkÞ
h
1þ Alin cos

�
xlink þ #lin

�i
; ð106Þ

Resonant: PfðkÞ ¼ P0ðkÞ
h
1þ Alog cos

�
xlog logðk=kHÞ þ #log

�i
; ð107Þ

with kH being some arbitrary reference scale introduced for dimensional reasons.
That is, a sharp or resonant feature is described by an oscillation with amplitude
Alog=lin about an envelope P0ðkÞ. The precise form on the envelope will depend on
the model, but can be taken as sufficiently smooth over the period of oscillations.27

For sharp features, the frequency xlin � 1=kf, where kf corresponds to the scale that
crosses the Hubble radius at the time of the feature. As for resonant ones, one has
xlog �M=H , where M is the frequency of the background oscillations.

At large scales (k.1 Mpc�1) features are severely constrained by CMB and LSS
data, which mandate a nearly scale-invariant power spectrum with amplitude
Pf � 10�9. In contrast, at small scales (k  1 Mpc�1), CMB and LSS constraints do
not apply and the scalar power spectrum can depart significantly from scale-
invariance. This opens the possibility that the feature constitutes the dominant
contribution to the scalar power spectrum at small scales.

For such contribution to be sufficiently large to make the SGWB detectable by
current or forthcoming interferometers, the scalar power spectrum at the scale of the
feature needs to be significantly enhanced compared to its value at CMB scales.
Specifically, Pf should increase from �10�9 to �10�4 by moving k from the CMB
to the LISA momentum scale. GW observatories such as LISA are thus sensitive to

26 Oscillations of heavy fields act as “primordial standard clocks”, leading to feature signals resembling
that of a sharp feature at larger scales and of a resonant feature at smaller scales.
27 In realistic models the amplitude and frequency of the oscillation as well as phase offset can run with
the scale k, but if this running is sufficiently “slow”, the templates (106) and (107) will still be applicable
over a suitable range of scales.
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feature models where the scalar power spectrum exhibits a peak at small scales,
where the CMB and LSS constraints do not apply, as previously explained in
Sect. 8.2.3. This is not an unrealistic expectation: such localised enhancements of the
power spectrum occur frequently in inflation models with features. In fact, the
mechanism of amplification of scalar fluctuations is often also responsible for
producing the oscillatory feature and vice versa, as observed e.g. in Ballesteros et al.
(2019), Palma et al. (2020), Fumagalli et al. (2023), Braglia et al. (2020), Fumagalli
et al. (2021a), Tasinato (2021), Braglia et al. (2021). GW observatories such as LISA
can thus test models of inflation at scales inaccessible to CMB and LSS surveys.

What is interesting for GW astronomy is that features in the scalar power spectrum
lead to corresponding features in the frequency profile of the corresponding scalar-
induced GWs (Fumagalli et al. 2021a; Braglia et al. 2021; Fumagalli et al. 2021b).
Here we focus on the contribution to the SGWB sourced by scalar fluctuations when
they re-enter the horizon during RD after inflation, see Sect. 10.3.28 Remarkably, this
inherently nonlinear effect does not lead to oscillations being washed out. One rather
finds that a sharp feature leads to a periodic modulation in the spectral shape of the
SGWB contribution, while a resonant feature produces a corresponding log-periodic
modulation. As a result, over some range of scales the spectral shape of XGWðkÞ can
be matched by the following templates (Fumagalli et al. 2021a; Braglia et al. 2021;
Fumagalli et al. 2021b):

Sharp: XGWðkÞ ¼ XGWðkÞ
h
1þAlin cos

�
xgw

link þ /lin

�i
; ð108Þ

Resonant: XGWðkÞ ¼ XGWðkÞ
h
1þAlog;1 cos

�
xlog logðk=kHÞ þ /log;1

�
þAlog;2 cos

�
2xlog logðk=kHÞ þ /log;2

�i
;

ð109Þ

with xgw
lin ¼ ffiffiffi

3
p

xlin. Here, XGWðkÞ refers to the GW fraction with the oscillatory
component averaged out.

The above is best illustrated by an example. As has been observed in Palma et al.
(2020), Fumagalli et al. (2023), an amplification of scalar fluctuations can be
achieved in multi-field inflation when the inflationary trajectory exhibits a strong
turn. If the turn is also sufficiently sharp, i.e. it is executed in a short time interval,
this leads to a sharp feature. In simple cases the scalar power spectrum can then be
computed analytically as (Palma et al. 2020; Fumagalli et al. 2021a)

PfðkÞ
P0

¼ e2
ffiffiffiffiffiffiffiffiffiffiffi
ð2�jÞj

p
g?d

2ð2� jÞj � sin2 e�d=2jg? þ arctan
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� jÞjp ! !

; ð110Þ

which is valid for j	 2 and where j � k=kH ¼ k=ðkfg?Þ. Here g? quantifies the
strength of the turn in terms of the departure from a geodesic, d is the duration of the
turn in units of e-folds and kf is the scale crossing the Hubble radius at the time of the

28 In addition, there will also be a scalar-induced contribution to the SGWB sourced during inflation. The
latter is slow-roll suppressed compared to the post-inflationary contribution and will be ignored in the
following, even though it can dominate in selected models, see e.g. Zhou et al. (2020).
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sharp turn (see Fumagalli et al. 2021a for generalisations). As can easily be checked,
Eq. (110) is indeed of the form of Eq. (106) characteristic of a sharp feature.

In Fig. 22a we plot PfðkÞ in Eq. (110) for two example models and in Fig. 22b the
corresponding GW energy density XGWðkÞ. We can then make the following
observations, which will not only hold for the model at hand, but will be generic for a
sharp feature and can be also generalised to the case of a resonant feature:

● The overall spectral shape XGWðkÞ is determined by the envelope P0ðkÞ. If this is
sufficiently narrowly-peaked, the spectral shape of XGWðkÞ consists of a broad
lower peak at lower frequencies and a narrow principal peak at higher
frequencies. This is what is observed in Fig. 22b. The principal peak occurs at

k ¼ 2=
ffiffiffi
3

p
kH, where kH is the frequency where the envelope P0 has its

maximum, and this can be understood to arise from resonant amplification (Kohri
and Terada 2018).

● The oscillatory running of the SGWB induced by the feature is visible as a
modulation of XGWðkÞ on the principal peak, see again Fig. 22b. In the vicinity of
the maximum the modulation is well-matched by the template in Eq. (108) for a
sharp feature, as can be seen in Fig. 22c where we plot the ratio XGWðkÞ=XGWðkÞ:
Especially near the centre of the peak this exhibits a sinusoidal oscillation with
near-constant amplitude.

● The modulation in XGWðkÞ can be understood as a superposition of resonance
peaks sourced by the individual maxima of PfðkÞ. Labelling the maxima in PfðkÞ
by ki, the resonance analysis predicts a series of peaks in XGWðkÞ at (Cai et al.
2019c):

kmax;ij ¼ 1ffiffiffi
3

p ðki þ kjÞ; with kmax;ij [ jki � kjj: ð111Þ

Applying this to the sharp and resonant feature case one can show that this
predicts the periodic structure recorded in the templates Eqs. (108) and (109)
(Fumagalli et al. 2021a, b).

● The amplitude of oscillation in XGWðkÞ is typically attenuated compared to the
amplitude of oscillation in PfðkÞ. For example, a sharp feature with Alin ¼ 1 leads
to a modulated GW spectrum with Alin �Oð10%Þ (Fumagalli et al. 2021a;
Braglia et al. 2021).

● Consider a feature in the scalar power spectrum with an associated peak at

kH ¼ kcmbeNH , with NH the number of e-folds after horizon-crossing of the CMB
modes. This bump in PfðkÞ will produce a peak in XGW whose frequency fpeak is
related to NH as

NH � ln

	
fpeak
Hz



þ 37: ð112Þ

For the peak to fall into the frequency range of maximal sensitivity of LISA,
f ¼ 10�3–10�2 Hz, the enhancement and the feature in PfðkÞ has to occur
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NH � 30–32 e-folds after the generation of the CMB modes, making LISA
sensitive to a wide range of models producing features during the later stages of
inflation.

We thus find that features in the scalar power spectrum, encoding departures from
single-field slow-roll inflation, lead to corresponding features in the scalar-induced
contribution to the SGWB. If the feature is associated with a sufficient enhancement
of the relevant scalar fluctuations, the resulting contribution to the SGWB is in
principle detectable by GW observatories like LISA. As features encode departures
from single-field slow-roll without reference to explicit models, this leads to the
exciting prospect that SGWB measurements can be used to learn about inflation in a
model-independent fashion.
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Fig. 22 Scalar power spectrum Pf (a) and the scalar-induced GWenergy density XGW (b) for two inflation
models (see text for details) with a sharp feature and enhanced fluctuations from a strong turn in the
inflationary trajectory, together with the PLS for SNR threshold SNRth ¼ 1 and total observation time
T ¼ 3 years assumed in the analysis of (Fumagalli et al. 2021a). The black dashed line in (a) shows the
envelope of Pf and in (b) the corresponding GW energy density XGW. The Oð1Þ-oscillations in Pf are
processed into Oð10%Þ modulations on the principal peak of XGW. Over the frequency range of the
principal peak, the modulations in XGW can be modelled as cosine-oscillations about XGW, as can be seen
in (c). To translate k=kH into f / Hz, we considered NH ¼ 31:5, i.e. the peak in Pf occurs at wavenumber
k ¼ kH, which is 31.5 e-folds larger than the CMB value. Images adapted from Fumagalli et al. (2021a)
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8.4 Effective field theory of broken space-reparametrisations

LISA can shed light also on the symmetries characterising the early universe, and in
particular the inflationary period. Standard models of inflation are based on the
assumption that the inflaton background field is only time dependent, and this is well
described within the EFT of inflation framework (Creminelli and Vernizzi 2017).
However within the standard EFT framework, it is hard to produce GWs which have
an amplitude large enough to be detected by interferometers. On the other hand, if
space-diffeomorphisms are broken during inflation, and so the background field can
have a space-dependent vacuum expectation value, then GWs are amplified at small
scales becoming a potential target for GW detectors, like LISA. In particular, the
breaking of space-diffeomorphism allows the graviton to be massive, since there are
no symmetries preventing tensor fluctuations from acquiring a mass during inflation.
If this is the case, the graviton is characterised by an action which is the most general
one for tensor fluctuations:

Sð2ÞT ¼ M 2
P

8

Z
d4xa2ðgÞ h0ijh

0ij � ðk2 þ a2ðgÞm2
gÞhijhij

h i
; ð113Þ

where aðgÞ is the scale factor and mg is the graviton mass, which is the distinctive
feature of a setup that breaks space-diffeomorphism. Whereas such action can be
derived within an EFT framework, there are models which realise such a possibility,
like Solid (Endlich et al. 2014) and Supersolid (Koh et al. 2013; Cannone et al.
2015a, b; Bartolo et al. 2016a) inflation. They are described by Lagrangians which
contain three (or four) scalar fields, which respect some internal symmetries ensuring
the homogeneity and isotropy of the background. Such models can lead to a blue
spectrum for tensor modes, as well as to other distinctive properties in the tensor
spectrum (Endlich et al. 2014; Ricciardone and Tasinato 2017; Bartolo et al. 2016a;
Cannone et al. 2015b; Akhshik et al. 2014; Akhshik 2015). Such an action leads, in
the small graviton mass limit (jmh=H j � 1), to a tensor primordial power spectrum
like

Ph ¼ 2H2

p2 M 2
P

k

k�

	 
nT

; ð114Þ

with the tensor spectral index equal to

nT ¼ 2

3

m2
h

H2
: ð115Þ

Notice that a blue spectrum, nT [ 0, requires a positive m2
h. This is the case of

interest, since it enhances the tensor spectrum at small scales, and can lead to a signal
detectable by LISA. A model-independent analysis of such kind of models, and the
possibility to detect the GW signal in the range of frequencies and energy densities
probed by LISA has been carried out in Bartolo et al. (2016b).
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u0 ¼ �uðtÞ; ua ¼ xa; a ¼ 1; 2; 3 ; ð116Þ
this time 4D diffeomorphisms are completely broken, leaving only a global sym-
metry as a leftover, where an SO(2) rotation is performed both to the fields and to the
spatial coordinates. To allow for a FLRW background solution, the action for the
scalar fields dynamics needs to be symmetric under internal rotations and shift
transformations

ua ! Ra
b u

b; RtR ¼ 1; uA ! uA þ cA; A ¼ 0; 1; 2; 3: ð117Þ
In general, the fluctuations around Eq. (117) can be interpreted as the phonons of a
supersolid (Son 2005; Celoria et al. 2017), while the special case where only the
“spatial” Stueckelberg fields ua (with a ¼ 1; 2; 3) are present corresponds to a solid
(Endlich et al. 2013). Similar models have been proposed as massive deformation of
gravity (Ballesteros et al. 2016; Celoria et al. 2018). In the scalar sector there are two
propagating degrees of freedom that mix non-trivially both at early and late times
and, after exiting the horizon, give rise to non-trivial cross-correlations with dis-
tinctive features for primordial non-Gaussianity. One key feature is that the pro-
duction of GWs during inflation can be enhanced by the cubic interaction of the
graviton with phonons (Celoria et al. 2021); the spectral index of the secondary
produced GWs is blue-tilted with the amplitude within the LISA sensitivity.

8.5 UV complete models of R+ aR2 model

Starobinsky’s Rþ aR2 model of inflation matches the latest CMB data extremely
well (Akrami et al. 2020; Starobinsky 1983). Since massless gravity contains only
derivative interactions, it invites higher and infinite covariant derivative contributions
as well. One particularly attractive model of higher derivative theory of gravity which
contains infinite covariant derivatives and generalizes the quadratic curvature theory
of gravity has been presented in Biswas et al. (2006), Modesto (2012), Biswas et al.
(2012a). It has several cosmological implications, from providing the initial
conditions from a non-singular cosmology to modifying the power spectrum for
the primordial GWs (Koshelev et al. 2018, 2020). One particular subset of the action
has been studied deeply, which generalizes Starobinsky’s model and recovers it in the
IR limit:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p M2
p

2
Rþ k

2

�
RF 1ðhsÞRþWlmqrF 2ðhsÞW lmqr

� !
: ð118Þ

Here hs ¼ h=M 2
s with Ms being the scale of non-locality, and k is a dimensionless

parameter useful to control the effect of higher curvature contributions. In the limit
Ms ! 1, one recovers the local Starobinsky’s model of inflation. The ghost-free
condition around an inflationary, i.e. approximate de Sitter background, constrains
the gravitational form factors F 1 and F 2 (Biswas et al. 2016, 2017). Noticeably, the
scalar power spectrum does not get any modification compared to the local

Starobinsky’s model of Rþ aR2 inflation (Starobinsky 1983). However, the
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gravitational power spectrum, the tilt and the tensor to scalar ratio r all get modified
in an interesting manner (Koshelev et al. 2018, 2020):

PT ¼ 1

12p2F 1ðm2=M 2
s Þ

ð1� 3�Þe�2cT ð� �R=2M2
s Þjk¼aH ;

nT � d lnPT

d ln k
jk¼aH � � 3

2N2
� ð2

N
þ 3

2N 2
Þ

�R

2M 2
s

cT ð�
�R

2M 2
s

Þjk¼aH ;

r ¼ 12

N2
e�2cT ð� �R=2M2

s Þjk¼aH :

ð119Þ

The crucial difference here in comparison with the local Starobinsky model is that the
tensor power spectrum is scaled by an exponential factor of cT evaluated at the pole

of the tensor mode �R=ð6M 2
s Þ, where �R ¼ 3:7� 10�8ð55=N�Þ3M2

p denotes the Ricci

scalar evaluated at the pivot scale k� ¼ aH , and N� denotes the number of e-foldings
of inflation corresponding to the pivot scale. Accordingly, also the tensor tilt gets
modified. The ghost-free condition demands that cT is an entire function (namely,
that it can be represented as a power series that converges everywhere in the complex

plane) (Biswas et al. 2016, 2017). In the local R2 model one obtains r ¼ 12=N2 ¼
3ð1� nsÞ2 as it follows from the original computation of scalar and tensor power
spectra generated during inflation (Starobinsky 1983). From the CMB data (Ade
et al. 2021) we can infer that the constraint r\0:036 implies cT [ � 1:05 at
N� ¼ 55, while there are no constraints on the tilt in the tensor power spectrum, due
to lack of data. LISA could be able to test it, although there are indications that at
LISA frequencies the nonlocal model is indistinguishable from local Starobinsky
inflation (Koshelev et al. 2018; Calcagni and Kuroyanagi 2021) (section 9.3).
Additional mechanisms (Bartolo et al. 2016b) or a modification in the theory (e.g., in
the form factor) could reopen this opportunity.

8.6 Preheating

Preheating is characterised by non-perturbative particle production mechanisms
(Traschen and Brandenberger 1990; Kofman et al. 1994; Shtanov et al. 1995; Kaiser
1996; Khlebnikov and Tkachev 1996; Prokopec and Roos 1997; Kaiser 1997;
Kofman et al. 1997; Greene et al. 1997; Kaiser 1998), which typically take place after
inflation in many models of particle physics (see Allahverdi et al. 2010; Amin et al.
2014; Lozanov 2019 for reviews). Following the end of inflation, interactions
between the inflaton and some other field species—the preheat field(s)—can induce
an exponential growth of the modes of the preheat field(s) within certain bands of
momenta. A paradigmatic example of this is parametric resonance (Kofman et al.
1994, 1997; Greene et al. 1997; Figueroa and Torrenti 2017b), though there are other
mechanisms (see below). The field gradients created during this stage can generate a
sizeable anisotropic stress to source GWs, with the specific details of the resulting
GW spectrum depending strongly on the considered scenario (Khlebnikov and
Tkachev 1997; Easther and Lim 2006; Easther et al. 2007; García-Bellido and
Figueroa 2007; García-Bellido et al. 2008; Dufaux et al. 2007, 2009; Kusenko and
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Mazumdar 2008; Kusenko et al. 2009; Fenu et al. 2009; Figueroa et al. 2011). In
general, preheating mechanisms are very efficient in transferring a significant fraction
of the total energy available from the inflationary sector into the preheat field(s), and
as a result, a large amount of GWs are radiated in the process. Furthermore, if the
inflaton-preheat field coupling is tuned to certain values, the resulting SGWBs may
develop large anisotropies at cosmological scales (Bethke et al. 2013, 2014).

For illustrative purposes, let us consider a standard scenario where the inflaton
oscillates around the minimum of its potential after the end of inflation. For example
we can consider a power-law potential V ð/Þ ¼ 1

p kl
4�p/p, with k a dimensionless

coefficient, l some mass scale, and p an integer index p� 2. Denoting as tH the end
of inflation, the inflaton oscillates for tJtH with a time-dependent frequency

Xosc � xHðt=tHÞ1�2=p, xH � ffiffiffi
k

p
lð2�p=2Þ/ðp=2�1Þ

H , where /H � /ðtHÞ (Figueroa and

Torrenti 2017b). To be specific, let us also consider a quadratic interaction g2/2v2

between the inflaton / and a the preheat field v, with g a dimensionless coupling

constant. If the resonance parameter qH � g2/2
H=x

2
H is much larger than unity

qH  1, the preheat field is excited through a process of broad resonance during the
inflaton oscillations, with the amplitude of the resonant modes growing exponentially

inside a Bose-sphere of radius k.kH � q1=4� xH. This radiates GWs efficiently within
a similar band of momenta. At the end of the process the resulting energy density
spectrum of GWs exhibits a peak with amplitude and location (redshifted to
frequencies today) given by (Figueroa and Torrenti 2017a)

f ’ 8 � 109 xH

q1=4H

 !
�
1
4
Hq

1
4þg
H Hz; ð120aÞ

X0
GWðf Þ ’ Oð10�9Þ � �H C

x6
H

qHM 2
p

q
�1

2þd
H ; ð120bÞ

where qH is the total energy density at t ¼ tH, g and d are parameters that account for
non-linearities of the system, and C is a constant that characterises the strength of the

resonance. The factor �H � ðaH=aRDÞ1�3w parametrises the expansion history
between the end of inflation and the onset of RD, assuming an averaged EoS w 6¼
1=3 during this period (if w ¼ 1=3 then �� ¼ 1). The values for C, g, and d, can only
be determined with classical lattice simulations in a model by model basis.

Leaving aside non-linear effects for simplicity, we observe that the frequency and

amplitude of the peak, roughly scale as f � q1=4H and XGW;0 � q�1=2
H . This means that

in order to shift the peak to observable frequencies, we need to decrease qH; but in
doing so, we further decrease the amplitude of the signal. Using this linear
approximation we see that decreasing the peak frequency say by an order of
magnitude, implies the reduction of the amplitude of the background by two orders
of magnitude. Furthermore, we see that these backgrounds can only be expected
down to a minimum frequency, as efficient GW production requires q� [ 1 to sustain
broad resonance during the field instability, and hence q� ¼ 1 marks a minimum
frequency we can think of. Even though such scaling behaviours are modified when
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considering corrections due to non-linearities, the logic persists (Figueroa and
Torrenti 2017a), and as a result these backgrounds are forced to be peaked at high-
frequencies way above those accessible by LISA. To be concrete, considering for
instance a quartic potential around the minimum, we obtain f ’ ð107 � 108ÞHz and
XGW;0 ’ ð10�13�10�11Þ, when assuming the range qH 2 ð1; 104Þ.29 For a quadratic
potential around the minimum of the potential, we find instead (assuming �H ¼ 1) a
frequency f ’ ð108 � 109ÞHz and amplitude XGW;0 ’ ð10�12 � 10�11Þ, when
considering a resonance parameter qH 2 ð104; 106Þ. The conclusion is clear, these
backgrounds are completely out of reach of current and (so far) planned direct
detection GW experiments.

If the scalar field interactions induce a tachyonic effective mass in the preheat
species, GWs can also be strongly produced, e.g. during hybrid preheating (García-
Bellido and Figueroa 2007; García-Bellido et al. 2008; Dufaux et al. 2009). In this
case, contrary to parametric resonance, the present day frequency and amplitude of
the generated SGWB might be tuned to peak at small frequencies, while retaining a
large amplitude. This depends on the model parameters, but in general a strong fine-
tuning is required for this to happen. A similar circumstance arises in the case of the
GWs produced from oscillons produced during hilltop preheating (Antusch et al.
2017, 2018; Amin et al. 2018), which upon similar fine tuning of the potential
parameters, can also lead to observable GW backgrounds at low frequencies.

If the field species involved in preheating are of a different nature than just scalar
fields, then new channels of GW production open up. For example, GWs can be
produced during the out-of-equilibrium excitation of fermions after inflation, both for
spin-1/2 (Enqvist et al. 2012; Figueroa and Meriniemi 2013; Figueroa 2014) and
spin-3/2 (Benakli et al. 2019) fields. In this case a SGWB with large amplitude is also
forced to peak at high frequencies. GWs can also be generated when the preheat
fields are (Abelian and non-Abelian) gauge fields. For example gauge fields could be
coupled to a charged scalar field via standard gauge covariant derivatives like in
Dufaux et al. (2010), Figueroa et al. (2016), Tranberg et al. (2018), or to a pseudo-
scalar field through a derivative axial coupling as in Adshead et al. (2018), Adshead
et al. (2020a), Adshead et al. (2020b). Preheating can be remarkably efficient in the
second case (Adshead et al. 2015; Cuissa and Figueroa 2019), with the energy
density produced in GWs possibly reaching up to � 1% of the total energy in the
system for the strongest coupling strengths (Adshead et al. 2020a, b). The peak
frequency is however also very large in these scenarios as well.

In conclusion, preheating mechanisms are capable of creating very large SGWBs,
but these are naturally peaked at very high frequencies, which are typically beyond
the LISA window. Some particular models can sustain a sizeable amplitude at LISA
frequencies, but only at the expense of a strong fine-tuning of their parameters.

29 The GW spectrum in the quartic potential case also features additional peaks, see Figueroa and Torrenti
(2017a) for more details.
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8.7 Summary of distinctive gravitational-wave observables from inflation

In what follows we describe the relevant observables that can be used to break
possible degeneracies between the SGWB from inflation, and the one due to other
cosmological sources, as well as to astrophysical ones.

8.7.1 Chirality

Although parity violation has so far been observed only in weak interactions, it is
important to investigate whether the same phenomenon may occur also in the very
early universe, during inflation. In the primordial context, we shall refer to chirality
whenever the two polarisations of GWs have different amplitudes, see Sect. 5.

For convenience, one may introduce the parameter v � jPL
c � PR

c j=
P

k P
k, whose

range extends up to v ¼ 1. Several mechanisms for generating chiral GWs are found
in the literature. The common trait to such realisations is the presence of a Chern–
Simons-type interaction. In the case of the EM field strength such term reads

L � /Flm ~F
lm
; ð121Þ

where ~F
lm

is the dual EM field. The reader will recognise the similarities between
Eq. (101) and (121). The comparison underscores the fact that the field corre-
sponding to F does not need to be the Standard Model photon, nor an Abelian gauge
field. In modified gravity theories, Chern–Simons gravity is obtained by promoting
the three dimensional gravitational Chern–Simons term to 4D (Jackiw and Pi 2003;
Alexander and Yunes 2009):

L � f ð/ÞRr
lmq

~R
lmq
r ; ð122Þ

where ~R is the dual Riemann tensor. The matter field / in the last two equations is
typically (but not necessarily) identified as the inflaton in models of the early phase
acceleration. The parity violation ensuing from Chern–Simons-type coupling in the
early universe can be tested across a vast range of scales, from CMB (Lue et al. 1999;
Thorne et al. 2018) to interferometers (Crowder et al. 2013; Smith and Caldwell
2017; Domcke et al. 2020b), including LISA. Both types of interactions in Eqs. (121)
and (122) have been extensively studied (Anber and Sorbo 2010; Satoh 2010;
Crisostomi et al. 2018; Bartolo and Orlando 2017; Bartolo et al. 2019d; Qiao et al.
2020; Bartolo et al. 2021; Bordin and Cabass 2020)), sometimes considered together
(Lue et al. 1999; Mirzagholi et al. 2020a), and investigated as emerging from
quantum gravity (in the sense of Hořava–Lifshitz theories, Horava 2009) (Takahashi
and Soda 2009).

8.7.2 Frequency profile

The single-field slow-roll inflationary paradigm predicts a slightly red-tilted GW
spectrum. The tilt of the tensor power spectrum is indeed proportional to the slow-
roll parameter, nT ’ �2� � 1. Such a GW signal is well below the sensitivity of
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LISA and could even elude detection from more sensitive instruments, including the
proposed BBO. This is the key notion behind the claim that a detection of primordial
GWs by LISA would be a smoking gun for an inflationary mechanism that goes
beyond the single-field slow-roll scenario. With some interesting exceptions (Mylova
et al. 2018) one may go further and state that a primordial signal at LISA scales (and
sensitivity) is strongly suggestive of multi-field (or multi-clock) dynamics.

A typical case in point is that of GW sourced by extra fields during inflation.
Whenever the sourced contribution goes beyond vacuum fluctuations, the richer
multi-field dynamics can give rise to a non-trivial frequency dependence, from a blue
GW spectrum to a “bump-like” structure and to oscillatory features mimicking the
ones of the scalar power spectrum. For all these examples there exist explicit
realisations, as detailed in Sects. 8.2 and 8.3.

In studying the SGWB frequency profile one ought to be aware of the bounds at
CMB scales, those set at intermediate scales by PTAs and, perhaps most importantly
for LISA, those set at the relatively close frequencies accessed by LIGO/Virgo.

8.7.3 Anisotropies

The angular resolution of the LISA detector might enable a detection of another
peculiar feature useful in the SGWB characterisation process: the anisotropy
(direction dependence) in the energy density. Such anisotropies contain information
about the generation process of GWs and their propagation across cosmic
inhomogeneities. Using a Boltzmann equation approach, the contribution coming
from the generation mechanism retains a frequency dependence, which is peculiar of
the SGWB, and, due to the non-thermal nature of the graviton distribution function at
their decoupling time (Bartolo et al. 2019a, 2020b). The contribution arising from the
propagation of GWs through large-scale cosmological scalar (and tensor) back-
ground perturbations, happens to be larger compared to the same effect for CMB
photons. So, in a similar way to CMB photons, the SGWB from e.g. inflation is
affected by the Sachs–Wolfe and the Integrated Sachs–Wolfe effects. The former is a
gravitational redshift, due to the difference of the gravitational potential at the
moment of the SGWB production and today. The latter is due to the variation of the
gravitational potential along the line of sight from the SGWB production to its the
detection, integrated in time (Bartolo et al. 2019a, 2020b).

It turns out that LISA is sensitive to these effects in the angular power spectrum if
the SGWB isotropic energy density is XGWJ10�12 (Bartolo et al. 2019a, 2020b;
Valbusa Dall’Armi et al. 2021). For a representative inflationary model, namely
axion inflation (Cook and Sorbo 2012; García-Bellido et al. 2016), it was shown that
the predicted SGWB can be within the reach of LISA and exhibits anisotropies with a
large frequency dependence, a possible distinctive target for the SGWB detection and
characterisation in LISA.

In the remaining part of this subsection we will discuss GWanisotropies that result
from squeezed primordial non-Gaussianity. This is yet another case in point for the
use of GW anisotropies as a probe of the production mechanism for GWs. Let us
briefly describe the genesis of these non-Gaussianity-sourced anisotropies. A
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squeezed primordial bispectrum encodes a coupling between two short-wavelength
modes and one long-wavelength mode. The effect of the very same coupling is also
manifest at the level of the power spectrum of the short-wavelength modes, in the
form of a modulation by the long-wavelength mode (Jeong and Kamionkowski 2012;
Dai et al. 2013; Brahma et al. 2014; Dimastrogiovanni et al. 2014, 2016). The
magnitude and form of this modulation depends on the specific type of interactions
(as dictated by the inflationary Lagrangian) and on the nature (e.g. scalar vs. tensor)
of the long-wavelength mode. Let us consider the case of a tensor bispectrum:

hhk1hk2hqi ¼ ð2pÞ3dð3Þðk1 þ k2 þ qÞBtttðk1; k2; qÞ: ð123Þ
In the squeezed limit, q � k1 ’ k2, and for models preserving statistical isotropy and
parity, the long wavelength tensor mode imprints a quadrupolar modulation in the
primordial power spectrum of the short-wavelength modes (Dimastrogiovanni et al.
2020):

Pmod
h ðk; xÞ ¼ PhðkÞ 1þQ‘mðk; xÞ n̂‘n̂m½ 
; ð124Þ

where k ¼ kn̂ and we have defined

Q‘mðk; xÞ �
Z

d3q

ð2pÞ3 e
iq�xX

k3

hk3‘mðqÞF ttt
NLðk;qÞ: ð125Þ

Here F ttt
NLðk; qÞ is the amplitude of the tensor bispectrum in the squeezed limit,

normalised by the product of the power spectra, PhðkÞ � PhðqÞ. The anisotropy in
Eq. (124) determines a contribution to the energy density contrast (see Eq. (35) for
the definition of dGW) given by

dGWðk; n̂Þ ¼ Q‘mðk; dÞ n̂‘n̂m; ð126Þ
where d ¼ �n̂d, d � g0 � gin being the separation in conformal time between
horizon re-entry of the k-mode and the present time.

In a similar way, for inflationary models predicting a long-short mode coupling
between scalars and tensors, a long-wavelength scalar fluctuation will modulate the
power spectrum of GWs on small scales:

Pmod
h ðk; xÞ ¼ PhðkÞ 1þ

Z
d3q

ð2pÞ3 e
iq�x fðqÞFstt

NLðk; qÞ
" #

: ð127Þ

This generates an anisotropic component for the GW energy density measured at
present time, which leads to

dGWðk; n̂Þ ¼
Z

d3q

ð2pÞ3 e
�idn̂�qfðqÞFstt

NLðk; qÞ; ð128Þ

with Fstt
NLðk; qÞ being the amplitude of the scalar-tensor-tensor bispectrum in the

squeezed limit, normalised by PfðqÞ � PhðkÞ.
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Primordial non-Gaussianity is one of the most informative probes of field
interactions during inflation. Already at the level of the bispectrum (the lowest-order
non-Gaussian correlator), a variety of constraints can be placed on inflationary
models based on its momentum dependence (a.k.a. shape) and overall amplitude. In
particular, bispectra that receive substantial contribution in the squeezed momentum
configuration are a smoking gun for inflationary dynamics that go beyond the single-
field slow-roll realisation. This is due to the fact that, whenever the inflationary
dynamics is guided by a single effective degree of freedom, the leading order
contribution to the squeezed bispectrum can be removed by a gauge transformation
(Maldacena 2003; Tanaka and Urakawa 2011; Pajer et al. 2013). Single-clock models
therefore predict a suppressed bispectrum. On the other hand, typical classes of
models that can lead to sizeable soft limits for cosmological correlators include
multiple fields, excited initial states, or an inflationary background that breaks space
diffeomorphism invariance.

While at large (e.g. CMB) scales primordial bispectra can be directly constrained,
this is not the case at small scales due to loss of coherence from propagation in the
perturbed universe (see e.g. discussion in Sect. 10.3). Anisotropies are therefore a
key observable for constraining tensor and mixed non-Gaussianity at interferometer
scales.

As an example, in the left panel of Fig. 23 we display the auto-correlation

hdGW;‘1m1dGW;‘2m2i ¼ d‘1‘2dm1m2C
GW
‘1

arising from anisotropies of the kind described
in Eq. (128) (red line). For the sake of comparison, in the same plot we show the
auto-correlation for anisotropies imprinted as gravitons travel in the perturbed
background after horizon re-entry (blue line) (Alba and Maldacena 2016; Contaldi
2017; Bartolo et al. 2019a, 2020b).

The recent works (Contaldi et al. 2020; Bartolo et al. 2022) study the capability of
LISA to access the SGWB anisotropies. See Sect. 12 for more details.

8.7.4 Cross-correlations

Anisotropies such as those just discussed in Sect. 8.7.3 are produced by the effect of
long-wavelength (scalar or tensor) perturbations and are therefore correlated with
anisotropies in the CMB (Adshead et al. 2021; Malhotra et al. 2021). These cross-
correlations provide an additional observable for constraining primordial non-
Gaussianity (see right panel of Fig. 23 for an application). As an example, we report
in Fig. 24 the error in determining Fstt

NL using a measurement of these cross-
correlations. The calculation of the error follows that of Malhotra et al. (2021) and it
is adapted here, under that assumption that Taiji and LISA should happen to fly
together (Ruan et al. 2020b; Orlando et al. 2021). We see that for the combination
fr ¼ 0:05; nT ¼ 0:30g one would be able to detect Fstt

NL of order 104 or larger.
For any given inflationary model generating non-trivial scalar-tensor-tensor or

tensor-tensor-tensor bispectra in the squeezed limit, the overall level of the GW
anisotropies is determined by the specific form of the angular dependence of the
bispectra and by the magnitude of the FNL parameters. Typically, there exist
minimum values of FNL below which the GW anisotropy map is dominated by noise.
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Cross-correlations can be particularly helpful in these cases as they have the potential
to constrain smaller levels of non-Gaussianity (Malhotra et al. 2021).

9 Tests of non-standard pre-Big-Bang nucleosynthesis cosmology
via the SGWB

Section coordinator: G. Calcagni. Contributors: I. Ben-Dayan, G. Calcagni, C-
F. Chang, Y. Cui, D.G. Figueroa, S. Kuroyanagi, M. Lewicki, A. Mazumdar,
G. Servant, P. Simakachorn.

9.1 Introduction

In the standard model of cosmology, the universe begins with a inflationary epoch
that first induces an exponential growth of the universe and then reheats it with a very
hot plasma. In the standard picture, it is the energy density of such a plasma that
dominates the expansion of the universe until the matter and DE domination final
stages. It is however worth remembering that this picture is based on several
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Fig. 23 Left panel: Auto-correlation of GW anisotropies induced by a scalar-tensor-tensor squeezed
bispectrum with Fstt

NL �Oð103Þ (red line), and of GW anisotropies arising from propagation through the
perturbed background (blue line). Right panel: Cross-correlation of GWanisotropies and CMB temperature
anisotropies in the same two cases

Fig. 24 The expected 1r error in
determing Fstt

NL with cross-
correlations of CMB temperature
anisotropies and GW
anisotropies, as a function of
‘max
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theoretical assumptions and has only been tested up to temperatures T � 5MeV
thanks to data from CMB (Aghanim et al. 2020) and successful predictions of BBN
(Cyburt et al. 2016). The period between that temperature and inflation still holds
many unknowns (Allahverdi et al. 2020). In this section, we will discuss how
detection of a SGWB by LISAwould allow us to probe the evolution of the universe
during that time. We will begin with the possibility of probing the expansion rate
including the number of relativistic degrees of freedom thanks to the SGWB sources
discussed in the previous sections and move on to possible departures from GR.

According to the standard inflationary paradigm in GR, scalar and tensor
perturbations are generated during an early era of accelerated expansion induced by a
slow-rolling phase. In the vanilla inflationary scenario, the primordial tensor
spectrum is red-tilted at CMB scales, i.e. its amplitude decreases with frequency. If
inflation is followed by the long-lasting RD period, then also the produced SGWB,
late-time remnant of the primordial tensor spectrum, turns out to be red-tilted and its
amplitude at the mHz—Hz frequencies remains too small to be detected by any
present or planned near-future GW detector. However, both deviations from the
vanilla inflationary scenario (see Sect. 8) and the usual RD epoch of the standard
model of cosmology can enhance the SGWB to amplitudes large enough to reach the
LISA sensitivity. In the latter case, for instance, if the expansion rate of the universe
between the end of inflation and the onset of RD, is dictated by an effective EoS
parameter w 6¼ 1=3, the inflationary SGWB is naturally tilted at high frequencies, for
the modes that re-entered the Hubble radius during such non-standard epoch. If the
EoS is stiff, i.e. w[ 1=3, then the tilt is blue, thus enhancing the power of the GW
spectrum at large frequencies, and hence making this branch of the spectrum
potentially observable with LISA. If, on the contrary, the EoS is w\1=3, then the tilt
at high frequencies is red, and hence the spectrum goes below the standard plateau
amplitude due to modes crossing during RD.

Any modification of the expansion rate occurring after a FOPT also leaves its
imprint on the SGWB produced by that phase transition. The modified redshift
results in an overall shift of the entire signal but, more interestingly, characteristic
features might also be produced in the signal. This is possible for modes with lengths
larger than the horizon size at the time of the transition. If these modes enter the
horizon during a time of modified expansion, the typical f 3 slope at low frequencies
will be modified allowing us to decode the EoS at that time. However, as this feature
is always present significantly below the main amplitude peak of the FOPT SGWB
(see Sect. 6), measuring the expansion using this method will always be much more
challenging than the initial detection of the spectrum.

Cosmic strings are another possible GW source which would also allow us to
probe the expansion history. As a network of strings would continuously produce
GWs throughout most of cosmological history (see Sect. 7), also the expansion
history is encoded in the resulting spectral shape. This, in fact, includes not only
drastic modifications such as periods of non-standard expansion, but also subtler
modifications including the number of degrees of freedom contributing to the
radiation dominating at early times. As we will see, an accurate observation of a
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SGWB from cosmic strings will always give us some information on the expansion
rate of the very early universe.

Finally, we will also explore the possibility to test quantum gravity cosmological
models via SGWB observations at LISA. After excluding a plethora of models
whose SGWB does not reach the instrument’s sensitivity curve, we single out two
pre-Big-Bang scenarios as candidates that could generate a signal relevant for LISA
science.

9.2 Non-standard expansion histories

9.2.1 Inflation

Equation (99) provides the amplitude of the vacuum tensor modes produced at super-
horizon scales during inflation. During the expansion history following inflation, the
tensor modes re-enter successively back inside the Hubble radius, turning into a
proper classical (yet stochastic) background of GWs. Once the modes become sub-
Hubble, they start oscillating with a decaying amplitude hij / 1=a (this is
independent of the expansion rate (Caprini and Figueroa 2018)), propagating as
relativistic degrees of freedom. Since modes with different wavelengths re-enter the
Hubble radius at different moments of cosmic evolution, different modes may
propagate through different periods of expansion. As a result, modes with very
different wavelengths may sustain very different amplitudes with respect to each
other, depending on the rate of expansion of the universe at their time of Hubble-
crossing. To characterise the spectrum of the SGWB today, we can write the energy
density spectrum normalised to the critical density qcrit ¼ 3M2

PlH
2, as (Caprini and

Figueroa 2018)

XGWðt; kÞ � 1

qcrit

dqGWðt; kÞ
d ln k

¼ k2

12a2ðtÞH2ðtÞ Phðt; kÞ; ð129Þ

where the power spectrum Phðt; kÞ at a generic time t is related to the power PhðkÞ
generated super-horizon during inflation by a transfer functions,

Phðt; kÞ � Thðt; kÞPhðkÞ; Thðt; kÞ ’ 1

2

ak
aðtÞ
� �2

: ð130Þ

The transfer function Thðt; kÞ depends on the expansion history between the moment
t ¼ tk of horizon re-entry of a given mode k, and a later moment t[ tk . Here tk is
implicitly defined from the condition akHk � k, with ak � aðtkÞ, and Hk � HðtkÞ.
The factor 1/2 is due to the time-average of the rapidly-oscillating sub-horizon wave.

The transfer function today can be evaluated as

ThðkÞ ’ 1

2

ak
a0

	 
2

’ 1

2
GkX

ð0Þ
rad

a0H0

akHk

	 
2

; Gk � g�;k
g�;0

	 

gs;0
gs;k

	 
4=3

; ð131Þ

where gs and g� are the relativistic number density of species contributing to the total

entropy and energy densities, respectively. Using Xð0Þ
rad ’ 9 � 10�5, gs;0 ’ 3:91,
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g�;0 ¼ 2, and gs;k ’ g�;k ’ 106:75, so that Gk ’ 0:65, we obtain that tensor modes
crossing during the RD epoch lead to an energy density spectrum with amplitude

Xð0Þ
GW

���
inf

’ Gk
Xð0Þ

rad

12p2
Hinf

mPl

	 
2 Hinf

Hmax

	 
2 f

fPl

	 
nT

’ 5� 10�16 Hinf

Hmax

	 
2 f

fPl

	 
nT

;

ð132Þ
with nT given by the original inflationary tilt. In other words, the RD energy spec-
trum retains the (quasi-) scale invariant spectral shape of the original inflationary
tensors. We note that in evaluating Eq. (132) we have considered for concreteness
that gs;k ; g�;k equal the SM degrees of freedom before electroweak symmetry
breaking, and hence they are independent of k. In reality the number of SM rela-
tivistic degrees of freedom change with the scale, but for simplicity in Eq. (132) we
considered an identical suppression for all the modes as Gk ’ 0:65, so that we can
provide a single number for the amplitude of this plateau.

If between the end of inflation and the onset of RD there is a period of expansion
characterised by an EoS different than that of radiation w 6¼ 1=3, the inflationary GW
energy density spectrum develops a tilt within the range of scales corresponding to
the modes crossing the Hubble radius during such period. As a result, the (quasi-)
scale invariance of the original tensor spectrum is lost. This feature is actually quite
interesting from an observational point of view, as we might detect or constrain in
this way the post-inflationary expansion history, and hence the properties of the fields
driving the expansion between inflation and RD (Giovannini 1998, 1999; Boyle and
Steinhardt 2008; Watanabe and Komatsu 2006; Boyle and Buonanno 2008;
Kuroyanagi et al. 2009, 2011, 2015; Figueroa and Tanin 2019ab; Gouttenoire et al.
2021a).

In order to understand better the above discussion, let us consider that between the
end of inflation and the onset of RD, the expansion rate is dictated by an effective
EoS parameter w 6¼ 1=3. In scenarios where the inflaton potential is a monomial,
V ð/Þ / /p, the inflaton oscillates around the minimum of such a potential after
inflation, so that an effective EoS, averaged over inflaton oscillations, emerges as
w ’ ðp� 2Þ=ðpþ 2Þ (Turner 1983; Lozanov and Amin 2017). For p\4 the EoS is
in the range 0\w\1=3. For p ¼ 2, the oscillations of a massive free field lead to an
energy density redshifting on average (over one oscillation cycle) as q/

� �
osc
/ 1=a3,

analogous to that of non-relativistic particle species. Thus, an EoS of w ’ 0 emerges
in that case. Nothing prevents however the possibility of a stiff dominated stage with
EoS w ¼ ws for 1=3\ws\1. Such a case can be actually achieved quite naturally if
the kinetic energy of the inflaton dominates after inflation, either through inflaton
oscillations (Turner 1983) under a steep potential (e.g. V ð/Þ / /p with p[ 4), or
simply by an abrupt drop of the inflationary potential at at moment that triggers itself
the end of inflation.

Propagating the inflationary tensor modes through the epoch starting immediately
after the end of inflation, leads to a GW energy density spectrum today, expressed as
a function of present-day frequencies f ¼ k=ð2pa0Þ, like (Figueroa and Tanin 2019a)
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with Cw a numerical prefactor in the range 1\Cw\25=2=p ’ 1:80 for 1=3\w\1,
and where fRD � kRD=ð2pa0Þ is the frequency corresponding to the horizon scale at
the onset of RD, kRD ¼ aRDHRD, and WðxÞ is a window function connecting the two
sides of the spectrum: the high-frequency branch on the one hand, corresponding to
modes crossing during the non-standard period (f  fRD), and the low frequency
branch corresponding to modes crossing during RD (f � fRD). The tilt in Eq. (133)
indicates that models with a stiff epoch between the end of inflation and the onset of
RD are actually very appealing observationally, as in these scenarios a blue tilt is
developed in the GW energy density spectrum at large frequencies, with 0\nT\1
(Giovannini 1998, 1999; Riazuelo and Uzan 2000; Sahni et al. 2002; Tashiro et al.
2004; Boyle and Buonanno 2008; Giovannini 2008, 2009; Caprini and Figueroa
2018; Bernal and Hajkarim 2019; Figueroa and Tanin 2019a). This potentially opens
up the possibility of detection by upcoming direct detection GW experiments,
including LISA. The presence of a stiff period is actually well-motivated theoreti-
cally in scenarios like Quintessential inflation (Peebles and Vilenkin 1999; Peloso
and Rosati 1999; Huey and Lidsey 2001; Majumdar 2001; Dimopoulos and Valle
2002; Wetterich 2014, 2015; Hossain et al. 2014; Rubio and Wetterich 2017),
gravitational reheating (Ford 1987; Spokoiny 1993) (with the caveats explained in
Figueroa and Tanin (2019b)), the Higgs-reheating scenario (Figueroa and Byrnes
2017) and generalisations (Dimopoulos and Markkanen 2018; Opferkuch et al.
2019). The GW spectrum in these scenarios is controlled by w, fRD, and Hinf , and the
parameter space compatible with a detection by various experiments has been
recently analysed in Gouttenoire et al. (2021a), Bernal and Hajkarim (2019), Fig-
ueroa and Tanin (2019a). In Fig. 25 we can see the form of the spectrum in the left
panel (including scale-dependent changes in Gk due to changes in the number of
relativistic species). In the right panel of the same figure we plot the parameter space
that LISA can probe. The tilt in Eq. (133) indicates that models with a stiff epoch
between the end of inflation and the onset of RD are actually very appealing
observationally, as in these scenarios a blue tilt is developed in the GW energy
density spectrum at large frequencies, with 0\nT\1 (Giovannini 1998, 1999;
Riazuelo and Uzan 2000; Sahni et al. 2002; Tashiro et al. 2004; Boyle and Buonanno
2008; Giovannini 2008, 2009; Caprini and Figueroa 2018; Bernal and Hajkarim
2019; Figueroa and Tanin 2019a). This potentially opens up the possibility of
detection by upcoming direct detection GW experiments, including LISA. The
presence of a stiff period is actually well-motivated theoretically in scenarios like
Quintessential inflation (Peebles and Vilenkin 1999; Peloso and Rosati 1999; Huey
and Lidsey 2001; Majumdar 2001; Dimopoulos and Valle 2002; Wetterich
2014, 2015; Hossain et al. 2014; Rubio and Wetterich 2017), gravitational reheating
(Ford 1987; Spokoiny 1993) (with the caveats explained in Figueroa and Tanin
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(2019b)), the Higgs-reheating scenario (Figueroa and Byrnes 2017) and generalisa-
tions (Dimopoulos and Markkanen 2018; Opferkuch et al. 2019). The GW spectrum
in these scenarios is controlled by w, fRD, and Hinf , and the parameter space com-
patible with a detection by various experiments has been recently analysed in Bernal
and Hajkarim (2019), Figueroa and Tanin (2019a), Gouttenoire et al. (2021a). In
Fig. 25 we can see the form of the spectrum in the left panel (including scale-
dependent changes in Gk due to changes in the number of relativistic species). In the
right panel of the same figure we plot the parameter space that LISA can probe.

Consistency with upper bounds on SGWBs, like the BBN and CMB constraints,
rules out a significant fraction of the observable parameter space. (See discussion at
the end of Sect. 5.1.) This renders for instance this signal as unobservable by
Advanced LIGO, independently of the parameter space fw; fRD;Hinfg (Figueroa and
Tanin 2019a). The GW background remains detectable in LISA, but only in a small
island of parameter space, see right panel of Fig. 25 corresponding contrived
scenarios having a low EoS 0:46.w.0:56, a high inflationary scale HinfJ1013 GeV
at the same, and a low transition frequency 10�11 Hz.fRD.3:6� 10�9 Hz (or
equivalently a low reheating temperature 1 MeV.TRD.150 MeV). There exists
other bounds beyond those from BBN and CMB on the duration of the stiff era
(Gouttenoire et al. 2021a).

A short kination era (w ¼ 1) happening much after reheating and inside the
radiation era can be realized naturally by rotating-axion dynamics in the early
universe (Gouttenoire et al. 2021b; Co et al. 2022; Gouttenoire et al. 2021a). Such
kination typically lasts for 2–10 e-foldings and occurs after a matter era such that the
inflationary SGWB gets boosted into a peak shape that is highly observable by future
planned GW observatories while evading the BBN and CMB constraints in Fig. 25.
LISA can probe the striking signature for kination eras happening at 100 GeV–

Fig. 25 Left panel: GW energy spectra including changes in the number of relativistic degrees of freedom,
depending on whether the transition from stiff domination to RD takes place before (red dashed line) or
after (blue solid line) than the QCD phase transition. For comparison we show the corresponding spectra
(grey solid line) without correcting for changes in the number of degrees of freedom. Image reproduced
with permission from Figueroa and Tanin (2019a), copyright by IOP/SISSA. Right panel: Parameter space
region that LISA can probe after removing the region (above the dashed horizontal line) incompatible with
the BBN bound on GW backgrounds. Here ws refers to the EoS for a stiff background

123

Cosmology with the Laser Interferometer Space Antenna Page 131 of 254     5 



100 TeV energy scales (Gouttenoire et al. 2021a, b). Interestingly, such GW peaked
signature would be a unique probe of axion physics.30

If there is an intermediate phase with EoS in the range 0	w\1=3, the transfer
function of the inflationary GW spectrum in Eq. (133), develops instead a red-tilted
high-frequency branch, corresponding to the modes propagating through that phase.
If we could detect the (quasi-)scale invariant GW plateau part of the spectrum, the
transition to the high-frequency branch due to the non-standard era, could be used to
determine the reheating temperature TRD of the universe. This is because the end of
the non-standard era also corresponds to the onset of RD, and hence the pivot
frequency fRD separating the two branches in the energy density spectrum informs
directly about the energy scale at the onset of RD (Nakayama et al. 2008; Kuroyanagi
et al. 2009, 2011; D’Eramo and Schmitz 2019). Unfortunately, given the suppression
of the amplitude of the plateau, c.f. Eq. (132), the determination of TRD by this
method cannot be probed with LISA, and only a futuristic experiment like BBO or
DECIGO (Crowder and Cornish 2005; Seto et al. 2001; Sato et al. 2017) might have
a chance.

Another interesting opportunity is to look for a signal of particles beyond the SM.
When particles becomes non-relativistic as the temperature drops below the mass and
decouple from thermal equilibrium, they no longer contribute to the radiation energy
density. This can be seen as a change in the values of g�;k and gs;k , resulting in a
temporary speed-up of the Hubble expansion rate. SM particles induce changes in
g�;k and gs;k in the frequency range of � 10�12 to 10�5 Hz (Watanabe and Komatsu
2006), which is beyond the range of LISA sensitivity curve. However, any change
due to BSM particles with mass near 100 TeV leave an imprint on the SGWB
spectrum at the LISA sensitivity. This effect is not detectable in the case of standard
slow-roll inflation, since the amplitude of the SGWB is far below the LISA
sensitivity as in Eq. (132), while a strongly blue-tilted primordial spectrum would
provide an opportunity to test BSM physics by LISA (Caldwell et al. 2019).

9.2.2 Phase transitions

We discussed the production of GWs in FOPTs in detail in Sect. 6. We will now
discuss the impact a period of non-standard evolution would have on these
backgrounds. The first most obvious change will come in through modified red-
shifting of the spectra from the time of their production until today (Allahverdi et al.
2020; Gouttenoire et al. 2021a). Simply parametrising the non standard evolution
through a barotropic parameter w we find for the abundance

30 Such a peaked GW signature from a kination era induced by a spinning complex scalar field in the
context of self-interacting DM was found and studied in Li et al. (2014), Rindler-Daller and Shapiro
(2014), Li et al. (2017), Li and Shapiro (2021) where the initial rotation is postulated and the preceeding
matter era is a consequence of inflaton oscillations rather than axion dynamics.
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where the asterisk (�) denotes quantities at the time of the transition, while “RD”
refers to the moment when the universe becomes radiation dominated. In a decel-
erating universe H�=HRD [ 1 and the direction of these modifications depends on the
barotropic parameter. In radiation domination, w ¼ 1=3, the amplitude does not
change as GWs redshift at the same rate as the background. For an expansion
dominated by energy density redshifting slower than radiation w\1=3 the amplitude
will keep decreasing while in the opposite case of an extra component redshifting
faster w[ 1=3 the abundance would increase looking at only the effect of redshift.

Another crucial modification comes from the conditions at the time of the
transition. While typically the GW production is not crucially modified (Barenboim
and Park 2016; Guo et al. 2021), the transition is linked to the radiation component
and if that is subdominant the GW abundance also needs to be corrected. In terms of
the strength of the transition this leads to a simple modification by

a / q�1
R ! ðqtot � qV Þ�1; ð135Þ

where qR is radiation density while qV is the difference between the initial and final
state energy densities. Finally qtot is the total energy density which in domination of
any additional component is of course the dominant contribution.

This modification makes observation of scenarios where the transition occurs
during the domination of an extra component rather unlikely. Even in the optimistic
case of kination (with w ¼ 1) where the redshift of the signal would increase the

amplitude from Eq. (135) we get ðqV=qtotÞ2 � ðH�=HRDÞ�43w�1
3wþ3 which results in an

overall suppression. Due to this, to get any hope of observation we would need the
modified expansion to end almost immediately after the transition (Barenboim and
Park 2016) despite the fact that the two are governed by completely separate
mechanisms. Thus, the most promising models from the observational point of view
are the ones in which the transition occurs in standard circumstance, but it is strong
enough to itself modify the expansion history, as in this case Eq. (135) does not
apply. One example here would be a very strong transition in which the field
dominates the total energy density and after the transition as the field oscillates
around its minimum it is causing a matter dominated period which will last until the
field decays (Ellis et al. 2020c).
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All the modifications of the spectrum we discussed up to now, essentially come
down to shifts of the entire spectrum that could also be mimicked by simple changes
in the parameters of the transition. We now switch to a modification changing the
spectral shape which could provide a smoking gun signal for a modified expansion
period.

This modification has to do with the fact that at scales larger than the horizon size
at the time of the transition the features of our source become irrelevant. The source
at this large scale is effectively just white noise and GWs entering the horizon at later
time during RD always predict a spectrum proportional to f 3 (Caprini et al. 2009a;
Ünal 2019; Cai et al. 2020) at frequencies corresponding to superhorizon scales
f\fH� ¼ a�Hða�Þ=2p. This behaviour, however, depends on the expansion rate at
the time when GWs enter the horizon (Hook et al. 2021). In our relevant example of
matter domination, it would create an f 1 plateau in the spectrum for fHRD\f\fH�.
The main issue with observation of this feature comes from the fact that the peak of
the signal has to do with the characteristic scale of the transition, which is typically
much smaller than horizon size such that f�=fH� / b=H , which is typically much
bigger than one. As a result, this feature will typically appear significantly below the
peak and, given that the abundance decreases quickly off peak, it will also have a
much smaller abundance. Concerning LISA scales, in Fig. 26, we show several
examples of this modification on bubble collision spectra calculated according to
Lewicki and Vaskonen (2021) using parameter examples not difficult to realise in
classically conformal models (Ellis et al. 2020c). From top to bottom the lines show
the decay width of the scalar field C/=H ¼ 1, C/=H ¼ 10�2 and C/=H ¼ 10�4

which results in longer matter-dominated periods and reheating temperatures of
TRD ¼ 104 GeV, TRD ¼ 103 GeV and TRD ¼ 102 GeV, respectively. We also stress
that departure from standard cosmology that we have just explained, is not the only
option leading to relevant chances of the SGWB frequency profile. For instance, the
occurrence of an intermediate matter and kination era inside the radiation epoch as

Fig. 26 The lines show the GW spectrum produced in FOPT by bubble collisions for the indicated
transition parameters. From top to bottom, the decay width of the scalar field decreases leading to a
lengthening period of effectively matter-dominated expansion as the field oscillates around its minimum
before finally decaying. The resulting reheating temperatures read TRD ¼ 104 GeV, TRD ¼ 103 GeV and
TRD ¼ 102 GeV, respectively
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motivated by e.g. early axion dynamics also impacts the low-frequency slope of the
SGWB signal (Gouttenoire et al. 2021b).

9.2.3 Cosmic strings

We now turn to the case of GW spectra produced by cosmic strings that we first
discussed in Sect. 7. We focus on analytical modelling described in Sect. 7.2.1 with
numerical factors set to agree with Model 2 described in Sect. 7.2.2.

These spectra are very convenient laboratories to study the expansion history of
the early universe, since in RD they simply produce a flat plateau. Any features
beyond that can be linked to modifications of the expansion rate from minor
modifications caused by variations in the number of degrees of freedom to simply a
different power-law caused by domination of energy density red-shifting differently
than radiation (Cui et al. 2018, 2019; Gouttenoire et al. 2020a, b). The feature will
appear in the spectrum above at the characteristic frequency fRD corresponding to the
temperature TRD at which the expansion begins to follow the standard radiation-
dominated picture (with SM number of degrees of freedom) (Cui et al. 2019):

fRD ¼ ð8:67� 10�3 HzÞ TRD
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10�11

Gl

	 
1=2
gSM� ðTRDÞ
gSM� ðT0Þ

� �8
6 gSMs ðT0Þ
gSMs ðTRDÞ
� �7

6

; ð136Þ

where Gl is the tension characterising the string network. We stress that, for local
strings, the relevant energy scale is not the size of the horizon, in contrast with phase
transitions for instance. This is because loops do not suddenly decay after production,
in contrast with other cosmological sources of GW. So, for LISA, the cosmic-strings
GW spectrum is sensitive to MeV scale, rather than the 100 GeV−TeV scale
(Gouttenoire et al. 2020a). In Fig. 27, we show the part of the ðGl; TRDÞ parameter
space in which LISA can probe the spectra at fRD testing the standard cosmological
expansion rate.

For global strings, the turning-point frequency turns out to be (Gouttenoire et al.
2020a)

fRD ¼ TRD
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where a is the loop size with respect to the Hubble horizon and the percentage
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BBN LISAFig. 27 Range of temperature
TRD to which LISA can probe
the cosmological expansion rate
using a spectrum from a cosmic
string network with the indicated
string tension Gl. The grey
region indicates temperatures
where modifications of the
expansion rate would already be
in tension with BBN
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indicates the relative deviation jðXst � XnonstÞ=Xstj of the non-standard spectrum
with respect to the standard one. Thus, in contrast to local strings,the turning-point
frequency is independent of the string tension (cf. Eqs. (136) and (137)).

Coming back to the local-string case, assuming that at earlier times the expansion
is governed by a simple EoS with q / a3ð1þwÞ, we can approximate the slope of the
spectrum at f [ fRD as

XGWðf [ fRDÞ / f 2
3w�1
3wþ1 for w� 5=21;

f �1=3 for w\5=21:

(
ð138Þ

We show examples of modified spectra for spectrum from a cosmic string network
Gl ¼ 10�10 including early matter domination (with w ¼ 0) and kination (with
w ¼ 1) lasting up until TRD ¼ 5 MeV and TRD ¼ 5 GeV in Fig. 28. A change in the
number of degrees of freedom would instead create a smooth step in the spectrum
with the total change in abundance given by (Cui et al. 2019),

XGWðf  fRDÞ ’ XSM
GWðf Þ

gSM�
gSM� þ Dg�

	 
1
3

; ð139Þ

where the SM index denotes quantities computed assuming the number of degrees of
freedom as in the SM while Dg� is the number of new degrees of freedom decoupling
at TRD. According to this simple formula probing the abundance of the plateau with
Oð1%Þ accuracy would allow us to discover inclusion of even several new degrees of
freedom with larger amounts requiring less accuracy. The range of temperatures we
can survey is again given by Fig. 27 although ascertaining the exact accuracy con-
cerning our possible estimation of the number of degrees of freedom in this range
would require further scrutiny. It was also shown that measurements of the turning-
point frequency in the SGWB from cosmic strings due to a temporary matter era
induced by a massive unstable particle can enable to probe unstable particles with

Fig. 28 GW spectrum produced by a cosmic string network with Gl ¼ 10�10 together with spectra
produced if that network evolved in an early matter domination period (with w ¼ 0) or kination (with
w ¼ 1) lasting up until TRD ¼ 5 MeV and TRD ¼ 5 GeV. We note that the blue tilted branches in the
figure are only shown for representative purposes, as they violate BBN and CMB constraints [recall
discussion at the end of Sect. 5.1], so for a realistic effect compatible with those bounds, a much smaller
stiff EoS is required, somehow larger than (but very close to) w � 1=3
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lifetime in the range 10�8 to 0.1 s, extending significantly the well-known BBN
bound (Gouttenoire et al. 2020b).

In addition to the potential of probing a new EoS and new relativistic degrees of
freedom with a SGWB from cosmic strings, (pre-)inflationary dynamics may leave
distinctive imprints in GW signals. Although a cosmic string network formed during
or before inflation is diluted by inflation, it may come back into horizon at later times
and lead to detectable GW signals. In this case, the SGWB typically gets suppressed
especially at higher frequencies (Guedes et al. 2018). Nevertheless, well-motivated
BSM scenario of an intermediate short inflationary period inside the radiation era can
lead to detectable effects. With LISA, intermediate inflation scales in the range
0.1–1012 GeV can be probed (Gouttenoire et al. 2020a). Besides, a GW burst signal
could be significant and be the leading signal (Cui et al. 2020), in contrast to the
conventional cases where the SGWB is the more sensitive means to probe cosmic
strings. The dedicated study of the correlated burst and SGWB signals could reveal
information about when the strings come back into the horizon as well as related
inflationary dynamics.

Non-standard pre-BBN cosmology can significantly distort the vanilla shape of
the SGWB from cosmic strings. It can turn it into a peaked shape (Gouttenoire et al.
2020a). Note that a peaked shape can also be generated in standard cosmology in the
presence of a particle production cut-off. However, this works only for small string
tension and lies outside of LISA. So, a peaked GW spectrum from comic strings is a
smoking-gun signature of a non-standard era (less stiff than radiation, i.e. matter or
inflationary era). Note that this peak is much broader than the peak from the FOPT
SGWB signal and can be distinguished.

9.3 SGWB in quantum gravity

In Sect. 4.1 we saw some modifications to the propagation of GWs of astrophysical
origin that could happen in quantum gravity. Here we will concentrate on the
potential quantum-gravity effects on primordial SGWBs. (see Addazi et al. 2022 for
an overview of the experimental and theoretical constraints on quantum gravity.)

Early-universe models embedded in or inspired by theories of quantum gravity
have the potential to leave an observable imprint in the SGWB. In fact, these
cosmological scenarios usually predict modifications in the shape of the primordial
scalar and tensor spectra, which are generated either from the quantum fluctuations of
an inflationary field or by an alternative mechanism. If these modifications include a
blue tilt at high frequencies, they could overcome the CMB bounds and still give rise
to a primordial SGWB XGWðf Þ reaching the sensitivity curves of the present or future
interferometers.

We can classify early universe models related to quantum gravity according to the
tilt of the tensor spectrum, which we call Ptðf Þ to distinguish the full spectrum from

the exact power-law parametrization D2
h;inf in Eq. (99).

This classification is based on the overall trend of the full spectrum. We should
note that in some models a positive tensor index nT [ 0 at CMB scales does not
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imply a blue tilt at higher frequencies. The models are the following (see Calcagni
and Kuroyanagi 2021 for a full list of references):

● Red-tilted tensor spectrum: the large class of string-cosmology models with flux
compactification (not to be confused with the cosmic-strings models discussed
above); one semi-classical solution in Wheeler–DeWitt canonical quantum
cosmology; loop quantum cosmology, where gravity is quantized canonically
using the Ashtekar–Barbero connection. There are three main approaches to
describe perturbations in loop quantum cosmology: with a dressed metric, in
hybrid quantization and with effective constraints, the latter in turn being
characterised by the presence of inverse-volume corrections, holonomy correc-
tions or both. The first two and the third in the presence of inverse-volume
corrections predict a red-tilted tensor spectrum.

● Blue-tilted tensor spectrum: another semi-classical solution in Wheeler–DeWitt
canonical quantum cosmology; loop quantum cosmology in the effective-
constraints approach in the presence of holonomy corrections; non-local
Starobinsky inflation, a model embedded in non-local quantum gravity where
early-universe acceleration is driven by curvature; string-gas cosmology (again,
unrelated to cosmic-strings models), where primordial spectra are generated by a
thermal bath of strings most of which are wrapped around compact extra
dimensions; new ekpyrotic scenario, where the spectra are generated by the
collision of branes; Brandenberger–Ho non-commutative inflation, an inflationary
stage realised in a geometry which is fuzzy at microscopic scales; multi-fractional
inflation, an inflationary era realised in a geometry whose dimension changes with
the probed scale; pre-Big-Bang scenario, where the dualities of string theory
suggest the existence of a phase prior to the big bang.

Models with red-tilted tensor spectrum do not generate a observable SGWB
detectable at ground- or spaced-based interferometers. Regarding models with a blue-
tilted spectrum, quantum modifications in Wheeler–DeWitt canonical cosmology are
too small to be observable by any of the present or planned interferometers (Calcagni
and Kuroyanagi 2021). Loop quantum cosmology in the effective-constraints
approach in the presence of holonomy corrections is already ruled out observation-
ally (Bolliet et al. 2016). The tensor spectrum of non-local Starobinsky inflation (see
Sect. 8.5) tends asymptotically to the spectrum of local Starobinsky inflation, hence it
is unobservable even if the amplitude at interferometer scales is larger than at CMB
scales (Calcagni and Kuroyanagi 2021). String-gas cosmology, the new ekpyrotic
scenario, Brandenberger–Ho non-commutative inflation and multi-fractional inflation
can all reach the sensitivity of DECIGO but, unfortunately, not of LISA (Calcagni
and Kuroyanagi 2021).

A model worth further investigation is the pre-Big-Bang scenario (Gasperini and
Veneziano 1993), where CMB constraints are respected and, at the same time, the
amplitude of the SGWB at high frequencies can increase to touch the sensitivity
curves of GW experiments, possibly including LISA (Gasperini 2016). In Gasperini
(2016), the sensitivity threshold of a six-link, 5 M-km-arm-length configuration was
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assumed (Caprini et al. 2016). An updated analysis could determine the parameter
space of the model opening an observational window.

While the above model has a singular hypersurface at which perturbations are
matched, another non-standard pre-BBN expansion history is realised by bouncing
models where the universe slowly contracts (Ben-Dayan 2016; Ben-Dayan and
Kupferman 2019; Artymowski et al. 2021), and then expands without a big-bang
singularity or inflation (e.g. (Battefeld and Peter 2015; Lehners 2010) for reviews). In

conformal time, before the bounce the scale factor goes as aðgÞ� ð�gÞb, where
0\b � 1 for slow contraction. Considering vacuum fluctuations on top of this
background metric and using the standard power-law parametrization Ph � f nT , the
expected SGWB spectral tilt from vacuum fluctuations is
nT ;vacuum ’ 3� j2b� 1j ’ 2þ 2b, resulting in a blue spectrum (Starobinsky 1979;
Boyle et al. 2004; Artymowski et al. 2021) possibly slashing through the LISA
sensitivity band. Hence, the SGWB signal is directly probing the geometry of the
universe aðgÞ making LISA the natural arena to test alternatives to inflation. As is
well known, bouncing models with only one scalar field typically predict vacuum
fluctuations generating spectra with nT ;vacuum ¼ ns;vacuum � 1� 2. One still has to
make sure that the slow-contracting bouncing models actually generate a viable
scalar spectrum in accord with CMB observations, for instance by a curvaton
mechanism or some other alternative. Specifically, coupling to gauge fields has been
considered with an interaction term L / I2ð/ÞðF2 � cF ~FÞ, where I is a function of
the scalar. As seen in Sect. 8.7.1, gauge fields can provide an additional source of
chiral GWs, whose tilt we denote by nT ;sourced and is such that nT ;sourced ¼
ns;sourced � 1 � �0:04 in accord with CMB observations, however r� 1=9 which is
above current bounds. Hence, the scalar spectrum needs to be generated by some
curvaton or entropic mechanism from a second scalar field. Contrary to the
inflationary case in Sect. 8.2.1, the spectral tilt nT ;sourced is constant in the bouncing
case (Ben-Dayan 2016; Ben-Dayan and Kupferman 2019). Once CMB observations
are determined by a curvaton mechanism, then depending on the parameters of the
model the sourced tensor spectrum may be detected by LISA with
0:15\nT ;sourced\0:31 or 0:85\nT ;sourced\1:1. If one wishes to match CMB
observations solely with the sourced spectrum, then one open question is carrying out
the calculation of the spectra across the bounce and check that the model consistently
generates sourced spectra observed at CMB scales and vacuum spectra observed by
LISA. This is the opposite to what happens in the inflationary models discussed in
Sect. 8.2, where the tensor spectrum observed on CMB scales must be the vacuum
one while LISA can only observe the sourced spectrum.

Another model worth exploring in the LISA context might be the non-perturbative
gravity and bouncing universe of Biswas et al. (2006), Biswas et al. (2010), Biswas
et al. (2012b), where it is possible to explore a pre-Big-Bang phase by modelling it
by a string-gas dominated Hagedorn phase (Biswas et al. 2007, 2014). In this non-
perturbative extension of Einstein’s gravity, there exists a bouncing phase given by
the scale factor aðtÞ ¼ cosh kt in the presence of radiative matter and a non-zero
cosmological constant. Such a solution would also permit a stiff fluid in a Hagedorn
phase where the universe is primarily dominated by string winding modes (Biswas
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et al. 2007, 2014). Their eventual decay into radiation, and exit from the bounce
would yield the standard big-bang cosmology. Primordial perturbations are created
during the thermal phase with thermal statistical initial conditions which lead,
specifically, to a blue tilt in the tensor power spectrum, while keeping the amplitude
of the matter spectrum within the PLANCK observation. The blue tilt in the power
spectrum, along with the matter power spectrum, constrains the scale entering in the
gravitational sector to be around 10�4 MPl (Biswas et al. 2014).

In parallel with the observability of these and any other model related to quantum
gravity with a blue-tilted SGWB (e.g. Dapor and Liegener 2020), it will be important
to assess their theoretical robustness, which we have not discussed here. In general,
models directly derived from quantum gravity should yield more rigid predictions
and be better falsifiable than those only inspired by quantum-gravity phenomena. A
faithful and realistic description of a high-energy, high-curvature generation
mechanism would move this sector of GW astronomy beyond the level of ad hoc
model building towards a mini-program contributing to LISA science, according to
the following algorithm:

1. Selection or construction of early-universe models embedded into or inspired by
quantum gravity, under the criterion of giving a blue-tilted spectrum Ptðf Þ of
primordial tensor fluctuations.

2. Control of the underlying theoretical steps leading from the fundamental theory
to the cosmological model: assumptions, approximations, parameter space, fine
tunings.

3. Generation of the SGWB spectrum XGWðf Þ from the primordial spectrum Ptðf Þ
via transfer functions.

4. Comparison of the theoretical SGWB with the LISA sensitivity curve and
constraints on the parameter space of the model. Non-detection of a SGWB can
be used to rule out theories or to constrain their parameter space. If it was
detected, one could further investigate characteristics of the SGWB such as
anisotropies or the local spectral tilt at LISA frequencies to extract information
on the underlying physics.

In order to achieve the last goal, we will capitalise on the LISA SGWB search and
use some of the pipelines described in Sect. 12.

10 Primordial black holes

Section coordinators: S. Clesse, J. García-Bellido. Contributors: S. Clesse, V. De
Luca, J.M. Ezquiaga, G. Franciolini, J. García-Bellido, R. Kumar Jain, S. Kuroy-
anagi, I. Musco, T. Papanikolaou, M. Peloso, S. Renaux-Petel, A. Riotto, E. Ruiz
Morales, M. Scalisi, O. Sergijenko, C. Unal, C. Joana, V. Vennin, D. Wands.

10.1 Introduction

The idea that BHs may have formed in the early universe comes back to the late
1960s with the precursor work of Zel’dovich and Novikov (1967) and to the 1970s

123

    5 Page 140 of 254 P. Auclair et al.



with the works of Hawking (1971), Carr and Hawking (1974), Carr (1975) and of
Chapline (1975). Already in Carr and Hawking (1974) and Chapline (1975) it was
mentioned that such PBHs could contribute to the suspected DM in the universe or to
the seeds of MBHs. The first formation scenarios in the context of inflation were
proposed in the 1990s (Dolgov and Silk 1993; Carr et al. 1994; García-Bellido et al.
1996) but these usually led to (evaporating) PBHs of very small mass. In the late
1990s, stellar-mass PBHs have been seriously considered as a DM candidate,
following the possible detection (e.g. in the MACHO survey) of several microlensing
events towards the Magellanic clouds (Aubourg et al. 1993; Alcock et al. 1997).
However, the EROS (Tisserand et al. 2007) and OGLE (Wyrzykowski et al.
2010, 2011a, b; Calchi Novati et al. 2013) surveys later set more stringent limits on
the PBH abundance, and at the same time, very stringent constraints from CMB
observations were claimed in Ricotti et al. (2008). Figure 29 summarizes the current
constraints on the PBH abundance in the idealized limit that all PBHs have the same
mass.

Since 2016, the real game-changer that has rekindled the idea that PBHs may exist
and constitute from a significant fraction to the totality of the DM (Bird et al. 2016;
Clesse and García-Bellido 2017b; Sasaki et al. 2016) has been the first GW detection
from a BH merger by Advanced LIGO/Virgo (Abbott et al. 2016b). Nowadays, the
importance of the different PBH binary formation channels, the possible abundance
of PBHs, and their viable mass function, are subject to an intense activity and are
under discussion (for recent reviews, see e.g. Carr and Kuhnel (2020), Carr et al.
(2021c)). Furthermore, since PBHs are formed by the collapse of large density
perturbations, PBHs are accompanied by a SGWB sourced by these perturbations at
second-order. It has been calculated that if BHs detected by LIGO/Virgo have
primordial origin, there is an inevitable accompanying SGWB peaking around PTA
frequencies (Ando et al. 2018; García-Bellido et al. 2017).31 In late 2020,
NANOGrav has claimed the possible detection of a SGWB at nHz frequencies
(Arzoumanian et al. 2020) which, among several options, can be explained as the
result of the density perturbations at the origin of stellar-mass PBH formation
(De Luca et al. 2021b; Kohri and Terada 2021) (although many other explanations
exist. In this context, LISA will search for the GW signatures of PBHs (García-
Bellido et al. 2017; Cai et al. 2019a; Bartolo et al. 2019b; Ünal 2019) and will be
complementary to ground-based GW detectors (Maggiore et al. 2020; Reitze et al.
2019) and EM probes (Kashlinsky et al. 2019), in order to prove or exclude the
existence of PBHs, to evaluate the possible contribution to the DM, to the seeds of
MBHs at high redshift, and to distinguish PBHs from SOBHs, on a wide range of
mass scales. Any firm detection would open a new window on the physics at play in
the very early universe and a possible way to solve various long-standing
astrophysical and cosmological puzzles (Clesse and García-Bellido 2018; Carr et al.
2021b).

31 This SGWB is ineludible in the sense that it does not require any further assumption other than GR and
large density perturbations. It is a standard SGWB formed by anisotropic stress which is quadratic order in
scalar perturbations.
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This section is organized as follows: after reviewing the principal formation
scenarios (Sect. 10.2), we will consider the principal sources of GWs related to PBHs
and their detectability with LISA, which are the SGWB generated at second-order by
the non-linear cosmological density fluctuations at the origin of PBH formation
(Sect. 10.3), the PBH binaries and hyperbolic encounter (Sect. 10.4) which may
unveil a possible primordial origin of MBH seeds if they are detected at high
redshifts (Sect. 10.5).

10.2 Formation scenarios

Hereafter we first provide a rapid overview of the principal mechanisms that can lead
to large curvature fluctuations and PBH formation, which can be related to the early-
universe phenomena discussed in Sects. 6, 7 and 8. We then review the general
theory of PBH formation from large curvature fluctuations. Finally we discuss some
recent developments related to PBH formation, such as non-linear and non-Gaussian
effects, thermal history, that are all relevant for the estimation of the curvature

Fig. 29 Most stringent limits on the DM fraction made of PBHs, fPBH, coming from the Hawking
evaporation producing extragalactic gamma-ray (EGc), e� observations by Voyager 1 (Ve�), positron
annihilations in the Galactic Center (GCeþ), gamma-ray observations by INTEGRAL (INT), microlensing
searches by Subaru HSC (HSC), MACHO/EROS (E), OGLE (O) and Icarus (I), from CMB limits (CMB),
GW observations by LIGO/Virgo (LVC), wide binaires in the galactic halo (WB), the ultra-faint dwarf
galaxies Eridanus II (EII) and Segue 1 (S1), X-rays towards the galactic center (XrB) and Lyman-a limits
(La). For microlensing and CMB limits, the different lines indicate some degree of uncertainties,
respectively due to PBH clustering and disk vs. spherical accretion. Microlensing limits only apply to the
fraction of PBHs uniformly distributed in galactic halos and are less stringent if a non-negligible fraction
fclust of PBHs are in clusters. We show the limits for fclust ¼ 0; 0:4 and 0.8. For LVC, the rate suppression of
early binaries still allows fPBHJ0:1. All these limits apply to monochromatic models and can be model
dependent. Recasting them to realistic PBH models with arbitrary mass functions requires a careful
analysis. Image adapted from De Luca et al. (2021b)
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threshold to lead to PBH formation, as well as their possible abundance and mass
distribution.

10.2.1 Origin of curvature fluctuations

There exists a broad variety of scenarios leading to large curvature fluctuations and
PBH collapse, which can be classified as below. Some scenarios are detailed in the
corresponding sections of this white paper.

1. Single-field inflation: Slow-roll single field inflation models can produce a
power spectrum amplitude of curvature fluctuations on smaller scales larger than
the ones probed by CMB and large scale structures observations. The simplest
example is to have two subsequent inflationary phases, the second one lasting
less than 50 e-folds (roughly). Potentials with inflection points (García-Bellido
and Ruiz Morales 2017; Germani and Prokopec 2017), like critical Higgs
inflation (Ezquiaga et al. 2018), can also lead to a transient enhancement of the
primordial power spectrum. More generically, in the slow-roll approximation,
any potential leading to a transient reduction of the speed of the inflaton will lead
to large curvature fluctuations, eventually leading to PBH formation. Another
possibility is to invoke a variation of the sound speed during inflation, see e.g.
Özsoy et al. (2018).

2. Multi-field inflation: Large curvature fluctuations may also arise in multi-field
models, e.g. during the waterfall phase of hybrid inflation (Clesse and García-
Bellido 2015) or due to turning trajectories in the inflationary landscape
(Fumagalli et al. 2023). Eventually, the power spectrum will not only exhibit a
broad or sharp peak on scales that are relevant for PBHs, but for a sufficiently
sharp turn, this is accompanied by oscillatory features that may lead to specific
signatures in the PBH population and to oscillatory patterns in the scalar-induced
SGWB (Fumagalli et al. 2021a; Braglia et al. 2021; Palma et al. 2020). It is also
possible that curvature fluctuations are generated by the tunneling of the inflaton
towards a local minimum of the field space (Garriga et al. 2016; Deng and
Vilenkin 2017; Kusenko et al. 2020) and the subsequent bubble collapse.
Another intriguing possibility has been proposed by employing axions and their
interaction with the gauge fields to enhance primordial density perturbations and
producing PBHs (Bugaev and Klimai 2014; Linde et al. 2013; Domcke et al.
2017; García-Bellido et al. 2016, 2017; Özsoy and Lalak 2021; Özsoy 2021). In
Natural Inflation (Freese et al. 1990; Adams et al. 1993), the inflaton is a pseudo-
scalar particle protected from quantum corrections for super-Planckian excur-
sions via the shift symmetry. Also, theories with UV completion predict a large
number of pseudo-scalar particles that could be the inflaton or spectator fields. In
this scenario, curvature fluctuations are sourced by enhanced vector modes and
can have a non-Gaussian distribution.

3. Quantum diffusion: The backreaction of quantum fluctuations during inflation
makes the dynamics of the fields stochastic, and allow them to explore wider
regions of the inflationary potential. This makes the tails of the distribution
functions of primordial density fluctuations much heavier (Vennin and
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Starobinsky 2015; Pattison et al. 2017; Ezquiaga et al. 2020a; Figueroa et al.
2021), since they decay exponentially instead of in a Gaussian way, which boosts
the production of PBHs afterwards.

4. Curvaton and stochastic spectator fields: PBHs could have formed due the
existence of a curvaton field, e.g. with a simple modification of the original
curvaton scenario (Lyth and Wands 2002). The primordial curvature perturba-
tions on CMB scales are produced by the inflaton, which acts very similarly to
the standard single-field scenario, while the curvaton field becomes responsible
for perturbations on smaller scales, at the origin of PBH formation. In another
scenario (Carr et al. 2021a), a stochastic spectator field experiences quantum
fluctuations during inflation making it exploring a wide range of the potential,
including its slow-roll part but without having any impact on the inflationary
dynamics. In regions where the field acquires a value allowing slow-roll, after
inflation but when these are still super-horizon, additional expansion is produced
locally, which generates curvature fluctuations that later collapse into PBHs. This
model has the advantage that the primordial curvature power spectrum remains at
level observed at CMB scales almost everywhere, except in PBH-forming
regions.

5. Preheating: If inflation is followed by a preheating, when the inflaton oscillates
coherently at its ground state and decays to other degrees of freedom, resonant
amplification of the quantum field fluctuations take place (Kofman et al.
1994, 1997). These are accompanied with a resonant amplification of curvature
fluctuations (Finelli and Brandenberger 1999; Bassett et al. 1999; Jedamzik and
Sigl 2000; Bassett and Viniegra 2000), which may collapse and form PBHs
(Martin et al. 2020; Auclair and Vennin 2021). The PBHs that form are typically
very light and only if reheating completes at very low energy (below the
electroweak scale) the formed PBHs would have a relevant mass for the LISA
frequency range (for GW radiation from PBH binaries). It is however also
possible that these curvature fluctuations source a detectable SGWB at second
order (Papanikolaou et al. 2021).

6. Phase transitions: The formation of PBHs may have been facilitated in FOPTs
(Jedamzik and Niemeyer 1999), in non-equilibrium second order phase
transitions (Rubin et al. 2000) and in specific realizations of the QCD transition
(Davoudiasl 2019).

7. Early matter era: The curvature threshold for the PBH collapse depends on the
EoS of the universe. It goes to zero in a matter dominated era, and so it is
possible that PBH have formed from standard Oð10�5Þ inflationary curvature
fluctuation if the early universes has undergone a transient matter-dominated era.
Several mechanisms have been proposed to be at the origin of such early matter
era, see e.g. Nayak and Singh (2012), Ballesteros et al. (2020), Green et al.
(1997).

8. Cosmic strings, domain walls: Topological defects may have lead to the
production of PBHs. For instance, cosmic string cusps can collapse gravitation-
ally into PBHs with a mass function that could extend up to stellar masses
(Jenkins and Sakellariadou 2020). The collapse of domain walls, e.g. produced
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by tunnelling during inflation (Deng et al. 2017; Liu et al. 2020) or in QCD axion
models (Ferrer et al. 2019; Ge 2020) is another class of PBH formation scenarios.

9. Primordial magnetic fields: It is suspected that the required seeds for
extragalactic magnetic fields have an origin in the early universe. These
primordial magnetic fields induce an anisotropic stress that can act as a source of
large super-Hubble curvature fluctuations, leading to PBH formation with a
broad possible range of masses (Saga et al. 2020).

10.2.2 Standard theory of primordial black holes formation from Gaussian curvature
fluctuations

If PBHs have been formed due to the collapse of large primordial curvature
perturbations, the fraction of the density of the universe made of PBHs at the time of
their formation, bform (usually defined per unit of logarithmic mass interval), is
determined by the probability that the amplitude of a primordial curvature
fluctuation, measured in terms of the mass excess of the density contrast d is above
a certain threshold dc when the perturbation re-enter the cosmological horizon,
corresponding to the Hubble length 1/H, where H denotes the Hubble parameter. The
corresponding PBH mass M is therefore linked to the Hubble horizon mass of the
collapsing fluctuation, and so also to its size and its corresponding wavenumber
kM ¼ aH (and a is the scale factor),

M ¼ cMH ¼ 3H2

8pG

	 

c3

H3
; ð140Þ

where c is the ratio between the final PBH mass and the collapsing Horizon mass,
which depends on the formation model details (a realistic range is 0:1� 1). This
should take into account that, when the perturbation amplitude d is close enough to
the threshold dc (i.e. ðd� dcÞ.10�2), the mass follows the scaling law of critical
collapse:

M ¼ Kðd� dcÞCMH; ð141Þ
where C depends only on the EoS (C ’ 0:36 in the radiation dominated universe)
and K depends on the shape of the perturbation (typically 1� 10).

If the curvature fluctuations originate from inflation, the PBH mass can be related
to the time of Hubble exit of the corresponding scale during inflation, expressed in
terms of the number of e-folds before the end of inflation N� (see e.g. García-Bellido
et al. 1996), which gives, in the case of instantaneous reheating,

M � 4p
M2

Pl

Hinf
e2N� ; ð142Þ

where MPl is the reduced Planck mass and Hinf is the (almost constant) Hubble rate
during inflation.

In most inflationary scenarios, the distribution of primordial curvature fluctuations
is Gaussian, or almost Gaussian. Some recent scenarios have proposed more complex
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distributions that can be useful to alleviate or reduce the need of a large power
spectrum amplitude. These are shortly discussed later and assuming that the
curvature fluctuations are described by a Gaussian distribution the fraction of PBHs
at formation is then usually given by

bformðMÞ ¼ 2

Z 1

dc

1ffiffiffiffiffiffi
2p

p
r
e�

d2

2r2dd ¼ 1� erf
dcffiffiffi
2

p
r

	 

¼ erfc

dcffiffiffi
2

p
r

	 

: ð143Þ

This expression however does not take into account that when d is larger then a
certain value dmax (originally estimated dmax � 1 by Bernard Carr in 1975 (Carr
1975)) the perturbation forms a separate closed universe, topologically disconnected.
A more accurate version can nevertheless be obtained re-normalizing the previous
expression as

bformðMÞ ¼

Z dmax
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ð144Þ
The variance of the field of density perturbations r, according to the Gaussian
distribution of d used before, is given by

r2 ¼ hd2i ¼
Z1
0

dk

k
Pdðk; rÞ ¼ 16

81

Z1
0

dk

k
ðkrÞ4 ~W 2ðk; rÞT2ðk; rÞPfðkÞ; ð145Þ

where Pdðk; rÞ and PfðkÞ are the density and the curvature power spectrum, while
~W ðk; rÞ ¼ 3ðsin kr � kr cos krÞ=ðkrÞ3 is the Fourier transform of the top-hat

smoothing function and Tðk; rÞ ¼ ~W ðk; r= ffiffiffi
3

p Þ is the linear transfer function, both
computed at the horizon crossing scale. All this shows that a larger power spectrum
could increase significantly the fraction of PBHs because the abundance of PBHs is
exponentially sensitive to the value of the amplitude.

One can then calculate the contribution of PBHs to the density of the universe
today, in terms of the fraction of DM that they represent, given by

fPBHðMÞ� 2:4� bformðMÞ
ffiffiffiffiffiffiffiffi
Meq

M

r
; ð146Þ

where Meq ’ 2:8� 1017M� is the horizon mass at matter-radiation equality, and the
numerical factor corresponds to 2� ð1þ Xb=XCDMÞ. In this standard scenario,
where PBHs form from Gaussian curvature pertubations, one does not expect spatial
clustering at formation larger than the one predicted by the Poisson distribution (Ali-
Haïmoud 2018; Desjacques and Riotto 2018; Ballesteros et al. 2018;
Moradinezhad Dizgah et al. 2019).
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10.2.3 Beyond Gaussianity

The above formalism applies to Gaussian perturbations but it can be generalized to
non-Gaussian distributions, by replacing the integrand in the left-hand side of
Eq. (144) with the appropriate distribution function.

At the perturbative level, even a small amount of local non-Gaussianity (Lyth
2012; Byrnes et al. 2012), or the inevitable non-linear (and hence non-Gaussian)
relation between the primordial curvature perturbations and density perturbations can
have important effects (Young and Byrnes 2015; Franciolini et al. 2018; De Luca
et al. 2019; Young et al. 2019). In the regime of large non-Gaussianity (Linde et al.
2013; García-Bellido et al. 2016; Ünal et al. 2021), the amplitude of the power
spectrum can produce same abundance of PBHs even if it is many orders of
magnitude smaller with respect to Gaussian case. The existence of non-Gaussianity
also influences the amount of SGWB accompanying the PBHs (Nakama et al. 2017;
García-Bellido et al. 2017; Cai et al. 2019a; Ünal 2019). The fact that the power
spectrum needs to deviate from the quasi scale invariance observed on CMB scales to
reach fluctuations allowing PBHs to form also implies that it is natural to expect the
non-Gaussianity to be strongly scale dependent too. Moreover, the merger rate of
PBHs is strongly impacted by non-Gaussianity (Young and Byrnes 2020; Atal et al.
2020), because non-Gaussianity couples the long and short wavelength primordial
density perturbations, leading to initial spatial clustering of the PBHs.

Since PBHs require large fluctuations to form, a perturbative description may not
be sufficient. Quantum diffusion of the inflationary fields leads to large deviations
from Gaussian statistics on the tails of the distribution functions of primordial density
fluctuations (Pattison et al. 2017; Biagetti et al. 2018; Ezquiaga and García-Bellido
2018; Figueroa et al. 2021, 2022), which acquire an exponential (rather than
Gaussian) profile (Vennin and Starobinsky 2015; Pattison et al. 2017; Ezquiaga et al.
2020a; Figueroa et al. 2021, 2022). It implies that PBHs can be formed with a much
smaller amplitude of the power spectrum than what would be inferred using Gaussian
statistics. This cannot be properly taken into account with the usual, perturbative
parametrisation of non-Gaussian statistics (such as those based on computing the few
first moments of the distribution and the non-linearity parameters fNL, gNL, etc.),
which can only account for polynomial modulations of Gaussian tails, and needs to
be described with a non-perturbative approach such as the stochastic-dN formalism
(Fujita et al. 2013; Vennin and Starobinsky 2015).

10.2.4 The threshold for primordial black holes and the impact of thermal history

A crucial parameter of the formalism presented above is the critical value dc,
distinguishing between cosmological perturbations collapsing into PBHs (d[ dc)
and those ones bouncing back into the surrounding medium (d\dc). This is a
fundamental parameter because the resulting PBH abundance is exponentially
sensitive to its value. The analysis of the gravitational collapse of curvature
perturbations to form PBHs and the appropriate threshold condition has been an
active line of research in the past years (Kopp et al. 2011; Harada et al. 2013; Young
et al. 2014). It has been estimated using analytical methods (Harada et al. 2013) but
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the best approach is to use fully relativistic simulations of PBH formation in spherical
symmetry (Musco et al. 2005). Important results having emerged from recent studies
are that its exact value is impacted by non-linear and non-Gaussian effects, and that it
depends on the radial profile of the overdensity (Musco 2019; Young et al. 2019; De
Luca et al. 2019; Kehagias et al. 2019) as well as on the shape of the primordial
power spectrum (Yoo et al. 2018; Germani and Musco 2019).

Very recently, a new semi-analytical method tested against simulations in
numerical relativity has been proposed in Musco et al. (2021), computing dc from the
shape of the power spectrum, applied to a few particular cases (power-law spectra,
log-normal or Gaussian peak, ...). In the radiation dominated universe the typical
range of the threshold lies within 0:4\dc\0:6, with the larger values corresponding
to a more peaked shape of the peak of the power spectrum.

On super horizon scales the non-linear amplitude of the curvature profile f is
important for the formation of PBHs, and the energy density contrast dq=qb, when
the universe is radiation dominated, is expressed in terms of f as

dq
qb

� qðr; tÞ � qbðtÞ
qbðtÞ

¼ � 1

a2H2

8

9
e�5fðrÞ=2r2efðrÞ=2: ð147Þ

It can be shown that the amplitude d is a quadratic function of the curvature profile
(see for example (Musco 2019) for more details)

d ¼ � 2

3
f0ðrmÞ 2þ rmf

0ðrmÞ½ 
 ¼ dG 1� 3

8
dG

	 

; ð148Þ

where dG � � 4
3 rmf

0ðrmÞ is the linear component of the amplitude d. The value of rm
is defined by the location of the peak of the compaction function C � 2DM=R (where
DM ¼ M �Mb is the excess of mass with respect the background) and is given by
fðrmÞ þ rmf

0ðrmÞ ¼ 0. Given the value of dc the threshold value of the linear com-
ponent dG is included within 0:5.dc;G.0:9, and from Eq. (148) we see that
dmax ¼ 8=3, corresponding to the maximum value of dG, above which d becomes
negative, and does not describe a cosmological perturbation of our universe.

The threshold dc is also sensitive to the EoS at the time of formation. For example,
the QCD phase transition makes the EoS to drop, increasing the production of PBHs
of mass OðM�Þ (Jedamzik 1997; Byrnes et al. 2018). The reheating at the end of
inflation should have filled the universe with radiation. In the absence of extensions
beyond the SM, the universe remains dominated by relativistic particles with an
energy density decreasing as the fourth power of the temperature as the universe
expands. The number of relativistic degrees of freedom remains constant
(g� ¼ 106:75) until around 200 GeV, when the temperature of the universe falls to
the mass thresholds of SM particles.

The first particle to become non-relativistic is the top quark at T ’ mt ¼ 172 GeV,
followed by the Higgs boson at 125 GeV, and the Z and W bosons at 92 and 81 GeV,
respectively. These particles become non-relativistic at nearly the same time and this
induces a significant drop in the number of relativistic degrees of freedom down to
g� ¼ 86:75. There are further changes at the b and c quark and s-lepton thresholds
but these are too small to appear in Fig. 30. Thereafter g� remains approximately
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constant until the QCD transition at around 200 MeV, when protons and neutrons
condense out of the free light quarks and gluons. The number of relativistic degrees
of freedom then falls abruptly to g� ¼ 17:25. A little later the pions become non-
relativistic and then the muons, giving g� ¼ 10:75. Thereafter, g� remains constant
until eþe� annihilation and neutrino decoupling at around 1 MeV, when it drops to
g� ¼ 3:36.

Whenever the number of relativistic degrees of freedom suddenly drops, it
changes the effective EoS parameter w. There are thus four periods in the thermal
history of the universe when w decreases. After each of these, w resumes its
relativistic value of 1/3 but each sudden drop modifies the probability of gravitational
collapse of any large curvature fluctuations present at that time, as shown in Fig. 30.

As illustrative examples, we have computed the PBH mass functions for two
models with an (almost) scale-invariant power spectrum and two different values of
the spectral index, ns ¼ 0:97 (Model 1) and ns ¼ 1 (Model 2). We assumed c ¼ 0:8
in both cases. The imprints of the thermal history on the PBH mass function are
clearly visible. It is worth noticing that these features rely on known physics and are
therefore unavoidable for any PBH model with a wide mass function. The former
case corresponds to the scenario proposed in Carr et al. (2021b), Clesse and García-
Bellido (2022) and the latter in Byrnes et al. (2018), De Luca et al. (2021b). They can
both account for the totality of the DM and somehow explain some LIGO/Virgo GW
events, but produce different abundances in the stellar mass range: fPBHðM�Þ � 0:8
in the first case, fPBHðM�Þ � 10�4 in the second case where the peak lies in the sub-
lunar range. We stress that the second example avoids the bounds in the LIGO/Virgo
range.

10.3 Stochastic gravitational-wave background sourced at second order
by curvature fluctuations

If PBHs are generated by the collapse of large density perturbations, they are
unavoidably associated to the emission of induced GWs at second order by the same
scalar perturbations due to the intrinsic nonlinear nature of gravity (Acquaviva et al.

Fig. 30 Left panel: Evolution of the relativistic degrees of freedom g� as a function of the temperature. The
grey vertical lines correspond to the masses of the electron, pion, proton/neutron, W, Z bosons and top
quark, respectively. Right panel: Effect of the evolution of g� on the critical overdensity dc leading to PBH
formation, as a function of the Hubble horizon mass (related to the PBH mass by M ¼ cmH)
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2003; Mollerach et al. 2004). The phenomenological implications have been
investigated in various contexts also associated to PBHs Ananda et al. (2007),
Baumann et al. (2007), Bugaev and Klimai (2010), Saito and Yokoyama (2010),
García-Bellido et al. (2017), Ando et al. (2018), Bartolo et al. (2018), Bartolo et al.
(2019c), Bartolo et al. (2019b), Clesse et al. (2018), Ünal (2019), Chatterjee and
Mazumdar (2018), Wang et al. (2019), Domènech (2020), Domènech et al. (2020), Pi
and Sasaki (2020), Ragavendra et al. (2021), Fumagalli et al. (2021a). If the
enhancement of the scalar power spectrum responsible for the generation of PBHs
occurs around characteristic scales associated with frequencies between 10�7 and
10�2 Hz, this SGWB becomes detectable by GW experiments like LISA. It is worth
emphasizing that contrary to the PBH abundance that is exponentially sensitive to the
power spectrum, this SGWB depends on the power spectrum amplitude to the second
power. This way, LISA will even be able to exclude the existence of an extremely
tiny fraction of DM made of PBHs (even a single PBH in our universe) (Clesse et al.
2018), within a wide mass range.

Figure 31 presents the PBH density fraction at formation bform (left panel) and the
corresponding PBH mass function fPBH today (right panel) for two models with a
power-law power spectrum (see the caption of the Figure for details). The SGWB
associated with one of these two models is shown in Fig. 32, where it is confronted
with several current or forecasted experimental limits. The SGWB covers a wide
frequency range. In the ultra-low frequency range, around nHz, PTA experiments
like PPTA (Shannon et al. 2015), NANOGrav (Arzoumanian et al. 2018) and EPTA
(Lentati et al. 2015) give the most stringent constraints on the GWs abundance.
Future experiments like SKA (Dewdney et al. 2009) (see also Moore et al. 2015) will
greatly improve the sensitivity. In the LIGO/Virgo frequency range, an additional
constraint has been set by the non-observation of a SGWB after O1-O2 (Abbott et al.
2019c) and O3 runs (Abbott et al. 2021g). All these searches can be translated into a
constraint on the amplitude of the comoving curvature perturbation at the

Fig. 31 PBH density fraction at formation bform (left panel) and the corresponding PBH mass function fPBH
today (right panel), neglecting the effect of PBH growth by accretion and hierarchical mergers, for two
models with a power-law power spectrum and including the effects of thermal history: Model 1 from Carr
et al. (2021b), Clesse and García-Bellido (2022) with spectral index ns ¼ 0:97; Model 2 from De Luca
et al. (2021b), Byrnes et al. (2018) with ns ¼ 1: and a cut-off mass of 10�14 M�. The transition between the
large-scale and small-scale power spectrum is fixed at k ¼ 103Mpc�1. The power spectrum amplitude is
normalized such that both models produce an integrated PBH fraction fPBH ¼ 1, i.e. PBH constitute the
totality of DM. A value of c ¼ 0:8 was assumed
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corresponding scales (Bugaev and Klimai 2010; Byrnes et al. 2019; Inomata and
Nakama 2019; Ünal et al. 2021). Those bounds are also affecting the maximum
allowed PBHs fraction of DM with the hypothesis that they originate from the
collapse of density perturbations. Detailed studies with the LIGO/Virgo data
affecting the mass range M 2 10�20; 10�18½ 
M� are reported in Kapadia et al. (2020),
while very tight bounds in the mass range M 2 10�3; 1½ 
M� are obtained in Chen
et al. (2020) using the latest NANOGrav data; see also Cai et al. (2019b) where the
dependence of the result to non-Gaussianities is also investigated, finding that local
non-Gaussianity can for example alleviate the bounds (see Sect. 10.2.3 for details).
Finally, the next generation multimessenger experiments, CMB distortion (PIXIE)
and PTA-SKA, can test the PBH scenario over solar mass robustly, namely they can
conclusively detect or rule out the PBHs over solar-mass and the intriguing proposal
that the seeds of the MBHs are formed by PBHs (Ünal et al. 2021) independent of i)
statistical properties of perturbations, ii) accretion and merger history and iii)
clustering effects.

LISA will be able to provide insights in the intermediate frequencies, and
corresponding masses. Since the emission mostly comes when the corresponding
scales cross the horizon, one can relate the GWs frequency to the PBHs mass M as
(see for example (Saito and Yokoyama 2010; García-Bellido et al. 2017))

f ’ 3mHz
c
0:2

� �1=2 M

10�12M�

	 
�1=2

; ð149Þ

where the factor c is capturing the relation between the horizon mass at formation and

Fig. 32 SGWB sourced at second order by the density perturbations at the origin of PBH formation, for
Model 2 of Fig. 31. On top of the plot, we show the PBH mass associated to a given GW frequency as in
Eq. (149). The LISA sensitivity (Amaro-Seoane et al. 2017) and the hint for a detection by NANOGrav
12.5 yr (Arzoumanian et al. 2020) are represented, as well as the constraints coming EPTA (Lentati et al.
2015), PPTA (Shannon et al. 2015), NANOGrav 11 yrs (Arzoumanian et al. 2018; Aggarwal et al. 2019)
and future sensitivity curves for planned experiments like SKA (Zhao et al. 2013), DECIGO/BBO (Yagi
and Seto 2011), CE (Abbott et al. 2017b), ET (Hild et al. 2011), Advanced LIGO ? Virgo collaboration
(Abbott et al. 2017f), Magis-space (MS) and Magis-100 (M100) (Coleman 2019), AEDGE (El-Neaj et al.
2020) and AION (Badurina et al. 2020). Image reproduced with permission from De Luca et al. (2021b)
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the PBH mass after the collapse. Notice that the peak frequencies fall within the
LISA sensitivity band for PBH masses around M �O 10�15 � 10�8ð ÞM� and for
this mass range, the PBHs can constitute the totality of the DM. Hence, García-
Bellido et al. (2017) proposed PBHs in this mass range as DM and further found that
density perturbations forming PBHs lead to GWs detectable by LISA. This proposal
has been studied in more detail in Cai et al. (2019a), Bartolo et al. (2019b), Bartolo
et al. (2019c), Ünal (2019).

The computation of the resulting SGWB spectrum was originally performed in
Ananda et al. (2007). We provide here the main result, assuming a generic form for
the power spectrum of curvature fluctuation. The current GW abundance can then be
obtained as

XGWðg0; kÞ ¼
a4f qGWðgf ; kÞ

qrðg0Þ
Xr;0 ¼

g�ðgf Þ
g�ðg0Þ

g�Sðg0Þ
g�Sðgf Þ

 !4=3

Xr;0XGWðgf ; kÞ;

ð150Þ
in terms of the present radiation energy density fraction Xr;0 if the neutrinos were
massless. The crucial quantity is XGWðgf ; kÞ, that is the fractional GW energy
density for log interval at the emission epoch gf , related to the critical energy density

of a spatially flat universe qc ¼ 3H2M 2
p . Assuming that the scalar perturbations f are

Gaussian, it can be calculated as

qGW g; x~ð Þ� � � qcðgÞ
Z

d ln k XGW g; kð Þ

¼ 2p4M 2
p

81g2a2

Z
d3k1d3p1

2pð Þ6
1

k41

p21 � ðk~1 � p~1Þ2=k21
h i2

p31 k1~ � p~1

��� ���3
Pfðp1ÞPfðjk1~ � p~1jÞ I 2

cðk~1; p~1Þ þ I 2
s ðk~1; p~1Þ

� �
;

ð151Þ

where the functions I c;s are found in Espinosa et al. (2018), Kohri and Terada (2018).
The integrals need to be done numerically for general power spectra (see Saito and
Yokoyama 2010; Bugaev and Klimai 2010 for analytical calculations in the specific
case of a monochromatic or Gaussian curvature spectrum).

For the frequencies of interest, using f ’ 8mHz g�=10ð Þ1=4 T=106GeVð Þ, one can
show that the emission of GWs takes place at gf well before the time at which top
quarks start annihilating, above which we can assume a RD universe with constant
effective degrees of freedom.

The non-linear coupling with the curvature perturbation naturally leads to an
intrinsically non-Gaussian GWs signal imprinted in phase correlations. However, the
coherence is washed out by the propagation of the waves in the perturbed universe
mainly due to time delay effects originated from the presence of large scale variations
of gravitational potential (Bartolo et al. 2018, 2019b, c; Margalit et al. 2020). This is
simply a consequence of the central limit theorem applied to a number
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N � kHg0ð Þ2o1 of independent lines of sight (Bartolo et al. 2019b), kH being the
characteristic perturbation wave-number roughly proportional to the the inverse
horizon size at GW emission. Possible small deformations smearing the GWs
spectrum can also arise from similar effects (Domcke et al. 2020c).

An interesting primordial signal that is potentially observable is related to
scenarios where the scalar power spectrum presents oscillations of sufficiently large
amplitude, characteristic of large particle production mechanisms, leading to
oscillatory Oð10%Þ modulations in the frequency profile of the scalar-induced
SGWB (Fumagalli et al. 2021a; Braglia et al. 2021), see Sect. 8.3 for details.

10.4 Resolved sources and stochastic gravitational-wave backgrounds
from primordial black holes binaries and hyperbolic encounters

PBHs can source GWs in several ways, which will be probed as individual and
resolved sources, as a SGWB, or continuous wave signals with LISA. One can
distinguish:

● GW chirps from the merging of PBH binaries

● SGWB from PBH binaries

● Continuous GWs from PBH binaries far from the merging time.

● Bursts from close BH-BH interactions

The amplitude of these signals depends on the PBH mass function and the resulting
merger rates, which themselves depend on the PBH binary formation channel. Two
main channels have been identified: at formation in the early universe and by tidal
capture in dense PBH clusters. For each we provide an estimation of the
corresponding merger rates. We then compute the expected signals for a few
example models. For the purpose of calculating the PBH merging/encounter rates
and the resulting GW signatures, we use a general mass distribution f ðmPBHÞ that
would be specified by the underlying formation model.

10.4.1 Binary formation channels and merger rates

Primordial binaries may have been created before the epoch of matter-radiation
equality, when two PBHs formed sufficiently close to each other for their dynamics
to be independent of the expansion the universe. If this binary takes a time of the
order of the age of the universe to merge, the resulting GWs could be detected. One
can estimate the merger rate of such binaries (Kocsis et al. 2018; Raidal et al. 2019)
in the simplest scenario where PBHs are not clustered at formation and only
contribute to less than about 10% of the DM as
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dRprim

dðlnm1Þdðlnm2Þdz ¼
1:6� 106

Gpc3 yr
f
53
37
PBH Sðm1;m2; fPBHÞ

t m1m2

t0ðm1 þ m2Þ2
" #�34

37
m1 þ m2

M�

	 
�32
37

f ðm1Þf ðm2Þ
ð152Þ

where m1 and m2 are the BH masses and S accounts for the suppression factor of the
merger rate coming from binary disruption in early universe substructures (Raidal
et al. 2019). We use the definition of the PBH mass function f(m) normalised to unity
as
R
f ðmÞd lnm ¼ 1.

Notice that accretion onto PBHs in binaries can be effective for masses above
Oð10ÞM� with an impact on the merger rate (De Luca et al. 2020d, c). When
fPBHJ0:1, N-body simulations (Raidal et al. 2019) have shown that PBH clusters can
rapidly form and change the lifetime of PBH binaries, due to their tidal force.
However, the fraction of unperturbed binaries at the present time is at least of the
order of 10�2 for fPBH ¼ 1 (Vaskonen and Veermäe 2020; De Luca et al. 2020a;
Jedamzik n.d.). Furthermore, one should also recall that not all the binaries end up
inside halos, about 10�3 to 10�2 remain isolated. For instance, this gives a primordial
merger rate still above the inferred LIGO/Virgo rate, even for large PBH abundances.

It is worth mentioning that, as investigated in (De Luca et al. 2021a), an overall
PBH abundance of the order fPBH � 10�4 would be enough to explain the rate of
events in the pair-instability mass gap as inferred by the LIGO/Virgo observations
(Abbott et al. 2020b). This result depends on the rate of PBH accretion which is
needed to avoid CMB constraints in that relevant mass window (De Luca et al.
2020b). The redshift dependence of the GW source merger rate at high redshift is a
key feature which can be explored to distinguish between the astrophysical BHs and
PBHs from LIGO/Virgo (Mukherjee and Silk 2021) and CE and ET (Mukherjee et al.
2022). LISA will be able to observe events in that mass window (Kaiser and
McWilliams 2021) and thus potentially help in constraining the population properties
of events falling in the pair-instability mass gap (see Abbott et al. 2020c and
references therein).

Capture in PBH clusters: The second most important PBH binary formation
channel is through dynamical capture in dense PBH clusters. Therefore the PBH
clustering properties, which are still uncertain and highly model-dependent, mostly
determine their overall merger rate. In the absence of additional clustering compared

to KCDM expectations, one has a rate R � Oð1Þ yr�1 Gpc
�3

for equal-mass binaries
(Bird et al. 2016). But in the case of wide mass functions, clustering may be boosted
as well as the merger rates, up to the values inferred by LIGO/Virgo if stellar-mass
PBHs constitute a significant fraction of the DM. One can encode the clustering
uncertainties in a single, rescaling parameter Rclust (Vaskonen and Veermäe 2020;
De Luca et al. 2020a). Then, the rate distribution can be approximated as (Bird et al.
2016; Clesse and García-Bellido 2017b; Sasaki et al. 2018)
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dRcapt

d lnm1d lnm2
� Gpc�3yr�1fPBHR

clust ðm1 þ m2Þ10=7
ðm1m2Þ5=7

f ðm1Þf ðm2Þ: ð153Þ

One has to notice though that both in the LIGO/Virgo and LISA mass ranges there
are various severe constraints on the PBH abundance (Carr et al. 2021c), which are
not sensitive to uncertainties on the PBH clustering, e.g. those coming from the CMB
anisotropies (Ali-Haïmoud and Kamionkowski 2017; Poulin et al. 2017; Inman and
Ali-Haïmoud 2019; Serpico et al. 2020).

10.4.2 Gravitational-wave chirps from primordial black holes binaries

The merger rates expected for the two illustrative PBH models considered here are
represented on Fig. 33, for the two binary formation channels detailed in the previous
section. From these rates, one can identify three types of GW sources that are
relevant for LISA.

Intermediate-mass binaries: The LISA frequency range is ideal to detect IMBBH
mergers with mass above 103 M�. PBHs can produce such merger events with rates
of order � 10�2yr�1Gpc�3 for PBHs in clusters, which could therefore be detected
by LISA given the expected astrophysical reach for such events, typically above Gpc.
The rate of equal-mass primordial binaries roughly goes like �M�1 for primordial

Fig. 33 Expected merger rates of PBH of mass m1 and m2 for the Model 1 (top panels) and Model 2
(bottom panels) mass distributions displayed in Fig. 31 due to the binary formation channels “primordial
binaries” (left panels) and “tidal capture in halos” (right panels) coming from Eqs. (152) and (153)
respectlisaively
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binaires and is thus relatively low, while it is constant for binaries in clusters. Merger
rates are also much larger for Model 1 than for Model 2, due to a much larger PBH
density fraction in this range. It must be pointed out that this fraction is restricted by
CMB limits. These are not calculated for such wide-mass distributions of highly
clustered PBHs, and so they should not be directly applied to the models.

Extreme mass ratios: Another distinctive feature of PBHs with wide mass
distributions is to predict large merger rates of binaries with extreme mass ratios,
especially those involving a PBH from the QCD peak, merging with an intermediate
mass PBH, as shown in Fig. 33. For Model 1 and tidal capture in clusters, these rates can
be larger than 103yr�1Gpc�3. Therefore LISA could detect such extreme mass ratio
coalescences, because of the ideal sub-Hertz GW frequency of such mergers and the
large merger rates that allow for the compensation of the reduced strain sensitivity of
LISA compared to the one of ground-based detectors at higher frequencies.

Continuous waves from galactic binaries: Models with an important PBH fraction
at planetary-masses and below typically lead to very high merger rates at low mass,
which could allow for the detection of such binaries within our galaxy. This is
especially motivated for the Model 2 and for primordial binaries. But in the LISA
range, such binaries are still far from the time of merger, when the strain evolution is
almost constant over the duration of an observing run. For these kind of signals the
continuous wave searches (see e.g. Miller et al. 2021) look promising. The sensitivity
of LISA to planetary-mass PBHs using such search techniques is still to be
determined.

10.4.3 Stochastic gravitational-wave background

The overlap of GWs from PBH binaries that are close to merger form together a
SGWB that could be detected by LISA. The possible spectral shape of this SGWB
for the two possible binary formation channels, the constraints coming from
observations and their implications for PBH models, have been discussed in the
recent literature (Mandic et al. 2016; Clesse and García-Bellido 2017a; Wang et al.
2018; Raidal et al. 2017; Chen et al. 2019; Wang et al. 2019). Hereafter, we review
the basic principle and formula to compute this SGWB and present some predictions
for particular PBH models.

The amplitude of the SGWB is given by summing up the energy spectrum of each
binary system by taking into account the merger rate distribution as well as its
possible evolution with redshift. For binary systems with a circular orbit and for a
generic PBH mass function leading to merger rates Rðm1;m2Þ, e.g. given by
Eq. (152) for primordial binaries and by Eq. (153) for capture in halos, one gets
(Clesse and García-Bellido 2017a)

XGWðf Þ ¼ 8p5=3G5=3

9H2
0

f 2=3
Z zmax

0
dz

1

HðzÞð1þ zÞ4=3

�
Z

d lnm1

Z
d lnm2 Rðm1; m2; zÞM5=3

c ðm1;m2Þ
ð154Þ

where Mc is the chirp mass. The maximum frequency in the observer’s frame is
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determined by the innermost stable circular orbit which is given by
fISCO � 4:4kHz M�=ððm1 þ m2Þð1þ zÞ. This can be translated to the maximum
redshift as zmax ¼ f =fISCO � 1.

As an example, we used a peaked mass distribution around 2:5M� (motivated by
the QCD peak) and computed the corresponding SGWB, for binaries formed in
halos. This SGWB is clearly detectable by LISA but probably below the sensitivity
of LIGO/Virgo. By probing the amplitude and spectral index of this SGWB, LISA
would be able to distinguish between different mass functions, different clustering
properties, as well as the dominant binary formation channel. Indeed, the lower limit
of the frequency range covered by PBH binaries depends on their relative velocity
when the binary is formed, which itself depends on the typical cluster mass and
radius.

10.4.4 Bursts from hyperbolic encounters

If PBHs are at present grouped in clusters, a fraction of BH encounters will not end
up producing bound systems, but a single scattering event. This could happen e.g.
when the relative velocity is too high for the capture to be possible. The GW signals
from hyperbolic encounters can have frequencies, strain amplitudes and character-
istic time durations that create GWs signals that can be detected by LISA. These
events would have unique signatures (García-Bellido and Nesseris 2018, 2017) and
would provide direct information about the orbital parameters and spatial distribution
of these BHs, thereby providing complementary information to inspiral binaries, and
strong evidence in favor of the scenario of clustered PBHs (Fig. 34).

The waveforms of the GW emission in hyperbolic encounters are very different
from those of the inspiraling binaries, since the majority of the energy is released near
the point of closest approach, generating a burst of GWs with a characteristic “tear-
drop” shape of the emission in the time-frequency domain (García-Bellido and
Nesseris 2018, 2017). The burst has a characteristic peak frequency

fpeak ¼ 0:32mHz� bðeþ 1Þ
ðe� 1Þ

AU

b
; ð155Þ

which corresponds to the maximum GW amplitude and depends only on the impact
parameter b, the total mass of the system M and the eccentricity of the hyperbolic

orbit e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2v40=G

2 M 2
p

), where v0 is the asymptotic relative velocity of the
encounter and b � v0=c. The burst duration can be of the order of a few milliseconds
to several hours (depending on the PBH masses and encounter parameters) and bright
enough to be detected at distances up to several Gpc. The maximum strain amplitude
of the GW burst is given by

hmax
c ¼3:24� 10�23 RSðkmÞ

dLðGpcÞ
qb2gmax

ð1þ qÞ2 ð156Þ
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PmaxðeÞ ¼5:96� 1026L�
q2b10

ð1þ qÞ4
ðeþ 1Þ
ðe� 1Þ5 ; ð157Þ

where L� is the solar luminosity, RS is the Schwarzschild radius, q � m1=m2 is the

black hole mass ratio, m1 ¼ qm2 �m2 and gmax ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18ðeþ 1Þ þ 5e2=ðe� 1Þp

.
GWs detectable by LISA could be generated by close encounters of an

intermediate-mass BH and a MBH as expected at the centers of galaxies, as well
as from encounters of two MBHs that could occur during galactic collisions at low
redshift. In the first case, an intermediate-mass BH of mass m2 ¼ 103 M� and a MBH
of mass m1 ¼ 106 M�, with an impact parameter b = 1AU and velocity v0 ¼ 0:05 c,
gives an eccentricity parameter e ¼ 1:031 with event duration of about 440 s. The
maximum stress amplitude would be hmax

c ¼ 1:02� 10�19 at a distance dL ¼ 1 Gpc,
with the peak at frequency fpeak ¼ 1:05 mHz, well within the sensitivity band of
LISA [17]. In a hyperbolic encounter between two MBHs of equal mass m1 ¼
m2 ¼ 106 M� with impact parameter b ¼ 10 AU and relative velocity v0 ¼ 0:015c,
the eccentricity is low e ¼ 1:01 and the stress amplitude is huge hmax

c ¼ 2:22� 10�17

at fpeak ¼ 1:51� 10�4Hz, again right in the middle of the LISA observational band.
Such a close hyperbolic encounter event would be clearly detectable due to a
distinctive “burst” waveform (Morrás et al. 2022) that is very different from the usual
“chirp” signatures of BBH. Furthermore, even if a single close hyperbolic encounter
event may be difficult to detect, their characteristics can be distinguished population-
wise, given their expected rates.

Fig. 34 Example of SGWB expected for PBH binaries formed by tidal capture in clusters, with rates given
by Eq. (153) and different virial velocities (2 km/s in green, 20 km/s in blue and 200 km/s in red) and a
peaked PBH mass distribution around 30M�. Image reproduced with permission from Clesse and García-
Bellido (2017a)
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10.5 Massive black hole seeds from primordial black holes at high redshift

It is challenging to explain how MBHs can exist in only partially reionized
environments at redshifts zJ7 (Banados et al. 2018). The first populations of stars or
the direct collapse of gas into BHs are two possible astrophysical mechanisms to
generate the seeds of these MBHs. But even if one invokes super-Eddington
accretion, it is very challenging for these seeds to reach sufficiently large masses to
explain observations. PBHs are an alternative explanation to the existence of MBHs
since they can provide seeds of intermediate-mass BHs at higher redshift than for the
other astrophysical mechanisms (Duechting 2004; Kawasaki et al. 2012; Clesse and
García-Bellido 2015; Bernal et al. 2018). The easiest way to distinguish PBH seeds
from other candidates is therefore to observe IMBBHs at zJ20, before star
formation.

The astrophysical range of LISA will allow will allow for the observation of
IMBBH mergers at redshifts z[ 20 with a SNR larger than five, for equal-mass
mergers and progenitor masses between 103 M� and 106 M�, as shown in Fig. 35.
The possible merger rates of PBHs for a broad mass function with the imprints of the
thermal history, shown in Fig. 33, can be larger than Oð1Þyr�1 for primordial
IMBBHs that would be formed in PBH clusters at high redshift. The existence of
these clusters is relevant since they would also form in the standard Press–Schechter
theory. LISA observations will be complementary to those of Earth-based GW
detectors, like CE and ET, which will probe mergers with lower masses, and to future
PTA limits from SKA, which will probe eventual mergers of MBHs at similar
redshifts.

Fig. 35 Redshift range of LISA according to the analysis of Burke-Spolaor et al. (2019) for equal-mass
BBH coalescences as a function of the total system mass, and comparison with the range of other detectors
and pulsar timing arrays. The color scale represents the expected SNR emerged from the study. Image
reproduced with permission from Burke-Spolaor et al. (2019)
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11 Tools/pipelines for the analysis of transient signal data
in cosmology

Section coordinator: L. Lombriser. Contributors: T. Baker, E. Belgacem, G. Calcagni,
S. Clesse, G. Congedo, J.M. Ezquiaga, J. García-Bellido, D. Laghi, L. Lombriser,
M. Maggiore, M. Mancarella, A. Raccanelli, M. Sakellariadou, N. Tamanini,
M. Zumalacarregui.

This section presents a discussion of the tools available and in need of
development for the analysis of the LISA transient signal data, including codes,
pipelines, algorithms, and methodologies. While the highlighted tools are of specific
relevance to the analysis of LISA data, their application is generally not restricted to
that. Sect. 11.1 focuses on standard sirens tests of the cosmic expansion (see Sect. 2).
Section 11.2 is devoted to the tools for GW lensing (Sect. 3). Tools for tests of
modified gravity (Sect. 4) are presented in Sect. 11.3, and finally Sect. 11.4 discusses
the tools for PBHs (see Sect. 10).

11.1 Tools for testing the cosmic expansion with standard sirens

As presented in Sect. 2, GW observations are natural cosmological probes because
their amplitude directly traces the luminosity distance as predicted by GR. When
additional redshift information is obtained, GW events become standard sirens.
Depending on whether the redshift information comes directly from an EM
counterpart or from statistical inference, we will refer to them as bright and dark
sirens respectively. In both cases, modern GW data analysis techniques are based on
Bayesian inference. In the following we describe them independently.

11.1.1 Bright sirens

For bright sirens, the single–event posterior for a set of parameters H given GW data
DGW and EM-wave data DEM can be written as (Chen 2020)

pðHjDGW;DEMÞ ¼ pðHÞ

Z
pðDGWjH~ÞpðDEMjH~ÞppopðH~jHÞdH~Z

pdetðH~ÞppopðH~jHÞdH~
; ð158Þ

where pðHÞ is the prior probability density on H, and H~ represents all the binary
parameters. The set of parameters H can be expressed in full generality as
H ¼ fHcosmo;Hpopg, where Hcosmo ¼ fH0;Xm;Xk ;XKg are the cosmological
parameters and Hpop represent a set of parameters used to model the population such
as the mass and spin distribution or the merger rate evolution with redshift. The

population prior ppopðH~jHÞ is the probability density of binaries with parameters H~

under our assumption of the merger rate density. The detection probability is given
by
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pdetðH~Þ ¼
Z

DGW [GWthr

DEM [EMthr

pðDGWjH~ÞpðDEMjH~ÞdDGWdDEM;

ð159Þ

in which the integration is only carried out over the data above the GW and EM
detection thresholds, GWthr and EMthr, respectively.

GW and EM-wave observations can both introduce systematic uncertainties to the
standard siren measurements. The measurements of the host redshifts can suffer from
peculiar motions of the hosts (Howlett and Davis 2020; Mukherjee et al. 2021c;
Nicolaou et al. 2020). The measurements of the binary luminosity distances are
affected by the detector calibration uncertainty (Karki et al. 2016; Sun et al. 2020),
lensing (Holz and Linder 2005; Hirata et al. 2010), and the accuracy of the
waveforms (Abbott et al. 2019b). In addition, as shown in Eq. (158), our
understanding of the possible observational selection effects (Chen 2020) as well as
the astrophysical rate evolution (see e.g. Fig. 12 of Finke et al. (2021) for an
application to LIGO-Virgo data) are critical to the accuracy of the standard siren as
well.

11.1.2 Dark sirens

In the absence of an EM counterpart, one may extract redshift information by putting
a prior on potential hosts from a galaxy catalogue.32 In this case, it is natural to
consider the catalogue as a prior and the most convenient choice is to make a change
of variables dL 7!zðdL;HÞ in Eq. (158), and use the redshift z instead of the

luminosity distance dL 2 H~.33 Denoting H~ ¼ fdL; X̂;H~ 0g, Eq. (158) reads

pðHjDGWÞ ¼ pðHÞ
aðHÞ

Z
dzdX̂dH~

0
pðDGWjdLðz;HÞ; X̂;H~ 0Þppopðz; X̂;H~ 0jHÞ; ð160Þ

where aðHÞ � R pdetðH~ÞppopðH~jHÞdH~ and we set pðDEMjH~Þ ¼ 1, being in the
absence of a counterpart. Note that the GW likelihood now carries an explicit
dependence on the parameters H. The population prior on redshift and position is
expressed as

ppopðz; X̂jHÞ /
X
i

wi
dVc

dzdX
ðz;HÞ pðzi; X̂ijz; X̂Þ: ð161Þ

In the above equation, pðzi; X̂ijz; X̂Þ is the likelihood of the redshift and position of

the i-th galaxy in the catalogue, with observed values zi; X̂i. The angular position can
be assumed to be known with very good precision—since the GW likelihood does
not vary significantly over the scale of the galaxy location—and the corresponding

32 This method assumes that the true source is not of primordial origin.
33 Note that the GW likelihood pðDGWjH~Þ is unaffected by this transformation since it is a PDF with
respect to the data DGW.
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distribution is just a delta function about the observed values; the redshift-dependent
part of the likelihood can be instead approximated by a Gaussian centered around the
observed redshift zi and with standard deviation given by the redshift uncertainty.34

The term dVc=dzdX is the differential of the comoving volume element Vc, which is a
uniform-in-volume prior on the redshift z (Chen et al. 2018; Soares-Santos et al.
2019; Palmese et al. 2020). A more refined choice is to assume a prior that follows
the expected evolution with redshift of the rate of GW sources (Gray et al. 2020;
Finke et al. 2021). However, since this is not known a priori, this choice also adds
more parameters to the analysis. Finally, the factors wi in Eq. (161) represent the
possibility of assigning different weights to the galaxies. Common choices are the B-
band luminosity, which traces the star formation rate, or K-band luminosity that
traces the total stellar mass.

One has then to deal with the fact that galaxy catalogues are in general not
complete. This requires one to include information on the missing galaxies, and the
prior in Eq. (161) must be supplemented by a suitable “completion” term (Chen et al.
2018; Fishbach et al. 2019; Gray et al. 2020; Finke et al. 2021), which requires two
pieces of information. The first is the knowledge on the “completeness” of the
catalogue, that is usually computed by comparing the luminosity distribution in the
catalogue to the one given by a Schechter function (Chen et al. 2018; Fishbach et al.
2019; Finke et al. 2021).35 The second is to specify a “completion” procedure, i.e. to
determine how the missing galaxies are spatially distributed. The simplest options
can be to distribute them uniformly (Chen et al. 2018; Fishbach et al. 2019), or to
assume that the catalogue traces well the actual structures, hence assigning higher
weight to the galaxies that are in low completeness regions (Finke et al. 2021), or
even assuming that completion is not needed (Soares-Santos et al. 2019; Palmese
et al. 2020; Laghi et al. 2021). Eventually, the best choice depends on the galaxy
survey, its sky coverage and on the completeness of the catalogue. A more refined
procedure is to use the uniform, uninformative distribution in regions of low
completeness, while switching to the second option where the galaxy survey traces
the actual structures fairly well (Finke et al. 2021). This aspect will become more
important as the precision on the localisation increases but will remain a limiting
factor until catalogues with very large completeness are available. Since the
completeness drops drastically with increasing redshift, this can be limiting for LISA
sources at high redshift when using catalogues that have a large sky coverage but
limited redshift range. Another option is to use deeper catalogues with limited sky
coverage, but this requires to take into account the variation of the completeness with
the angular position in the sky (Finke et al. 2021). In any case, the availability of
complete galaxy catalogues, accurate determination of the redshifts, and small GW
localisation regions will be crucial in order for the statistical method to give
competitive constraints on cosmological parameters.

34 However, the true PDF should be used when available, and this choice can have a non-negligible impact
on the result (Palmese et al. 2020).
35 A slightly different, though comparable, approach is to include the possibility that the true host is not in
the catalogue in the formalism (Gray et al. 2020).
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Finally, a good understanding and an accurate computation of the selection bias is
required (Chen 2020; Finke et al. 2021). This is related to other relevant systematic
uncertainties that deserve further investigation, related to our limited knowledge of
the population properties of BBHs. In particular, the population prior should encode
information on the mass distribution of the system’s component and on the rate of
BBH formation as a function of redshift. At the moment, very mild constraints exist
on both in the case of SOBBH (Fishbach et al. 2018; Abbott et al. 2021e), but their
impact—especially of the evolution of the BBH merger rate—can be relevant (Finke
et al. 2021).

A public Python code implementing the completion procedures described
above, as well as calculation of selection effects, is available at https://github.com/
CosmoStatGW/DarkSirensStat. The code has been applied to the latest data release
from the LIGO-Virgo collaboration for constraining H0 and modified GW propa-
gation and supports the combination with the GLADE, DES and GWENS galaxy
catalogues, but it could easily be be adapted for LISA and other galaxy catalogues.

11.2 Tools for gravitational-wave lensing

GW lensing has attracted considerable attention recently, leading to different groups
developing tools to compute amplification factors and lensed waveforms. In order to
maximise the science yield of gravitational lensing with LISA, it is important to
develop codes to compute amplification factors for general lenses and including wave
effects.

LensingGW is a publicly available tool for GW lensing in geometric optics. It is
a Python package designed to compute amplification factors for general lenses,
adapted to the needs of GW observations (Pagano et al. 2020). Currently,
LensingGW operates in the geometric optics regime, using a selective sub-tiling
to find microimages, their associated magnifications and time delays, cf. Eq. (14).
The code is based on the lenstronomy package (Birrer and Amara 2018),
allowing it to draw from its library of algorithms and lens models.

It is necessary to develop wave optics codes able to solve Eq. (15). The diffraction
integral is highly oscillatory, which makes numerical solutions challenging. Proposed
methods to address this problem use the time delay function (Ulmer and Goodman
1995) and Fourier transforms to the frequency domain. Variants of these ideas have
been implemented in Diego et al. (2019), Cheung et al. (2021) and others. These
codes are not publicly available. An alternative approach employs Picard-Lefschetz
theory (Feldbrugge et al. 2023). This is valid only for lensing potentials that are
meromorphic functions, which may be used to approximate non-analytic lensing
potentials. Finally, corrections to geometric optics rely on higher derivatives of the
Fermat potential around images (Takahashi 2004) and could be easily implemented
in a geometric optics formalism.

Predictions on GW propagation beyond GR are notoriously complicated.
(Ezquiaga and Zumalacárregui 2020) develops a Python package to study GW
birefringence. The code is able to (1) compute static spherical backgrounds in
Horndeski theory; (2) compute the local propagation eigenstates and their speed as a
function of position and direction; (3) solve the geodesics in the Born approximation
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to compute time delays and deflection angles for each eigenstate; and (4) obtain the
waveform, including birefringence. Future tools to study GW lensing should improve
by (a) including higher-order corrections in the Wentzel-Kramers-Brillouin (WKB)
expansion to compute the amplitude and diffraction effects (or optimally, arrive at a
full wave optics expression); (b) include more general theories of gravity; and (c)
work with more general backgrounds (for instance, performing GW ray tracing on
modified gravity simulations). These codes could be interfaced with a statistical
sampler to analyse real or mock data.

11.3 Tools for testing modified gravity

The sensitivity of LISA to modified GW propagation introduced by a frequency
independent modification of the damping term was investigated in Belgacem et al.
(2019c). A MCMC analysis was conducted on LISA mock catalogues of MBBHs
with EM counterparts, where luminosity distances were evaluated according to a
fiducial KCDM cosmology. As discussed in (Belgacem et al. 2018b, 2019c), in the
context of late-time modifications of GR invoked for DE studies, the most relevant
parameters affecting GW propagation are the high-redshift ratio of GW to EM
luminosity distances N0, defined in Eq. (21), the DE EoS w0, the Hubble parameter
H0, and the current matter energy density fraction Xm. The exponent n of the
parametrisation in Eq. (21) plays a less important role and was fixed to a reference
value. In order to reduce the degeneracies among those parameters and assess the
potential of LISA for cosmological parameter inference, in addition to LISA mock
catalogues, the analysis in Belgacem et al. (2019c) also included further currently
available datasets such as CMB measurements from Planck 2015, Type Ia
Supernovae (JLA catalog), and a collection of BAO measurements. The likelihood
of the LISA mock data given the parameters {H0;Xm;w0;N0} was assumed to follow

lnðLðH0;Xm;w0;N0ÞÞ ¼ � 1

2

XNs

i¼1

dGWL ðzi;H0;Xm;w0;N0Þ � di
� 2

r2i
; ð162Þ

where an additive constant in the logarithm of the likelihood from normalization is
omitted. Here Ns is the number of mock sources in the catalogue,
dGWL ðzi;H0;Xm;w0;N0Þ is the theoretical value of the GW luminosity distance for the
i-th source (at redshift zi), ri is the error on luminosity distance taking also into
account the error on redshift determination, and di is the “measured” value of the
luminosity distance of each event contained in the catalogue (obtained by scattering
the fiducial KCDM prediction with a Gaussian distribution with variance r2i ). The
MCMC code of Belgacem et al. (2019c) explores the cosmological parameter space,
accepting or rejecting sampled points following a Metropolis-Hastings algorithm.
The total likelihood used in the algorithm is obtained by multiplying the independent
contributions from each of the four datasets employed, namely from CMB, Type Ia
supernovae, BAO, and LISA. The cosmological evolution, both at the level of the
background and perturbations, is computed using the CLASS Boltzmann code. The
modified version of CLASS, implementing the GW luminosity distance parametri-
sation in Eq. (21), is available at https://github.com/enisbelgacem/class_public. The
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MCMC code is built on MontePython with the inclusion of the LISA mock source
catalogues and the likelihood from Eq. (162), which uses the modified CLASS
version. The code is available at https://github.com/enisbelgacem/montepython_
public.

In addition to the test of the model-independent parameters fN0; ng, similar
analyses have been carried out using the modified luminosity distances of specific
gravity models, e.g. Horndeski gravity (Lombriser and Taylor 2016; Baker and
Harrison 2021) or f ðQÞ gravity (Frusciante 2021). These make use of the modified
Boltzmann codes hi CLASS (Zumalacárregui et al. 2017; Bellini et al. 2020) and
EFTCAMB (Hu et al. 2014; Raveri et al. 2014), respectively. A wrapper to interface
hi CLASS with the MCMC code Cosmosis (Zuntz et al. 2015) is available at
https://github.com/itrharrison/hi_class.

Current tools are predominantly specialised to probing the effects of frequency-
independent modifications of the GW propagation, although frequency-dependent
effects have been studied in the context of GW oscillations in bigravity (Belgacem
et al. 2019c), where the associated numerical tools have however not been made
publicly available yet. The desire for UV-completion of modified gravity theories,
whilst maintaining IR phenomenology, also motivates frequency-dependent modi-
fications of the GW propagation equation (de Rham and Melville 2018). Such
modifications could be detectable in the LISA band whilst being suppressed to
irrelevant levels in the band of ground-based detectors (� 10–1000 Hz). Their basic
phenomenology corresponds to a frequency-dependent GW luminosity distance or a
frequency-dependent GW propagation speed.

To study the detectability of these effects, one must first construct a motivated and
manageable parameterisation for the frequency and redshift dependence of cT ðf ; zÞ
and dðf ; zÞ that appear in Eq. (19). One then needs to solve for the amplitude and
phase evolution of the waveform under this parameterisation, up to some appropriate
post-Newtonian order. A Fisher forecast code, ideally calibrated against a smaller,
more rigorous (but computationally expensive) MCMC forecast, can analyse the
ability of LISA to constrain the frequency-dependent modifications to cT and dGW.
The parameterisation must be carefully chosen to minimise degeneracies between the
MG and standard source parameters. The creation of these tools is in progress (Baker
et al. 2022).

Finally, we note that sources of anisotropic stress in the universe act as source
terms on the right-hand side of Eq. (19). Neutrinos are one such example, although
their effects on GW propagation in the late-time universe are expected to be
extremely small. However, their effects on GWs travelling through the early universe
may be more significant. Analytical tools for solving GWevolution in the presence of
neutrino anisotropic stress are presented in Wren et al. (2017) and could likely be
adapted for a generic imperfect fluid with anisotropic stress.

11.4 Tools for PBHs

The recent developments in the field of PBHs have revealed a rather rich
phenomenology, e.g. related to PBH formation with a broad variety of primordial
power spectra and new classes of models relying on non-trivial modifications of the
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statistical distribution of curvature fluctuations; related to the history of PBH
clustering, accretion and mergings, etc. The computations of GW observables
therefore need to become more accurate and have to take into account model
dependencies and various astrophysical uncertainties. It becomes increasingly
difficult to integrate all the recent development in new analyses. Therefore, there
is need in the community for an advanced numerical tool that progressively
integrates all these recent developments at various levels (theoretical models, PBH
formation, clustering, accretion, merging rates, SGWBs) in a unified and modular
manner. This is the main objective of an ongoing project of the LISA Cosmology
Working Group that is developing the PrimBholes toolbox for the computation of
model-dependent gravitational observables that are relevant for LISA and other GW
experiments. The PrimBholes toolbox is currently under development and will be
made publicly available soon along with both a code companion paper and a review
paper on PBHs.

The different computations performed with PrimBholes and the possible
options and effects that will be implemented for selection are the following:

1. For the primordial curvature fluctuations this will include (a) several phe-
nomenological models of power spectra (power-law, log-normal, Gaussian,
broken power-law, etc.); (b) Gaussian and non-Gaussian perturbations with a
generic distribution function and some specific realisations; and (c) generic
power spectra and/or distribution functions imported from a file provided by the
user.

2. The SGWB from second-order perturbations will be calculated for general as
well a number of specific shapes of the primordial power spectrum.

3. The computation of the PBH formation and density distribution bðmPBHÞ at
formation will be performed following (a) the standard formalism of Sect. 10.2.2
and (b) an advanced method and algorithm presented in Musco et al. (2021)
accounting for non-linear effects and the shape of the primordial power
spectrum. This will include (c) effects of the evolution of the EoS through the
thermal history of the universe and (d) a reversed method to rescale the
amplitude of primordial curvature fluctuations in order to get a fixed value of
fPBH.

4. To obtain the late-time PBH mass function f ðmPBHÞ, PrimBholes will rely on
the standard formalism and include additional effects from accretion and
hierarchical mergers.

5. The distribution of merging rates Rðm1;m2Þ will be computed for (a) primordial
binaries, accounting for the effects from the formation of early clusters due to the
Poisson noise, from matter inhomogeneities and from nearby BHs, and (b) for
tidal capture in clusters, accounting for different clustering histories and halo
mass functions. This will include (c) the dependence on the redshift of the
merging rates.

6. Finally, PrimBholes will include the spin distribution, based on (De Luca
et al. 2019; 7) the rate of hyperbolic encounters, based on (García-Bellido and
Nesseris 2018); and (8) the SGWB from primordial binaries, for the two
aforementioned formation channels.
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PrimBholes will also provide plotting modules that will facilitate the production
and exportation of key figures. Examples are given in Figs. 31 and 33.

In a first step, the PrimBholes code will focus on the computation of GW
observables without including a likelihood module for LISA. However, it will be
made modular so that it can be used in combination with other codes such as the
LISA analysis code for the SGWBs or the Botzmann code CLASS (Blas et al. 2011).
Later, likelihood modules for the MontePython code (Brinckmann and Lesgour-
gues 2019) could be included for the computation of the various astrophysical and
cosmological limits on the PBH abundance.

12 Tools/pipelines for the analysis of stochastic gravitational-wave
background data

Section coordinators: N. Karnesis, M. Peloso, M. Pieroni. Contributors: N. Bartolo,
G. Boileau, N. Christensen, C. Contaldi, V. Desjacques, R. Flauger, N. Karnesis,
V. Mandic, S. Mataresse, M. Peloso, M. Pieroni, A. Renzini, A. Ricciardone,
J. Romano, M. Sakellariadou, L. Sorbo, J. Torrado.

The SGWB to be measured by LISA consists mainly of the confusion noise
created by the overlapping signals from unresolved astrophysical events, and
possibly of a cosmological component due to one or more physical mechanisms
taking place at different stages of the late or early universe (e.g. the mechanisms
discussed in Secs. 8, 7 and 6). LISA will open a completely new window into the
parameter space of each of these phenomena and has the potential to produce new
discoveries about the physics of the early universe through the characterisation of this
primordial SGWB component. A careful characterisation of the total background is
also necessary to aid the detection and identification of individual events. In this
section, we discuss the features of each contribution to the background signal, the
instrumental noise, and the different tools we need to develop to separate and
characterise all of of them.

We start with Sect. 12.1 which summarises the main characteristics of the noise in
LISA. We comment on existing noise models, the assumptions on which they are
built, and on possible improvements. In Sect. 12.2 we discuss foregrounds (i.e.
astrophysical sources of a SGWB) by describing the possible sources and the
characteristics and main properties of the different signals. In Sect. 12.3 we then
focus on frequency shape reconstruction methods i.e. methods which aim at
recovering the spectral profile of an unknown SGWB. We proceed by discussing
anisotropy reconstruction i.e. recovering the angular structure hidden in the signal.
For this topic both theoretical and data oriented approaches are covered in Sect. 12.4
and in Sect. 12.5 respectively. Finally, in Sect. 12.6 we frame the different topics
touched in this section in the big picture of the so called global fit problem. For all of
these points the discussion covers both existing techniques and possible further
developments.
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12.1 Noise modelling

The instrumental noise in LISA is expected to be non-stationary, and at the same time
we expect noise transients that cause the statistical properties of the noise to depart
from Gaussianity. At a first approximation we can assume that the short noise
transients (i.e. glitches) will be modelled, identified, and removed from the data
streams (Robson and Cornish 2019). However, slow variations of the noise, like for
example the slow decrease of the acceleration noise of the test-masses due to
outgassing (Armano et al. 2018), are due to known effects that can be properly
modelled and considered in the analysis. We can tackle those problems by adopting a
piecewise analysis, where we can consider that each data segment can be assumed as
stationary and Gaussian. In order to eliminate the dominant noise sources (i.e.
fluctuations of the laser central frequency and displacements of the of the optical
benches), LISAwill employ time domain interferometry (TDI) techniques (Tinto and
Armstrong 1999; Estabrook et al. 2000; Tinto et al. 2002; Armstrong et al. 2003;
Tinto et al. 2004; Tinto and Dhurandhar 2021; Vallisneri et al. 2021). In the
simplified scenario considered in most of the literature (Bartolo et al. 2019a; Caprini
et al. 2019; Contaldi et al. 2020; Smith et al. 2019; Pieroni and Barausse 2020;
Flauger et al. 2021; Orlando et al. 2021) the residual noise for each arm link has two
main components: the “acceleration” and the “interferometric” noise components.
The acceleration component is associated with the random force noise acting on the
test masses inside each of the three satellites, due for example to local environmental
disturbances, and it dominates the low frequency part of the LISA band. The
interferometric noise is directly connected to the interferometry metrology system
(IMS). It describes the random readout noise of the optical system (mostly due to
shot noise), and dominates the spectrum at high frequencies. For the 1.5 TDI
variables (Bayle et al. 2019; Babak et al. 2021), one can follow the recipe of Flauger
et al. (2021) and construct a likelihood based on the { X, Y, Z } TDI channels. In
principle, analogous procedures can be defined for any kind of TDI variable
combination. In order to remove noise correlations between different channels, it is
customary to introduce an alternative TDI basis, typically dubbed the AET basis,
which diagonalises the noise matrix. The total noise spectra for both XYZ and AET
basis are shown in the right panel of Fig. 36. On the other hand, the left panel of
Fig. 36 shows the acceleration and IMS noise power spectra.

Naturally, searching for SGWB signals requires a sufficient knowledge of the
noise spectral shape, and it is possible that a simplified model such as the two-
parameter model described above might not suffice for the signal search. Any
instrument calibration mismatch will impact the joint fit of the noise and signal
parameters, which may jeopardise our abilities to measure the underlying SGWB
spectrum. Therefore, a possible solution to this problem would be to incorporate the
calibration of the instrument in the analysis, by allowing a flexible model of the noise
spectral shape. The development of methods (and of corresponding tools) which do
not explicitly depend on analytical parameterisation for the noise spectra, will be an
interesting research line to be explored over the years before the launch of LISA.

Another important aspect for searching for SGWB signals is assessing the quality
of the data before they reach the designated pipelines. The use of signal subtraction,
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if implemented for LISA data, could result in imperfect subtraction and hence
residuals, which in turn would affect the statistical properties of the noise (Thrane
2013; Romano and Cornish 2017; Smith and Thrane 2018; Ginat et al. 2020). The
impact of theses residuals on the search for SGWBs with LISA is yet to be
investigated. A better framing of this problem in the broader picture of the global fit
problem for LISA is presented in Sect. 12.6.

12.2 Expected astrophysical foregrounds

Due to the richness of the sky in the milliHertz band LISAwill be sensitive to a wide
variety of sources such as MBBHs with masses � 104–107 M�, SOBBHs, EMRIs,
and GBs. Beyond the resolvable sources, measurements by LISA will also be
affected by a huge number of unresolvable events which will sum up incoherently,
leading to the generation of a SGWB (Farmer and Phinney 2003; Regimbau and
Hughes 2009; Regimbau 2011; Lamberts et al. 2019). At least two SGWB
components are guaranteed to be present in the LISA band: a contribution due to
signals originating from compact GBs is expected to dominate the LISA band at low
frequencies (up to � 10�3 Hz), and a contribution from extragalactic BBH mergers is
expected to be present at slightly larger frequencies (� 10�3 � 10�2 Hz). A plot of
the impact of these signals as described in Flauger et al. (2021) on data measured in
in the self correlations of the A and T channels (denoted by AA and TT, respectively;
we note that the self correltion EE is identical to AA) is shown in Fig. 37. While the
latter is expected to be isotropic and stationary, the GB contribution is expected to be
anisotropic (since the binaries mostly lie on the galactic plane). Moreover, as
discussed in Adams and Cornish (2014), due to the yearly rotation of the satellite
constellation, this signal is expected to present a yearly modulation. Both these
features are thus expected to be, at least partially, present in the total SGWB
measured by LISA.

The characteristics of the GBs, i.e. being almost monochromatic, and the majority
of them being located in our galactic neighbourhood, will allow us to build reliable

Fig. 36 Left panel: IMS and acceleration noise power spectra expressed in the simplified scenario where
all test-mass and laser noises are equal for all space-crafts. Right panel: LISA noise spectra in the XYZ and
AET basis as given in e.g. in Flauger et al. (2021). Images reproduced with permission from Flauger et al.
(2021), copyright by IOP/SISSA
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models for their residual foreground noise contribution (Crowder and Cornish 2007;
Sachdev et al. 2020). The same applies to the case of the isotropic signal due to
SOBBH events, where the spectral model of the residual confusion noise will be
constructed based on the priors from ground observations (Abbott et al. 2021d)36 and
the actual measurements with LISA.

There is a possibility to measure a foreground signal component due to EMRIs
(Barack and Cutler 2005), but a more detailed study on this type of source is needed
in order to make robust predictions on their expected level. A generic method to
make a first-level characterisation of the stochastic signals originating from compact
binaries populations is studied in Karnesis et al. (2021).

The classical central-limit theorem is violated when the single source variance is
infinite, which is the case of e.g. astrophysical backgrounds produced by compact
mergers. As a consequence, the convergence to a Gaussian distribution can be much
slower depending on the event rates (which determines the average number of
sources overlapping in the detector frequency band(s)) and the properties of the
source distribution (Ginat et al. 2020). If the sources are a spatial Poisson process, the
resulting (non-Gaussian) distribution of the observed strain can be predicted (both in
the time and frequency domains) using the techniques outlined in Ginat et al. (2020).
This approach can be extended to include the subtraction of bright sources, which
(partly) gaussianises the signal (Timpano et al. 2006), and to furnish predictions for
the distribution of the background of unresolved binary mergers. Quantifying
deviations from Gaussianity is necessary to optimise searches for this confusion

Fig. 37 Theoretical models for the LISA sensitivity in the self-correlation of the A and T TDI data
channels (AA and TT, respectively) and for the SGWBs due to GBs and SOBBHs as specified in Flauger
et al. (2021). Mock data for the sum of all these theoretical templates are shown for reference

36 This can be done by generating catalogues of events with the estimated population properties as
measured by Earth-based detectors (Dvorkin et al. 2016b; Babak et al. 2023). Further investigation is
needed to assess the potential uncertainties that arise from extrapolating the population properties as
measured by Earth-based detectors to predictions in the LISA band.
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background (Thrane 2013; Smith and Thrane 2018) and backgrounds of cosmolog-
ical origin (Bartolo et al. 2019a), and for their shape reconstruction.

Models for the residual foreground contributions can be provided when attempting
a frequency shape reconstruction (see Sect. 12.3), so that the reconstructed spectrum
can be expected to consist of contributions from unknown, possibly cosmological
sources. The energy spectrum of the foreground due to unresolved GBs can be
modelled by a broken power law. Indeed, at sufficiently large frequencies the number
of sources decreases, which produces a break in the a ¼ 2=3 power law behaviour
(where a is the spectral index in h2XGX / f a). On the other hand, the foreground due
to SOBBHs and BNSs is expected to be a power law with slope a ¼ 2=3. Studies of
SOBBH and BNS populations, such as (Périgois et al. 2021), predict
XGWð25 HzÞ ’ 4:97� 10�9 � 2:58� 10�8. Ground detectors (Abbott et al.
2021g) set an upper limit for this foreground at X2=3ðfref ¼ 25 HzÞ.5:8� 10�9.
Clearly, these residual foreground models must account for the right amount of
statistical uncertainty, or we risk overestimating the significance of a detection or of a
spectral shape reconstruction. This includes, at descending levels in the Bayesian
hierarchy, the possibility of different population models being used (mass or spin
distribution, merger rate at different redshifts, etc), the uncertainty on the parameters
of a given population when inferred from resolved events by LIGO/Virgo and LISA,
and the possibility of residuals being left by the imperfect subtraction of these
resolved events, either because of a sub-optimal SNR that leads to imperfect
characterisation of the waveform to be subtracted, or to the very waveform not
representing the actual events with perfect accuracy. Beyond these problems, as
discussed in the previous paragraph, the statistical properties of the SGWBs of
astrophysical origin (either before and after the removal of loud sources) may be
dominated by strong non-Gaussianities which have to be appropriately modelled. A
careful study is thus required to asses the impact of each of these sources of statistical
uncertainty. A computational pipeline that, for each component of the residual
confusion noise, can take a number of resolved events with their associated
parameter uncertainties, and assuming a Bayesian-hierarchical population model (or
family of them), can generate a probability distribution for each component of the
foreground confusion noise needs to be developed. The final result would, of course,
rely on theoretical and/or observational uncertainties on the statistical properties of
the populations in the parameter regions where the binaries cannot be individually
resolved. However, the integrated contribution from all these unresolved sources
would substantially affect the foreground (e.g. the SOBBH binaries at redshift z � 2
impact the SOBBH LISA foreground (Babak et al. 2023)). Improvements in our
understanding of the LISA astrophysical populations (Amaro-Seoane et al. 2023)
will thus be crucial to strengthen this kind of pipeline. Preliminary work on similar
pipelines has been developed for current- and next-generation ground-based
detectors (Sachdev et al. 2020; Périgois et al. 2021; Abbott et al. 2021g; Callister
et al. 2020), but a comprehensive study is needed in the framework of LISA.
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12.3 Spectral shape reconstruction: existing tools and future developments

The richness of sources in the LISA frequency band requires the development of
techniques and tools to disentangle the different contributions. These may include
both a residual background of unresolved astrophysical sources (see Sect. 12.2), a
stochastic cosmological component sourced by topological defects, phase transitions,
or inflationary mechanisms, among others. Different cosmological sources are
expected to produce SGWBs of characteristic frequency shapes (Bartolo et al. 2016b;
Caprini et al. 2016, 2020; Auclair et al. 2020). The reconstruction of the spectral
shape of the SGWBs, regardless of its origin, is expected to play a special role in the
separation of its different components. The correct estimation of the SGWB and its
associated uncertainty is also essential for the characterisation and subtraction of
resolved events, for which this background plays the role of an additional noise
component, together with the instrumental noise.

Most of the SGWB detectability studies and ground-based searches have so far
only focused on power-law templates (Thrane and Romano 2013; Adams and
Cornish 2014; Lentati et al. 2015; Arzoumanian et al. 2018; Abbott et al. 2019c) (and
a few on more complicated, but fixed templates (Kuroyanagi et al. 2018; Barish et al.
2021)). In the context of preparations for the LISA mission, some recent works
(Karnesis et al. 2020; Caprini et al. 2019; Pieroni and Barausse 2020; Flauger et al.
2021) have attempted an agnostic template-free frequency shape reconstruction. One
such reconstruction can take into account more complicated scenarios where the
overall signal can be the superposition of several unknown signals, and can be
extremely useful both for the disentanglement of the GW sources and for the
constraining power that they have on astrophysical and cosmological parameters of
the underlying theories (see previous sections). An example of reconstruction
obtained with the method of Caprini et al. (2019), Flauger et al. (2021) in the
presence of the foreground due to GBs is shown in Fig. 38.

Fig. 38 Reconstruction of a broken power law signal in presence of GB foreground. Image reproduced
with permission from Flauger et al. (2021)
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In Karnesis et al. (2020), Caprini et al. (2019), Flauger et al. (2021), under the
assumption of stationary, Gaussian, and isotropic signals, TDI data is processed into
a set of frequency bins whose amplitudes are jointly estimated in the presence of
noise. In the state-of-the art iteration (Flauger et al. 2021), the number of bins is
dynamically chosen using Bayesian criteria, and in each of the bins, together with the
signal amplitude, a power-law tilt is also considered, leading to a more accurate
reconstruction with fewer bins. On the other hand, the procedure employed in Pieroni
and Barausse (2020) first expresses the signal as a linear combination of an arbitrarily
dense basis of Gaussians and then selects the components associated with large
eigenvalues of the Fisher information matrix. While technically different, this
strategy follows the same philosophical approach set by Karnesis et al. (2020),
Caprini et al. (2019), Flauger et al. (2021) and offers an interesting alternative to the
methods developed therein. For example, in Karnesis et al. (2020), after proper
assumptions about the Gaussianity of the instrument noise, one can construct a
posterior distribution for the level of the excess of spectral power, caused by an
unmodelled SGWB signal at each frequency of the analysis.

All of the methods discussed in this section are focused on spectral shape
reconstruction at the power spectrum level only. While in the most general set up this
could be performed by only assuming the noise to be Gaussian, the techniques
described here all assume (at the likelihood level) approximate Gaussianity of the
SGWB as well. As long as the SNR per frequency mode is small, this is a good
approximation but should be revisited for a bright signal. As discussed in Sect. 12.2
the assumption of Gaussianity can be violated for SGWBs of astrophysical origin.
On the other hand, for SGWBs of cosmological origin any intrinsic non-Gaussianity
in the metric perturbations is expected to be washed out by propagation effects
(Bartolo et al. 2019b, c; Margalit et al. 2020). Notice however that, as pointed out in
Bartolo et al. (2020b), non-Gaussianities in the energy density of the SGWB could be
non-zero. For a better discussion of propagation effects see Sect. 5.3.2. If the
backgrounds are expected to be significantly non-Gaussian, spectral shape recon-
struction methods based on the observed strain distributions will have to be modified
accordingly.

It is also worth mentioning that all the methods discussed in this section are
applied to time-averaged data. While it could be difficult to induce any intrinsic time
modulation in SGWBs of either cosmological or astrophysical origin, the motion of
the detector with respect to the SGWB source frame is expected to naturally induce a
yearly modulation in the amplitude of SGWB. While for isotropic SGWBs the effect
is expected to be very small (of order of the velocity of the detector in units of the
speed of light), for intrinsically anisotropic SGWBs (as for unresolved GBs) this
effect could become sizeable (Adams and Cornish 2014). In order to model these
effects it would be necessary to modify the existing pipelines to keep track (both at
the generation and at the data analysis level) of the measurement time associated with
each data segment. Such a modification in the existing tools would simultaneously
improve their suitability to be applied to real data and possibly their capability of
disentangling the different components contributing to the SGWB.

The methods discussed in this section do not consider possible angular structure in
the signal. While techniques for reconstruction of anisotropies are more extensively
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discussed in the next section, it is worth mentioning that for most SGWB sources
different angular structure is expected to be associated with different spectra (namely,
with a different frequency-dependence). As a consequence, by simultaneously
tackling the frequency shape and the angular reconstruction it could be possible to
break degeneracies between different components contributing to the observed
signal. This could potentially lead to a significant improvement of the existing
component separation techniques. For this reason embedding this possible method in
the present pipelines may be an interesting possibility for future developments.

We conclude this section by commenting on the impact of foregrounds on the
minimal SGWB intensity that would yield a detectable signal and allow us to attempt
reconstruction. While detection thresholds are clearly model dependent, i.e. different
amplitudes and SNRs are required in order to make quantitative statements for
different SGWB shapes, some studies (see Sect. 12.6 for details) have already
demonstrated the possibility of performing component separation with LISA. This
implies that SGWB reconstruction can typically be performed even in the presence of
foregrounds. However, it is worth mentioning that a crucial ingredient for component
separation is the absence of degeneracies between the foregrounds and other SGWB
components. Otherwise, unless this degeneracy is broken by the prior knowledge on
the foreground parameters, the detection of the SGWB originating from cosmolog-
ical sources could be negatively affected.

12.4 Anisotropy reconstruction

The intensity of astrophysical and cosmological SGWBs are in general anisotropic.
These anisotropies could allow one to differentiate between these two backgrounds.
They can be generated both at the moment of the GW production and by the GW
propagation in the perturbed universe. In the case of the cosmological SGWB the
anisotropies contain information about the primordial generation mechanism and
moreover they can be a new probe of the primordial non-Gaussianity of the large-
scale cosmological perturbations (Bartolo et al. 2019a, 2020a, b). In the case of the
astrophysical SGWB they contain information about the angular distribution of the
sources and astrophysical properties, and they can be used as a tracer of large-scale
structure; in both cases they also allow one to test the particle physics content of the
universe (Valbusa Dall’Armi et al. 2021). The LIGO/Virgo collaboration has already
produced upper limits on the SGWB anisotropy in the 20–500 Hz band (Abbott et al.
2019a). The poor angular resolution of second-generation ground-based interferom-
eters will probably not allow for the detection of the anisotropies of the SGWB,
however future third-generation ground-based experiments like ET and CE will be
sensitive to such a signal especially if it is characterised by a large monopole
amplitude. For future space missions, like LISA, DECIGO, and BBO, prospects for
reconstruction and measurement of the anisotropies in the SGWB, both astrophysical
and cosmological, have been explored in the literature (see e.g. Giampieri and
Polnarev 1997; Allen and Ottewill 1997; Cornish 2001; Seto 2004; Kudoh and
Taruya 2005; Kudoh et al. 2006). An updated analysis for LISA, using the most up-
to-date specifications, is ongoing (Bartolo et al. 2022), and in the next sections we
report some main results. While in this section we discuss anisotropy reconstruction
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from a more theoretical point of view, in Sect. 12.5 we present data analysis
techniques to tackle this problem.

12.4.1 LISA response function

The reconstruction of an isotropic SGWB has been studied for instance in Flauger
et al. (2021), combining measurements in the A,E,T channels. This computation can
be readily extended to an anisotropic SGWB. Details of this extension can be found
in Bartolo et al. (2022). Here we simply report the main result.

For a Gaussian SGWB, the object of our study is the two point correlation
function of the GW signal. From the standard decomposition

hab x; tð Þ ¼
Z þ1

�1
df

Z
dXk̂ e

2pif t�k̂�xð Þ X
k

~hk f ; k̂
� �

ekab k̂
� �

; ð163Þ

where, for definiteness, k denotes the GW polarisation in the chiral basis. We are
interested in the intensity of an unpolarised signal, for which

~hk f ; k̂
� �

~hk0 f 0; k̂
0� �D E

¼ 1

4p
d f þ f 0ð Þdð2Þ k̂ � k̂

0� �
dk;�k0 I f ; k̂
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: ð164Þ

We further decompose
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� �
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where ~Y ‘m k̂
� �

� ffiffiffiffiffiffi
4p

p
Y‘m k̂
� �

, are rescaled spherical harmonics, normalised so that

~Y 00 ¼ 1. In this way the isotropic case corresponds to I f ; k̂
� �

¼ ~I00 fð Þ.
The multipole coefficients ~I ‘m of the intensity are related to those of the fractional

density by (Bartolo et al. 2022)
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where the latter are defined from
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with xGW f ; k̂
� �

being the fractional energy density before angular integration,

XGW fð Þ ¼
Z

d2k̂ xGW f ; k̂
� �

=4p: ð168Þ

In Eq. (166), H0 is the present value of the Hubble rate.
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For definiteness, we consider a statistically isotropic signal, so that the unbiased

estimators d̂GW;‘m for coefficients of the decomposition dGW;‘m, have expectation
value37

dGW;‘m d�GW;‘0m0

D E
¼ CGW

‘ d‘‘0 dmm0 : ð169Þ

The expectation value of the SNR can be then expressed as the sum SNRh i �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
‘ SNR2

‘

� �q
over multipoles. Each term is formally of the type

SNR2
‘

� � ¼ Tobs

Z 1

0
df

ffiffiffiffiffiffiffiffiffiffi
CGW
‘

q
XGW fð Þh2

X‘
GW;n fð Þ h2

24 352

; ð170Þ

where Tobs is the observation time, and X‘
GW;n fð Þ h2 denotes the LISA sensitivity to

the ‘�th multipole. The sensitivity to the first few multipoles are shown in Fig. 39.
The mathematical form of the sensitivity, and its derivation, are given in Bartolo et al.
(2022).

12.4.2 Cosmic dipole

One would expect that LISA sensitivity degrades as the multipole order increases.
While this is generally true, as can be also seen from Fig. 39, due to the symmetries
of the system, LISA turns out to be more sensitive to the quadrupole than to the
dipole. Nevertheless, once the isotropic component of the SGWB is detected, a
naturally expected value of the amplitude and the direction of the dipole will be
determined by the velocity of the Earth with respect to the cosmic rest frame,
providing a first target for the detection of SGWB anisotropies.

There are only two correlators sensitive to the dipole, namely the one between the
A and the T channel, and the one between the E and the T channel. Remarkably,
moreover, these AT and ET correlators vanish for the SGWB monopole. The SNR for
the dipole induced by the Earth’s motion with speed b with respect to the cosmic rest
frame is given, in the noise dominated regime, by the formula

SNR2
A=ET ¼ 6 b2

3H2
0 XGW

4p2

	 
2Z Tobs

0
dt

Z
df

f 6
X
J¼A;E

RJT
‘¼1 n̂ðtÞ � b̂

� �2
NJ NT

; ð171Þ

where NJ is the noise in mode J (see the right panel of Fig. 36) and RAT
‘¼1 ¼ RET

‘¼1

measures the amplitude of the ‘ ¼ 1 mode of the angular response (see Bartolo et al.

2022), evaluating to � 10�2 for f ¼ 0:1 Hz and to � 10�3 for f ¼ 0:01 Hz. Also, b̂

37 Notice that the brackets in Eq. (164) denote an ensemble average. Since we have a single realisation of

the observable universe, an estimator ĈGW
‘ for CGW

‘ is typically built by averaging the measured value of
dGW;‘m d�GW;‘0m0 over the different m indices.
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is the direction of the dipole, whereas n̂ðtÞ is the unit normal to the LISA configu-
ration, whose direction changes over the course of the year.

Assuming a flat energy spectrum in the LISA band, the SNR takes the
approximate value

SNR ’ 0:5� b
10�3

	 

XGW

6� 10�8

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs
1 year

s
; ð172Þ

where b is normalised to its value with respect to the CMB rest frame, and XGW is
normalised to its upper bound from LIGO/Virgo (Abbott et al. 2019c). While
Eq. (172) suggests a small SNR already for a SGWB that saturates the current
constraint, it is important to note that the bound (Abbott et al. 2019c) holds at LIGO/
Virgo frequencies, and there is no reason for the SGWB spectrum to be flat all the
way to LISA frequencies.

Remarkably, due to the higher sensitivity to the quadrupole, LISA will have
comparable sensitivity to the dipole and to the quadruple induced by the motion of
the Solar System with respect to the cosmic rest frame, despite the fact that the
quadrupole has an amplitude that is a factor of b � 10�3 smaller than the dipole.

Fig. 39 LISA Sensitivity (170) to various multipoles of the SGWB. Image reproduced with permission
from Bartolo et al. (2022)
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It is also worth pointing out that LISAwill be much more sensitive to the dipole if
the SGWB contains a chiral component. In this case, in fact, the AE correlator is not
vanishing, leading to a SNR (Domcke et al. 2020b)

SNR ’ 103 dv
b

10�3

	 

XGW

6� 10�8

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tobs
1 year

s
; ð173Þ

where 0	 dv	 1 measures the degree of chirality of the SGWB, see Sect. 8.7.1.

12.5 Gravitational-wave map making with LISA

An available mapping algorithm tailored to the LISA detector is based on an optimal
quadratic estimator (Contaldi et al. 2020). The mapper takes advantage of the time-
dependent sky response of the LISA constellation to scan the sky over a long
observation times. It reconstructs full-sky stochastic signals and their anisotropies. A
prime example of anisotropic SGWB signal in the LISA band is the statistical signal
from unresolved white dwarf GBs. This signal is expected to trace out the
distribution of white dwarfs in the Milky Way. Beyond this, the astrophysical SGWB
from extragalactic stellar mass compact binaries is also expected to have some degree
of angular anisotropy, as do many of the cosmological backgrounds reviewed in this
paper. More details on anisotropic SGWB sources potentially detectable by LISA
may be found in Bartolo et al. (2022).

The sky response used assumes equal arms and heliocentric circular orbits, which
are considered to be good approximations until full, time-dependent flight solutions
become available after launch. These are the same assumptions made throughout
Sect. 12.4.1. The frequency transfer function included in the response induces a
frequency dependence in the sky modulation, as may be seen in Fig. 40. This drives
the effective angular resolution as a function of frequency sensitivity and determines
the resolution of final maps. The map-making can be based on a broad-band
integration of frequencies or the integration can be split into narrower frequency
bands (Contaldi et al. 2020).

The estimator is based on the assumption that the signal and noise components in
the timestream data are Gaussian and maximises the standard Gaussian likelihood.
This approach is similar to optimal map-making steps in CMB analysis (see e.g.
Bond et al. 1998). In this case, the likelihood for the data is parametrised by the sky-
signal covariance as function of direction. The maximum-likelihood solution for the

Fig. 40 Normalised auto-correlated response of TDI channel X at time t ¼ 0 in the Solar System
barycentre reference frame, at frequencies f ¼ 10�4 Hz, f ¼ 10�1 Hz, f ¼ 5� 10�1 Hz from left to right
respectively. Estimates based on (Contaldi et al. 2020)
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covariance (signal intensity) is obtained using a quadratic, iterative estimator which
effectively inverts the time-integrated projection of the sky-signal onto the data. A
noise model is added to the total covariance in the likelihood. The algorithm is
tailored to and applied in the pixel domain but it can also be applied in the spherical
harmonic domain. The two choices differ in the use of regularisation methods that
need to be applied to the ill-conditioned problem.

In practice, the data are segmented into short-duration frames, throughout which
the sky response of the detector is considered to be constant. The time-frame length is
a key element in the analysis: it sets the lower limit of frequency space probed, while
also setting the maximum pixelisation scale to ensure a smooth transition on the sky,
frame by frame. The covariance of the signal is initially estimated by subtracting the
noise model from the data covariance, and is then noise-weighted over frequencies
and projected onto the sky via the response operator to obtain a map. This operation
is performed over all time-segments and subsequently averaged. The pixel-pixel
Fisher matrix relative to the measurement is similarly calculated and inverted, using
singular-value-decomposition techniques to regularise the inversion. The inverse
Fisher matrix is then applied to the sky-and-noise weighted data to extract the
optimal map solution. This is performed iteratively, until convergence require ments
are satisfied.

Figure 41 shows the ‘-mode transfer function T‘ for sky-map reconstruction
presented in Contaldi et al. (2020) in the case of very high SNR injections. This
shows the effective angular resolution of LISA at different frequency pivot points.
This is calculated by combining sets of 50 simulations for each frequency window
examined. Each simulation consists of the injection and reconstruction of an ‘2C‘-flat
Gaussian realisation for the sky GW intensity. The procedure works under the
assumption that the frequency and directional dependence can be separated:

Fig. 41 Transfer functions T‘ for the average reconstructed C‘s obtained with different frequency cutoffs
fmax, drawn from Contaldi et al. (2020). Each simulation set consists of 50 maps, each a different realisation
of the same C‘ input (dashed grey baseline). There appears to be a clear one-to-one relation between the
resolution ‘max of the instrument and the frequency cutoff
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XGWðf ; nÞ ¼ Xðf ÞPðnÞ: ð174Þ
For simplicity, the spectral dependence of the signal is taken to be a simple power
law, with spectral index a ¼ 3. The transfer function is defined as T‘ ¼ Cout

‘ =Cin
‘ . In

this extremely high signal scenario, the solution converges after a single iteration. As
shown in Fig. 41, the higher angular modes are well preserved when allowing the
reconstructor to integrate up to higher frequencies, where there is finer structure in
the response pattern, whereas they are aliased into lower modes when integrating
over lower frequencies only. In the best case scenario of a strong signal at high
frequencies, the map-maker can recover anisotropies up to scales of ‘max � 15. The
reconstruction of a simplified model for the GB background is also tested; it is found
that even though the signal has a relatively high SNR, it peaks above the noise
around 10�3 Hz and hence may be recovered at best at ‘max � 5.

The estimator currently assumes a fixed instrumental noise model, however it is
possible to include independent noise estimates for each time segment. A possible
extension of this method would fit for both signal and noise components
simultaneously. The current noise model employed in the mapping pipeline is the
one presented in Sect. 12.1. It is also possible to extend the estimator to include
different spectral shapes for the signal, beyond a simple power law, or alternatively
solve for maps in narrow frequency bands to attempt a model-independent directional
search. Furthermore, it is important to note that the Fisher matrix is highly singular
and requires heavy conditioning before inversion; this is a delicate process which
may bias the outcome of the mapping, and further investigation is required to assess
its impact. The implications of the inversion for certain high and low SNR stationary
SGWB signals are discussed in Contaldi et al. (2020).

Going a step further, a recently developed Bayesian formalism (Banagiri et al.
2021) allows for simultaneous estimation of the frequency and directional content of
a SGWB with LISA.38 One again starts with the assumption in Eq. (174), where a
frequency dependence of choice could be inserted, for example a simple power law
(as for example in Adams and Cornish 2010, 2014; Caprini et al. 2019; Flauger et al.
2021), while the angular dependence can be decomposed with respect to a basis on
the sphere, such as spherical harmonics.

One can then divide LISA data into segments of duration Tseg and compute the
Fourier transforms of the LISATDI channels in each segment (in either the X-Y-Z or
A-E-T configuration). It is then straightforward to define the likelihood function

Lð~djNp;Na; a;Xa; fbl;mgÞ ¼
Y
t;f

1

2pTsegjCðt; f Þj � exp � 2 ~d
�
t;f Cðt; f Þ�1 ~dt;f

Tseg

 !
;

ð175Þ
where ~dt;f ¼ ½~dX ðt; f Þ; ~dY ðt; f Þ; ~dZðt; f Þ
 is the array of data in the Fourier domain for
the three LISA channels (in the time segment t and at frequency f), and C(t, f) is the
3� 3 covariance matrix for the three channels. The covariance matrix can be
modelled to include both instrumental noise (here described by position and

38 The code for this analysis pipeline can be found at https://github.com/sharanbngr/blip.
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acceleration noise parameters Np and Na), as well as the astrophysical and cosmo-
logical contributions to the GWB. In this example, we use the amplitude Xa and
spectral index a to describe the frequency dependence of the astrophysical/cosmo-
logical contributions, and the bl;m, coefficients of the decomposition onto spherical
harmonics, to describe the directional dependence. Using this likelihood in Bayesian
parameter estimation, with suitable choices for prior distributions on the free
parameters, allows for the recovery of the free parameters. In particular, the recovery
of simulated noise and a cosmological background up to l ¼ 2 is achievable
(Banagiri et al. 2021). The same technique can be applied to study the galactic
foreground due to white dwarf binaries, as shown in Fig. 42. Of course, additional
model complexity could be added to this method: for example a more complex
instrument noise model, or frequency dependence of bl;m coefficients, or polarisation
dependence of the cosmological model.

12.6 Global fit

One of the main data analysis challenges that LISA will face is to disentangle the
various sources that overlap in time and in frequency. To tackle this problem, the
LISA Consortium will employ a global fit scheme (Teukolsky and Vallisneri 2019;
Littenberg et al. 2020) for detecting, separating and eventually identifying/classifying
many overlapping signals of astrophysical and hopefully early-universe origin.
Different strategies could be employed to tackle this compelling task. A fully
consistent Bayesian framework, ideally the most accurate approach to this problem,
would perform a simultaneous fit of all resolvable sources and SGWBs. From a
computational point of view this would be extremely difficult due to very high
dimensionality of the parameter space that would need to be explored.

A possible approach (for a first step in this direction see Karnesis et al. 2021)
would alternate between a step in which, given some current estimation of co-added
background noise (instrumental noise, astrophysical confusion noise and a possible
stochastic cosmological component), resolved events are detected, characterised and
subtracted from the data streams, and a step in which the resulting “residual” data is
used to update the knowledge on this background noise. In this step the residual is
treated as a component which simultaneously models instrumental noise as well as
the expected confusion noise inferred from the current catalogues of resolved sources
(see Sect. 12.2), and a free-form SGWB spectrum (see Sect. 12.3). The advantage of
this approach is that the dimensionality of the parameter inference problem at each of
these steps is significantly lower (since technically we are performing conditional—
or Gibbs—sampling at each step) and could be easily dealt with using standard
techniques. Hereafter we discuss the state of the art on integrating SGWB detection,
characterisation and component separation into a LISA global fit pipeline, and the
further developments which are crucial for LISA to match its scientific goals
regarding this problem.

The detection of an astrophysical SGWB with an accurate modelling, in the
presence of the instrumental noise has been established in e.g. Christensen (1997),
Adams and Cornish (2010), Meyers et al. (2020). In what concerns the simultaneous
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estimation of a cosmological component and one or more astrophysical confusion
backgrounds, a number of approaches have been explored. We anticipate that their
conclusions must be considered as preliminary since they all rely on some
simplifying assumptions on the noise modelling, response functions and contami-
nation from resolved-event misreconstructions, among others. Properly addressing
these aspects is one of the main priorities in the forthcoming years.

Flauger et al. (2021) demonstrates the capability of LISA to separate between
general astrophysical templates and a free-form cosmological component of
sufficient intensity. In this work the three LISA TDI channels are fully exploited,
using the AET basis (Hogan and Bender 2001; Adams and Cornish 2010), in
particular the ability of the closed-path T channel to place strong, independent
constraints on the instrumental noise, using the noise model of Sect. 12.1. The
proposed pipeline determines an optimal binning for the reconstruction of the
cosmological signal using maximum likelihood estimation. This binning is then used
in a fully Bayesian pipeline implemented in the Cosmological sampling framework
Cobaya (Torrado and Lewis 2021), to jointly estimate the parameters of the noise
model, the amplitude of an astrophysical foreground template, and the free-form
binned cosmological component. Using the Monte Carlo Nested Sampler PolyChord
(Handley et al. 2015), it turns out that a sufficiently high-SNR broken-power-law
signal can be efficiently reconstructed in the presence of either a power-law model
for extragalactic binaries consistent with LIGO/Virgo observations (Abbott et al.
2019c), or a foreground of GBs modelled as in Robson et al. (2019). On the contrary,
SGWBs with SNR .10 such as flat signal with XGW.10�13 are likely to escape the
LISA searches.

Another step in this direction is taken in Boileau et al. (2021a) and Boileau et al.
(2021b) which progressively increase the complexity of the foreground. The analyses
adopt a Bayesian strategy based on an Adaptive MCMC algorithm (Christensen and
Meyer 1998; Cornish and Littenberg 2007) analysing the A, E and T channels given
by the LISA model of Smith et al. (2019). The Adaptive MCMC results are
independently confirmed by an analysis from the Fisher information matrix. Also
with these analyses, it turns out that the LISA T channel helps to efficiently estimate
the LISA noise parameters and to thus measure the SGWB in the A and E channels.
Ultimately, it comes out that LISA can detect (power-law) cosmological backgrounds

Fig. 42 Simulation (left) and recovery (right) of the white dwarf GB foreground energy density in GWs at
1 mHz, using one year of data in the Solar System barycentric frame. The bright spot in the map
corresponds to the galactic central bulge. Image reproduced with permission from Banagiri et al. (2021)

123

    5 Page 182 of 254 P. Auclair et al.



in the presence of astrophysical foregrounds. In particular, given the expected LISA
noise and the astrophysical foreground consistent with LIGO/Virgo observations, it is
possible to observe a flat power-law SGWB with amplitude larger than XGW;Cosmo �
ð1� 10Þ � 10�13 after 4 years of LISA observations (Boileau et al. 2021a). Boileau
et al. (2021b) makes this lower bound more robust by adding the foreground due to
GBs simulated with the binary catalogues of Lamberts et al. (2019). The study takes
into account that the GB foreground measured by LISA has a yearly modulation (see
Fig. 43). It implements a Bayesian analysis for each week in the year, and the
corresponding variation of the LISA pattern antenna. Based on this analysis, the
reconstruction of the amplitude of a flat SGWB has uncertainties below 50% when
XGW;CosmoJ8� 10�13 (see Fig. 44).

Similar efforts is carried out in the context of ground-based experiments.
Martinovic et al. (2021) explores a method for the simultaneous estimation of
astrophysical and cosmological SGWBs in the frequency band of current and future
terrestrial interferometers. As an example, the detection of cosmological signals with
GW fractional energy density 4:5� 10�13 at 25 Hz, for cosmic strings, and
2:2� 10�13, for a broken power-law model of an early universe phase transition,
turns out to be possible in the presence of astrophysical confusion noise from
compact binary coalescences, assuming a detector network containing CE and ET. In
these approaches, reasonable levels of individual source subtraction are always
assumed (Cutler and Harms 2006; Harms et al. 2008; Sharma and Harms 2020;
Sachdev et al. 2020), given that future detector networks should be sensitive enough

Fig. 43 Measurement of the orbital modulation of the white dwarf binary foreground. In grey: 1500

estimates of XMod;i ¼ 4p2
3H0

c
2pL

� �2
A2
i (Ai amplitude of the characteristic strain). In red: 50 MCMC results with

8 parameters (2 parameters for BBHs, 4 parameters for white dwarf binaries, 2 parameters for the LISA
noise). In green, fit to the 50 MCMC run results to estimate the modulation from the LISA antenna pattern

amplitude at 3 mHz. Modulation model: XMod;i ¼ Xu
DWD;LF F2

þ;i þ F2
�;i

� �
. Image reproduced with

permission from Boileau et al. (2021b)
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to accurately resolve a large fraction of the compact binary mergers in the visible
universe.

Biscoveanu et al. (2020) explores an alternative method to source subtraction. It
proposes a Bayesian framework for simultaneously measuring individual compact
binary mergers and a confusion foreground of these sources, together with a
cosmological background. This method, in which the parameters of individual events
are approximately marginalised-over, takes into account the non-Gaussian nature of
the astrophysical signal (see Sect. 12.2), increasing the sensitivity to the Gaussian
cosmological background. The capability of the method is demonstrated with a
combination of an astrophysical foreground of merging BBHs and a cosmological
background with a power-law spectrum.

The methods of both Martinovic et al. (2021) and Biscoveanu et al. (2020) could
be adapted for the space-based detector LISA. In doing so, one should keep in mind
that the corresponding spectral separation study for LISA would be more involved
due to the nature of the TDI and the necessity to simultaneously estimate the LISA
noise. A successful contribution separation will give us valuable information on the
one hand about merger rates and population models and the astrophysics of exotic
objects, and on the other about phenomenology in early universe models. This is
indeed a research line that should be incentivated over the next years.
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