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Data analysis and interpretable machine learning for HVAC
predictive control: A case-study based implementation
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'Department of Electronic and Electrical Engineering, University College London, London WCIE 6BT, UK
2School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
3General Technology Ltd, Athens 15233, Greece

Energy efficiency and thermal comfort levels are key attributes to be considered in the design and implementation of a Heating,
Ventilation and Air Conditioning (HVAC) system. With the increased availability of Internet of Things (IoT) devices, it is now
possible to continuously monitor multiple variables that influence a user’s thermal comfort and the system’s energy efficiency, thus
acting preemptively to optimize these factors. To this end, this paper reports on a case study with a two-fold aim; first, to analyze the
performance of a conventional HVAC system through data analytics; secondly, to explore the use of interpretable machine learning
techniques for HVAC predictive control. A new Interpretable Machine Learning (IML) algorithm called Permutation Feature-based
Frequency Response Analysis (PF-FRA) is also proposed. Results demonstrate that the proposed model can generate accurate
forecasts of Room Temperature (RT) levels by taking into account historical RT information, as well as additional environmental and
time-series features. Our proposed model achieves 0.4017°C and 0.9417 °C of Mean Absolute Error (MAE) for 1-h and 8-h ahead RT
prediction, respectively. Tools such as surrogate models and Shapley graphs are employed to interpret the model’s global and local

behaviors with the aim of increasing trust in the model.

Introduction

Background

Research has shown that thermal comfort levels in the work-
place have a significant impact on the productivity of workers
(Seppanen, Fisk, and Lei 2006). The running costs of a Heating,
Ventilation and Air Conditioning (HVAC) system to maintain a
productive temperature is ten times lower compared to the eco-
nomic losses incurred because of lower worker productivity in a
free-running building (McCartney and Humphreys 2002). On the
other hand, energy usage in buildings has witnessed a continu-
ous and increasing trend of more than 10EJ in the past decade,
according to the International Energy Agency (IEA) (IEA 2021).
This gives rise to challenges such as energy shortage and global
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warming, which have become more imminent worldwide. The
energy efficiency of HVAC systems is thus a topical issue that
requires attention and methods for managing effectively. This
work discusses the use of interpretable machine learning techni-
ques for developing a predictive control strategy. The machine
learning nature of the proposed technique aspires to the realiza-
tion of an autonomous HVAC system while the interpretable
nature is aimed at making the strategy trusted and reliable.

Research gaps

A wealth of research has been carried out to optimize an HVAC
system’s energy efficiency while maintaining thermal comfort
levels. In many of these research studies, predictive model con-
trol is used to adaptively tune the HVAC system to achieve
such optimization. In the work by Kelly and Bushby (2012) and
Li et al. (2015), the energy-saving performance of traditional
control methods is compared to that of machine learning-based
approaches for an HVAC system installed in a real building.
They determined that using intelligent agents to manage the
HVAC system has promising performance in terms of energy
efficiency optimization. As a specific example, the experimental
results from the research (Li et al. 2015) reported an average of
20% energy saving with a concurrent improvement in thermal
comfort in the tested area.

Some studies, however, report on the limitations of
employing Machine Learning (ML) methods for optimizing
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building energy efficiency. Miller et al. (2022) investigated
the model performance from more than 4000 competitors in
the Great Energy Predictor III challenge (Miller et al. 2020)
and concluded that the prediction errors in the test phase are
mainly caused by the fact that these models are unable to
predict behavior which did not appear in the training phase.
Furthermore, the absence of model interpretability prevents
such models from being adopted for HVAC system manage-
ment. This is due to the fact that a model could potentially
learn spurious association relationships, which would be dif-
ficult to unmask without proper insights into the model’s
underlying mechanisms. While introducing a higher number
of features typically boosts the model’s prediction accuracy,
there is a risk that some irrelevant features could cause the
model to learn from spurious non-causal knowledge (Little
and Badawy 2019). A black-box model that lacks interpret-
ability can lead to business and ethical concerns. For
example, business owners often cannot bear the economic
and security risks of applying unknown black-box models to
critical areas of HVAC systems management (Chew and
Yan 2022). In the study by Mao and Grammenos (2021), the
importance of the interpretability of machine learning mod-
els used in the design of HVAC systems is discussed. The
authors argue that interpretable models can unveil potential
optimization strategies and determine the reasons that lead to
incorrect predictions.

Main contributions

The work reported in this paper acts as a stepping stone

toward the vision of eventually realizing a trusted and

autonomous HVAC system. To achieve autonomy, there is a

two-fold requirement: first, the control strategy needs to

self-configure and self-adapt itself to respond to users’ needs
without intervention from the users themselves; secondly,

the strategy should control the HVAC unit to operate with a

balanced tradeoff between thermal comfort and energy effi-

ciency. To achieve trust, the model should have a certain
level of interpretability allowing the machine-made decisions
to be understandable by humans.

To this end, the main contributions of this work'

may be summarized as follows:

e The exploratory data analysis carried out on a building
dataset in previous work is extended by performing add-
itional stationarity analysis on the given dataset. This
extended analysis motivated our decision to include his-
torical room temperature (RT) information in our
machine-learning model.

e We propose and implement a machine learning model
employing an extreme gradient boosted machine
(XGBM) which together with enhanced feature engin-
eering achieves 0.4017°C and 0.9417°C of Mean
Absolute Error (MAE) for 1-hour and 8-hour ahead
room temperature (RT) prediction in real-time. It is
envisioned that such a model could be incorporated into
a system that would allow autonomous operation of an
HVAC unit.

Science and Technology for the Built Environment

e Using global and local Interpretable Machine Learning
(IML) techniques, we explain the working mechanisms
of the proposed XGBM-based HVAC predictive control
model that was implemented, which in turn contributes
to increased trust of the model by human users and
operators.

e Beyond the commonly used IML techniques, we pro-
pose a new Permutation Feature-based Frequency
Response Analysis (PF-FRA) technique to enhance the
model’s global interpretability. The proposed PF-FRA
technique quantifies the contribution of each feature in
the frequency domain, compared to existing IML techni-
ques which, to the best of the authors’ knowledge, can
only explain ML models in the time domain. This fre-
quency domain approach allows us to understand which
features contribute to the high-frequency and Direct
Current (DC) components of the model response, which
in turn reflect fluctuations and key magnitude compo-
nents, respectively.

Paper structure

The remainder of this paper is organized as follows: Section
“Related work” reviews related research work across two
domains; the first domain looks at ML techniques for opti-
mizing thermal comfort and energy efficiency; the second
domain looks at techniques for predicting temperature in
non-domestic buildings. Section “Methodology” presents our
methodology for carrying out this work from the data acqui-
sition and processing stages through to the model’s selec-
tion, evaluation and interpretation. Section “Data analysis:
results and discussion” reviews key results from the explora-
tory data analysis carried out in previous work and extends
it through additional stationarity analysis. This latter analysis
in turn is used to inform the enhanced feature engineering
that was adopted and which led to a boost in predictive
model performance. Section “Predictive modeling: results
and discussion” presents and discusses the results obtained
from the evaluation of the XGBM-based model that was
developed, as well as its behavior through interpretability
analysis. Finally, Section “Conclusion” concludes this paper
and provides suggestions for future research work.

Related work

This section reviews the literature across two broad domains:
The first domain, summarizes recent studies that aim to opti-
mize an HVAC system’s thermal comfort and energy effi-
ciency performance using predictive control or machine
learning-based methods. The second domain investigates
machine learning techniques used for indoor temperature
prediction.

Thermal comfort and energy efficiency optimization

Scholars have proposed advanced machine learning models
with the goal of achieving optimal energy efficiency and
thermal comfort levels. For example, Satrio et al. (2019)
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proposed a hybrid method employing an Artificial Neural
Network (ANN) and a multi-objective genetic algorithm to
generate a control strategy that would enable HVAC systems
to be operated efficiently. In a similar manner, Ahn and
Park (2020) utilized a deep Q-network (DQN) to realize
optimal control balancing between multiple HVAC systems,
reducing the total energy consumed by the HVAC systems
under consideration by more than 15.7% compared to the
baseline.

To maintain appropriate indoor thermal comfort levels,
researchers in (Qin and Wang 2022) proposed a multi-dis-
cipline control method to predict the optimal environmental
parameter values using a support vector machine (SVM) and
to control the indoor temperature using a reinforcement
learning method. In the work by Xu et al. (2018), a feed-
back-data-based learning approach is proposed to quantify
thermal comfort in a complaint-driven environment control
system, achieving a satisfactory Set-Point Temperature
(STP) level for all occupants.

Indoor temperature prediction

In terms of indoor temperature prediction, many recent stud-
ies have focussed on using machine learning techniques,
both traditional statistical learning and more topical deep
learning techniques, to generate robust and accurate predic-
tion models.

Conventional machine learning models have proved to be
quite successful in predicting indoor room temperature (RT)
accurately. Paul et al. (2018) compared the indoor tempera-
ture prediction performance for three popular regression
models: Random Forests (RF), Support Vector Machines
(SVM) and Neural Networks (NN). Trained with an online
learning strategy, these models generate their prediction
based on a number of indoor and outdoor features with the
readings captured by real sensors. It is found that the RF
model has the lowest coefficient of variance at 0.0840 with
the best R-squared score at 0.9855.

Arendt et al. (2018) investigated a variety of machine
learning models with different levels of interpretability, cate-
gorized into the so-called white-box, grey-box and black-box
models for a university building. Assuming a loss of model
transparency, the most accurate black-box model in the
option pool outperforms the best grey- and white-box mod-
els by 0.3°C and 0.6 °C, respectively. However, the dataset
used only covers a single month period, which provides lim-
ited reliability in terms of model robustness.

A more comprehensive study by Alawadi et al. (2022)
compared 36 models from 20 different algorithm families,
including Bayesian, ensembles, linear, Gaussian, and neural
networks to name but a few. Similar experimental results
from other researchers (Paul et al. 2018) indicate that tree-
based regressors achieve better performance in terms of R-
squared scores compared to NN-based models and SVMs.
The authors of these studies state that the possible reason for
this performance is that a tree-based model tends to be less
noise-sensitive, and thus it is likely to have better robustness
against outliers than the more complex models like NN.

3

Neural networks, however, are well-suited for approxi-
mating non-linear systems. In the study by Li, Ren, and
Wang (2013), the authors argue that it is challenging to per-
form accurate control using conventional modeling methods
due to the non-linear nature of an HVAC system. To this
end, the authors propose a Back Propagation NN (BPNN) to
predict the temperature of a room. Studies dating back to
2006 (Ruano et al. 2006) have also considered the use of
simple neural networks to perform long-term indoor tem-
perature prediction, however, multi-objective genetic algo-
rithms are applied to optimize the model parameters instead
of the gradient descent approach employed in (Li et al.
2013).

While in the aforementioned studies, the indoor tempera-
ture is treated as a categorical feature, there are studies that
treat temperature as a time series feature. For example,
Mateo et al. (2013) propose a hybrid model combining a
Multilayer ~ Perceptron (MLP) with a  Non-linear
Autoregressive Exogenous (NARX) network for indoor air
temperature prediction. Evaluated using the Mean Absolute
Error (MAE), its performance exceeds both traditional
machine learning models and simple MLP models.

More advanced time series models make use of Recurrent
Neural Networks (RNN). For example, in the study by
Godahewa et al. (2020), an RNN is introduced to predict the
temperature of a university’s lecture theater when it is occu-
pied. It is shown that this RNN based approach outperforms
other machine learning models like SVM, RF, MLP and
Feed-Forward Neural Networks (FFNN) in terms of Root
Mean Squared Error (RMSE). However, one of the recog-
nized drawbacks of RNN is that it can only consider its pre-
vious outputs within a short term, and thus it tends to fail in
predicting a time series that depends on relatively long his-
torical patterns.

As a variant of RNN, the Long-Short-Term Memory
(LSTM) model is designed to overcome RNN’s limitations.
A recent study conducted by Xu et al. (2019) presents a
novel modified LSTM model for 5-min and 30-min ahead
indoor temperature prediction, which slightly improves the
prediction performance compared to other traditional
machine learning and NN-based models.

The aforementioned literature review is summarized in
Table 1. It should be highlighted that the dataset period
under consideration for all of these studies is quite limited
ranging from one year down to merely a few minutes or sec-
onds. Contrary, in our work presented in this paper, the data-
set period spans almost three years, thereby allowing more
room for validation across different seasons and years.

It is also worth noting that despite witnessing signifi-
cant improvements using increasingly more sophisticated
black-box models such as SVMs and NNs, loss of inter-
pretability and trust can lead to safety and ethical con-
cerns. Therefore, one of the key considerations of our
work presented in this paper is the use of interpretability
techniques with the goal of explaining the underlying
mechanisms of the models implemented with a view to
improving trust and reliability.



Science and Technology for the Built Environment

s3urp[ing ur JjuswdFeuew
A310u2 ur so[qeLIEA
JUROYTUSIS JSOW 2} JO AUO
ST yorym armjerddurd) woor

*KoeInooe

uojorpaid 3s00q 03
suoneAlssqo dnoid ojjopowr
Sur)snyo & donponul
Py d TN PUe XV
NTE WTNYG Is[opout
19130 suojradino

Sunorpaid ur sonbruyoo ‘uonorpaxd yomympasodord Swooy
TN yu1agy1p Surkjdde amjeradurd) uLe) SIXUVN B PIm TN [euonoun,j
JO SSOUQATIOAYJQ o) AEPI[EA -uoys suroyred A[uQ & SuruIquIod [opowr prqiy v ‘sdoyssrop qq TeaK | £10T Te 32 09Il
'SOLIAS oWl B S *Kouaro1yye A310u9 oy 03
‘[onuod wo[qoid ay) 19pISu0d 10adsar oy ypm Kypiqedeo
9JBINIOR JAIYOE 0} SWISAS jou S0 ‘NN oy} Sunorpaid Jurstwold
DOVAH ul Ajuesurf-uou 10§ Sumiyroro Ajdwr PIm wolsks DVAH w)sAS
oy yewrxoxdde o3 poyow Kew porrad paidA0d Ieaulf-uou ay) eunxoidde OVAH
PIseq-3I0MIdU [BINAU 3S() pue ejep paju| A19A 0} poudIsap st NNdd V yIm qe RENE ) sOC €10T RLEERS|
‘s10)ouwrered [opowr
ay aziundo 0y parjdde
‘Suraes A310u0 'SOLISS Wil B S Q16 swyjLod[e drouad
10} amyeradud) roopur wopqoxd ayy I9pISU0d 2Ano3[qo-Tynu A[TYM
oy} uny 0} suIe Yorym jou S90(J "IAJUIM ‘uonjorpaid amjeraduwd) Surpring (SNN)
NN & uS1sop 0} sunptogye ur yjuow jrey e Joopur uid}-3uo] woyrad [00YoS SSIOMION
onouad aanodelqo-ninuw Ajddy I0A0D A[UO suone[nuIg 0) posn st NN o[dwis v Kepuooag urwg PIC 900C ‘[e 30 oueny [eInaN
“OAT)ISOUS-9SIOU
SSO] 9q 0} Pud) S[opow
‘uosuredwos Aq paseq -9a1 asnedaq Wy
Kouaronyyae A31oud Surping SIY) Jey) paonpap I ‘INAS
aaoxduir 0) swysAs pue Ss[opowl paseq-NN Uey}
juowdFeuew Surp[ing doueuntojiad 10139 & MOyS
ojul pajeIdojul oq ued Jey) “W)SAS $10SS31321 PIseq-221) Ay}
ssoujsnqol pue doueuojrad DVAH 2y woij Q1oUM ‘SIT[TUIR] WIIoS[e
o) JO SWIL) UT UNpLIoSe SI0JBITPUI JO SAINJLI JUQIQJJIP (7 WOI) S[opow Surprig Te 1
TIN 21qens JSOu Y} pul] Aue OA[OAUT 0} S[Te] 9¢ aredwoo Apaarsuayardwo)) AyISIoATUN) urur Q| syyuow 6 0202 IpEMEY
*JOII9 Io[[ews
)M S[OPOW XOq-Iym
pue -Ae13 suuoyrodino
's3uipying Suryoed) [opow X0q-)oe[q Y}
ur sfopowr TN X0gq-)or[q jey puyy pue Aijiqejardiayur
pue -AeI3 ‘-)ym uIM)Oq JO S[OAQ] JUIPIP UM
doueutoyrod uonorpaid s[opowr Jurured| uryoew Suipying
amjeradwdy 1ooput aredwo) "0A0qQE 2Y) 0} Je[IuIIg Jo Kjourea e 21e3nsaAu] A)NSIOATU)  PAYnuUdpUI JON quowi | 810C ‘Te 12 Jpualy
“Burping
yews e ur uonorpard
-a1meroduro) uondwnsuod A310ud
Joopur Surp[ing jrews 10} INJOAIYOIE JO] B OJUT
Jo Sunsesslo] 10J pasn oq pajeISaIul I)YINJ ST [opot
ued Jey) [opow dAndIpaId ‘suonepIfeA Pa309[as ay ], “paredwod
® 9)BAID 0} SIS IoyINJ Spasu a1e amjeroduwio) Jre Jooput
SuruIes| auryorwW pasn $SQU)SNQOI S [opoul oy 3o1paid 03 sjopow
A1op1m dwos pue 0] Ay} Ay} sny) pue‘gursdy Sururea] auyorw [BRUONHIPEI) Sururea|
S9)RIFNUI JRYHUNSIURYIIUL pue Sururen snoteA ‘A391ens Surured| Surpping QuIyIRN
Paseq-TA & 2je[nuiio] 10J pasn ST ejep pIuwIr] QUI[UO UB [)IM PaUTel] [enuopIsay urw G| yiuow | 810C ‘Te 32 [ned [euonIpeI],
JIom 2y} JO [eoD suoneII | SUONNQLIUOD UTBJA NS [eAIul pourad Ted x s1oyIny anbruto)
Surjdweg 1aseIRQ SuropoN

‘uonorpaid aineroduwd)y Joopur 10§ o1njeIo)] Aoy Jo Arewwung °J d[qeL



Volume 0, Number 0, Month 2023 5

Methodology

Figure 1 depicts the framework adopted in this work from
the data acquisition phase through to the interpretation of the
machine learning model employed. The process starts with
the collection of data from different sensors including
HVAC status indicators, as well as environmental data from
indoor and outdoor sensors. After pre-processing the data
and addressing challenges such as different sampling strat-
egies and time misalignment, comprehensive Exploratory
Data Analysis (EDA) is conducted to investigate the data
distribution of the predictor and target variables, followed by
stationarity and hidden pattern analysis. By recursively opti-
mizing our feature engineering strategy based on knowledge
discovery from the EDA process, we extract important infor-
mation that is subsequently used in the predictive modeling
phase.

During the model selection and evaluation stage, we ini-
tially select and tune a number of candidate machine learn-
ing models, including both traditional and NN-based
algorithms, by using training and validation sets. The best
candidate model is then evaluated on the test set based on
three commonly used metrics, including the Mean Squared
Error (MSE), the Mean Absolute Error (MAE) and the R-
squared score. Finally, an important aspect and contribution
of our work is to interpret the machine learning model used
from both local and global perspectives with the goal of
unveiling the model’s inner working mechanisms. To this
end, a new interpretability technique is proposed, which we
call Permutation Feature-based Frequency Response
Analysis (PF-FRA). This technique analyzes the response of
the features in the frequency domain, complementing the
conventional interpretability techniques which analyze the
model in the time domain.

In the subsections that follow, we discuss the underlying
theoretical principles and methods that are used in our data
analysis and predictive modeling framework. It is worth not-
ing that this work considers a specific case study of a com-
mercial office building located in Athens, Greece.

study of indoor temperature

model to provide a further
prediction model.
Explore how to optimize the

reference to the feasibility
setpoint temperature in an
unoccupied room by

applying time-series

Predict indoor temperature by
using modified LSTM
preidictive models.

historical temperature
is used as the single

feature.
which can predict the

Prediction is in short
term and only the

A global temperature
prediction model
future temperatures
related to any room
type is expected.

predict the temperature of a
university’s lecture theater.
Simulations on the real data

in this work further

demonstrate that

RNN model in the HVAC

controlling system
contributes to around 20%

A novel modified LSTM
model involving error
correction mechanism is
presented.for 5-min and 30-
min ahead indoor
temperature prediction.

a RNN is introduced to
implementing the optimized
more of energy saving.

Building

Not identified
University

5 min
15 min

2 months
3 months

Dataset description and pre-processing

The data considered in this work was acquired from both
indoor and outdoor sensors and system indicators of an
HVAC system installed in an 11-story commercial office
building in Athens, Greece between December 2017 and
September 2020. This reflects a time period of almost three
years, which is markedly longer compared to the dataset
periods considered in other studies discussed in Section
“Related work”. The building did not employ any other sen-
sors except the ones provided in the dataset. It is worth
highlighting that this is not a new build and was constructed
in the 1990s with some refurbishments in the HVAC system
over the past decades. For this work, we considered Room
103 of the three rooms available in the dataset. Room 103
was located on the fifth floor of this building with a south-
west orientation, thus facing toward the sun and calling for

2019
2020

Xu et al.
Godahewa
et al.
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Exploratory data analysis

Indicator status and
sensory data collection

Data pre-processing
¢ Timestamp alignment
¢ Missing value processing

Data analysis of thermal comfort
and energy efficiency trade-off

Data distribution analysis -1
Stationarity analysis

Hidden pattern discovery

Black-box model

interpretation evaluation

Model selection and

Feature engineering

Fig. 1. Framework of data acquisition, processing and modeling phases.

higher usage of air-conditioning. A summary of the pre-
processed dataset characteristics is provided in Table 2.

As can be seen from Table 2, the dataset comprises
indoor (I), outdoor (O) and time series (TS) features. For
brevity, we shall refer to these as IOTS features. Two key
challenges had to be addressed to convert the raw data
acquired from the sensors into a structured dataset.

First, it can be observed that the sampling strategy differs
amongst the IOTS features. Some features are sampled peri-
odically on a 10-min basis while others are measured on a
state-change basis. Secondly, time misalignment, typically
caused by occasional sensor malfunction, causes a mismatch
between the feature values. To address this issue, we
employed time-slicing and synchronization techniques and
achieved in generating a first partial dataset comprising the
five indoor features with a total of 89,082 observations.
Subsequently, we expanded this partial dataset to include
event-driven outdoor features. While sophisticated techni-
ques exist for filling missing values in building sensor data
(Chong et al. 2016), it was determined that the best and sim-
plest approach would be to hold previous values between
periods provided that a change had not been registered in
that period. If a change had been detected, then the outdoor
recording closest (in terms of time) to the timestamp under
consideration was used instead.

After the dataset has been pre-processed to be a clean
and structured dataset with aligned timestamps, we conduct
preliminary feature extraction and data selection. An add-
itional feature named Occupancy State is created to indicate
if the room is potentially occupied. Specifically, this feature
is considered to be one (1) if: (i) The hour in day is
between 9 am to 7pm, and (ii) The HVAC system is ON
(in the room under consideration being Room 103); Else,
the occupancy state is zero (0). Moreover, new time series
features, namely season, month of the year, day of the
week, hour of the day and holiday, are also extracted from
the timestamp and added as additional features to the
dataset.

It is worth noting that for the results presented in this
work, the data observations from February 29th, 2020
onwards are excluded from the analysis to avoid the incon-
sistency in user patterns that inevitably occurred during the
breakout of the COVID-19 pandemic. With this in mind, the
overall dataset was split into the following subsets: a

training set covering the period from December 8th, 2017 to
June 30th, 2019; a validation set covering the period from
July Ist, 2019 to October 10th, 2019; and a test set covering
the period from October 11th, 2019 to February 29th, 2020.

Thermal comfort measurements

As discussed in the Introduction of this paper, the control
strategy adopted should operate the HVAC unit in such a
way to achieve a balanced tradeoff between thermal comfort
and energy efficiency. To evaluate thermal comfort, common
building standards, such as CIBSE KS06 (2006), ASHRAE
55 (2017), CEN EN15251 (2006) and ISO 7730 (2005), all
utilize Fanger’s model (Charles 2003) to provide the most
accurate measure of thermal comfort in buildings. However,
the general formula used in this study makes certain assump-
tions about the physical specifications of the building, which
were not available to us when carrying out this work. To
overcome this issue, we employed Berkeley’s CBE Comfort
Tool Tartarini et al. (2020) instead, being a variant of
Fanger’s model which relies on environmental features and
uses the formula shown in Equation 1 to calculate the
Predicted Mean Vote (PMV):

PMV = Ty X (MW — hpy — hy — iz — hia — lis — hig) - (1)

where Ty is the surface temperature, MW is the metabolic
rate-outside work product, and %;; to hj; represent the heat
losses through the skin, sweating, latent respiration, dry res-
piration, radiation and convection, respectively. More details
about this formula and measurement of thermal comfort may
be found in previous work (Grammenos, Karagiannis, and
Ruiz 2022).

Stationarity analysis

One of the fundamental assumptions for time series predic-
tion is that historical information usually has the predictive
capability to forecast future trends, which means the pre-
dicted time series variable should maintain its intrinsic char-
acteristics over time. Otherwise, the predictive model is
expected to fail in generating reliable forecasts due to the
change in the properties of the time series itself, the so-
called stationarity. We test the stationarity of our target vari-
able being room temperature (RT) through autocorrelation
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and partial autocorrelation plots, as well as statistically
through the Augmented Dickey-Fuller (ADF) unit root test
(Dickey and Fuller 1981).

On the one hand, the Auto-Correlation Coefficients
(ACC) with different orders indicate the dependency of the
RT value on all of its past values before the given time
point, while the Partial Auto-Correlation Coefficients
(PACC) with different orders aim to compute the depend-
ency of an observed value on its previous values at a certain
point in time. On the other hand, the ADF unit root test is
applied as a hypothesis test that can indicate if a time series
is stationary by setting the null hypothesis Hy: There is a
unit root and the alternative hypothesis H;: There is no unit
root.

Feature engineering

In this study, our feature engineering efforts focused on
extracting useful information based on the features in the
original structured dataset. This was achieved by deriving
new variables and filtering out noise.

With regard to noise, although fluctuations seem to pro-
vide more abundant information for a given feature, they
can also lead to an overfitting problem. This is due to the
fact that short-term violent fluctuations can be too noisy; in
such a case, the data-driven machine learning model will
tend to learn the pattern from the noise rather than from the
more important mid-term and long-term trend information.
That is to say, these ’noisy’ high-frequency components will
usually negatively affect the robustness of the model. A
common and efficient approach to eliminate the effects of
high-frequency noise is the Moving Average (MVA) filter
(Box et al. 2015).

Secondly, based on the stationarity analysis for the target
RT wvariable, discussed in more detail in Section “Data ana-
lysis: results and discussion”, we argue that the RT series is
likely to be a random walk series, which means its value at
a certain time point is highly correlated to its previous value
(at least the most recent one). Inspired by the modeling
methods commonly used in stock price forecasting (also usu-
ally considered as random walk series) (Agwuegbo,
Adewole, and Maduegbuna 2010; Ariyo, Adewumi, and Ayo
2014; Jain and Biswal 2016), we hence introduce a new fea-
ture in our model which describes historical RT information
followed by moving average filtering (MVA), which we
denote by the acronmy MVART for short. Since our pre-
dicted target is the RT, it would be a paradox if the histor-
ical RT information was continuously accessible. Therefore,
although the true historical RTs are kept in the training set
to train the model, this feature in the validation and test sets
is not always accessible, which means the predictive model
needs to make predictions according to its self-predicted RT
in the next prediction period.

Thirdly, since this work attempts to build a model that
can predict the RT to inform the Set Point Temperature
(SPT) adjustment, which in turn has an impact on energy
efficiency and thermal comfort, the SPT feature is removed
from the feature set.

Science and Technology for the Built Environment

Finally, initial empirical observations did not reveal any
specific yearly trends, hence the time series feature ’year’
was removed from the feature set. On the other hand, a holi-
day indicator was added as a new feature to indicate if the
date is a public holiday (including both the weekends and
the national holidays in Greece) to help the predictive model
account for any particular patterns that occur during
holidays.

Machine learning model selection

Various machine learning models can be used for indoor
temperature prediction, for example, classification algorithms
such as Majority Voting Classifier (MVC) and regression
algorithms like Extreme Gradient Boosting Machine
(XGBM). More advanced neural network-based models,
such as long short-term memory (LSTM) are also potential
candidates for comparison purposes.

In previous work (Grammenos, Karagiannis, and Ruiz
2022), a machine learning model was developed to predict a
suitable SPT level that would enable the HVAC unit to
maintain thermal comfort yet in an energy-efficient manner.
Specifically, a Majority Voting Classifier was employed
(Grammenos, Karagiannis, and Ruiz 2022), which ensembles
a Random Forest (RF) classifier, an Extreme Gradient
Boosting Machine (XGBM) classifier and a Support Vector
Machine (SVM) classifier, in order to predict SPT. The
model achieved an accuracy of 97.68% on a test set which
comprised 30% random observations between December 8th,
2017 October 10th, 2019. However, this accuracy dropped
to 41.02% when the model was tested on a subset compris-
ing observations over a continuous period. It was found that
the model’s poor performance was due to severe class
imbalance, which leads to biased classifiers learning much
less from the minority classes. In fact, our initial EDA dis-
cussed in more detail in 4, which treats SPT as the target
variable, also confirms that a class imbalance indeed exists,
which is likely to have a negative impact on model perform-
ance (Miller et al. 2022).

The work presented in (Grammenos, Karagiannis, and
Ruiz 2022) intended to generate accurate SPT predictions
which in turn would be used by the HVAC system to self-
configure itself. It transpired, however, that the predicted
SPT sequence had a constant 10-minute delay compared to
the true value. The most likely reason is that the random-
walk nature of the SPT series leads to persistent prediction.
Note that for a random walk series prediction, the persist-
ence model always achieves the best score (Box et al
2015). This result implies that the trained SPT prediction
model is unable to react to changes in the environment fast
enough.

Another important point is that SPT is a subjective vari-
able that depends significantly on the users occupying the
space, for example, the number of users present in the space,
the clothes worn by each user, the different sense of comfort
experienced by each user, to name but a few factors. Since
these user-specific features were not available to us and
given the persistent prediction nature of the SPT wvariable
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described above, the decision was made for the control strat-
egy to be changed in this new work from predicting SPT to
predicting RT. This decision was motivated by related work
in the field, as described in Section “Related work” which
use room temperature as the target variable in their control
strategy.

Modeling strategies and XGBM

First, since our analysis identified autocorrelation in the
time-series dataset, the model evaluation should be based on
its predictions over a complete period rather than individual
time points. Therefore, we split the dataset into relatively
complete time slices, instead of using a random sampling
strategy. Secondly, we use macro-average metrics to evalu-
ate the predicted results, which gives equal weight to each
class to avoid the bias which results in the minority classes
being given lower priority. Thirdly, considering that tem-
perature is a continuous variable, a regression model should
be applied rather than a classification model with the aim of
improving prediction accuracy.

As discussed in previous sections, advanced deep learning-
based methods for indoor temperature prediction have shown to
yield accurate predictions. However, the loss of interpretability
also brings risks, such as the model being unexplainable, which
in turn raises questions regarding the trust in and reliability of
the model. On the other hand, although white-box models like
linear regression and decision trees are transparent and easy to
understand in their decision-making logic, their predictive cap-
ability is very limited for non-linear and high-dimensional prob-
lems. Fortunately, Extreme Gradient Boosting Machine (XGBM)
proposed in (Chen et al. 2015) has proven to be successful in a
number of applications. More importantly, however, since
XGBM is a tree-based additive boosting model, the model
somewhat lends itself to be naturally explainable by investigating
the feature contributions of each decision-tree estimator.

From a theoretical point of view, an XGBM model f1(.) is
an ensemble model which is composed of a set of base esti-
mators. In practice, the decision tree is a good candidate for
being the base estimator, so an XGBM model f(.) can be
expressed mathematically by Equation 2:

Sxaru (x) = Zi\::l DT(x;7) 2

where DT(.) represents the base decision tree, x is the input
features, y is the model’s parameter and M is the number of
trees. Similar to other boosting methods, every base estima-
tor is trained iteratively based on the base estimator’s per-
formance in the last iteration. The model in the m-th
iteration may be represented by Equation 3:

Fatmns () = frmmon) (x) + DT (x;7) 3)

For each iteration, the decision tree estimator is trained to
minimize the loss function L(.), so the optimized base esti-
mator parameter is given by Equation 4:

. N m J (m
i = arg min{ 3 L0l (0) + Y Q) |
“)
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where N is the number of observations in the training set,
and J is the number of leaves of a given decision tree.
Different from the Gradient Boosting Machine (GBM), an
L2 regularization term Q is also introduced to avoid the
overfitting problem by limiting the total number of leaves.
The loss function L(.) further considers the second-order
partial derivative by applying Taylor expansion rather than
the first-order derivative to learn more effectively. These
improvements have been shown to be more efficient in deal-
ing with both linear and non-linear problems and with a cer-
tain capability to avoid overfitting, compared to other
boosting models like GBM and AdaBoosting.

Machine learning model evaluation

To evaluate the applied machine learning models, the dataset
is split into three orthogonal sets which are independent of
each other. That is to say, the training set covering
33 months is used to train the model’s parameters, the valid-
ation set covering three months is used for hyperparameter
tuning and model selection, and the test set covering four
months is used to assess the final model performance. Three
common metrics are used for performance evaluation includ-
ing Mean Squared Error (MSE), Mean Absolute Error
(MAE) and R-squared score. Specifically, the MSE and
MAE are non-normalized metrics (in “C? and 'C, respect-
ively) which measure the averaged error between the true
and predicted values in terms of squared and absolute meas-
ures, accordingly. As for the R-squared score, it is a com-
monly used metric for regression tasks ranging from 0 to 1
that shows how much variance of the target variable is
explained by the model. Specifically, the three metrics may
be expressed by Equations 5-7 below:

1
MSE =<0 (i =1 ()’ 5)
1
MAE =370 i —f(x) (©)
N =\2
g - T ) 57 -
S i =)’

where y; is the i-th observed value, f(x;) is the i-th model
prediction, y is the mean of the observed values and N is the
number of observations.

Black-box model interpretation

Interpreting the black-box RT prediction model is very impor-
tant for two key reasons: first, it enables human users and opera-
tors to trust the model itself and its predictions; secondly, it
minimizes the risk of applying the black-box model in a critical
building system by providing comprehensive explanations for
the model’s decision logic. To this end, this section introduces
global and local interpretable machine learning (IML) techni-
ques, for the purpose of explaining the model’s mechanisms and
providing reason codes at a global and local level, respectively.
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Global perspective

To explain the proposed RT prediction model, we mainly
focus on the features’ contribution and their effect on the
predictions on average by using both existing and new IML
techniques. The aim is to determine whether any particular
features dominate the model’s decision logic. First, we out-
line popular IML techniques, such as feature importance and
surrogate models, both Ridge regression-based and decision
tree-based surrogate models. Through these techniques, we
determine that MVART, which as mentioned earlier reflects
the historical RT information followed by moving average
filtering, is the dominant feature. Subsequently, we explore
the feature effects in the frequency domain using a newly
proposed technique called Permutation Feature-based
Frequency Response Analysis (PF-FRA). Through PF-FRA
we verify that MVART is indeed the dominant feature.

Feature importance. 1t is important to understand and
disclose the most important features that contribute to the
predictions through a reasonable measuring scheme. A com-
monly used feature importance measurement for tree models
is the Gini feature importance computed by the Gini impur-
ity index (Breiman 2017). Since the Classification and
Regression Trees (CART) (Breiman 2017) models split the
nodes based on the Gini impurity index, the Gini feature
importance is defined in a straightforward manner. To meas-
ure the importance of feature i for an RF classifier, the sum
of the Gini impurity indices among all the nodes which are
split on feature i is computed, given by Equation 8:

K M Ny Nokar Noniat
GFI, = S VA
! Zk:l Zmzl Nmk ( mk Nmkt mk Nmkt mkl)
(8)

where Nt Nyits Nyier a0d N,,i are the number of samples
in total, at node ¢, at its right and left child branch of tree m
and measurement &, and G is the Gini impurity index given
by Equation 9:

G =1-5" Py) )

i=1

where P(y;) is the probability that label y; is observed in the
samples at the node.

Surrogate models. To unveil the underlying mecha-
nisms of a complex machine-learning model, global sur-
rogate models can approximate the black-box model by
fitting a white-box model with the same inputs and the
predicted (output) targets (Hall and Gill 2019). That
means we can attempt to explain the black-box model’s
behavior by exploring the inherent interpretability of the
corresponding white-box model (so-called surrogate
model). Linear and tree-based models are typically used
as white-box equivalent models due to their inherent
interpretable nature.

In this work, a ridge regression model is used as the lin-
ear regression surrogate model to investigate the contribu-
tion of each feature on average, and thus the observed
coefficients are deduced as equivalent to the feature effects
in the original black-box model. Note that ridge regression
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is an improved linear regression model with an L2 regular-
ization term in its loss function, which can mitigate the
overfitting problem by limiting the weights of the linear
regression model. Furthermore, a decision tree is used as a
tree-based surrogate model to visualize the contribution of
each feature and understand the original model’s underly-
ing mechanisms in a step-by-step manner according to “if-
then” rules.

Permutation Feature-based Frequency Response Analysis
(PF-FRA). To the best of the authors’ knowledge, existing
IML techniques can explain ML models only in the time
domain. Therefore, in this paper, we propose a new global
interpretation technique called Permutation Feature-based
Frequency Response Analysis (PF-FRA) to investigate the
features’ contribution in the frequency domain.

By viewing the features’ effects through spectrum ana-
lysis, the time-series model can be explained in the fre-
quency domain. This spectrum enables us to identify the
features that contribute to the high-frequency components,
which in turn lead to fluctuations, as well as the features
that contribute to the DC component, which determines the
overall trend.

The proposed algorithm is outlined below:

Algorithm 1  Permutation
Response Analysis (PF-FRA)
Input: Dataset with N features X = {x;;i =1,2,3,...,N}
Interested feature m

Time-series model f(x, #;7)

Output: Spectrum pair of the model response with and
without the interested-feature permutation

1: Train the time-series model f(x,#;7) by the dataset with
all features X.

2: Based on dataset X, generate an interested-feature-permu-
tated dataset X;/, by substituting the interested feature m
with its mean value.

3: Generate prediction series y; /, on the interested-feature-
permutated dataset Xy /,,-

4: Compute the spectrum of yg,,
Transformation expressed by Equation 10:

Foo = |

5: Repeat steps 2 to 4 by substituting other features with
their mean values as interested-feature-remained dataset
Xiy/{i-my to compute the spectrum of yy /¢; -
6: Compare the spectrum pair of the model response for the
two modified datasets in the frequency domain.

Feature-based  Frequency

using Fourier

+00
f(t)e ™ dr (10)

—00

Local perspective

Compared to global IML techniques, local IML methods
take advantage of higher fidelity and more granular explana-
tions. Generally speaking, local interpretability provides rea-
soning for the predictions made for a single or a small group
of observations (Du, Liu, and Hu 2019).

Local  Interpretable  Model-Agnostic ~ Explanations
(LIME). LIME (Ribeiro, Singh, and Guestrin 2016) is a
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model-agnostic approach which attempts to approach the
complex model’s local behavior by fitting a simple but
explainable model like linear regression and decision trees
with a set of perturbating samples around the sample that
needs explanation. In this way, because we can easily under-
stand the simple local model to generate a reason code, the
prediction value given by the original complex model can be
explained with the generated LIME explanations.

Shapley Additive Explanations (SHAP). SHAP (Lundberg
and Lee 2017) is also a model-agnostic local IML approach
inspired by Game Theory (Myerson 1997). In this paper, a
linear SHAP is applied to our model to quantify the feature
importance of a given observation and its prediction by
using the additive feature attribution method which designs a
linear function of binary variables approximate to the black-
box model. Note that the weights of the linear function are
computed based on the comparison between two models’
outputs, where one of the models is trained with all the des-
ignated features while the other is trained with the dataset
withholding the evaluated feature. In this way, these weights
of the linear function represent the feature importance which
can be used to evaluate how much contribution each feature
is making to generate a prediction.

Data analysis: results and discussion

This section presents and discusses the results obtained from
the data analysis part of our work while Section “Predictive
modeling: results and discussion” will present and discuss
the predictive modeling results. Recall that this work consti-
tutes a case study that applies our framework described in
Section “Methodology” to the data from a single building.
While the results pertain specifically to the building under
consideration, the framework and approach adopted can be
used for any building. Furthermore, this work depicts
informative graphs and provides valuable insights into the
relationship between thermal comfort, room temperature and
other environmental features.

Section “Analysis of thermal comfort and energy
efficiency” provides a recap of previous work, which ana-
lyzed the thermal comfort and energy efficiency of an
HVAC system in a non-domestic building. Section “Data
distribution and feature correlation” extends this work by
analyzing the distribution of the target variable’s observa-
tions followed by correlation and stationarity analysis of the
dataset’s features.

Analysis of thermal comfort and energy efficiency

This subsection presents the results obtained from the per-
formance evaluation of an HVAC system in an office block.
We consider the recordings of the HVAC system located in
Room 103 of the commercial building under consideration,
as per the details outlined in Section “Methodology”.

Using Fanger’s adapted model shown in Equation 1, we
evaluate the HVAC system’s performance in terms of main-
taining optimum thermal comfort levels while minimizing
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Fig. 2. PMV versus room temperature (RT) for different modes
when the HVAC is ON.

energy consumption. In the absence of actual data recordings
for the indoor room’s relative humidity (RH), we set the
humidity range to be from 30% to 70%, which is standard
practice according to ASHRAE’s handbook (2017) on mois-
ture management in buildings.

Figure 2 is dense but provides unique insights. The x-axis
lists the range of RT values found in the dataset which are
from 15°C to 39.5°C (irrespective of whether the HVAC is
on or off). The green horizontal bars show the bounds of
interest for the PMV being 0.5. The orange vertical bars
(which are essentially dots, as indicated in the legend) repre-
sent the PMV value for a given RT but with the relative
humidity (RH) ranging between 30% and 70% for each RT
value. The red, magenta and blue lines show the distribution
of room temperature values when the HVAC is on and oper-
ating in heating mode, cooling mode, and across all operat-
ing modes, respectively. Finally, the black square (straight
lines) shows the range of RT values that provide optimum
thermal comfort (for the given RH range) being 22.5°C—
24.5°C. The extended black rectangle (dashed lines) shows
an extended thermal comfort range that can be achieved by
imposing additional constraints on the RH range.
Specifically, an RT of 21.5°C with an RH >57%, through
to an RT of 25.5°C with an RH <43%, are considered to be
in the ideal thermal comfort range given by PMV = 0.5.

Two key observations can be made from Figure 2; first,
the RT values range from 15°C to 33.5°C and as the RT
increases, the range of PMV values also increases for the
same fixed range of RH values; secondly, none of the three
bell-shaped RT distributions lies completely within neither
the black square nor the extended black rectangle. This
affords greater discussion.

Let us assume that the HVAC operation was configured
to maintain optimum thermal comfort without considering
energy efficiency. In this case, the ideal situation would be
that all RT values were within the comfort range of 22.5°C—
24.5°C. To put it differently, we would expect the peak and
the tails of the bell-shape distribution to lie entirely within
this RT range. Figure 2, however, shows that this is not the
case. Instead, considering for example the RT distribution
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when the HVAC is operating in heating mode, we observe
that only 21% of the RT values lie in the comfort range
while approximately 59% of the values lie within 1°C of
the bell shape peak value being 26.5°C. Similar trends are
shown for the cooling mode and indeed across all modes,
that is to say, that the HVAC system has not been config-
ured appropriately to optimize thermal comfort. It seems that
a shift of the distribution toward the lower temperatures by
3°C would ensure that the HVAC system would provide
optimum thermal comfort for over 50% of the time.

The aforementioned analysis led us to consider the differ-
ence between the RT and the STP throughout the period
under consideration. The absolute difference between these
two features is illustrated in Figure 3, which shows that
there is a notable fluctuation between the RT and STP val-
ues. Of course, some fluctuation is expected, which would
occur when the HVAC system is initially turned on and
therefore require some amount of time for the RT to reach
the STP, especially since optimum start functionality is not
present. Figure 3, however, shows that the average differ-
ence is 3.38°C. Worse even, the data shows that the RT
reached the SPT for only 4.31% of the total recordings in
the aforementioned period while the HVAC system was on.
Relaxing this constraint to an RT deviation of 0.5°C from
the SPT increased the number of recordings in agreement to
13.3%, which is still very low.

The analysis thus far has only considered thermal com-
fort. Yet, a well-designed HVAC system would consider a
balanced tradeoff between thermal comfort and energy effi-
ciency. Table 3 presents different approaches for configuring
the setpoint temperature. The first row shows the STP values
recommended by the CEN EN15251 standards (2006) for
optimum energy efficiency without considering thermal com-
fort. The second and third rows present the STP values iden-

N

N
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tified in this work for providing optimum thermal comfort
based on insights obtained from Figure 2 without consider-
ing energy efficiency. The fourth row illustrates one example
of recommended STP values to achieve a balanced tradeoff
between thermal comfort and energy efficiency. This recom-
mendation is based on the thermal comfort and energy effi-
ciency ranges identified in the previous rows and was put
forward as an STP configuration that satisfies the two condi-
tions as closely as possible.

Having considered both thermal comfort and energy effi-
ciency levels, our last task was to evaluate the performance
of the HVAC system taking into account the optimum val-
ues identified previously. We considered the worst-case
scenario that was present in the dataset when the HVAC
was operating in cooling mode. This date corresponded to
the 12th of August 2019, as illustrated in Figure 4.

Figure 4 shows that the ideal STP value has been set to
25°C in line with Table 3. The horizontal black and red
curve depicts the SPT value set by the user on this date. The
black section of this line corresponds to the period during
which the HVAC system was off, while the red section cor-
responds to the period the HVAC was on. First, we observe
that the user-defined SPT is lower compared to the ideal
SPT. This implies that the HVAC is operating inefficiently
in terms of energy, since it will need to “work harder” to
maintain the lower SPT that has been defined. The second
point is that the RT does not reach the SPT at any point
while the HVAC is on for approximately 11 h between 8 am
and 7pm. Herein lies a two-fold problem; first, the HVAC
system is not able to maintain the RT at the desired STP —
it is clear that there is an offset of 3 °C between the RT and
the STP, which corroborates the statistics shown in Figure 3;
second, as a result of this inability, the thermal levels in
the room lie outside the optimum comfort range. Finally,

Temp Difference
—— Mean Difference

.....

o o wmese oo

Absolute Temperature Difference (degrees Celsisus)

2018-01
2018-04
2018-07

2019-01
2019-04
2019-10

Date (Year - Month)
Fig. 3. Difference between RT and SPT across all operation modes when the HVAC is ON.
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Table 3. Comparison of different HVAC SPT approaches.
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STP Approach

Heating Mode

Cooling Mode

STP for optimum energy efficiency

STP for optimum thermal comfort

STP for safe but slight thermal discomfort
Recommended STP for balanced tradeoff

20.0°C (68°F)
22.5°C (72.5°F)-24.5°C (76.1°F)
21.5°C (70.7°F)-25.5°C (77.9°F)
22°C (71.6°F)

26.0°C (78.8°F)

22.5°C (72.5°F)-24.5°C (76.1°F)
21.5°C (70.7°F)-25.5°C (77.9°F)
25° C (77°F)

Ideal Setpoint Temperature (SPT)

= User SPT with HVAC OFF

== User SPT with HVAC ON
e = Room Temperature

—— Outdoor Temperature

Temperature (degrees Celsius)

Under-fitted system

Energy waste

«

08-12 00
08-12 03
08-1206
08-12 00

8-12 12

o
Date (Year

08-12 15
08-12 18
o8-1221
08-13 00

- Month)

Fig. 4. HVAC performance evaluation in terms of thermal comfort and energy efficiency.

Figure 4 shows that the RT follows the same trend as the
outdoor temperature when the HVAC system is off, account-
ing of course for a reasonable delay between the transient
and steady-state periods. While it is not possible to deter-
mine the causes of the aforementioned discrepancies (since
we do not have access to the system’s full information), it is
clear that the data analytics process has been successful in
revealing hidden trends and providing useful insights that we
would have otherwise been unable to extract.

Data distribution and feature correlation

This section extends the exploratory data analysis carried
out in previous work for the case study under consider-
ation. We start by visualizing the dataset’s features split
into training, validation and test sets, as illustrated in
Figure 5. The features in the processed dataset include the
target RT variable (top subplot), the continuous features
(middle subplot) as well as the categorical features (bot-
tom subplot) using a time-series representation. These
plots are useful for unveiling trends, correlation and fluc-
tuations in the data.

From Figure 5, it can be observed that the target variable
RT has seasonality ranging from the lowest 14.0°C to the

highest 39.5°C, that is, its values tend to fluctuate around a
lower mean value in winter but around a higher mean value
in summer. The RT periodically fluctuates day by day simi-
lar to outdoor air temperature and humidity, and its trend is
similar to the former but with less abrupt changes. On the
contrary, the setpoint temperature (SPT) remains the same
during many periods with occasional changes but with an
opposite trend to the RT. These observations tend to be in
line with our empirical experience that the indoor RT is
higher when the outdoor temperature is also relatively
higher, thus leading room occupants to set a lower SPT, and
vice versa.

As for the categorical features, similarities are found
between the occupancy state variable and the system’s
On/Off state variable. The holiday feature is periodical with
certain weekly and yearly repetitions. The remaining three
indicators reflect the HVAC system’s operation mode being
ventilation, heating or cooling mode.

Figure 5 reveals that the target variable RT has certain
short- and long-term seasonality, yet a more in-depth ana-
lysis is required. In particular, we are interested in the distri-
bution of the target RT variable’s observations to identify
whether data imbalance is present, which in turn will affect
our predictive modeling choice.
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Fig. 6. Room temperature distribution for each of the dataset’s subsets.

Figure 6 shows distributions of the target RT observations
across different sets (training, validation, test and overall)
with a granularity of 1°C. It can be seen that the distribu-
tions differ between the sets with the overall envelope
skewed in different directions. Furthermore, we can observe
an imbalance between room temperature classes. While the
training set (top-right subplot) follows the most similar dis-
tribution to the overall dataset (top-left subplot), the RT dis-
tributions of the validation and test sets (bottom subplots)
are noticeably different. It is thus anticipated that using a
classification modeling strategy on this occasion would
introduce severe bias in the model, which in turn would
have a negative impact on the model’s robustness and accur-
acy. This motivated our subsequent decision to adopt a
regression model for the predictive control part of this work.

Another important contribution of this work which moti-
vated our feature engineering process was a stationarity ana-
lysis on the target variable. To test the time series
stationarity of our target RT wvariable, the autocorrelation
coefficients and ADF unit root test are determined.

Figure 7a shows the calculated ACC and PACC of the
RT series with orders ranging from 0 to 30. We observe a

slow decay for the RT’s autocorrelation coefficients as the
order increases, which may imply non-stationarity. On the
contrary, the partial autocorrelation coefficients converge
rapidly to approximately zero after the first correlation order,
hence the RT is deduced to be a random-walk series whose
first difference should be stationary. As a sanity check, we
also evaluate the ACC and PACC of the RT’s first order dif-
ference shown in Figure 7b, where it can be seen that both
the ACC and PACC converge rapidly to approximately zero
after the first correlation order. This confirms our deduction
that the RT itself is a random walk series because the RT
series is non-stationary, yet its first-order difference is,
instead, stationary.

To statistically build the confidence to declare that the
RT is a random walk, the ADF unit root test is applied in
this case for both the RT series and its first-order difference.
The ADF test results revealed that the p-values for the two
series are .12 and 1.6 x 107, respectively. Therefore, the
null hypothesis H, cannot be rejected for the RT series test
but should be rejected for the RT first-order difference test.
This means that the RT series is non-stationary, but its first-
order difference is stationary. In other words, the



Volume 0, Number 0, Month 2023

Room Temp. Autocorrelation

15

Room Temp. 1st-order Difference Autocorrelation

Correlation Score

1

o 9 @
N
o o

o
°
S

00

S
a

Tl t?reosesea
3

10 20

15
Correlation Order
Room Temp. Partial Autocorrelation

0 5 10 20 25 30

15
Correlation Order
Room Temp. 1st-order Difference Partial Autocorrelation

0.5

Correlation Score

&
°

Correlation Score

?
T[iv°°
5 10 15

Correlation Order

20

a) Target RT Series

Fig. 7. Autocorrelation plots for the room temperature feature.

15
Correlation Order

b) RT’s Ist Order Difference

20 25 30

MAE & MSE of XGBM Regressor's Prediction With Different Predicting Time Intervals

17
164 6

56

—a= MAE
MSE

012 5 81012 15 20 24 36

48
Time Length(Hour)

0
100

72
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aforementioned hypothesis test results provide further evi-
dence that the RT series is indeed a random walk series.
The above analysis motivated our decision to add the histor-
ical RT as a feature to our dataset.

Our data exploration also revealed that holidays have an
impact on the RT value. It was observed that RT tends to
be higher during holidays but lower during working days.
Based on these observations, we added a holiday indicator
as an additional new feature to our dataset which indicates
whether a particular date that appears in the dataset is a
public holiday (including weekends and national holidays in
Greece).

Predictive modeling: results and discussion

This section presents and discusses the results obtained from
the predictive modeling part of our work. Section
“Performance evaluation” evaluates the performance of our
XGBM-based prediction model while Section “Interpretability
analysis” uses interpretability techniques including our pro-
posed PF-FRA algorithm to explain our model.

Performance evaluation

A grid search strategy is used to fine-tune our model’s
hyperparameters yielding the best candidate model on the
validation set. For each decision tree estimator, the tree
depth is varied between 5 and 15, the number of trees ranges
from 20 to 500 while the minimum loss function reduction
parameter is set from 0.05 to 2 with reasonable intervals.

A similar selection strategy is employed when determining
the window width for the moving average (MVA) filter.
Comparing the performance of XGBM-based RT prediction
models trained with different window widths ranging from 0 to
241, it was found that the XGBM regressor achieves the best
result with a window width of 1 h, which is thus selected as the
optimum MVA window width for subsequent investigations.

Figure 8 depicts the MSE and MAE of the predictions
given by the proposed XGBM regressor over different pre-
diction time intervals on the validation set. For practical pur-
poses, it was determined that predicting eight hours ahead
(equivalent to 48 timesteps ahead) was sufficient for the
case study under consideration. Hence, subsequent analysis
and discussion focus specifically on the 8-h ahead prediction
scenario.
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feature engineering approach that was adopted. P 8 S § S3 g g 2 g 3 S
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method for a fair comparison. Results show that the XGBM
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the features of IOTS-MVA and Holiday indicator (fourth row
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MVART feature contributes to the model’s improved per- 4 g
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Holiday indicator do improve the model’s performance com- JED ‘§ TS
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To validate our proposed method, we compare our pre- g E E 5 § ) Eo E E; ) 5 ) 5 E
dictive model’s performance against models that appear in E
related studies (Paul et al. 2018; Xu et al. 2018) which use >
comparable model settings and evaluation metrics. For <
example, these two studies apply machine-learning techni- ° = E =
ques for indoor temperature prediction and employ a feature E ;3 &3 %

set similar to the one described in this paper.
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Table 5. Comparison of our work to related studies under comparable model settings and evaluation metrics.
Predicting time
Research Year Features step ahead Best model MBE MSE R-squared
Xu et al. 2019 Historical RT 1 Modified LSTM N/A 0.1424 0.8985
6 N/A 0.4731 0.7956
Paul et al. 2018 A variety of indoor and outdoor Not Neural Network 0.6565 N/A 0.9210
measurements + reported
Time-series Feature
Ours 2022 IOTS-MVA + 1 XGBM 0.0615 0.1857 0.9768
MVART +
Holiday
6 0.1253 0.4048 0.9494
12 0.1853 0.6574 0.9179
24 0.2269 1.0808 0.8649
48 0.1029 1.8073 0.7756
For a fair comparison, we introduce another evaluation Global perspective

metric named Mean Bias Error (MBE) which is a measure

of average errors considering their signs and appears in the
study by Paul et al. (2018). The MBE is calculated as shown

in Equation 11:

1x 10057 (v — f(x))

MBE =
M—-1

Vi

(11

Table 5 summarizes the comparison results of our work
to the two studies mentioned above. It can be seen that our

Figure 10 compares the computed feature importance/effect
for the XGBM regressor, surrogate decision tree and surro-
gate Ridge regression models. Despite the different ranks
and values for most of the features, the MVART is always
the most important feature that contributes to the model
decision. This result aligns with our analysis in Section
“Performance evaluation” as well as our human intuition,
that is, that the value of RT at a certain time depends on its
previous values. Although the feature importance given by
the decision tree surrogate model shows that almost only the

model achieves similar or better performance for short-term

RT prediction. We can also see that for long-term prediction,
which is not discussed in the two related studies, our model

still achieves satisfactory performance.

Interpretability analysis

This subsection presents the results of applying IML techni-
ques to interpret the implemented black-box model from

both global and local perspectives.

MVART determines the forecasting logic, we deduce that
this might be because the decision tree tends to overfit the
training data and thus only puts the priority on the most
informative feature. By further studying the mechanism
through the surrogate Ridge regression which can demon-
strate not only the extent but also the direction of effects for
each feature, we can conclude that the MVART is the most
influential feature that dominates the model’s working
mechanism.
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Fig. 11.
PF-FRA.

The previous interpretations focus on static analysis for
feature effects in the time domain. Useful insights, however,
can be extracted by examining the contribution of the fea-
tures in the frequency domain. In this work, this is achieved
by using our proposed PF-FRA algorithm.

Figure 11 compares the XGBM regressor’s frequency
responses (magnitude only) on the training and validation set
employing the MVART and IOTS features. The spectrum of
the true RT series is also illustrated for comparison purposes
while the DC component is indicated in the figure’s legends.
It was found that although MVART accounts for the major-
ity of the low-frequency components, both the RT and other
IOTS features contribute in a commensurate fashion to the
high-frequency components. Furthermore, because the IOTS
features lead to a DC component of 25.07°C, which is
closer to the original model predictions’ DC component of
25.06°C, we deduce that the IOTS features may be more
informative to determine the RT’s absolute magnitude, while
the MVART contributes to the relative variations instead.

Local perspective

To analyze the chosen RT prediction model’s local behavior,
we select several representative observations to conduct a
sample study. The observations are from two groups, where
one is the accurate group while the other is the deviated
group. Observations with a prediction error less than 0.01 °C
are considered as accurate predictions while those with an
error greater than 2°C are considered as deviated predic-
tions. By means of doing so, we intend to identify why the

Comparison of feature effects in the frequency domain for the proposed model with MVART and IOTS features using

individual prediction value varies given the same target RT
value.

We carry out the analysis for two observations with the
same true RT value from different groups. The two studied
observations are from the test set with the same true RT
value of 23.5°C, while the accurate prediction is 23.49°C
and the deviated prediction is 20.71 °C. Two local IML tech-
niques are applied, namely Local Interpretable Model-
Agnostic  Explanations (LIME) and Shapley Additive
Explanations (SHAP), to verify each other’s explanation.

Figure 12 depicts the explanations given by LIME and
SHAP, where (a) is for the accurate one and (b) is for the
deviated one. By interpreting the explanation given by
LIME, it is easy to identify that the main factor leading to
different predicted values is that the MVART feature falls in
different value ranges even though most of the other features
have the same value. This local explanation might alert us to
the fact that the XGBM-based RT prediction model could
fail after a sudden change of RT values.

The SHAP graph provides a visualization of feature
effects for the two individual observations to validate this
conclusion. The force plots with the feature Shapley values
show that for the two RTs smaller than the base value (the
sample mean 25.06°C), the MVART feature indeed nega-
tively enforces the predicted value lower significantly.
However, it over-enforces the deviated prediction to a fur-
ther lower RT because of the lower value of MVART.
Compared to the MVART feature, other features’ effects are
not as significant. This result aligns with the explanations
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Fig. 12. Local explanations given by LIME and SHAP for the studied observations (accurate and deviated predictions of RT).

given by LIME, confirming that the historical RT informa-
tion is deterministic for the model’s prediction. This leads to
the recommendation that the RT prediction model is care-
fully supervised for the instances that the RT experiences
sudden and abrupt fluctuations.

Conclusion

This paper presented a case study-based implementation of
data analysis and interpretable machine learning techniques
for the purpose of HVAC predictive control. Starting with a
recap of previous work that analyzed thermal comfort and
energy efficiency of an HVAC system in a commercial
office building, the first part of this paper extended this
work by considering the distribution, stationarity and correl-
ation of the dataset’s target variable being room temperature
(RT) with this dataset spanning a period of three years, ena-
bling us to visualize trends across multiple seasons. It was
deduced that using a classification model would potentially
suffer from sample imbalance, thus motivating our decision
to pursue a regression model instead. It was also found that
the target variable is a random walk series, which in turn led
us to incorporating historical RT information into our model.

Subsequently, the second part of this work explored
approaches for the predictive control of an HVAC unit
through the use of interpretable machine learning techniques.
Results demonstrated that the proposed XGBM model can
predict room temperatures eight hours ahead with an error
smaller than 1°C on average. We consider this error margin
to be acceptable for the purpose of achieving a balanced
tradeoff between thermal comfort and energy efficiency for
the case study presented in this work.

While producing a model that can achieve accurate pre-
dictive control is of course paramount, a more important
aspect and contribution of this work was to understand the
working mechanisms of this model, that is to say, the logic
that generates the machine-made decisions. To this end, and
beyond the scope of most related studies, a number of inter-
pretable machine-learning techniques were employed to
explain the model from both a local and a global perspec-
tive. A new technique called Permutation Feature-based
Frequency Response Analysis (PF-FRA), that interprets the

model in the frequency domain, was also proposed and eval-
uated. Interpretability analysis revealed that incorporating
historical room temperature (RT) values followed by moving
average filtering (MVA), denoted by MVART for short,
contributed the most to generating accurate predictions.

In summary, the work presented in this paper explored
feature engineering, stationarity analysis and interpretable
machine learning for the purpose of creating a model that
could provide accurate predictive control for an HVAC unit
and with the goal of balancing thermal comfort and energy
efficiency. It was found, however, that the model is some-
what sensitive to abrupt RT fluctuations with some signs of
overfitting. Future work will thus focus on generating a
more robust and accurate machine-learning model while
respecting the requirement of having sufficient model inter-
pretability to allow the model to be trusted by human users
and operators. A more ambitious goal is to deploy our model
in a production environment that would enable us to assess
the models’ performance in a real-world environment.

Note

1. The code used to generate the results presented in this
work has been made publicly available and may be
accessed at the following Github link: https:/github.
com/JianqiaoMao/Interpretable-machine-learning-for-
HVAC-predictive-control
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