
Open Universiteit
www.ou.nl

MASTER'S THESIS

IRMAGUARD

Anonymous but authenticated VPN

Bakker, J A

Award date:
2023

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 28. Oct. 2023

https://research.ou.nl/en/studentTheses/8a9d0f19-5db1-44d5-b87c-263589becabd

IRMAGUARD
ANONYMOUS BUT AUTHENTICATED VPN

by

J. A. Bakker

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Science
Master Software Engineering

to be defended publicly on Wednesday February 15, 2022 at 15:00.

Course code: IMA0002

Thesis committee: Dr. Greg Alpár (chairman, supervisor), Open University
Dr. Fabian van den Broek (supervisor), Open University

CONTENTS

Summary iii

1 Introduction 1

2 Problem Context 3
2.1 Private Network . 3
2.2 Virtual Private Network. 4

2.2.1 Network Layers with VPN . 4
2.2.2 VPN Implementations . 7

2.3 Authentication . 10
2.3.1 Anonymous Authentication. 11
2.3.2 IRMA: I Reveal My Attributes . 13

2.4 Comparing Different VPN Implementations . 14
2.4.1 Layer . 14
2.4.2 Performance . 14
2.4.3 Security . 14

2.5 Reasons for Adopting VPNs . 15
2.5.1 Use Cases . 16

2.6 Related Work . 16

3 Research Questions 18
3.1 Steps Required for Answering . 18

3.1.1 How do the authentication processes in the most common VPNs work,
and what level of privacy do they provide? 18

3.1.2 How can anonymous authentication be realised in a VPN server? 19
3.1.3 How can we implement IRMA in a desktop VPN application? 19
3.1.4 How can we make the application which needs elevated privileges for

setting up a VPN connection secure? . 19
3.1.5 How does a VPN with anonymous authentication improve privacy when

used in two different scenarios? . 19
3.1.6 Which use cases benefit most from this new VPN setup? 19

4 Method 20
4.1 Prototype Development . 20
4.2 Experiment . 20

5 Prototype 22
5.1 Components . 22
5.2 Data Flow . 23
5.3 Wireguard Service . 24
5.4 Authentication Service . 25
5.5 IRMA Service . 25

i

5.6 Client-Side Application. 25

6 Evaluation 30
6.1 Experimental Setup . 30
6.2 Reverse Proxy. 31
6.3 Logging . 33
6.4 Privacy Analysis . 34

7 Results 35
7.1 Development. 35
7.2 Server Side Logs . 36

7.2.1 Username/Password Authentication . 36
7.2.2 IRMA Authentication . 36

7.3 Packet Sniffing . 37
7.3.1 Hostile VPN Scenario. 37
7.3.2 Trustworthy VPN Scenario . 39

8 Discussion 41
8.1 Prototype Development . 41
8.2 Privacy Implications in Different Scenarios. 42

8.2.1 VPN Outside of Restricted Network . 42
8.2.2 VPN Inside Restricted Network . 42

8.3 Limits of the Privacy Improvement. 43
8.4 Use Cases Analysed . 44

8.4.1 Anonymity . 44
8.4.2 Censorship . 44
8.4.3 General Privacy . 44
8.4.4 Geo Content . 45

8.5 Research Questions . 45

9 Conclusions and Recommendations 47
9.1 Conclusions . 47
9.2 Lesson Learnt . 48
9.3 Future Research . 48

10 Reflection 49
10.1 Technical Difficulties . 49
10.2 Improvements to the Prototype. 49

Bibliography i

List of Abbreviations iv

Appendix A: Username/Password Authentication Logs vi

Appendix B: IRMA Authentication Logs vii

ii

SUMMARY

In order to improve their online privacy and to secure communications, many people use
VPNs. Those private networks allow devices to securely communicate over the public inter-
net by means of encrypting the communication between the devices in the network. This
way, hostile devices on the public internet cannot intercept the messages these devices ex-
change.

While this offers secure communication, it requires you to trust the VPN owner as the
communication between the user and the VPN router is only secure up to the VPN router.
Because traditional VPNs use username/password authentication or other methods which
make it possible to identify the user that is making the requests, this does not offer privacy
towards the VPN itself. This also leads to being able to trace users across multiple sessions,
and link their sessions together. In some situations, for example when evading censorship
by means of using the VPN, this can be a problem when the VPN server is compromised.
This means that sometimes the VPN cannot be trusted.

In this research, we offer a solution to this problem by presenting a WireGuard-based
VPN which uses anonymous authentication by means of the IRMA app, based on Attribute-
Based Credentials. This way, users can authenticate to the VPN without having to disclose
any personal information to the VPN other than the right to use the VPN. We show how
this improves the privacy of the user of the VPN. This works because the VPN owner can
no longer see what user is connecting, which means users can more easily trust the VPN
owner.

iii

1
INTRODUCTION

Most people these days are familiar with the term Virtual Private Network or VPN. In a
society where the internet becomes more and more important and present in day to day
life, users look for ways to use it more safely. One of these methods, is the VPN. But what is
a VPN? And how is it related to the internet and the daily life of people?

There are many reasons why users use virtual private networks. Some use it for ac-
cessing resources in an office while working remotely [Abhijith and Senthilvadivu, 2020].
Others depend on them to freely access information which is restricted due to censorship
[Aceto et al., 2016; Bozdag, 2016; Chandel et al., 2019; Khan et al., 2018; Namara et al., 2020].
VPNs can also be used to access content which is only available in a specific geographical
location [Roy and Marsoof, 2017]. Whatever the use case, many VPNs require the user to
authenticate so only those allowed to use it (because they paid for it, or because they work
for the company whose resources they wish to access) can actually use it. Usually it is not
relevant who exactly uses the VPN, as long as it is someone who is allowed to do so. In other
cases, such as with censorship, it is not only unnecessary to identify the user but even dan-
gerous. If the censoring authority were to find out who is escaping censorship, and for
what reason, this could have consequences for those people. Traditional authentication
methods that are used in VPNs such as username/password combinations or pre-shared
keys, however, can expose who is making the request to the VPN server. When a request
is linked to a certain username, the owner of the account with that username can also be
linked to that request. The same goes for a pre-shared key, when each user has a unique
key. The ability to log such information is something with which VPN providers should not
be trusted, as it has been shown that many VPN applications actively spy on their users
[Ikram et al., 2016].

An important aspect of this research is privacy. Privacy is described as “the state of
being alone, or the right to keep one’s personal matters and relationships secret”1. We will
be using the term privacy in a digital context and not a literal one. So we do not mean being
physically alone, but being ‘alone’ on the internet. This means, third parties not being able
to see what you do online. There never is complete privacy, as you rely on third parties to
actually use the internet: there is, for instance, your internet service provider (ISP) and the
services that you use online with which you interact. Because of this, ‘privacy’ towards a
certain party can be seen as a scale. You can have more privacy towards a certain party, or

1This is the definition of the Cambridge Dictionary

1

less privacy. Increasing privacy means decreasing the amount of information third parties
have about you, or that certain third parties have about you.

Some measures increase privacy towards one party, while decreasing it towards other
parties. A regular VPN service for instance, increases the user’s privacy towards his/her ISP
but reduces their privacy towards the VPN provider (why this is the case will become clear
later in this document, for now it is used to explain the complexity of the term privacy).
Privacy usually is a balancing act: you have to judge who you trust and who you don’t, and
take measures accordingly.

We will consider the privacy implications of using a VPN with regular username/pass-
word authentication. We propose the use of a different type of authentication, using anony-
mous credentials, to allow users to authenticate to a VPN server without having to reveal
what user they are [Alpár, 2015]. This way it should be possible to still require authentica-
tion for the VPN, so that only certain people can use it, while at the same time not exposing
what account (and thus what person) is making the request.

In order to do so, we will start with a literature study of VPN implementations and how
they work, and on anonymous authentication. We will consider the different use cases
there are for using a VPN, and how they relate to privacy. We will then develop a prototype
VPN implementing this anonymous authentication. With that prototype, we will run an
experiment to show that privacy is improved. Based on these results, we will then relate to
the earlier use cases and motivate what use cases benefit from anonymous authentication
and why.

2

2
PROBLEM CONTEXT

Before we can discuss how anonymous credentials can improve virtual private networks,
we need to have a clear understanding of what we mean by those terms. In order to do
this, we will first need a clear definition of some of the terms used in this document. Along
with these definitions, we will also look at the technical workings of Virtual Private Net-
works. We will also look at the different types of VPNs that exist, and at some popular VPN
implementations.

Another important aspect of this research is anonymous authentication. We will also
discuss what we mean by that, and how it works. A specific type of anonymous authen-
tication is an Attribute Based Credential (ABC). We will see how this works, along with a
specific implementation called IRMA. This is a literature review which forms the basis of
this research and motivates the decisions taken in regard to which VPN technology is used
for the prototype and experiment.

Besides the technical background required for our research, we will also look at the
problem we will solve, and the use cases we have for an anonymously authenticated VPN.

2.1. PRIVATE NETWORK
A private network is a network of connected devices, which can only be accessed by a spe-
cific party. The most common example is your home network. The devices on it can com-
municate with each other, but cannot (normally) be reached by devices not on the same
network. For instance a printer connected to your home network can be used by any ma-
chine on that same network (in the default configuration this is usually the case), but it
cannot be used by just anyone on the public internet.

This does not mean that devices on this private network cannot use resources which
are available on the public internet. Private networks can communicate with the public
internet via a device which is connected to both. This is called a Network Address Trans-
lation (NAT) box or a NAT gateway. In the home network scenario, this device is provided
to you by your ISP (they usually call it a router or modem, but it is more than that as it also
provides NAT functionality). Communication via a NAT gateway is always initiated by the
device in the private network, and the request made by that device is forwarded by the NAT
gateway. The service reached on the public internet can only see that it is communicating
with the NAT gateway, and not with which specific device on the private network.

3

2.2. VIRTUAL PRIVATE NETWORK
A virtual private network is a private network that exists inside of a public network. This
means that it uses public networking infrastructure to simulate a private network. There
are two main types, namely host-to-network and site-to-site VPNs. Both of these can be
implemented on several network layers depending on the intended use.

First we will look at the different types. A host-to-network VPN means you connect
an individual computer to the VPN. When using a site-to-site VPN, the VPN is made by
combining several different networks together to create one larger ‘virtual’ network. A host-
to-network VPN can be used to connect to an office network when working from home.
Using a site-to-site VPN, the private network of office A can be extended to also cover office
B. In both these scenarios, there is a part of the connection that is routed over the public
internet. At some point, a connection from a computer in office A to a computer in office
B has to leave the office to reach the computer in the other office. In the host-to-network
setting, the computer used by an employee working at home needs to connect to the office
and that connection also travels over the public internet.

The task of the VPN is to provide a safe ‘tunnel’ through the public internet so that
the computers in the VPN can communicate with each other as if they were all located in
the same office. In order to achieve this, the VPNs typically use encryption. This way, the
communication between the devices in the VPN cannot be read by the devices of the public
internet that are used to set up the connection [Venkateswaran, 2001].

2.2.1. NETWORK LAYERS WITH VPN
As said in the introduction of this section, VPNs can also be distinguished by the layer1

on which they operate. By this, we mean the layer of the internet on which the tunnel is
located and thus the type of data that passes through the tunnel. The lower the level, the
more data can be sent through the VPN and thus the more uses it has. On the other hand,
it also means that it is more complicated to set up and use. To explain this better, we will
now look at the different layers and how VPNs can be implemented on those.

APPLICATION LAYER

VPNs implemented on the application layer only use the VPN connection for a single ap-
plication. Typical use of this is by means of browser extensions. They can be used to route
application specific data (web access over the HTTP(S) protocol) to the VPN server, so that
the server will act as a ‘relay’ so the site can seemingly be accessed from a different loca-
tion. This is popular for accessing content that is restricted by geographical boundaries (for
instance due to copyrights – streaming services offer different content to customers from
different countries). For encryption, application layer VPNs typically use TLS for the en-
cryption, as that is already supported by the web browsers they run in. The simplest way to
do this is by having the VPN be a web application through which you can access other web-
sites. The web application, and the data it shows you from the site you wish to access with

1In this document, layers refer to the five TCP/IP protocol suite layers: Physical, Data link, Network, Transport
and Application [Kurose and Ross, 2017]. When discussing one of these layers, the name of the layer is
used. However, some protocols and tools used refer to these layers in their name by means of a number.
These numbers come from a different (outdated) model called the OSI model consisting of 7 layers [Day
and Zimmermann, 1983]. Layers 1 through 4 are equivalent to the first four of the TCP/IP layers. The other
numbers all indicate different parts of the Application layer.

4

it, are served to you over HTTPS. This way, no additional client-side software is required
for end-users as you can just use your web browser for it. Other methods of implementa-
tion exist, such as through a browser extension which intercepts all HTTP and WebSocket
requests and forwards them to the VPN server. Again, the connection from the extension
can easily use the native JavaScript HTTPS browser API for communication with the server,
providing the encryption without custom implementations for that. It is very important to
note here, that there are actually two TLS channels used. One from the client to the VPN
server, and the second one from the VPN server to the target service. This means that all
communication from the client to the target service goes through the VPN, but that there is
a ‘gap’ in the TLS communication as the VPN server sitting between the two TLS channels
can see all unencrypted communication. In case of accessing websites over HTTPS using
such an application level VPN, this means the number of parties that can see the commu-
nication is increased compared to when not using a VPN. Normally, HTTPS provides en-
cryption which means only the user and the web server can see the communication. With
this type of VPN implementation, the VPN server can now also see this communication.

Being on the application layer, these VPNs offer the most fine-grained control over what
traffic is sent over the VPN and what traffic is not, but at the same time they restrict the use
of the VPN to support only a specific application. In the browser example, this means that
it is possible to specify what sites are accessed using the VPN, and what sites are accessed
without using the VPN. This is also true on the server side, where fine-grained access con-
trol can be applied to certain resources within the application that is accessed using the
VPN. Because this does not allow arbitrary connections between devices in the network, it
is not strictly speaking a VPN.

Client PC

Web Server VPN Server

HTTPS Request

HTTPS Request

Figure 2.1: Diagram of communication between the three devices involved in sending an HTTPS request
through an application layer VPN tunnel.

In Figure 2.1 we can see a diagram explaining the communication flow when making an
HTTPS request through an application layer VPN tunnel. As you can see, the request is first
sent to the VPN server, which then makes the request to the web server. Because the data
that is transmitted through the tunnel to the VPN server is the application layer data, the
VPN server can see the data sent to the web server. This breaks the end-to-end encryption
between the client and the web server which is normally provided by HTTPS.

5

NETWORK LAYER

Another common layer for use with VPNs is the network layer [Abdulazeez et al., 2020].
This is the layer that the internet protocol (IP) uses. This is not a coincidence because net-
work layer VPNs typically act as a router. This means that packets intended for specific
IP addresses can be routed through the VPN tunnel, while other traffic will be routed as
usual. This allows connections to other devices in the network to be made, and allows any
internet traffic to be routed through the VPN, instead of just traffic belonging to a specific
application. This allows less fine-grained control (only based on the IP address of the ma-
chine you wish to connect to), but a wider range of traffic that can utilise the VPN. This is
commonly used to connect to office networks, so that for instance SSH or FTP connections
can be made to servers in the office without having to expose them to the public internet,
while at the same time also allowing access to locally hosted web interfaces on those same
servers. This can still also be used to route web traffic to devices not connected to the VPN
through the VPN tunnel. This way geographically restricted content can be accessed, and
censorship evaded (given that the VPN itself is not blocked by the censorship, and located
outside of its reach). An example of a VPN protocol on this layer is IPSec in tunnel mode.

Client PC

Web Server VPN Server

IP Packet

IP Packet

HTTPS Request

Figure 2.2: Diagram of communication between the three devices involved in sending an HTTPS request
through a network layer VPN tunnel.

An important improvement in privacy offered by a network layer VPN over an applica-
tion layer VPN can be seen in Figure 2.2. This time, the network layer data is sent through
the tunnel. So when dealing with application layer data, such as an HTTPS request, any
encryption provided by the application itself is sent to the VPN server as encrypted data.
This means that the data that can be seen by the VPN server is essentially the same as the
data that can be seen by any network layer device through which the request would pass
when making the HTTPS request directly to the web server. This has a clear privacy ben-
efit when compared to an application layer VPN. In that section, we described how for an
HTTPS request the VPN server would be able to see the (unencrypted) communication be-
tween the client and the web server. A network layer VPN, as shown, does not have this
privacy issue. So, a network layer VPN offers more privacy for the client and web server,
from the VPN server than an application layer VPN. The benefit from this is that the secu-
rity offered by TLS when communicating with a web server is kept in place and the content
of for instance HTTP requests is encrypted and only visible by the user and the web server,
where with an Application Layer VPN the VPN owner could also see the contents of these

6

requests, meaning web pages and the data entered on them.

DATA LINK LAYER

As we get to lower levels, the flexibility keeps decreasing while the amount of different traf-
fic types the VPN can be used for increases. At the network layer, the VPN ‘router’ acts as a
switch. This type of VPN is typically only used for a site-to-site VPN. An example of a proto-
col on this layer is L2TP (Layer 2 Tunneling Protocol), which does not provide encryption.
Layer 2 in this case means OSI layer 2, which corresponds to the Data Link Layer in the IP
layers. In order to secure the tunnel used by L2TP, the connection between the two VPN
switches can be encrypted using for instance IPSec. This is an interesting distinction, be-
cause the fact that the VPN is a link layer VPN does not mean that the tunnel itself consists
of only link layer devices and protocols, just that the data passing through the tunnel are
link layer frames. In terms of privacy, this layer offers the same level of privacy as a net-
work layer VPN. The main difference is that connecting two devices over a data layer VPN
is like connecting them both to the same switch, while using a network layer VPN is like
connecting them both to the same router.

The benefit this has is that when connecting to a Data Link Layer VPN, the computer
which connects to it becomes part of the same LAN as the devices otherwise connected
to that LAN in the (actual) private network. The same applies when connecting to private
networks together with a Data Link Layer VPN, the devices on either side of the VPN tunnel
are part of the same LAN.

2.2.2. VPN IMPLEMENTATIONS

We will now look at some concrete examples of VPN implementations, so their workings
and how they operate on the various network layers is more clear.

SSL/TLS (WEB BASED)
A common method of implementing an SSL/TLS VPN is using a web application. These
VPNs are built for ease of use, so the end-user does not have to make any complex or per-
manent configurations on his/her machine. The most obvious use case is a web proxy,
allowing you to enter a different address in an address bar added in the web application so
that you can visit other websites through this one. The HTTPS connection to the web server
acts as the VPN tunnel in this case. While this is usually the first application that comes to
mind when thinking about web based VPNs (because they run in a browser visiting web-
sites is an obvious use case), it can also be used for other types of applications. Many web
hosting providers offer a web based SSH terminal to connect with your VPS.

In these types of VPN, the application specific data is entered directly into a form on
the website and the web server will send the response from the application to the user
over the same HTTPS connection. For instance, the user enters a shell command in the
web SSH session. Then, the browser will send an AJAX request to the web server acting as
the VPN. This server will execute the command on the user’s VPS (through an actual SSH
connection for instance, or the VPS could host the web application directly). The response
of the command is then sent as the response to the AJAX request and the browser renders
it in the ‘terminal’ it presents as part of its user interface.

Because this essentially works exactly like any other web application and is highly de-
pendent on the application that it wants to offer to the user, there is no standardised VPN

7

protocol on this layer and VPN vendors build their own implementation2.

IPSEC

The Internet Protocol Security protocol (IPSec) is, as the name implies, a network layer VPN
protocol [Kurose and Ross, 2017]. This protocol is actually standardised so we can discuss
it in more detail than the SSL VPNs.

IPSec, when used as a VPN3, consists of the following components: the Encapsulation
Security Payload protocol (ESP), a concept called Security Associations (SAs), the IKE key
exchange protocol and a special IPv4 packet format.

An IPSec VPN router has a unique secure tunnel to each of its peers (which can either
be other VPN routers in a site-to-site setting, or client PCs in a host-to-network setting),
called a Security Association. For each Security Association, the router stores an encryption
algorithm, the IP address of the other end of the SA, and the key used in the encryption
algorithm. When a packet is received that is intended for one of the security associations,
the packet is modified. The entire original packet is encrypted using a symmetric block
cipher (along with a trailer for padding and details on the type of data). Then, a new IP
packet is created which is the one that will actually be sent (the “inner” packet is entirely
encrypted including the IP header so it’s not possible to see the original recipient). This
has the other VPN device, the other part of the ‘Security Association’, as its recipient. The
contents of the packet consist of an ESP header which contains the SA to which the packet
belongs (so the other router/PC knows how to decrypt it) and a sequence number used for
preventing replay attacks. A MAC is calculated for the entire packet (ESP header and the
encrypted original packet) and appended at the end. The new packet is then sent over the
internet.

Once received by the other device, the related SA is found in the ESP header. When the
MAC is checked and it is verified that that packet is indeed coming from the other end of
the SA, the sequence number is checked against already received packets. If everything is
correct, the packet is decrypted and the original IP packet is sent.

Now that we have discussed how the SA is used, it’s interesting to quickly describe the
way the SAs are created. While it is possible to configure them manually, IPSec also offers
a key exchange protocol called IKE for setting up SAs automatically. This makes it easy to
connect new clients to an IPSec VPN router without having to update the router configu-
ration each time. The key exchange protocol is based on Diffie-Hellman [Rescorla, 1999].
When manually configuring the SAs, authentication uses pre-shared keys. When IKE is
used username/password authentication can be used, as well as pre-shared keys.

L2TP
The Layer 2 Tunneling Protocol (L2TP) is another protocol that can be used for setting up
a VPN. It operates on the data link layer, as the name implies. Originally it only offered
support for the link layer Point-to-Point Protocol (PPP), but as of version three any link layer
protocol can be used through L2TP. L2TP uses a client-server model, where a server can
allow tunnels from multiple clients, which initiate the tunnel by connecting to the server.
Being a link layer protocol, the connection shows as a virtual network interface card on the
device it is used on [Townsley et al., 1999].

2An example of a web based SSH VPN can be seen over here: https://github.com/nickola/web-console
3IPSec consists of a larger collection of protocols, and is usable for more than just VPNs. For this research,

however, we will limit us to the VPN related parts of it.

8

https://github.com/nickola/web-console

Two important concepts in L2TP are tunnels and sessions. Between a single client and
server pair there can only be one tunnel. Through each tunnel there can be communica-
tion over several sessions, which allows different protocols to work through the same tun-
nel. In order to setup a connection, the client connects using a handshake and negotiates
an ID for the tunnel. Once the tunnel is set up, either the client or the server can create a
session, which uses another handshake and is assigned its own ID (independent from the
tunnel ID). When everything is set up, the data packets are rather straightforward as L2TP
does not offer as many security features as IPSec. Communication happens over UDP and
contains the tunnel ID, the session ID, sequence numbers (one for this packet and the ex-
pected sequence number for the response packet), and optional metadata on the size of the
packet and padding before the payload data (as some fields are optional the offset where
the header ends and the data starts needs to be sent) and of course the data itself. The data
is any frame otherwise directly sent by the L2 protocol used, for instance a PPP frame.

Note that this does not use a MAC or encryption, and thus doesn’t offer the same se-
curity that IPSec offers. However, you should also note that communication between the
L2TP client and server happens using an L4 protocol (UDP), which means that it’s possible
to transmit the data through an IPSec SA. This way, the same security that IPSec provides
can be offered, effectively lowering the layer at which IPSec operates to the data link layer.

The most common use of L2TP is by your ISP router/modem. Because there are many
ISPs available at most addresses yet there’s usually only one or two different cables running
into your house, ISPs have to share each others network to be able to offer their services
to a larger customer base. In order to protect customer data from their competitors, the
customer’s router or modem connects to a router in the network actually owned by their
ISP through an L2TP tunnel. This way, it’s safe to connect to your ISP over a cable owned
by their competitor.

OPENVPN
OpenVPN4 is a VPN protocol built with the OpenSSL cryptography library. Because it uses
this for encrypting the data, it also supports hardware acceleration which is commonly
supported due to the popularity of TLS and its use in HTTPS. This makes the encryption
faster compared to a software implementation.

OpenVPN is very feature-rich, and allows you to choose what layer data to send through
the tunnel. The default is the internet layer, but OpenVPN is also able to transmit Ethernet
traffic so it can be configured as a data link layer VPN. Besides choosing the layer at which
to work, OpenVPN also allows you to choose either UDP or TCP for the tunnel. Again, it is
important to note that this is the type of packet that is sent by OpenVPN itself, containing
the encrypted data that is passing through the tunnel, and not the type of data that is sent
itself (as it is a link layer or network layer VPN, both UDP and TCP can be sent through the
tunnel, regardless of the choice made here). In terms of reliability TCP offers no advantage
over UDP when using it for the VPN tunnel to transmit link or internet layer data, and it is
slower5. The reason OpenVPN supports it is because some firewalls can block UDP entirely,

4https://openvpn.net
5It is common to see VPN protocols use only UDP for communication. At first sight, this might seem to imply

that VPN protocols can lose your data because UDP does not guarantee delivery of packets. An important
detail, however, is that the unreliability of UDP is caused by the unreliable protocols on lower network layers.
This means that a VPN operating on a layer lower than the transport layer can safely use UDP, because
any reliability offered by using TCP for the connection is assumed not to be present anyways by protocols

9

https://openvpn.net

and the slower TCP implementation can still be supported so the VPN can still be used –
albeit with lower performance.

Being based on TLS, authentication is by default certificate based. If this is not desired,
pre-shared keys can also be used, and there are extensions that add support for username/-
password authentication.

WIREGUARD

WireGuard is a relatively new network layer VPN protocol. Like L2TP and (optionally)
OpenVPN it uses UDP for communication, which makes it relatively fast. WireGuard has
been designed to be as ‘simple’ as possible, meaning any extra functionality other than the
bare minimum required for a functioning VPN is left out of the core implementation and it
allows for extensions to offer any required additional functionality. This makes it easier to
debug and maintain, resulting in a more secure implementation.

Instead of using a third party cryptography library like OpenVPN does with OpenSSL,
the creators of WireGuard have created a custom protocol using their own set of crypto-
graphic algorithms [Donenfeld, 2017]. This is done to stay in control of the security Wire-
guard offers. If there ever is a problem with one of the algorithms used, in the next version
of Wireguard they can choose to use a different algorithm and that way fix the security is-
sues. They also do not offer a way to negotiate the primes to use, or the algorithms to use
(such as Diffie-Hellman for TLS [Dierks and Rescorla, 2008]). In order to connect to a newer
WireGuard server, the client should update to the same version to use the same algorithm.
This design choice prevents older clients making the server use weaker encryption for com-
patibility reasons, and other issues caused by allowing this type of negotiation [Adrian et al.,
2015].

When it comes to authentication, WireGuard uses a private/public key pair like SSH.
When a WireGuard packet is received, its signature is checked with the connected peers.
Based on that it is determined what the local IP address of the sender of the packet is. This
way, a packet received through a WireGuard interface claiming to be from a certain local IP
address is guaranteed to be from the peer connected at that local IP address.

This is the only method of authentication offered by WireGuard. When adding a peer
to the configuration, the user should first authenticate using a different method before the
server decides to create a peer with the provided public key. This way, the key pair of the
client is disposable, and only used for a single session. That approach allows us to add our
own authentication method to WireGuard as an additional layer, without having to remove
anything from WireGuard itself.

2.3. AUTHENTICATION
We describe the scope of the term ‘authentication’ in this research. We consider authenti-
cation to be proving that something or someone is authentic, or what it claims to be. In a
VPN, there generally are two stages where authentication is used. Any packets that need to
be routed from a client to the VPN server (or in the other direction) need to be authenti-
cated so the receiving end knows that it is a trusted packet that needs to be processed, in
other words that the packet is actually coming from the other end of the tunnel, is coming

that run through the tunnel and only slows down the connection. Running TCP through the tunnel offers
the same reliability as running TCP directly without a VPN tunnel, so also using it for the tunnel itself is
unnecessary redundancy.

10

from the sender which the packet claims it is coming from, and that its contents have not
been altered. This is called message authentication and is one of the core responsibilities
of the VPN implementation itself, and will not be altered for this research.

Another authentication aspect used in a VPN is when connecting to a VPN server. Some
VPN servers allow anyone to connect, but usually ‘premium’ VPNs that offer higher speeds
require the user to pay for their use. The user then signs in using for instance a username
and password, the VPN verifies that this user is allowed to use the VPN (for instance be-
cause this user has paid for it) and then the VPN tunnel is established. This is called user
authentication.

User authentication is the type that is the focus of this research. If we look at what the
user needs to prove, it is that he is allowed to use the VPN. For this, it is currently neces-
sary that the user discloses additional information which is irrelevant for using the VPN.
Common authentication methods for a VPN are username/password authentication or
pre-shared key authentication. In both cases, the information required for authenticating
can be seen as personally identifying information. Every time a user sets up a connection
with the VPN, the VPN server knows which user made the connection.

2.3.1. ANONYMOUS AUTHENTICATION

Anonymous authentication can be described as proving that you meet a certain require-
ment, without having to expose your identity in order to do so. A real-world example of
this is an old-fashioned train ticket. When you are on the train and you have to show your
ticket, you can prove you are allowed to be on the train by showing that you have purchased
a ticket. When trying to come up with an equivalent in the digital world, an important
problem becomes apparent: you can copy digital data as much as you want, without the
duplicates being distinguishable from each other.

For solving this problem we can employ a number of cryptographic tools. Having the is-
suer of the ticket sign it with a digital signature could prove that it is indeed a valid signature.
Signing the ticket along with a unique code which the user would not want to share would
prevent the user from copying it and providing copies to other users. But then, showing the
ticket and the signature would expose an identifying property: the specific ticket that you
own. Using it multiple times (if it were a subscription instead of a single-use ticket) would
be traceable to the same person. Further more, the signer of the ticket would know for
whom it signed that specific ticket. We will now discuss cryptographic tools that we could
use to solve these two specific problems.

We begin with the signing step of the ticket. There is a tool called a ‘blind signature’
which is exactly what it sounds like. The signer of the ticket can use this to sign it without
seeing its contents [Chaum, 1983]. You could compare it with an envelope which is lined
with carbon on the inside. The ticket requester would put the ticket into this envelope, and
have the signer sign the envelope instead of the ticket. What is on the ticket that we do not
want the signer to see is discussed when we go into detail about attribute-based credentials.
For now, it is sufficient to say that the requester of the ticket can create a unique ticket which
will become valid after signing.

For showing the ticket, we can choose to use a zero-knowledge proof of knowledge.
This is a way to prove you own a valid ticket without actually showing it. Usually a zero-
knowledge proof consists of an interactive protocol, by means of which after a few ‘experi-
ments’ the likeliness of you owning the knowledge you claim to know becomes high enough

11

that it can be considered true. A commonly used metaphor is that of the cave of Ali Baba6.
In order to make the process less time-consuming and interaction based, it is also possible
to use a cryptographic hash instead of an interactive protocol [Fiat and Shamir, 1986].

We now almost have a fully functional method of creating digital anonymous authenti-
cation. We can create a train ticket which can be used to authenticate, without allowing the
signer of the ticket to link it to us when we later show the ticket. We can also prove owning
the signed ticket without revealing its contents by means of a zero-knowledge proof. There
is still an important problem though, and that is that we can create infinitely many copies
of it and give those to other people, who can then all use the subscription. In order to solve
these problems, we will dive into a specific type of anonymous authentication called an
Attribute-Based Credential (ABC).

ATTRIBUTE-BASED CREDENTIALS

An attribute-based credential (ABC) is a credential which consists of attributes. The at-
tributes are a set of properties belonging to a person, for instance their name, date of birth
and nationality. The idea is that an issuer (the person signing a ticket in the previous sec-
tion) can issue a complete credential to a user. When authenticating, the user only shows
the required attribute(s) to the verifier, i.e. the person checking the tickets. We can use
this to prevent the user from giving the credential to someone else, by including private
information of the user in the credential (a secret key which the user does not want to give
away). When showing the ticket, this key is not revealed. But how does this work?

This brings us back to the signing phase. We discussed that we need to have a ticket to
sign, which contains information that makes it a valid ticket. This ticket is the credential. It
contains a secret key as one of the attributes, and some other attributes which are known
by the signer. As the signing is blind, we need a way to commit the user to this complete
credential so the issuer knows that he is signing the correct information. A mechanic to do
so is called a Pedersen commitment [Pedersen, 1991]. This is a way of selecting an arbitrary
value and giving a commitment another party. At a later point in time, the original value can
be revealed and it can be checked that that value indeed corresponds to the commitment
provided earlier.

Camenisch and Lysyanskaya show how we can combine a Pederson commitment with
a blind signature to create a signature for a tuple of values, of which some are known and
some are hidden [Camenisch and Lysyanskaya, 2002]. This is exactly what we need, as we
can sign a credential of which all values which the issuer wishes to provide are known to be
on the credential, and we also know for sure that it contains a secret key without the issuer
actually knowing what secret key. Another great feature of the Camenish-Lysyanskaya sig-
nature is that it provides randomisation, meaning there is a way to randomise the signature
in a way that it stays valid. This means we can show the credential several times, and it will
seem like a different one each time.

The last piece of the puzzle is showing attributes to the verifier. If we can somehow
show we have a signed credential containing a specific attribute (for instance, ‘valid train
ticket’), without showing the entire credential, we have completed our anonymous authen-
tication system. This is a mechanic called selective disclosure. This works by extending a

6The metaphor is not great, as the zero-knowledge proof provided only works if you can also enter the secret
cave without knowing the password, making the password worthless and thus defeating the purpose of using
a zero-knowledge proof in the first place. If it helps you understand the concept you can read it on Wikipedia:
https://en.wikipedia.org/wiki/Zero-knowledge_proof#The_Ali_Baba_cave

12

https://en.wikipedia.org/wiki/Zero-knowledge_proof##The_Ali_Baba_cave

zero-knowledge proof to work over the same tuple of credentials we used for creating the
credential. Because of the Pedersen commitment to the entire dataset, we can generate a
proof based on some disclosed, and some non-disclosed parts of the credential (as well as
the signature). This allows us to show only a few attributes, while still remaining able to
prove that the entire credential containing these known attributes is valid [Alpár, 2015].

APPLYING ABCS IN THE CONTEXT OF A VPN

Now that we have a basic understanding of anonymous authentication, we will adapt it
to be useful for connecting to a VPN. If we can create a subscription based VPN where the
owner of the VPN acts as the issuer of a credential, the user can then use selective disclosure
to prove he is allowed to use the VPN when initiating a connection with the VPN server. The
exact implementation we will use, and the workflow for authenticating to it, is explained in
the next section.

2.3.2. IRMA: I REVEAL MY ATTRIBUTES

I Reveal My Attributes, or IRMA7, is an ABC implementation. It uses IBM Idemix [Ca-
menisch and Van Herreweghen, 2002] credentials, based on Camenisch-Lasyanskaya sig-
natures [Camenisch and Lysyanskaya, 2002]. These signatures have all the benefits listed
in the Anonymous Credentials section, including randomisation. This is chosen in favor
of Microsoft U-Prove [Paquin, 2011], which uses signatures that do not offer this function-
ality. This makes it perfect for our uses, because it offers the multi-show unlinkability
that makes different machines of the same user connecting to the VPN appear the same
as different users using different machines. An important distinction to make here, is that
when a user connects to the VPN several times from the same IP address, this multi-show
unlinkability does not hold. In order to explain this better we will discuss an example.

Say Alice owns two laptops, both with their own IP address. So does Bob. All four lap-
tops connect to a VPN which uses IRMA for authentication and is owned by Eve who tries
to see what network traffic in the VPN belongs to which user. Because of the multi-show
unlinkability, the authentication requests seem to be from four different users. So, the traf-
fic on laptop 1 from Alice cannot be linked to the traffic on laptop 2 from Alice. To Eve, they
are as different as the traffic from Alice is different from that of Bob. So far so good. But
now, at a later time, Alice uses laptop 1 again to connect to the VPN. The authentication
request is again not linkable to Alice, like when she connected again but from a different
laptop. Only this time, Eve can see that it is coming from the same IP address, and thus
from this same laptop. While the traffic can still not be linked to that of laptop 2 of Alice,
this new traffic can be linked to the earlier traffic from the same laptop.

For end users, IRMA offers a simple to use smartphone app. When a user wishes to
authenticate to a verifier, a QR code is shown which can be scanned using the IRMA app.
Then, the user can prove possessing the attribute required for the authentication after first
checking that only the attributes that the user wishes to disclose are requested by the veri-
fier [Alpár et al., 2017].

7https://privacybydesign.foundation/irma-en/

13

https://privacybydesign.foundation/irma-en/

2.4. COMPARING DIFFERENT VPN IMPLEMENTATIONS
For this research, we will need to add anonymous authentication to an existing VPN im-
plementation. Now that we have discussed both VPNs and anonymous authentication, we
can make a choice in regards to what specific VPN implementation we will add IRMA. In
order to choose an implementation, we will use the description given about the various
implementations in Subsection 2.2.2. The implementations along with several properties
of these VPNs can be seen in Table 2.1. We can see the way the tunnel is established, what
kind of encryption it uses and for what layers it can be used.

VPN Tunnel Layer Data Layer Encryption

TLS VPN (web based) Application Application TLS
IPSec Network Network Variety of block ciphers, key exchange and cipher negotiation via IKE
L2TP Transport (UDP) Link None, but can be used through other VPN (usually IPSec)
OpenVPN Transport (TCP or UDP) Link or Network TLS
WireGuard Transport (UDP) Network ChaCha20 block cipher, key exchange via custom EC-based protocol

Table 2.1: This table shows a comparison of different VPN implementations. The tunnel layer means the layer
on which the protocol that connects the VPN devices together operates. The data layer refers to the layer of
the protocols that can be used through the tunnel.

2.4.1. LAYER
The first area where we will compare the VPNs is their data layer. In order to have a VPN
which is usable for all kinds of internet traffic (which is the most desirable kind of VPN for
the privacy sensitive users who wish to hide all of their traffic) and not just a single appli-
cation, we need to have a VPN which has its data layer at the Network layer or lower. This
leaves us with IPSec, L2TP, OpenVPN and WireGuard. Of these, L2TP does not offer encryp-
tion so it should always be used in combination with IPSec. As IPSec itself is sufficient in
terms of the layer it operates on, L2TP would only increase the overhead while adding no
benefit to our setup.

2.4.2. PERFORMANCE
Another area which is important is the performance of the VPN technology. Because we
specifically look for a VPN service which users would want to pay for and choose over a
free version (hence the need for authentication), it needs to offer sufficient performance.
When we look at the performance of the remaining VPN implementations, if we first look
at the most recent ones, we can see that WireGuard is much faster than OpenVPN [Mackey
et al., 2020]. This performance difference led to the question whether newer automatically
means faster, as for OpenVPN this did not seem to be the case. Further literature review
comparing all three shows that actually OpenVPN is also much slower than IPSec, which
has been around for a long time [Osswald et al., 2020]. WireGuard is the fastest of these
three, but IPSec also offers high performance. In some specific use cases, where hardware
acceleration can be fully leveraged, the more common encryption algorithms used by IPSec
mean it is faster than WireGuard which cannot use hardware acceleration.

2.4.3. SECURITY
IPSec, OpenVPN and WireGuard are all widely used and trusted for the security they of-
fer. However, there is a difference. The smaller codebase of WireGuard means there is less

14

attack surface compared to IPSec and OpenVPN [Donenfeld, 2017]. OpenVPN relies on
third-party software for its encryption, namely OpenSSL, which has due to its large code-
base and support for many different encryption suites suffered from several security inci-
dents [Jimenez et al., 2016; Yilek et al., 2009]. These issues of course have all been fixed,
but having everything required for the VPN to function in the small codebase of WireGuard
itself means that there is less risk for security issues, and fixing them is easier.

Becasue of these combined reasons, the choice was made to build the VPN using Wire-
Guard. This choice does not mean that that is the only VPN suitable for our research, but
it was the one considered to be the most suitable. IRMA could potentially also be imple-
mented in IPSec or OpenVPN.

2.5. REASONS FOR ADOPTING VPNS
To understand why and when anonymous authentication should be implemented in a
VPN, we need to look into the reasons people have for using a VPN in the first place. A
survey on the considerations and decision process for starting to use a VPN shows these
were approximately equally divided between emotional and practical considerations [Na-
mara et al., 2020]. The survey size was small (only 90 participants) so the actual distribution
of the different types of VPN users can be different and use cases can be missing (specifi-
cally working from home is absent from the results, while it is a well-known use of VPNs).
However, we only need a list of different use cases so we can see which ones benefit from
anonymous authentication so for that the survey is sufficient. Emotional considerations
are for example fear of internet surveillance and a general wish to improve internet privacy.
Practical considerations mean having to use a VPN in order to be able to do something, or
to be more safe doing something. Most respondents who had practical reasons indicated
the need to remain anonymous while accessing illegal content (pirating movies) as their
reason. Another practical reason is accessing content which is only available in a specific
geographical location [Roy and Marsoof, 2017]. While this is in some cases also considered
illegal, it is important to note the distinction where someone wishes to access content from
their home country while having to stay abroad. The inverse of this is trying to access the
internet from within a censored network [Khan et al., 2018].

During the COVID-19 pandemic, working from home became more common. In the IT
sector, where employees often need to use servers and other company-owned internet re-
sources, many companies started using VPNs for allowing their employees to safely access
company resources [Abhijith and Senthilvadivu, 2020]. This is another practical reason, but
one which is different in nature. For this, the VPN is maintained by the company, and only
that specific VPN can be used to access these resources. Publicly available VPN services
cannot be used to access content only available in an office network.

Out of these reasons, users who had emotional reasons for using a VPN are more likely
to become long-time VPN users, while the users having practical reasons only need them
for as long as the practical need exists [Namara et al., 2020]. Logic suggests that someone
wishing to use a service for a longer period of time (potentially always, to improve privacy)
is more likely to choose for a paid service than someone who just needs the VPN for a single
task, as lower quality free options exist as well [Khan et al., 2018] with whose limitations
someone not needing it for the long-term could cope more easily.

While users who value their privacy look for VPNs as the solution to their problem, it
can also be seen that VPN providers tend not to value the privacy of their users as much

15

as those users do themselves. A study of VPN apps available for Android phones shows
that most of the apps available include some form of spyware which collects information
on the user’s internet traffic [Ikram et al., 2016]. Therefore, using a normal VPN tends to
significantly decrease the privacy of the user towards the VPN provider which in turn is not
treating their data in a secure manner.

2.5.1. USE CASES

From these VPN adoption reasons, we can gather some use cases in order to be able to
analyse the benefits of an anonymously authenticated VPN in these different use cases. We
will name the use cases to make referencing them more easy. These different use cases have
been distilled as a way to group the reasons of adopting a VPN as discussed in the previous
subsection.

Anonymity: This use case refers to users wishing to remain temporarily as anonymous
as possible towards many different parties, for specific online activities. These users don’t
have the same general privacy concerns as the General Privacy users, but require increased
privacy only sometimes.

Censorship: Some users are located inside of censored networks. In order to be able
to access content widely available in the rest of the world, these users need to evade their
censorship system first. While some censoring countries also actively try to block VPN ser-
vices [Chandel et al., 2019], there are cases where using a VPN is sufficient to access blocked
content [Aceto et al., 2016; Bozdag, 2016].

General Privacy: This use case refers to users who wish to route all of their network
traffic through a VPN in order to improve their overall privacy, out of fear for being spied
on by their Internet Service Provider, their government or tech giants.

Geo Content: This refers to users requiring a VPN for accessing content only available
for people inside of a restricted geographical area. This is similar to Censorship, but in the
Censorship use case we consider the user to be inside of the restricted network and the
content accessed outside of it, and with the Geo Content we consider the content to be in
a restricted network and the user outside of that.

2.6. RELATED WORK
The problem of having to trust a VPN provider and the privacy implications that causes, is
not new. Other research has been conducted to measures which can be taken to improve
VPN user privacy. One of such measures is the use of a so-called distributed VPN or dVPN
[Varvello et al., 2021]. This is a peer-to-peer VPN network where instead of having a single
VPN router which is responsible for NAT functionality and determines the origin IP address,
traffic can be routed through any of the other connected nodes. This limits the amount of
traffic any single node can see. However, it does mean that you no longer even know what
third party you are trusting with your private information.

In order to solve this issue, a dVPN called VPN-Zero was developed [Varvello et al.,
2021]. VPN-Zero only uses ephemeral asymmetric keys for authentication and always routes
traffic through several nodes in order to make it impossible for nodes to log any traffic, be-
cause it is impossible to know what user the traffic belongs to. A downside of this is that
every single request needs a new ephemeral key (and to check a website white-list which
VPN-Zero allows nodes to have), having a massive impact on performance (connecting to

16

a website takes 10 seconds on average, and even up to 35 seconds). Additionally, it does not
offer authentication and only works for HTTPS traffic, essentially making it an Application
Layer VPN. It does, however, offer a very large amount of privacy as it is actually impossible
for anyone to gather logs on a specific user. This relates to our work as the focus is on the
privacy offered by VPNs and how it can be improved, but it lacks in speed, which is an issue
we are trying to solve.

Other research was done in order to improve the privacy of VPN users in a different
regard, namely on hiding the fact that a user is using a VPN. While this does not improve
the privacy of the user towards the owner of the VPN, it is very useful when using a VPN
in order to evade censorship. When it isn’t possible to determine that a VPN is used, it can
also not be blocked. Several methods of hiding the use of a VPN rely on video calls not
being blocked by most censoring authorities. This is made use of either by making the VPN
traffic seem very similar to video call traffic [Wang et al., 2014], or by actually using a video
call as the VPN tunnel [Barradas et al., 2020]. These approaches improve privacy towards
the ISP or government by hiding the fact that a VPN is being used. However, the privacy
of the user towards the VPN server does not increase using this method as the method of
authentication to the VPN server is not altered.

17

3
RESEARCH QUESTIONS

Now that we have a background of the problem, we will consider the research questions
which will be answered related to that problem.

• How do the authentication processes in the most common VPNs work, and what level
of privacy do they provide?

• How can anonymous authentication be realised in a VPN server?

• How can we implement IRMA in a desktop VPN application?

• How can we make the application which needs elevated privileges for setting up a
VPN connection secure?

• How does a VPN with anonymous authentication improve privacy when used in two
different scenarios?

– Accessing a blocked resource from within a restricted network

– Accessing a resource in a restricted network from outside of it

• Which use cases benefit most from this new VPN setup?

3.1. STEPS REQUIRED FOR ANSWERING
For each of these questions, we will take a look at how we will be answering them in this
research.

3.1.1. HOW DO THE AUTHENTICATION PROCESSES IN THE MOST COMMON

VPNS WORK, AND WHAT LEVEL OF PRIVACY DO THEY PROVIDE?
This question can be answered by looking at the theoretical background in Chapter 2 and
comparing how this would affect privacy. We have seen that these are username/password
authentication and pre-shared keys. They decrease the privacy a user has towards the VPN
server because their traffic can be linked together, and to a single user account. When this
is a paid VPN service, the user account can also be linked to the payment information of
the user, which typically also includes their billing address and real name.

18

3.1.2. HOW CAN ANONYMOUS AUTHENTICATION BE REALISED IN A VPN SERVER?
This step can partially be answered with the literature study in Chapter 2. There, we have
shown properties of IRMA which make it suitable for adding anonymous authentication.
Along with that, a VPN server will be developed which will be using anonymous authen-
tication using IRMA. The development of that prototype will show in practice how exactly
that is done.

3.1.3. HOW CAN WE IMPLEMENT IRMA IN A DESKTOP VPN APPLICATION?
IRMA is designed for use in a web environment. In order to implement this in a desktop en-
vironment, some additional steps need to be taken. This is essential in the development of
a VPN server using anonymous authentication, as the client software needs to have access
to the network settings of the machine it runs on. In the method section, we will discuss
the way this limitation of IRMA can be mitigated.

3.1.4. HOW CAN WE MAKE THE APPLICATION WHICH NEEDS ELEVATED PRIVI-
LEGES FOR SETTING UP A VPN CONNECTION SECURE?

Adjusting network settings requires elevated privileges. We need to make use of those priv-
ileges in order to be able to setup a VPN connection, but at the same time we also want to
secure our application. It improves user experience to just run the application with root
privileges, but this creates a security risk. We need to take a look at what measures we can
take to improve on the security of our application while at the same time not impacting
user experience too much.

3.1.5. HOW DOES A VPN WITH ANONYMOUS AUTHENTICATION IMPROVE PRI-
VACY WHEN USED IN TWO DIFFERENT SCENARIOS?

To answer this question, we need to do more than just develop the IRMA VPN server. Ex-
periments are required, in which we gather as many logs as possible to be able to analyse
the privacy level provided by adding anonymous authentication. What logs can be used for
what scenario and the implications it has can be found by looking at the details of the use
cases in Chapter 2.

3.1.6. WHICH USE CASES BENEFIT MOST FROM THIS NEW VPN SETUP?
After we have answered the question regarding the different scenarios for this VPN, we can
combine those answers to help us understand which use cases benefit most from adding
IRMA. We will discuss a number of use cases and see how they relate to the scenarios, and
we will then compare what use cases benefit most from the addition of anonymous au-
thentication.

19

4
METHOD

In order to answer the research questions, a design and creation type research is conducted
[Oates et al., 2022]. Based on the literature review of which the results can be seen in Chap-
ter 2, we can see how we can hypothetically improve the privacy of a VPN user by imple-
menting anonymous authentication in it. Out of this and a comparison of different VPN
implementations follows the suggestion to incorporate IRMA into a Wireguard VPN. This
can be done by adding an additional authentication layer in front of Wireguard to which a
user can authenticate, after which the built-in public/private key pairs used for Wireguard
are only used in a single-use fashion.

Because the research conducted consists of two separate stages, each with their own
method, the Method chapter has been split. This chapter serves as an introduction and
overview of the methods used. Then, both the prototype development and the experiment
conducted with the prototype will each be described in their own chapters.

4.1. PROTOTYPE DEVELOPMENT
In order to find out if this works in practice, an instantiation in the form of a working proto-
type is developed which incorporates IRMA authentication into a client/server VPN setup.
The VPN implementation used is WireGuard, which follows from the comparison made in
Section 2.4. A detailed description of the prototype can be seen in Chapter 5. Developing
the prototype shows the challenges encountered when using anonymous authentication
and specifically IRMA for this purpose, and how these are dealt with. This will also show
that this is indeed possible. The prototype will have a modular approach, allowing us to
choose different authentication methods. For this research these are username/password
authentication and IRMA. For IRMA, we consider the question of where a user would ac-
quire an attribute for access to the VPN out of scope, and consider only the verification of
the attribute and thus the authentication step.

4.2. EXPERIMENT
Building the prototype only shows us that it is possible to use IRMA authentication for a
Wireguard VPN setup. That in itself does not prove that the privacy of the user of such a
VPN is improved. In order to show that using IRMA authentication for a VPN server does
improve the privacy of an end-user, an experiment is conducted as well. The experiment

20

serves as an evaluation of the prototype and is described in Chapter 6. It will be conducted
by using the prototype and logging what happens in the mean time. Then, we will also
discuss the different use cases there are for using a VPN, and compare the results of teh
experiment to find out which ones benefit most from the VPN.

21

5
PROTOTYPE

Other research regarding the privacy of new proposed technologies effectively uses proto-
types in order to analyse the offered privacy [Liu and Simpson, 2016; Zibuschka et al., 2007].
This is helpful because while we expect that our proposed solution will improve user pri-
vacy based on the theoretical background offered in Chapter 2, actually implementing it
shows any areas that could have been missed that can impact privacy, and it also demon-
strates the feasibility of an implementation.

We will now take a look at the developed prototype. The prototype consists of several
different components. In order to connect a client to a VPN server, we need both client-
side and server-side applications. Furthermore, the server-side code also consists of several
smaller components. We will first take a global look at all the required components for the
prototype. Then we will see how they communicate with each other. After that a more
detailed description of the different components follows, because an in-depth look into
them is more clear after first seeing how they are supposed to work together.

5.1. COMPONENTS
If we look at the different components of the prototype, the server side was developed with
a micro-services architecture and consists of three separate services (see Figure 5.1). There
is an instance of Wireguard running, which is operating as it normally does. On top of
this, as part of the same service, there is a back-end application which has an API usable
for adding connections to that Wireguard instance. Together these form the Wireguard
Service. Then, there is an additional server side application responsible for authentication.
This forms the Authentication Service. The last component of the back-end is an instance
of the IRMA Server application. This is used for handling the IRMA authentication sessions.

On the front-end, there are three components required. One of them is an ordinary in-
stance of Wireguard used for setting up the client-side of the VPN tunnel. Then, there is the
IRMA smartphone app which is used for authenticating against the running IRMA server.
This is not modified for this thesis and can be used as-is. The last front-end component
is the IRMAGuard client-side application. This is a graphical user interface with which a
client can select a VPN server to connect to, and then authenticate to the authentication
server.

This setup where the back-end consists of separate smaller services is slightly more
work to set up, but eases the scalability of the product. It is possible to extend the au-

22

(2) Start session

(7) Add peer

(3) Send QR code

(8) Send local IP and public key

Authentication Service

WireGuard Service

(6) Authentication complete

IRMA Service

(9) Setup server

(1) Send public key

(4) Scan QR code

Client application

(10) Create VPN Tunnel

WireGuard

User devices Server-side
Services

(5) Authenticate

IRMA App

Figure 5.1: An overview of the used architecture.

thentication options, which will only have to be added to the authentication service. This
is practical for the experiments which we conduct with this prototype, as it makes it easier
to adjust only one parameter between experiments. It also means we can easily scale the
number of available VPN servers without having to change the endpoint at which the client
authenticates, as there’s still only one location where the authentication happens. The mi-
croservices are built inside Docker1 containers. Docker containers are small bundled op-
erating systems (minus the kernel) with software installed on them already. This means we
can combine our service with any required configurations for the operating system (such
as NAT capabilities for the Wireguard Service) so these configurations do not need to be
made by the user setting up the back-end of this VPN.

5.2. DATA FLOW
We will now look at the data flow in the prototype. We will first discuss the data flow in case
of anonymous authentication, as that is the focus of this research.

In order to begin authentication, the front-end application sends an authentication re-
quest to the Authentication Service. The Authentication Service will then start a disclosure
session on the IRMA Service, and return the QR code token it generated to the client-side.
The client-side application will now show the QR code, and after scanned with the IRMA
app the authentication session will take place (this is handled by the IRMA App and the
IRMA Service). During authentication in the app, a communication channel stays open
between the front-end and the IRMA Service by means of a web socket2. This is a way to

1https://www.docker.com/
2https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

23

https://www.docker.com/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

implement two-way communication on a web page, and it is implemented within the li-
braries provided by IRMA so no additional development is required for using it. This allows
the front-end application to display the current status of the authentication session, and to
know when authentication was successful.

Upon successful authentication with IRMA, the client application sends a request to the
Authentication Service containing the IRMA Session Token used to identify the authentica-
tion session with the IRMA Service, along with a freshly generated public key for Wireguard.
The Authentication Service will then check the status of the session with the IRMA Service.
If the authentication was successful, the Authentication Service will send the public key
of the client to the Wireguard Service in order to set up a new peer. It will then receive a
new local IP address for the client from the Wireguard Service and the public key of the
Wireguard Service, and return it to the client.

After authentication, the application uses the received local IP address and the public
key of the Wireguard server to set up the client side of the Wireguard VPN tunnel. Routing
settings are also updated on the client side to make sure all traffic is routed through the
VPN. For a full overview of the architecture, see Figure 5.1.

When using username/password authentication, the data flow requires less steps. In-
stead of first starting the IRMA session and then sending a request to verify the IRMA au-
thentication, only a single request from the client application to the back-end is required.
The username and password need to be sent to the Authentication Service, along with a
freshly generated Wireguard public key. The Authentication Service can then immediately
verify the authentication and send the Wireguard key to the Wireguard Service.

We will now discuss the individual services in more detail.

5.3. WIREGUARD SERVICE

This is the simplest of the back-end services, as it only offers a single API endpoint and
is only capable of doing one thing: creating a Wireguard network interface and adding
peers to that. For the API framework, Flask is used3. This is a very simple Web Applica-
tion Framework built with Python. In order to be able to control Wireguard from Python,
a Python library was created as part of this prototype called python-wireguard4. This is a
simple wrapper for the C library provided by Wireguard themselves5, abstracted into sepa-
rate client and server side classes.

Authentication to this API endpoint is done using an API key. That key is just a simple
secret password shared between the back-end services. End users will not need this key as
they will not interact with this service directly. In order to set up a connection, a Wireguard
public key needs to be sent to the API. In response, after adding the client as a peer to the
Wireguard connection, the public key of the server6 and a newly generated local IP address
for the client are sent back.

3https://flask.palletsprojects.com/
4https://pypi.org/project/python-wireguard/
5https://www.wireguard.com/embedding/, see the section “Linux: embeddable-wg-library”
6The public wireguard key of the server does not change over multiple connections because the server does

not need to remain anonymous towards the user.

24

https://flask.palletsprojects.com/
https://pypi.org/project/python-wireguard/
https://www.wireguard.com/embedding/

5.4. AUTHENTICATION SERVICE
This application is the part of the back-end which is responsible for the authentication
to the VPN. It is able to communicate with the Wireguard Service because it has the API
key required for that (the key is part of the configuration of the service). This server side
application is also developed using Python and Flask. The authentication service supports
two types of authentication: username/password and IRMA.

Authenticating with a username/password combination can be done by sending a re-
quest with the username and password along with a public key for the Wireguard connec-
tion, after which (if the username and password are correct) the client is added as a peer
to the Wireguard Service and the public key and newly generated IP address retrieved from
the Wireguard Service are returned to the client.

Authenticating using IRMA requires more steps. At first, a request is sent by the client
to an endpoint of the Authentication Service which will initiate the IRMA session. The QR
code contents required by the front-end are then returned. The rest of the IRMA authen-
tication flow by the client is handled by the client application and the IRMA server. When
the IRMA session is completed successfully, the client application sends a request to the
Authentication Service with the IRMA session token, along with a Wireguard public key.
The Authentication Service then verifies the status of the IRMA session, sends the public
key to the Wireguard server application and returns the new local IP and the public key of
the Wireguard server to the client.

One Authentication Service can authenticate a client for multiple Wireguard Servers.
Each Wireguard Server is identified with a unique identifier, e.g. “GB1”, and this identifier
should be submitted with authentication requests sent to the Authentication Service. Upon
successful authentication, the IP address and Wireguard port of the Wireguard Server are
returned to the client as well to finalise setting up the connection. Each Wireguard Server
requires its own Wireguard Service to add peers to it. Because of this, both Wireguard and
the Wireguard Service are bundled together in a single Docker container.

5.5. IRMA SERVICE
The IRMA Service consists of a simple Docker container containing an instance of the IRMA
Server application which is offered by IRMA themselves7. It is put into a container in order
to ease deployment of the back-end, because we can now with a single Docker command
start everything required for the complete back-end. Other than that, no changes are made
to IRMA.

5.6. CLIENT-SIDE APPLICATION
For the client-side, an application with a graphical user interface (GUI) was developed. It
was made using Electron8 and Vue.js9. Electron is a framework built around the Chromium
web browser10 combined with a Node.js11 web back-end. This combination means that it
is possible to run a web application locally on a user’s computer. This consists of a front-

7https://irma.app/docs/irma-server/
8https://www.electronjs.org/
9https://vuejs.org/
10https://www.chromium.org/
11https://nodejs.org/en/

25

https://irma.app/docs/irma-server/
https://www.electronjs.org/
https://vuejs.org/
https://www.chromium.org/
https://nodejs.org/en/

end application (which is a website) and this Node.js back-end application which handles
parts of the application which need to run on the device of the user, such as setting up
network connections for Wireguard or communicating with the services belonging to the
VPN back-end. The front-end website in this case is developed using Vue.js, which is a
front-end javascript framework used to simplify creating interactive apps which run in a
browser. This combination means that it allows us to create a rapid prototype, as every-
thing we need can be built into Electron relatively easily. For a production-ready version
of the application, Electron would have to be replaced by a more secure alternative, as its
inclusion of Chromium means it is a security risk.

The front-end makes use of the IRMA front-end library12, and includes a few pages
which make up the authentication flow. When a user opens the application, the user can
first select the VPN server to connect to. For now, this is only a single one which is set up in
the United Kingdom, in London. You can see a screenshot in Figure 5.2.

Figure 5.2: Server selection.

After making a choice, the user arrives at the authentication page. In the case of anony-
mous authentication, this shows an IRMA QR code which you can scan with the IRMA App.
An example is shown in Figure 5.3. Scanning this QR code with the IRMA app on a smart-
phone will begin authentication. In order to authenticate, you need to have an attribute to
authenticate with. Creating a subscription website where a user can buy a subscription for
the VPN service was considered to be out of scope for this research, as that is something
which is exactly the same as with normal uses of IRMA. For this reason, it was decided to

12https://irma.app/docs/irma-frontend/

26

https://irma.app/docs/irma-frontend/

use one of the demo attributes provided by IRMA themselves, called ‘IRMATube’13.

Figure 5.3: IRMA Authentication screen.

13You can get this attribute by clicking ‘Register’ button in the top-right corner of this page: https://
privacybydesign.foundation/demo-en/irmaTube/

27

https://privacybydesign.foundation/demo-en/irmaTube/
https://privacybydesign.foundation/demo-en/irmaTube/

Completing the authentication using the IRMA App will initiate the VPN connection.
Because this needs to be done using root privileges, you will be asked for your (sudo) user
account password, as shown in Figure 5.4. Note that this password is not used for authen-
ticating against the VPN server, as that authentication has succeeded already at this stage,
but that this is required to make network interface changes on your computer. This is some-
thing which only happens on your local computer.

Figure 5.4: You will be asked for your local OS user account password. This is needed for permission to alter
the Linux network settings so WireGuard can be enabled. This step is added so we do not have to run the
entire application as root, and the username and password are only used locally on your own machine.

After setting up the connection, you can see that you have been connected to the VPN
server as shown in Figure 5.5. We can verify that this is correct by consulting an IP address
checking website, as can be seen in Figure 5.6. There’s also a ‘disconnect’ button for turning
off the VPN. Clicking that will ask for your user account password again, as network changes
have to be made for turning off the VPN connection. This approach was chosen in favor of
running the entire client-side application as root because Electron comes with a complete
web browser built in, which we do not want to elevate to root permissions.

28

Figure 5.5: Connected successfully.

Figure 5.6: The public IP address. This is indeed the address of our VPN server.

29

6
EVALUATION

Building the prototype is not sufficient for answering all research questions. We need to
analyse the privacy properties of the prototype in order to be able to say something about
any improvements of the privacy of the user. To do so, we run some experiments. This
chapter first describes the experiments conducted, and the setup required for them. For
using the prototype in this experimental context, some additional resources were required
such as a VPS and a reverse proxy for making all different services accessible. The way these
are configured and can be used is shown.

Furthermore, there are some details on how logs are gathered both from the VPN server-
side applications themselves, and from the network interface of the VPS running the VPN.
Logging is built into the prototype, and each service should output its logs to Docker Com-
pose which will give a complete overview of all application logs. This includes the default
output of the IRMA server application which is integrated into the prototype.

By looking at what services deal with which information, we can make a privacy analysis
of the software. It is commonly done both as a static analysis of the application by looking
at what privacy sensitive information each part of the application will process, as well as
a dynamic analysis of the application while it is running [Papageorgiou et al., 2018]. The
static analysis is included at the end of this chapter in Section 6.4.

6.1. EXPERIMENTAL SETUP
We have seen the different components which form the prototype in Chapter 5. We will
now discuss the way this was set up for testing. For testing the VPN, a Virtual Private Server
(VPS) was rented in the United Kingdom, because this is a separate country and verifying
that geo-specific content can be seen with the VPN is easier if the VPN is not in the same
country as the computer initiating the connection. On this VPS the different services were
initially installed without running them with the Docker containers. It proved cumbersome
to have to start/restart all these independent services, and to make sure they were all up
and running in order to conduct a test. Because of this, the transition to Docker containers
was made. Because it was sufficient for a proof of work, those containers were run using
Docker Compose1. This is a simple way to configure multiple containers to run at once,
without having to manually start/stop them. However, this still requires a VPS for running

1https://docs.docker.com/compose/

30

https://docs.docker.com/compose/

it as Docker Compose starts the containers on a host system. As the VPS was already rented
for the initial Docker-less setup, this was not a problem. You can see the Docker Compose
configuration file in Listing 6.1.

Listing 6.1: docker-compose.yml

version: "3.9"
services :

authentication:
image: jarnoaxel / authentication_server
ports:

- "5000:80"
environment:

- APP_KEY=$ {APP_KEY}
wireguard:

network_mode: host
image: jarnoaxel / wireguard_server
privileged : true
environment:

- APP_KEY=$ {APP_KEY}
irma:

image: jarnoaxel / irma_server
ports:

- "8088:8088"

This listing shows how the different services are configured. There are three services
configured, which means that there will be three Docker containers running. This is an
example configuration for running the containers on a single machine. For the experi-
ment this suffices, in a real world setup the containers would not necessarily be running
on a single machine. Because of this, separate ports need to be configured for the different
containers. This is visible in the listing in the ports section of the services. Docker allows
forwarding a port on the host machine (the machine running the containers) to ports on
the container.

As can be seen in the listing, the Wireguard service does not have a ports configuration.
This is an important distinction because the Wireguard service will be what clients will be
connecting their Wireguard tunnels to. When all network traffic from a client is routed via
the Wireguard service, it needs to offer NAT functionality [Srisuresh and Egevang, 2001].
The NAT protocol uses a large number of ports depending on the amount of traffic from
different connected clients, so these ports cannot be forwarded to the service in advance.
Because of that, the Wireguard service is configured to use the network of the host machine,
so it can easily use any available ports.

6.2. REVERSE PROXY
The setup described above allows us to start all services at once with a single command,
which is more convenient for setting up the experimental environment. Now we have all
services running on the VPS, they are available at different ports. Also, all of these services
are running plain HTTP without TLS. In order to make the endpoints available over a TLS
protected domain name, we need to add a reverse proxy which is TLS protected and for-

31

wards requests to the correct service. For this, NGINX2 was used. NGINX is a web server
which allows setting up a reverse proxy. It is configured to route specific URL patterns to
the appropriate container, and the configuration can be seen in Listing 6.2.

Listing 6.2: NGINX Virtual Host Configuration

server {
server_name example .com;

location / authentication {
proxy_pass http : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 0 ;

}

location / wireguard {
proxy_pass http : / / 1 2 7 . 0 . 0 . 1 : 5 0 0 1 ;

}

location / {
proxy_pass http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 8 ;

}

l i s t e n 443 s s l ; # managed by Certbot
s s l _ c e r t i f i c a t e / etc / letsencrypt / l i v e /example .com/ f u l l c h a i n .pem;
s s l _ c e r t i f i c a t e _ k e y / etc / letsencrypt / l i v e /example .com/ privkey .pem;
include / etc / letsencrypt / options − s s l −nginx . conf ;
ssl_dhparam / etc / letsencrypt / s s l −dhparams .pem;

}

server {
i f ($host = example .com) {

return 301 https : / / $host$request_uri ;
}

l i s t e n 80 ;
server_name example .com;
return 404;

}

This listing shows how the NGINX reverse proxy is configured. The different URL pat-
terns are configured as a location. The authentication and wireguard service are available
under respectively the /authentication and /wireguard URLs. Any URL that doesn’t
start with one of these two sub-paths is forwarded to the IRMA service. All of these paths
are only available on the HTTPS port 443. There is also a configuration listening at port 80
which returns a redirect to the HTTPS equivalent of the URL whenever a non-TLS HTTP re-
quest is sent to the server. This is more secure, and also required by the IRMA app in order
for that to connect to our IRMA service. In this listing, the actually used domain name has
been replaced with example.com.

2https://www.nginx.com/

32

https://www.nginx.com/

Client Application

Virtual Private Server

IRMA Service

Authentication
Service

Wireguard Service

NGINX
Reverse ProxyIRMA App

Figure 6.1: Connections in the experimental setup with the Reverse Proxy. Green arrows represent HTTPS
connections, orange arrows HTTP connections and the purple arrow is Wireguard traffic.

The final setup including the Docker containers and the reverse proxy can be seen in
Figure 6.1. This figure shows how all TLS protected HTTPS requests are handled by NGINX,
and then forwarded to the appropriate service. This goes for both the connections from
the client application and those from the IRMA app on the user’s phone. As you can see,
there is no reverse proxy setup for the Wireguard Service, as its HTTP endpoints are only
approached from the same server, from the Authentication Service. The Wireguard con-
nection between the client and the Wireguard Service does not need the reverse proxy, as
it is a different kind of traffic and listens on a different port. It is also encrypted by itself so
there is no need to ’wrap’ it in an HTTPS request.

6.3. LOGGING
In order to gather information on our authentication sessions and connections to the VPN,
everything that happens on any of the services is logged. One of the benefits of Docker
Compose is that we can see all logs from all different services in a chronological order com-
bined into a single log (with the name of the service logging the particular entry included).
Because of this, we have a clear overview of everything that happens and the order in which
it happens. This includes the IRMA server. The logs are included in Appendix A and Ap-
pendix B.

The logs, as they only concern the services, do not include the actual creation of the
Wireguard tunnel by the client and server. In order to gather information regarding this, we
need to also log the network traffic. For this, a network packet sniffer is required, such as
WireShark3. We can run this on the VPS beside the containers, as any packets intended for
the containers pass through the VPS itself. Besides that, the Wireguard container uses the
host network, which is the network of the VPS itself. This allows WireShark to even decrypt
any WireGuard packets, as it has access to the encryption keys (it runs as root).

The traffic and authentication which will be analysed will be the same for the two au-
thentication types, and for the two different locations where the network traffic will be
sniffed. It will consist of an authentication session (which depends on the authentication
type for that part of the experiment), and then a visit to Google (https://www.google.com).
This ensures we have both an unencrypted DNS query to retrieve the correct IP address for
Google, and then HTTPS traffic which is TLS protected. After that the VPN will be discon-
nected.

3https://www.wireshark.org/

33

https://www.wireshark.org/

Service VPN Local IP WireGuard Public Key Username Password IRMA Session ID

Authentication Service (when username/password) ✓ ✓ ✓ ✓

Authentication Service (when IRMA) ✓ ✓ ✓

IRMA Service ✓

WireGuard Service ✓ ✓

Client Application ✓ ✓ ✓ ✓ ✓

Table 6.1: This table shows which parts of the prototype process what information. The Authentication Ser-
vice is shown twice, to make a distinction to when it is used with username/password authentication and
when it is used with IRMA.

6.4. PRIVACY ANALYSIS
Now that we have seen how we will run the experiment and what logging is done in which
areas, we can evaluate what personal information we expect to be processed by each ser-
vice. This is based on the data flow through the application as described in Section 5.2 as
well as the source code of the application. The result can be seen in Table 6.1. Focus on the
combination of information known when using all server-side Services in a setup, so either
including the first or the second row, not both.

The table contains what personally identifiable information is visible to which parts of
the application. We can see that the back-end components, when using IRMA, can only
see the local VPN IP address, the public WireGuard key of the user and the IRMA Session
ID. Because we know that IRMA does not expose any personally identifiable information,
the session ID does not disclose anything else [Alpár et al., 2017]. Both the public key and
the local IP are ephemeral, so they are only the same for one ongoing session. This analysis
shows the expected results of the experiment based on the developed prototype, and does
not show any actual results gathered by running the experiment.

34

7
RESULTS

Now that we have seen the prototype which was developed as part of this research, and the
experiment was described, it is time to discuss the results of the research. We will first look
at the development process and see what obstacles were encountered there. Then we will
dive into the results of the experiments. For this, we will look at the logs gathered from the
software while the experiment was conducted. Then we will look at network traffic which
was gathered in two different locations. We will end by comparing the combination of the
logs and the network traffic, in two different scenarios.

7.1. DEVELOPMENT
The first stage of the experiment was the development itself. The prototype was developed
as described in Chapter 5, and this was executed successfully. Development started with
the WireGuard Service, because that was the most self-contained component. For this, the
first step was building an interface to easily interact with WireGuard using Python code.
Once this was built and tested, the WireGuard service itself was very straightforward. All
that was needed was a single HTTP endpoint used for adding a new connection when given
a public WireGuard key, and having it add a new WireGuard peer and return its local IP
address. This was tested by sending the requests with Postman1 and then manually setting
up the client-side WireGuard peer.

When the WireGuard Service was working, the next step was developing the Authenti-
cation Service. Initially this only consisted of username/password authentication, as that
would be the simplest authentication type and building it would show if the architecture
would be feasible. For this, username and password were hard-coded constants in the ap-
plication. As the Authentication Service needs to communicate with one or more different
WireGuard services, it contains a list of details of where to find those services based on their
unique name. For the experiment, this consisted of a single service, again hard-coded. This
first version of the Authentication Service also consisted of just a single endpoint, for au-
thenticating based on a username/password combination, along with a public WireGuard
key of the client and the requested server name to connect to. It would then communicate
with the corresponding WireGuard Service and set up a new peer when authentication was
successful.

1https://www.postman.com/product/tools/

35

https://www.postman.com/product/tools/

The next phase of development was the front-end. This proved to be more tricky due
to lack of experience in working with Electron.js. Building a desktop application brought
along some complications in terms of finding the right versions of all used libraries (at the
time of development, Vue.js version 3 was just released, which turned out to be incompat-
ible with most other js libraries built for Vue.js) and setting up the correct CORS settings
for all endpoints, and having the back-end of Electron send API requests where possible as
that did not incur CORS issues. Eventually a prototype with username/password authenti-
cation was built.

Now the prototype still missed anonymous authentication. The Authentication Service
was extended so it could communicate with a running instance of the IRMA Server soft-
ware, and for this it required two additional endpoints: one to initialize an IRMA session,
and one to finish the IRMA workflow after successfully authenticating with the IRMA App,
and actually setting up the WireGuard connection. This worked with an out-of-the-box in-
stance of IRMA, yet not without problems. The IRMA App refused to work with our instance
of the IRMA Server because it wasn’t protected using HTTPS. It was also very cumbersome
to always have to stop, reset, and reboot every different service (and to clean up WireGuard
on the VPS so it could accept fresh connections). Both problems were solved by following
the Docker Compose and NGINX setup described in Chapter 6.

7.2. SERVER SIDE LOGS
During the experiment, logs were kept by all services on the server side. These are com-
bined by Docker Compose, and this way a chronological occurrence of all events can be
seen, across all of the different services. The logs, of both different scenarios, can be seen
in the appendices at the end of this document.

7.2.1. USERNAME/PASSWORD AUTHENTICATION

The first logs collected are of a username/password authentication. These can be seen in
Appendix A. We can see that the authentication this time happens in a single request sent by
the client to the Authentication Service. It logs the request and then sets up the WireGuard
peer on the WireGuard Service. The most important part of these logs is seen on lines 11
until 13. This shows that signing in with a username/password combination reveals what
username is connected to the local IP address inside of the VPN. In this specific case, it
shows that user ‘jarno’ has IP address ‘10.0.4.2’.

With username/password authentication, the authentication process is very simple but
it also leaks information about who is authenticating: we have a unique username which
can be linked across several sessions and also to the purchase of the subscription.

7.2.2. IRMA AUTHENTICATION

The next experiment was signing in with IRMA. The logs generated during that experiment
can be seen in Appendix B. We can see that these logs are different, in particular they are
longer. This is because the authentication now happens in more steps. Instead of just
receiving the username, password and public key in one go, we can see an initial request
being sent to the authentication server to start an IRMA session (that just logs “Starting a
new IRMA session”). After that, we can see the IRMA Service logging what is happening.
First, it logs that a new session is started. This is done by the Authentication Service. Then,

36

it receives requests from both the client application (which is polling it for status updates),
and from the IRMA App on the phone of the user.

When the IRMA Session is finished, we can see that a new request is received by the Au-
thentication Service. This was sent by the client application after the IRMA Authentication
was successful. Line 11 shows the data in this request. It contains the IRMA Session token,
the identifier of the server the client wants to connect to (GB1, the only one available), and
the public Wireguard key of the client. The Authentication Server then evaluates that the
IRMA Session Token belongs to a successful authentication session and the connection is
established on the WireGuard Service.

We can see that this time, while more steps are required, less data is shared. The IRMA
Session token does not share any information on the user, and we no longer have a user-
name or a password.

7.3. PACKET SNIFFING
In order to analyse network traffic, packets were sniffed using Wireshark. This was done in
two separate locations: on the VPN server itself, and on the client machine. This was done
because we want to analyse two different scenarios, namely one where we cannot trust the
VPN Server and the ‘attacker’ has access to everything on the back-end side of the VPN,
and one where the ‘attacker’ is the ISP of the user and cannot access the VPN itself, and
only see the network traffic between the user and the VPN server. The case where we sniff
the packets on the client machine simulates sniffing anywhere between the client and the
VPN server, as the sniffer was not configured to decrypt the Wireguard packets.

7.3.1. HOSTILE VPN SCENARIO
In order to simulate this scenario, Wireshark was connected to the Wireguard network in-
terface on the VPN server. When running in this way, the packets are visible as they are
‘inside’ of the Wireguard packets, so they lose that layer of encryption. A screenshot of
Wireshark showing a list of packets can be seen in Figure 7.1.

After starting Wireguard, a connection was initiated to the IRMAGuard VPN from a
client computer. After that, some web browsing to Google was done, and the IP looked
up to check if the VPN was connected successfully.

Figure 7.1: An overview of the packets detected by Wireshark.

For those familiar with Wireshark, it can be seen there is no difference between the
screenshot and detecting packets which are not sent over Wireguard. This is because Wire-
shark detects the network traffic inside of the VPN network. If we open one of the packets
we can inspect it to see further detail. An example can be seen in Figure 7.2.

The selected packet is a DNS packet, which was selected on purpose because those are
not encrypted. If we look at the contents of the packet, we can see that this was a request
to retrieve the IPv4 address (the A record) for www.google.com. This means that someone
wanted to visit that website, which is correct as that was the experiment conducted.

37

Figure 7.2: A single DNS packet.

It is important to note the line Internet Protocol Version 4, Src: 10.0.4.4,
Dst: 103.86.96.100 in the screenshot. This is the IP header of the packet, and it con-
tains information essential to our research. This is because the source IP address in this
example is a local IP address in the VPN, and not the IP address of the VPN Server. This
tells us that having access to the VPN server shows us the network traffic of the connected
clients, and not just network traffic after the VPN, i.e. the traffic the VPN server initiates
with the public internet on behalf of the clients also shows what client it is for (at least
which local IP address is the final destination of the packet).

Figure 7.3: A packet belonging to an HTTPS request.

An important distinction as to what is and isn’t visible to someone sniffing packets on
the VPN server can be explained by taking a look at another screenshot. In Figure 7.3 we

38

can see a TLS packet belonging to an HTTPS request.
In the IP header of the packet, we still see the same information. We can see the (local)

IP address of the source, and the destination IP address of the request. However, this time
we cannot see the application layer data. This is because unlike the DNS protocol this
protocol is encrypted. In Figure 7.4 it is visible why this is happening: the TLS session
which handles the encryption of the application layer is initiated between the client and
the web server, and the VPN server has no access to the encryption keys.

Client PC

Web Server VPN Server

IP Packet

IP Packet

HTTPS Request

Figure 7.4: Diagram of communication between the three devices involved in sending an HTTPS request
through a network layer VPN tunnel.

7.3.2. TRUSTWORTHY VPN SCENARIO
When the VPN is not the compromised part of the connection, but the network in which
the client machine is located, what is visible in the network packets is different. In order
to simulate the ISP tracking the network activities, Wireshark was set up to sniff packets in
the local network of the client machine. An overview of detected packets can be seen in
Figure 7.5.

Figure 7.5: An overview of detected packets in the local network.

We can see all packets are traveling between the same two IP addresses, the local IP of
the client machine and the VPN server IP address, and they all follow the same protocol,
namely WireGuard. Opening one of the packets shows us what is visible in Figure 7.6.

In the experiment, the packet contents could not be seen. There was only encrypted
traffic visible. The encryption of WireGuard is preventing an attacker who has no access
to the VPN server from tracking the network traffic. This was to be expected as it is what
WireGuard is designed to do.

39

Figure 7.6: A single WireGuard packet.

40

8
DISCUSSION

We will now discuss the results we have gathered, and answer the research questions. We
will be going over the development first, and answer questions related to the development
process itself. For the privacy related research questions, we will also have to look at the
results from the experiments. For this, we will group the results collected from different
sources (the application and WireShark on different locations) into two different main sce-
narios. We will compare these results in the light of the different use cases we have, as
described in Subsection 2.5.1. For these use cases, we will not only look strictly at the re-
sults there are which are relevant for the use case, but also at the implications these results
have for the specific use case. We will also see in what areas privacy is improved, and in
what areas it isn’t.

8.1. PROTOTYPE DEVELOPMENT
When developing the VPN server, it was shown how we can implement IRMA in a desktop
application. By using Electron, the web-based front end libraries of IRMA could be ported
to a desktop application. This did cause problems regarding to the Cross Origin Resource
Sharing protocol as IRMA did not take this into account initially. When the right headers
were added to the packets sent by the IRMA server, this problem was solved.

By splitting the back end up into microservices, authentication was taken out of the
VPN server itself and moved it somehwere else. This allowed swapping out the authentica-
tion mechanism for a different one, so using anonymous authentication became possible
simply by changing part of the authentication service.

Using Electron introduced a security hazard, as it runs Chromium which adds a third-
party software requirement which is larger than the developed client-side application. Be-
cause of this, running it as root is not considered safe. If a security exploit were detected
in Chromium and by extension in Electron, it could execute arbitrary code as the root user.
However, we do need root access to the client machine to set up a network interface for
WireGuard. In order to allow us to set up the network connection without running our en-
tire appliation as root, pkexec1 was used. This allows running a smaller script (which only
sets up the WireGuard connection) as the root user, for which the user is asked for a sudo
or root user password when it is run. The rest of the application runs as the normal user.

1https://www.freedesktop.org/software/polkit/docs/0.105/pkexec.1.html

41

https://www.freedesktop.org/software/polkit/docs/0.105/pkexec.1.html

8.2. PRIVACY IMPLICATIONS IN DIFFERENT SCENARIOS
The goal of developing IRMAGuard was improving the privacy of the user of a VPN. We will
now evaluate the privacy improvements in different scenarios where users would typically
use a VPN. In order to do this, we will first look at two different scenarios in which an at-
tacker has access to different information. Then, we will compare different use cases of
a VPN to these two scenarios and show the impact of IRMA authentication on those use
cases.

8.2.1. VPN OUTSIDE OF RESTRICTED NETWORK

For this scenario, we will have the following assumptions: an attacker has access to all net-
work traffic from the client machine, and not to the logs of the VPN server itself. This means
that all information the attacker has is the data shown in Subsection 7.3.2. If we want to de-
termine how privacy is improved in this scenario, we need to be able to distinguish the
information available to the attacker from either username/password authentication and
IRMA authentication. As we cannot see the packet contents at all in this case, the authen-
tication is irrelevant. The attacker knows what client the traffic belongs to (because it can
sniff packets directly from the client machine), yet is not able to decrypt the packets and
thus cannot see any network traffic at all. Privacy is not improved in this scenario by using
IRMA, as the attacker was already unable to detect anything.

8.2.2. VPN INSIDE RESTRICTED NETWORK

In this scenario, the attacker has access to the following: network traffic from the VPN
server as seen in Subsection 7.3.1 and the VPN server authentication logs as seen in Sec-
tion 7.2. If we look at the network traffic first, we can see that it is possible to track network
activity within WireGuard sessions, and decrypt them. The individual sessions can be dis-
tinguished by the used local IP address in the packets. This is the same, regardless of the
used authentication method. However, there is an important distinction.

The local IP addresses are ephemeral, and are only used for a single WireGuard session.
Who the IP belongs to is not known to the attacker by looking at the packets alone. Here,
the authentication logs are important. As shown, we can see the username used to sign in
for every generated local IP whenever the session is started. This means that when using
username/password authentication every detected packet can be linked to a user account.

When we use IRMA, we can see the logs from the IRMA server, and we can see the ses-
sion tokens used for the authentication. However, as we have discussed in Subsection 2.3.2,
from looking at everything in an IRMA authentication session we cannot retrieve any infor-
mation at all other than that whoever is authenticating is allowed to use the VPN [Alpár
et al., 2017]. This means that in this case, we can still combine the packets detected within
each WireGuard session and know they belong to the same user. We cannot detect what
user that same user is, and by reconnecting the user gets a new local IP address and starts
a new session.

In the logs, we can also see the IP address of the client authenticating. Of course, when
we know who this belongs to it does not matter that we cannot see the IRMA authentication
session itself. When it is not known who it belongs to, the IP address can still be used to link
sessions together. This is an important detail as it is an additional part of the authentication
which needs to be improved on. This is something which is relatively easy to hide, and we

42

will discuss this later in this document.

8.3. LIMITS OF THE PRIVACY IMPROVEMENT
Before looking at the VPN use cases, we will look at a summary of places where privacy was
not improved by adding IRMA authentication. The first one is when an attacker does not
have access to the VPN server. This is important to notice as for any use case where we can
fully trust the VPN server there is no need to add IRMA authentication.

The second area where there is no improvement in privacy is when we cannot trust the
VPN server, and we have reason to assume that our own public IP address is usable as per-
sonally identifiable information. In general, this is always the case as it allows combining
several WireGuard sessions and knowing that they belong to the same user (without neces-
sarily knowing who that user is). It becomes a bigger problem when the attacker also knows
who that user is. This can be solved by using a second VPN, so the attacker can see the pub-
lic IP of that additional VPN instead of the actual IP address of the user. Were the attacker
to have access to both VPN servers, the packets can again be fully decrypted and linked to
the actual IP address of the user. So here it is important that while it is not necessary to
trust any one of the two used VPN servers, it’s important that it is certain that they do not
cooperate to analyse the combined network traffic. Neither of the VPN servers can see any-
thing useful, as the first VPN can be considered the example scenario in Subsection 8.2.1,
where the network traffic can be analysed on the VPN server. The actual IP address of the
user can be seen, but all packets are encrypted because the communication is between the
user and the second VPN server. The second server now becomes the VPN server in the
scenario described in Subsection 8.2.2, with one important change: while the packets can
be seen on this server, the IP address of the user which is visible is now the IP address of the
first VPN server and not the actual IP address of the user.

As in the double VPN setup the first one is considered to be the scenario of Subsec-
tion 8.2.1, the type of authentication for that VPN server is not important. Because of this,
as long as one VPN provider offers IRMA support, all of the benefits of anonymous authen-
tication are available even if the other one only offers username/password authentication,
as long as the last VPN server through which packets travel from the user to the public in-
ternet uses IRMA. This is because the first VPN server will only know the IP address of the
user, and the second one can see the network traffic (and its destination) but not the IP
address. Within the same session, the traffic can still be linked together. However, because
there no longer is a constant IP address used across several sessions, the sessions cannot
be linked together anymore.

Another aspect which is not changed by using anonymous authentication is the timing
of the requests. If it is known exactly when a certain user makes a request to the VPN server,
it could be linked to the network traffic on the other side of the VPN server so the visible
traffic can be linked to the encrypted packet being sent by the user. This becomes more
difficult when there are more users using the VPN at the same time. The most clear way to
see this problem is when you consider the case when the VPN only has a single user. Then,
we know all traffic belongs to this user. When there are two, and one usually connects in
the morning and the other one in the afternoon, the traffic can still easily be linked to these
users. As the number of users increases, and they use the VPN at the same time, it becomes
more and more difficult to see what traffic belongs to what user.

An important security consideration is making the client-side software open source.

43

This would allow the users to verify that it does not collect any information on their lo-
cal machine, and that it does not send any personally identifiable information to the VPN
server. Making the server side open source as well would not have the same effect as you
cannot be sure that the open source version of the server-side you can see is actually the
code that is used by the server. The benefit there would mainly be to show how it works.

8.4. USE CASES ANALYSED
Now that we have seen the results of the developed prototype in an experimental setup, we
will discuss how these results translate to real-world use cases.

8.4.1. ANONYMITY
Within this use case, most respondents to a survey cited illegal activities as their reason to
want anonymity online by means of a VPN [Namara et al., 2020]. It is not the purpose of this
research to have an ethical discussion on whether or not we want to enable these activities,
and it is also possible for someone to have legitimate reasons to remain anonymous. In
order to be able to discuss the ethical consequences of anonymous authentication in future
research, however, it is important that we do look into this use case instead of dismissing it
because it is a potentially unwanted use of VPNs.

Users who feel that they have to hide some activities still expose their network traf-
fic related to these activities to their VPN provider in a username/password authenticated
setting. For these users, being able to trust the VPN provider is essential. When asked to
cooperate in an investigation, the VPN provider could potentially hand over the logs of your
internet activity while using the VPN. Because of this, not having to sign in with your actual
username which can be linked to your identity (because of the subscription you have pur-
chased) increases the level of anonymity for these users. Depending on the required level
of privacy, additional measures for hiding your IP address from the VPN provider can still
be required, as discussed previously.

8.4.2. CENSORSHIP
When wanting to evade censorship, it can be important to hide who you are when trying
to evade this censorship because using a VPN in order to do so is government controlled
or banned in some countries which practice internet censorship2. Because of this, it is
particularly important not to trust the VPN provider too easily, as any information the VPN
provider has could potentially end up with the censoring government which can have legal
consequences. While this does not prevent the censoring authority to discover that you use
a VPN (which in itself can have legal consequences), what did using the VPN connection
cannot be seen.

8.4.3. GENERAL PRIVACY
Users with a general wish to improve their online privacy at the moment shift the informa-
tion they hide from their ISP and Government to their VPN provider, which can potentially
be equally unwanted. Using anonymous authentication, they add another layer of privacy
to their internet activity, hiding their network traffic from the VPN provider as well.

2https://thebestvpn.com/are-vpns-legal-banned-countries/: An online article listing countries
where VPN usage is illegal, along with the consequences of using one per country.

44

https://thebestvpn.com/are-vpns-legal-banned-countries/

Because users in this use case value their privacy, for them it would be a nice improve-
ment to add this additional layer of privacy. This makes this use case potentially the one
that benefits most from adding anonymous authentication.

8.4.4. GEO CONTENT

When the sole purpose of using a VPN is accessing geographically restricted content, it is
not necessarily required to hide your activity. For instance, due to copyright issues, some
content providers restrict access to content for which they only hold the rights in some
countries in order to prevent infringing copyright laws. However, within the EU this leads
to a conflict because of the free movement of services which allows EU citizens to watch
the movies anyways [Siukkola, 2016]. Using a VPN in order to do this can be compared to
going to for example Spain in order to watch a Spanish movie, but now only ‘going there’
digitally.

8.5. RESEARCH QUESTIONS
Now that we have discussed the results, we will look at how they answer the research ques-
tions posed in Chapter 3.

How do the authentication processes in the most common VPNs work, and what level
of privacy do they provide? As discussed in Chapter 2, the most common authentication
methods for VPNs are username/password authentication and pre-shared key authentica-
tion. There are also free VPN services which do not require authentication at all, but these
tend to be slower than paid authenticated VPN services so we consider them to be out of
scope.

These authentication services offer similar privacy, in that they allow the VPN server to
link together the different sessions of each user, and to see what network traffic belongs to
what user. This is similar to how normally (without using a VPN) the ISP would be able to
see the network traffic of the user, and thus these authentication types decrease the privacy
of the user towards their VPN provider as much as they increase it towards their ISP.

How can anonymous authentication be realised in a VPN server? We have shown that
a way to offer anonymous authentication for a VPN this can be implemented at the stage
where the VPN tunnel is opened. Then, for the duration of the VPN session all traffic can
still be linked together, but the separate sessions will not be traceable to the same user. This
allows the user to judge when they want to end the session and re-authenticate so the new
traffic cannot be linked with their previous session.

This choice allows the users to make their sessions as long or short as they deem neces-
sary, without enforcing on them that they re-authenticate for every request.

How can we implement IRMA in a desktop VPN application? IRMA was designed for use
on the web, and for a VPN client we need to have access to the network settings of the local
machine of the user. In order to be able to use the web front-end libraries of IRMA on a GUI
desktop application, we used Electron. This choice was made because it allows the use of
JavaScript libraries normally designed for use on a web page without needing to modify
them first. This was desired as it allowed for rapid prototyping.

45

Electron is not the only solution to this problem. Alternative options are either having
the desktop application show the QR code in a different way than by use of the IRMA front-
end library, and then having it communicate with the IRMA Service directly, or by making
a web endpoint on the server side where a page can be shown where the authentication
happens, after it has first been initialised by the client application. Electron was used for
its ease of use.

How can we make the application which needs elevated privileges for setting up a VPN
connection secure? This can be done in two ways. First, we have limited the amount of
code which needs elevated privileges to only the actual setting up of the WireGuard con-
nection, and asking for these permissions only at the point where this needs to be done.
A second step is making the source code open source. This has not been done yet but is
essential for a trustworthy production version of the VPN.

How does a VPN with anonymous authentication improve privacy when used in two dif-
ferent scenarios? This question has been answered in detail within this chapter in Sec-
tion 8.2. The most important conclusion is that the scenario where the VPN provider can-
not be trusted is the scenario which has the largest benefit in terms of privacy.

Which use cases benefit most from this new VPN setup? Following the conclusion of the
previous research question in regards to the scenarios, the use cases which are based on
the scenario where the VPN server cannot be trusted are also the use cases which benefit
most from anonymous authentication.

Of these use cases, users who use a VPN for General Privacy are the most likely to use
a VPN for a longer duration, and thus most likely to want to use a paid VPN service which
requires authentication. Because of that, that is the use case which has most benefit from
a VPN with anonymous authentication.

46

9
CONCLUSIONS AND RECOMMENDATIONS

We will now look at the research conducted as a whole and form a final conclusion based
on the gathered results. After that, we will look at recommendations for further research.

9.1. CONCLUSIONS
We have shown that one can not always trust the owner of a VPN server, and that username
and password authentication can reveal to a VPN server what user account is responsible
for what traffic. This means that all privacy improvements a VPN offers towards the ISP of a
user, are removed when looking at what information is revealed to the VPN owner instead.

In order to solve the problems caused by username/password authentication, we have
discussed the benefits of anonymous authentication. We have chosen the IRMA technol-
ogy that satisfies the requirements for our VPN use case. We have shown a prototype im-
plementation of a WireGuard VPN server using IRMA for providing anonymous authentica-
tion, which demonstrates that it is indeed possible to create a VPN server using anonymous
authentication.

After looking at service logs and analysing network traffic, we have shown that using
username/password authentication indeed reveals what user account is related to what
network traffic. We have also seen that using IRMA instead hides which user is authenti-
cating to the VPN server, so it can no longer be linked to the network traffic. In most use
cases, this is considered an improvement in the level of privacy offered. The only exception
is when the VPN server can be fully trusted regardless of the authentication method.

We have shown that the privacy is increased in regards to what user account is con-
necting, but not from which IP address that connection is initiated. This means that con-
nections to the VPN from different machines which each have a unique IP address with
the same subscription can no longer be combined together by the VPN as belonging to
the same user. However, this does mean that connecting several times from the same IP
address is still traceable to the same user (especially when the owner of that IP address
is known). Fortunately we have also seen that IP address hiding mechanisms are already
available and can be combined with this VPN so that no longer forms a problem. Addition-
ally, one IP address does not necessarily belong to the same user. Within one household or
company network, many people can connect to the VPN from the same IP address. Users
using the VPN when connecting from free public WiFi also typically have a different IP ad-
dress each time they connect, and that IP address (being public) is not identifiable as theirs.

47

9.2. LESSON LEARNT
When developing privacy enhancing technologies such as a VPN, it can happen that while
privacy towards one party is improved, it is reduced towards the privacy enhancing tech-
nology itself. We have seen how this happens in the case of a VPN, where the user shares
information with the VPN provider in order to hide that same information from their ISP or
government. Additional privacy enhancing technologies can be used to reduce this effect,
as we have shown in case of IRMAGuard. By using anonymous authentication, the amount
of privacy sensitive information a VPN provider collects of its users is reduced. This means
that the trade-of becomes more favourable to the user: the privacy towards the ISP is now
enhanced more greatly than it is reduced towards the VPN provider.

This is an important lesson to take into account when developing a new privacy en-
hancing technology. Care should always be taken to make sure that the technology itself
does not collect the same amount or even more information of its users than they are hid-
ing from another party. If that is done, the privacy benefit to the user can be far greater
than when this aspect is neglected. Anonymous authentication was beneficial to our VPN
implementation, and it can probably have the same benefit in other areas as well. This will
have to be tested.

9.3. FUTURE RESEARCH
While we have seen an example of how the IP address could be hidden from the VPN
provider, this suggestion was not tested in this research. Further research should be con-
ducted to compare different methods of hiding the IP address when using IRMAGuard and
find out what works best.

Another possible research topic can be combining IRMA with a distributed VPN (dVPN)
[Varvello et al., 2021]. This is a VPN which does not have one central VPN server, but instead
a peer-to-peer network where traffic can be routed through any of the nodes. This makes
the VPN more difficult to detect, and also means that there is no central place through
which all traffic of a user flows. The privacy benefits of a dVPN versus a normal VPN have
already been demonstrated, and the combination of such a setup and anonymous authen-
tication would be interesting.

It could also be interesting to find out what other privacy enhancing technologies suf-
fer from the same drawback as a VPN, where the owner of the technology can collect the
privacy sensitive information the user is trying to hide by means of that technology. It can
then also be interesting to see in which of these cases anonymous authentication can be
used to solve that problem in a similar way to how it helped with a VPN.

For this research, we have only looked at IRMA for anonymous authentication. In order
for the research to the benefits of anonymous authentication for a VPN to be more com-
plete, other methods of authentication should also be studied and tested, so a more com-
plete picture can be made of these benefits. They could be equally effective, or there might
be better ways for anonymous authentication (or worse). Either way, the results would be
interesting.

48

10
REFLECTION

Now that the research has been concluded, we will reflect on it. At first, we’ll look at some
difficulties that were faced during development of the prototype. Then, we will look at
some improvements which could be made to the prototype, as it is not a finished product
yet.

10.1. TECHNICAL DIFFICULTIES
Development of the prototype didn’t go as smoothly as was hoped. Most of the back-end
was quite straightforward, but the client application caused some difficulties. Initially, due
to relatively new major releases of some of the required libraries (Vue.js and Electron), com-
patibility with some of the smaller JavaScript libraries was not great. Eventually matching
versions were found and the prototype developed. When the stage of development was
reached where IRMA was added to the VPN, there were some new issues. Because of the
way Electron works, it is usually so that the back-end part of Electron sends API requests,
and the front-end only communicates with this built-in Node.js back-end running in Elec-
tron. However, the IRMA front-end library was designed to be used on the web, and was
supposed to communicate directly with an instance of the IRMA Server running on the
same domain name as the front-end site.

This proved to be an obstacle, as requests sent from the client-side application of Elec-
tron appear to come from the ‘localhost’ domain. This caused the Cross Origin Resource
Sharing system to block all requests the IRMA client made to the IRMA back-end system.
At the time, IRMA did not support configuration for the CORS headers used to modify this
system. Fortunatly, after asking about it, in a later release of IRMA the CORS header was in-
cluded, and by default accepted connections coming from any domain name. This meant
that because of that, the issue with the front-end library was solved.

10.2. IMPROVEMENTS TO THE PROTOTYPE
While the prototype developed was useful for our research purposes, it is not a production
ready product yet. The setup used with the containers all on a single VPS is not suitable
for large workloads. There is also no ‘cleanup’ of disconnecting clients: the WireGuard
connection is cut off on the client-side and the server never knows this. The setup also
does not support actually subscribing to the VPN server as the used IRMA credential is one

49

from their (free) demo.
The first improvement is turning the WireGuard Service into a completely separate

server from the rest of the setup. This way, several services can be running in different
countries increasing the usefulness of the VPN. The remaining containers (IRMA and the
Authentication Service) can run in a dedicated container hosting platform to increase per-
formance and remove the need for the VPS with Docker Compose.

Then, there should be a ‘disconnect’ endpoint added to the back-end which can, based
on the local IP address of the client, remove the corresponding peer from the WireGuard
server. Automatic removal of peers on the server side which are not used for some time will
clean up any remaining connections from clients which haven’t correctly disconnected.

The last improvement is registering with IRMA to be allowed to use their system as a
credential provider. This will actually allow the VPN to sell subscriptions. For this, a site
should be made where subscriptions can be bought, which is a completely separate appli-
cation from the VPN itself.

50

BIBLIOGRAPHY

Adnan Abdulazeez, Baraa Salim, Diyar Zeebaree, and Dana Doghramachi. Comparison of
vpn protocols at network layer focusing on wire guard protocol. 2020. 6

M Abhijith and K Senthilvadivu. Impact of vpn technology on it industry during covid-19
pandemic. In IJEAST, 2020. 1, 15

Giuseppe Aceto, Alessio Botta, Antonio Pescapé, M Faheem Awan, Tahir Ahmad, and Saad
Qaisar. Analyzing internet censorship in pakistan. In 2016 IEEE 2nd International Fo-
rum on Research and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI), pages 1–6. IEEE, 2016. 1, 16

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green,
J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,
et al. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages
5–17, 2015. 10

Gergely Alpár. Attribute-based identity management:[bridging the cryptographic design of
ABCs with the real world]. PhD thesis, [Sl: sn], 2015. 2, 13

Gergely Alpár, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter Lueks, and
Sietse Ringers. Irma: practical, decentralized and privacy-friendly identity management
using smartphones. HotPETs 2017, 2017. 13, 34, 42

Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor Nunes. Poking a hole in the wall:
Efficient censorship-resistant internet communications by parasitizing on webrtc. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Se-
curity, pages 35–48, 2020. 17

Çigdem Bozdag. Turkey: Coping with internet censorship. EDITED BY RAMON LOBATO,
page 130, 2016. 1, 16

Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In International Conference on Security in Communication Networks, pages 268–289.
Springer, 2002. 12, 13

Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proceedings of the 9th ACM Conference on Computer
and Communications Security, pages 21–30, 2002. 13

Sonali Chandel, Zang Jingji, Yu Yunnan, Sun Jingyao, and Zhang Zhipeng. The golden shield
project of china: A decade later—an in-depth study of the great firewall. In 2019 Inter-
national Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), pages 111–119. IEEE, 2019. 1, 16

i

David Chaum. Blind signatures for untraceable payments. In Advances in cryptology, pages
199–203. Springer, 1983. 11

John D Day and Hubert Zimmermann. The osi reference model. Proceedings of the IEEE,
71(12):1334–1340, 1983. 4

Tim Dierks and Eric Rescorla. The transport layer security (tls) protocol version 1.2. Tech-
nical report, 2008. 10

Jason A Donenfeld. Wireguard: next generation kernel network tunnel. In NDSS, pages
1–12, 2017. 10, 15

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Conference on the theory and application of cryptographic tech-
niques, pages 186–194. Springer, 1986. 12

Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mohamed Ali Kaafar,
and Vern Paxson. An analysis of the privacy and security risks of android vpn permission-
enabled apps. In Proceedings of the 2016 internet measurement conference, pages 349–
364, 2016. 1, 16

Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An empirical analysis of vulnera-
bilities in openssl and the linux kernel. In 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), pages 105–112. IEEE, 2016. 15

Mohammad Taha Khan, Joe DeBlasio, Geoffrey M Voelker, Alex C Snoeren, Chris Kanich,
and Narseo Vallina-Rodriguez. An empirical analysis of the commercial vpn ecosystem.
In Proceedings of the Internet Measurement Conference 2018, pages 443–456, 2018. 1, 15

Jim Kurose and Keith Ross. Computer networking: A top-down approach, global edition,
2017. 4, 8

Yang Liu and Andrew Simpson. Privacy-preserving targeted mobile advertising: require-
ments, design and a prototype implementation. Software: Practice and Experience, 46
(12):1657–1684, 2016. 22

Steven Mackey, Ivan Mihov, Alex Nosenko, Francisco Vega, and Yuan Cheng. A performance
comparison of wireguard and openvpn. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, pages 162–164, 2020. 14

Moses Namara, Daricia Wilkinson, Kelly Caine, and Bart P Knijnenburg. Emotional and
practical considerations towards the adoption and abandonment of vpns as a privacy-
enhancing technology. Proceedings on Privacy Enhancing Technologies, 2020(1):83–102,
2020. 1, 15, 44

Briony J Oates, Marie Griffiths, and Rachel McLean. Researching Information Systems and
Computing. Sage, 2022. 20

Lukas Osswald, Marco Haeberle, and Michael Menth. Performance comparison of vpn
solutions. 2020. 14

ii

Achilleas Papageorgiou, Michael Strigkos, Eugenia Politou, Efthimios Alepis, Agusti
Solanas, and Constantinos Patsakis. Security and privacy analysis of mobile health ap-
plications: the alarming state of practice. Ieee Access, 6:9390–9403, 2018. 30

Christian Paquin. U-prove technology overview v1. 1. Microsoft Corporation Draft Revision,
1, 2011. 13

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Annual international cryptology conference, pages 129–140. Springer, 1991.
12

Eric Rescorla. Diffie-hellman key agreement method. Technical report, 1999. 8

Alpana Roy and Althaf Marsoof. Geo-blocking, vpns and injunctions. European Intellectual
Property Review, 39(11):672–680, 2017. 1, 15

Niko Siukkola. Netflix anywhere?: Geo-blocking of online copyright protected content
v. free movement of services within the european union. Master’s thesis, Itä-Suomen
yliopisto, 2016. 45

Pyda Srisuresh and Kjeld Egevang. Traditional ip network address translator (traditional
nat). Technical report, 2001. 31

W Townsley, A Valencia, Allan Rubens, G Pall, Glen Zorn, and Bill Palter. Layer two tunneling
protocol (l2tp). Technical report, RFC 2661, August, 1999. 8

Matteo Varvello, Inigo Querejeta Azurmendi, Antonio Nappa, Panagiotis Papadopoulos,
Goncalo Pestana, and Benjamin Livshits. Vpn-zero: A privacy-preserving decentralized
virtual private network. In 2021 IFIP Networking Conference (IFIP Networking), pages
1–6. IEEE, 2021. 16, 48

Ramachandran Venkateswaran. Virtual private networks. IEEE potentials, 20(1):11–15,
2001. 4

Yuzhi Wang, Ping Ji, Borui Ye, Pengjun Wang, Rong Luo, and Huazhong Yang. Gohop: Per-
sonal vpn to defend from censorship. In 16th International Conference on Advanced
Communication Technology, pages 27–33. IEEE, 2014. 17

Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage. When pri-
vate keys are public: Results from the 2008 debian openssl vulnerability. In Proceedings
of the 9th ACM SIGCOMM Conference on Internet Measurement, pages 15–27, 2009. 15

Jan Zibuschka, Lothar Fritsch, Mike Radmacher, Tobias Scherner, and Kai Rannenberg.
Privacy-friendly lbs: a prototype-supported case study. AMCIS 2007 Proceedings,
page 40, 2007. 22

iii

LIST OF ABBREVIATIONS

ABC . Attribute Based Credential

API . Application Programming Interface

CORS Cross Origin Resource Sharing

DNS . Domain Name System

ESP . Encapsulation Security Payload

FTP . File Transfer Protocol

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IKE . Internet Key Exchange

IP . Internet Protocol

IPSec Internet Protocol Security

IRMA I Reveal My Attributes

ISP . Internet Service Provider

L2TP Layer Two Tunneling Protocol

MAC . Message Authentication Code

NAT . Network Address Translation

OSI . Open Systems Interconnection

PC . Personal Computer

PPP . Point-to-Point Protocol

QR . Quick Response

SA . Security Association

iv

SSH . Secure Shell

SSL . Secure Socket Layer

TCP . Transmission Control Protocol

TLS . Transport Layer Secure

UDP . User Datagram Protocol

VPN . Virtual Private Network

VPS . Virtual Private Server

v

APPENDIX A: USERNAME/PASSWORD

AUTHENTICATION LOGS

Listing 1: Docker Compose logs of a username/password authentication session
1 irmaguard−docker−authentication −1 | Received authentication request
2 irmaguard−docker−authentication −1 | I n i t i a t i n g connection to Wireguard Service
3 irmaguard−docker−wireguard −1 | Adding peer . Public key : VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM= , private IP address : 1 0 . 0 . 4 . 2
4 irmaguard−docker−wireguard −1 | wg−srv − t e s t has public key VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM=
5 irmaguard−docker−wireguard −1 | − peer 9AkY+wRll046H1z0vJiZXZ7KeiHCA94PxczRprhPuwo=
6 irmaguard−docker−authentication −1 | Response :
7 irmaguard−docker−wireguard −1 | 1 2 7 . 0 . 0 . 1 − − [24/Nov/2022:09:19:53 +0000] "POST / wireguard /connect HTTP/1.0" 200 71 "−" "python−

requests / 2 . 2 8 . 1 " "−"
8 irmaguard−docker−wireguard −1 | [pid : 20 |app : 0 | req : 1/1] 1 2 7 . 0 . 0 . 1 () {40 vars in 522 bytes } [Thu Nov 24 09:19:53 2022] POST / wireguard

/connect => generated 71 bytes in 16 msecs (HTTP/1.0 200) 2 headers in 71 bytes (1 switches on core 0)
9 irmaguard−docker−authentication −1 | { ’ ip ’ : ’ 1 0 . 0 . 4 . 2 ’ , ’ key ’ : ’VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM= ’}

10 irmaguard−docker−authentication −1 | Password authentication added peer .
11 irmaguard−docker−authentication −1 | − Username : jarno
12 irmaguard−docker−authentication −1 | − Public key : 9AkY+wRll046H1z0vJiZXZ7KeiHCA94PxczRprhPuwo=
13 irmaguard−docker−authentication −1 | − Private IP address : 1 0 . 0 . 4 . 2
14 irmaguard−docker−authentication −1 | 17 2.18 .0 .1 − − [24/Nov/2022:09:19:53 +0000] "POST / authentication / authenticate HTTP/1.0" 200 104 "−" "

PostmanRuntime / 7 . 2 9 . 0 " "−"
15 irmaguard−docker−authentication −1 | [pid : 16|app : 0 | req : 1/1] 17 2.18 .0 .1 () {42 vars in 604 bytes } [Thu Nov 24 09:19:53 2022] POST /

authentication / authenticate => generated 104 bytes in 63 msecs (HTTP/1.0 200) 3 headers in 104 bytes (1 switches on core 0)

vi

APPENDIX B: IRMA AUTHENTICATION

LOGS

Listing 2: Docker Compose logs of an IRMA authentication session
1 irmaguard−docker−authentication −1 | S t a r t i n g a new IRMA session
2 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 2 4Z" l e v e l =info msg=" Session started " action=disclosing session=

V2o4coSQe0tUyOfa28gP
3 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 2 4Z" l e v e l =info msg=" Session request (purged of a t t r i b u t e values) : { " v a l i d i t y

" :120 ," request " : { " @context " : " https : / / irma . app/ ld / request / disclosure /v2 " ," context " : "AQ==" ,"nonce " : " Rr1KLHVFB9550lYkofEl4Q==" ," disclose
" : [[[" pbdf . pbdf . irmatube . type "]]] } } " session=V2o4coSQe0tUyOfa28gP

4 irmaguard−docker−authentication −1 | 172 .18.0 .1 − − [24/Nov/2022:09:20:24 +0000] "GET / authentication / s t a r t −irma HTTP/1.0" 200 249 " http : / /
localhost :8080/" " Mozilla /5.0 (X11 ; Linux x86_64) AppleWebKit/537.36 (KHTML, l i k e Gecko) vue−desktop / 0 . 1 . 0 Chrome/91.0.4472.164
Electron / 1 3 . 6 . 9 S a f a r i /537.36" "−"

5 irmaguard−docker−authentication −1 | [pid : 15 |app : 0 | req : 1/2] 172 .18.0 .1 () {48 vars in 768 bytes } [Thu Nov 24 09:20:24 2022] GET /
authentication / s t a r t −irma => generated 249 bytes in 44 msecs (HTTP/1.0 200) 4 headers in 138 bytes (1 switches on core 0)

6 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 2 4Z" l e v e l =info msg="GET / statusevents : endpoint disabled (see −−sse in irma
server −h) "

7 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 2 4Z" l e v e l =warning msg="<= response " duration =1.067075ms status =500 url ="/irma/
session /5q0jbokeK4w0sd66fTtJ/ frontend / statusevents "

8 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 2 9Z" l e v e l =info msg=" Session status updated" session=V2o4coSQe0tUyOfa28gP status=
CONNECTED

9 irmaguard−docker−irma−1 | time="2022−11−24T09 : 2 0 : 3 4Z" l e v e l =info msg=" Session status updated" session=V2o4coSQe0tUyOfa28gP status=
DONE

10 irmaguard−docker−authentication −1 | Authenticating completed IRMA session
11 irmaguard−docker−authentication −1 | { ’ token ’ : ’ V2o4coSQe0tUyOfa28gP ’ , ’ server ’ : ’GB1’ , ’ publicKey ’ : ’OIUkeRjaN7fkyEd2VZq1XYUdMC0B1kOV2nD0+

MtIXBQ= ’}
12 irmaguard−docker−authentication −1 | IRMA Authentication successful
13 irmaguard−docker−authentication −1 | I n i t i a t i n g connection to Wireguard Service
14 irmaguard−docker−wireguard −1 | 1 2 7 . 0 . 0 . 1 − − [24/Nov/2022:09:20:34 +0000] "POST / wireguard /connect HTTP/1.0" 200 71 "−" "python−

requests / 2 . 2 8 . 1 " "−"
15 irmaguard−docker−wireguard −1 | wg−srv − t e s t has public key VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM=
16 irmaguard−docker−wireguard −1 | − peer 9AkY+wRll046H1z0vJiZXZ7KeiHCA94PxczRprhPuwo=
17 irmaguard−docker−wireguard −1 | − peer OIUkeRjaN7fkyEd2VZq1XYUdMC0B1kOV2nD0+MtIXBQ=
18 irmaguard−docker−wireguard −1 | Adding peer . Public key : VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM= , private IP address : 1 0 . 0 . 4 . 3
19 irmaguard−docker−wireguard −1 | [pid : 20|app : 0 | req : 2/2] 1 2 7 . 0 . 0 . 1 () {40 vars in 522 bytes } [Thu Nov 24 09:20:34 2022] POST / wireguard

/connect => generated 71 bytes in 1 msecs (HTTP/1.0 200) 2 headers in 71 bytes (1 switches on core 0)
20 irmaguard−docker−authentication −1 | Response :
21 irmaguard−docker−authentication −1 | { ’ ip ’ : ’ 1 0 . 0 . 4 . 3 ’ , ’ key ’ : ’VmbWY+cI6+z4KOJatDdXeBksp3qXZVuIVvQi0eGuIUM= ’}
22 irmaguard−docker−authentication −1 | IRMA authentication added peer .
23 irmaguard−docker−authentication −1 | − Public key : OIUkeRjaN7fkyEd2VZq1XYUdMC0B1kOV2nD0+MtIXBQ=
24 irmaguard−docker−authentication −1 | − Private IP address : 1 0 . 0 . 4 . 3
25 irmaguard−docker−authentication −1 | 1 72.1 8.0 .1 − − [24/Nov/2022:09:20:34 +0000] "POST / authentication /irma−authenticate HTTP/1.0" 200 104

"−" "node−fetch /1.0 (+ https : / / github .com/ bitinn /node−fetch) " "−"
26 irmaguard−docker−authentication −1 | [pid : 16|app : 0 | req : 2/3] 17 2.18 .0 .1 () {40 vars in 584 bytes } [Thu Nov 24 09:20:34 2022] POST /

authentication /irma−authenticate => generated 104 bytes in 40 msecs (HTTP/1.0 200) 3 headers in 104 bytes (1 switches on core 0)

vii

	Summary
	Introduction
	Problem Context
	Private Network
	Virtual Private Network
	Network Layers with VPN
	VPN Implementations

	Authentication
	Anonymous Authentication
	IRMA: I Reveal My Attributes

	Comparing Different VPN Implementations
	Layer
	Performance
	Security

	Reasons for Adopting VPNs
	Use Cases

	Related Work

	Research Questions
	Steps Required for Answering
	How do the authentication processes in the most common VPNs work, and what level of privacy do they provide?
	How can anonymous authentication be realised in a VPN server?
	How can we implement IRMA in a desktop VPN application?
	How can we make the application which needs elevated privileges for setting up a VPN connection secure?
	How does a VPN with anonymous authentication improve privacy when used in two different scenarios?
	Which use cases benefit most from this new VPN setup?

	Method
	Prototype Development
	Experiment

	Prototype
	Components
	Data Flow
	Wireguard Service
	Authentication Service
	IRMA Service
	Client-Side Application

	Evaluation
	Experimental Setup
	Reverse Proxy
	Logging
	Privacy Analysis

	Results
	Development
	Server Side Logs
	Username/Password Authentication
	IRMA Authentication

	Packet Sniffing
	Hostile VPN Scenario
	Trustworthy VPN Scenario

	Discussion
	Prototype Development
	Privacy Implications in Different Scenarios
	VPN Outside of Restricted Network
	VPN Inside Restricted Network

	Limits of the Privacy Improvement
	Use Cases Analysed
	Anonymity
	Censorship
	General Privacy
	Geo Content

	Research Questions

	Conclusions and Recommendations
	Conclusions
	Lesson Learnt
	Future Research

	Reflection
	Technical Difficulties
	Improvements to the Prototype

	Bibliography
	List of Abbreviations
	Appendix A: Username/Password Authentication Logs
	Appendix B: IRMA Authentication Logs

