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Engineering drawings have a lot of information in them that can currently only be
extracted by going through them manually. The goal for this thesis was to cre-
ate a way to automatically extract symbol data from engineering drawings and use
the extracted data to make the first demo application. The first application would
calculate a complexity value for each drawing based on the extracted data. The tech-
nologies selected for this task included text recognition and computer vision model
YOLOv7 that was selected after testing different models. Machine learning based
computer vision models were trained with different sized labelled training datasets
and tested with a separate set of drawings meant for testing. The total amount of
drawings used was 443. The results achieved in the experiments reached good accu-
racy. The symbol with the most occurrences was surface roughness with over 5000
occurrences reaching an accuracy of 96%. But due to problems caused by resolution,
text recognition could not be fully implemented. Also, the complexity calculation
was not further explored due to more work needed. So, future developments are
needed, but the results show promising signs.
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1 Introduction

1.1 Motivations

For a long time, engineering drawings have been the main source of information in

the field of engineering. Lots of different specifications and pieces of information only

exist in the drawings. This is a problem because the drawings are in pdf format

of which it is quite difficult to extract information. It should be noted that the

drawings are created with Computer aided design (CAD) tools where the symbol

data exists. But some of the information does not get passed to the drawings that

are the only document available afterwards to many people working with them. So

someone needs to manually analyze the drawings and get the data they need. This

requires time, effort and some expertise. Instead it would be much better to have all

the data from the drawings available separately too. This could possibly be achieved

by extracting the data from the engineering drawings automatically.

This thesis subject was chosen to solve this problem and more specifically to

help measuring complexity of similar parts. This complexity measure could then be

used to for example determine the prices for these parts more accurately even by

someone who is not familiar with engineering drawings.

In Figure 1.1 is an example of a drawing where data needs to be extracted from.

The boxes marked with red color are the first example of the kind of data that is

extracted. These boxes consist of two or three parts. First on the left is the symbol
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Figure 1.1: Example of data collected from a drawing

that has a certain meaning. The two lines next to each other mean parallelism for

example. The number next to the symbol is the tolerance of the symbol. The third

part is what the symbol refers to. So in our example the line in question needs

to be parallel to the line A. Another type of extracted information is marked with

blue outline. These are examples of singular symbols that need to be extracted in

a different way. The symbol in the example indicates surface roughness and the

number above is the value of how rough the surface should be.

The motivation to extract this information for this thesis was to help determine

the price of parts based on the amount of different symbols present in the drawings.

The gathered data would be useful for many other purposes as well but for now it

only exists in the drawings. That is why this research is important in a wider scope

too.
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1.2 Research questions

The following questions were chosen as the research questions:

• RQ1: Are there previous implementations of extracting symbol data from

engineering drawings and are these techniques applicable for our purpose and

do they support machine learning?

• RQ2: Can we accurately extract symbol data from engineering drawings and

what is the best way to do it?

• RQ3: Can extracted engineering symbols be used to create an accurate repre-

sentation of part complexity?

1.3 Overview and structure

This thesis consists of six chapters each with their own purpose. This first chapter

introduces the reader to the topic and structure of the thesis as well as reveals the

problems that the thesis is trying to solve.

The second chapter gives all the needed background information so the reader un-

derstands the basic concepts and theory behind the topics discussed in the following

chapters. It first goes through the engineering side of things by introducing engi-

neering drawings and the different symbols that can be found from them. Next the

basic theory of computer vision is discussed because computer vision is an essential

technology for detecting symbols. Text recognition is also needed so it is important

for the reader to know its basics too. Finally, in the end of the second chapter, the

first research question is answered by exploring the previous implementations for

similar problems.

The purpose of the third chapter is to find the best methods to extract the symbol

information from the drawings. This chapter explores different methods that could
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be used and decides on the ones that are going to be used for the final testing. The

methods explored include two different types of computer vision models, different

labelling techniques, text recognition configurations and a way to detect geometrical

shapes from images.

The fourth chapter is where the main experiments are conducted. Based on the

selected methods from chapter three, the test scenarios are defined and the first set

of tests are done. After conducting the tests, results are analyzed.

In the fifth chapter the final results are discussed. Possible future developments

for the application are explored and the suitability for the original purpose is dis-

cussed. Finally, the complexity indicator mentioned in RQ3 is addressed.

Before the list of references there is still a conclusion chapter where the results

and contents of the thesis are summarized to get an overall look of the thesis.



2 Theory background

2.1 Engineering drawings

An engineering drawing is a technical document produced by an engineer that spec-

ifies all the dimensions of a part to be manufactured. It contains all the needed

information to manufacture the part it describes. Engineering drawings also use

mostly standardized language and symbols [1] which makes it easy for a professional

of any nationality to manufacture a part with just the drawing.

Before computers, engineering drawings had to be drawn by hand. This would

obviously take a lot of time and effort. Now all of the engineering drawings are made

with Computer Aided Design (CAD) software. These are 3D computer software

where the engineer can create the drawings. Examples of CAD software available

are AutoCAD [2], Solidworks [3] and Siemens NX [4]. With CAD software, the

drawings can be made from the beginning as drawings but usually a 3D model is

built first. CAD programs have good tools to build the models and the designer can

spin the model around with a 3D mouse to get a good view of how it looks. When

the model is ready, the CAD software can automatically turn it into drawings. All

the measurements and specified symbols are added automatically. Then the designer

can check that all the information looks right and submit the work.

Measurements like widths and heights of some components are important in

drawings but so are the different symbols used. Symbols are focused on in this
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Figure 2.1: Example of an engineering drawing [5]

thesis since symbol recognition and calculating complexity based on them are goals

in it. There are a lot of different symbols used in the engineering drawings as seen in

the example drawing Figure 2.1. Different companies might have some symbols of

their own in use but most of the symbols are standardized.[1] Some of these symbols

are listed in Figure 2.2.

A few examples from Figure 2.2 are now explained in more detail. Straightness

describes how straight either a surface or derived median line (DML) needs to be.

A tolerance is given within which the surface or DML has to stay. Sometimes it is

required for parts to have extremely small straightness tolerance to make everything

work correctly, but sometimes it is not as important so the tolerance can be bigger.

The concept of straightness tolerance is illustrated in Figure 2.3. The tolerance is

the space between the red lines. So, if the tolerance is very small, the red lines are

closer together forcing the surface to be straighter. If a small tolerance is needed,



2.1 ENGINEERING DRAWINGS 7

Figure 2.2: Different engineering symbols [6]

it also requires more work and possibly specialized equipment. This makes it also

more expensive to produce such parts. [7]

Perpendicularity makes sure that the 2 defined surfaces are perpendicular or 90

degrees relative to each other. Against first intuition, the tolerance of perpendic-

ularity does not define the angle between the surfaces. It is in fact more like the

tolerance of straightness. A tolerance zone is defined within which the whole surface

must be relative to the other surface. This ensures the perpendicularity of the two

surfaces. [7]

Parallelism describes the tolerance within which two different surfaces need to be

parallel with each other. The tolerance of parallelism is defined in the same way as

surface straightness. If the tolerance is 0.1, it means that both surfaces have to stay

within two imaginary parallel planes 0.1mm apart if laid on top of each other. Many

of the symbols are combined in the drawings with a tolerance number and possibly

a surface which they refer to. In Figure 2.4 is shown an example of parallelism with
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Figure 2.3: Surface straightness tolerance

a tolerance of 0.02mm where the specified surface needs to be parallel with surface

A. [7]

Figure 2.4: Parallelism and tolerance

From these examples can be observed that a smaller tolerance means more work

and more costs but sometimes it is required for the parts to work as intended. This

means that the tolerances are an important part of this thesis as well since they

have quite a big effect on the complexity of the system. So it can be concluded that

a good understanding of the combination of symbols and their tolerances is needed

to determine the complexity values of the drawings.

Another symbol that was not mentioned in Figure 2.2 is surface roughness. This

is a different type of symbol. It describes whether there is a need to make the



2.1 ENGINEERING DRAWINGS 9

surface thinner by machining or not. An example of surface roughness symbol is

shown in Figure 2.5. The symbol can be referring to a certain surface in which

case the triangle tip of the symbol would touch the intended surface, or it can refer

generally to the whole drawing. The symbol also has a parameter. In this case the

Ra means roughness average which is an average of the height and depth differences.

The number 3.2 is the end result wanted in micrometers.

Figure 2.5: Symbol for surface roughness

In the scope of this thesis only four of the symbols from Figure 2.2 are used.

These symbols are flatness, parallelism, position and symmetry. Additionally the

symbol for surface roughness is also used. All of these symbols can have different

attributes. With flatness, parallelism, position and symmetry the structure is the

same as shown in Figure 2.4. First is the symbol itself, then comes the tolerance

number. This is shown in millimeters. Most often this tolerance is under 1mm,

usually between 0.01 and 0.1. Last part of the box that combines the attributes

is the letter specifying the surface the symbol is in relation to. In Figure 2.4 that

letter is only A but there can also be more than one related surface.

In the case of surface roughness, the symbol always consists of the square root

looking symbol, but there are a lot of different variations. The triangle part for

example can be open just showing the surface, closed like in the example to indicate

that material is needed to be removed, or it can have a circle inside meaning that

material should not be removed. The number can be different too. The smaller
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the number, the smoother the surface and more expensive process. Also the letter

combination can vary meaning different things specified later in the thesis. Table

2.1 gives some idea which kind of attributes can each symbol have.

Table 2.1: Possible attributes per symbol

Symbol Attribute 1 Attribute 2 Attribute 3

Flatness Tolerance in mm 0,1,2,. . . rela-

tive surfaces as

A,B,C,...

Parallelism Tolerance in mm 0,1,2,. . . rela-

tive surfaces as

A,B,C,...

Position Tolerance in mm 0,1,2,. . . rela-

tive surfaces as

A,B,C,...

Symmetry Tolerance in mm 0,1,2,. . . rela-

tive surfaces as

A,B,C,...

Surface roughness Tolerance in µm Open, closed, cir-

cle triangle in the

bottom

Letter code for

different mea-

sures: Ra,Rz,...

2.2 Computer Vision

Section 2.2 is about computer vision. It is discussed because it is a key technology

in trying to extract information from the engineering drawings. In this thesis we use

many different aspects of computer vision so it is good for the reader to understand

these technologies.
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2.2.1 Computer vision basics

Computer Vision is a field of research that aims to automate tasks that are normally

done using human eyes. This includes extracting information from 2D and 3D

pictures and videos. Also, text recognition which is discussed in the next section is

a field of computer vision. Aside from text recognition, computer vision is used in

this research to extract and identify the engineering symbols from the drawings. [8]

Figure 2.6: Result of computer vision process [9]

Figure 2.6 shows the kind of result that a computer vision algorithm outputs. It

draws a box around the object that is identified and marks the box with a label of

the detected object while also saving the detected coordinates. This data can then

be further used. In the example of Figure 2.6, an automated car could then make a

decision to stop since the traffic light is red. These same kind of labeled boxes can

also be created manually by a person. This is done to teach the machine learning

algorithms used in computer vision to be able to make correct decisions.

The history of computer vision goes quite far back. People have wanted to make
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computers imitate human vision since the beginning of computers and in the 1960s

this dream took some steps forward. Artificial intelligence (AI) of which computer

vision is a part of took its first steps as a field of study. The first application of

computer vision was optical character recognition (OCR) in 1974. In the 1980s

computer vision algorithms to detect shapes and patterns were developed. In 2001

the first face-recognition applications appeared. Face recognition was one of the

first non-text related applications for computer vision. Now computer vision is used

and experimented on a lot of different purposes such as automated cars to recog-

nize traffic signs, other people and obstacles. Other uses are real-time surveillance,

manufacturing processes, real-time translation of texts and medical imaging. [8] [10]

2.2.2 Convolutional neural networks and machine learning

Several technologies are needed for computer vision to work. These technologies

include convolutional neural networks (CNN) and deep learning [8]. Also, algorithms

combining these technologies to one process are used. These algorithms include

YOLO [11], R-CNN, Fast R-CNN and Faster R-CNN [12] among others.

CNNs are multi-layered networks of nodes where each layer does some predictions

based on its previous results and passes more information down to the other layers.

Outlines and main shapes are first detected and then smaller details until there are

only few guesses remaining. Then the model gives its confidence scores for each of

these guesses. This process is shown in Figure 2.7. Deep learning is another term

for neural networks that have multiple layers. After multiple rounds of predictions,

the network starts to then learn and make accurate predictions. In practice, this

teaching can be done using a Python library specialized for machine learning such

as OpenCV and a lot of test data.

Different ways of learning for ML algorithms can be divided into supervised and

unsupervised learning. In supervised learning the algorithm is fed with both input
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Figure 2.7: Convolutional Neural Network [13]

and output data. The algorithm tries to first calculate an output value based on

the input. Then it compares its own result with the given output value and adjusts

its parameters to better match the wanted output. This process is repeated until

the results are starting to line up with the manually added labels. With image

detection the input is just the raw image for which the detection is done. Output is

the same image marked with labels. Labels consist of the coordinates, size and ID of

the identified object. In unsupervised learning only the input is given and different

algorithms are used to learn the patterns. Unsupervised learning is not usually used

for image recognition so it will not be discussed further. [14]

When starting the process of teaching a computer vision model, the test data

needs to first be split to training set and validation set. The training set is the data

that is used to train the computer vision model to make accurate predictions. Most

of the data, around 75%, is usually included in the training set. The remaining

25% can then be used as a validation set. The validation set is used to validate the

learning done by the training set after each round of learning. The training and

validation sets also need to be labeled so that the model can actually know what it

is looking for and if it got its results right or wrong. To still explain the full process

flow the model first looks at all the training data with labels and tries to save the
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unique parameters of each type of item. Then when it is done with that it tries to

put labels into the validation data images. After done, it checks the answers from

the label data to see if the results got better or worse. Then the parameters are

adjusted to get even better results from the next round. The adjustions are made

only based on training data; validation data is not used for adjusting parameters.

Additionally, an extra set of images can be used as testing data. These images can

then be used to check that the model is actually working and not just repeating the

training results. The testing is done after the learning process and it does not affect

the accuracy of the model in any way. The dataset splitting can be done easily with

the tools in OpenCV.

Most of the models are already pre-trained with a lot of data. Public labelled

datasets exist for this purpose. Examples of datasets like this are MS COCO with

328 000 images and Pascal VOC that consist of over 11 000 images. These images

include pictures of everyday things and situations and are mostly photographs. This

means that when using a model for our own purpose, not as much data is needed.

However, to achieve the best possible results, as much images as possible should

be used to adapt the model to the specific purpose. There are some examples of

how much data should be used. A study on recognizing potholes on Indian roads

[15] used a dataset of 1500 images but the results were still not very good. This

was mostly because of the potholes can be so differently shaped and less about the

size of the dataset. However, if the dataset was much larger the results might have

been better. Another study was about face detection [16]. It used a dataset of over

5000 images and the accuracy was impressively over 90%. Finally a similar study to

this thesis from 2022 [17] was about recognizing elements from piping diagrams. It

used a much smaller set of 180 images. The results were fairly good at around 80%

accuracy. The author did mention that a bigger dataset could have improved the

results. So it seems like for the best results the dataset should be as big as possible,
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at least slightly more than the aforementioned 180 images.

2.2.3 Measuring the results

A lot of different metrics can be used to analyze the performance of computer vision

models. First of these metrics is IoU or intersection over union. This measures

how well does the predicted bounding box fit the ground truth bounding box. The

formula for IoU is:

IoU =
I

U

Where I is the intersection of ground truth and prediction bounding boxes and U

is the union of ground truth and prediction bounding boxes. If this value is higher

than a set threshold, the prediction is counted as correct. An important metric

called confidence score can be calculated using IoU and the computed probability

of object existing in the certain area. The confidence score measures how sure the

model is about its prediction and the results of a model can be thresholded to only

include results with high enough confidence.

Confidence = Probablity(Object) ∗ IoU

Another metric that can be created using IoU and the known correct results we

can create what is called a confusion matrix. Confusion matrix is shown in Table

2.2.

Table 2.2: Confusion matrix
Actual values

Positive Negative

Predicted values Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)
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The confusion matrix splits the values in four different slots: True positive (TP),

False positive (FP), False negative (FN) and True negative (TN). Value is put into

TP if both the prediction and actual value are detecting an object. In similar way

if nothing is detected when there is nothing to be detected, the value is put into

TN. False positive is used when the model detects something when there is actually

nothing and False negative happens when an object is not detected. The values

in the confusion matrix can be used to make out two important measures. These

measures are precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Precision measures the percentage of actual positive values from all predicted

positive values. So high precision means there is very few wrong detections, but

some objects might not have been detected at all. Recall measures the percentage

of positive predictions from all actual positive values. So a high recall means that

the actual positive values are detected most of the time. Both of these measures

are good indicators for the models performance but we need them both to get the

best possible results. But what if these measures could be combined as one value?

This value is called average precision (AP). First the precision and recall are plotted

as a precision-recall curve (PR-curve). Then AP is formed by taking the integral

of the PR-curve. Finally, since there is usually more than one class of objects, an

average of AP values for each class is taken to form Mean Average Precision (mAP).

This is a commonly used value which tells how well the computer vision model is

performing. An mAP score of 1 means that both precision and recall are perfect.

In practice a model this good cannot be made but the higher the mAP score, the

better the model is performing. [18]
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2.2.4 Computer vision models

YOLO [11], R-CNN, Fast R-CNN and Faster R-CNN [12] are different algorithms for

computer vision. There are some official open-source implementations like Yolov7

[19] and Detectron that implements multiple different models like Faster R-CNN and

Mask R-CNN [20]. These are available in Github so the user does not necessarily

need to know how they work to use them, but it is good to know the basics and

what kind of tasks is each of these algorithms best for. These implementations are

really good and work out-of-the-box if some generic things like humans need to be

detected but if the used images are for a specific purpose, retraining is needed. The

models usually also need some optimization to properly work with the wanted data.

YOLO (You Only Look Once) is an algorithm that has its emphasis on one step

approach on image recognition. The whole process can be boiled down to three

steps: Resize the images to the same square shaped size, run one convolutional

neural network and choose the results that reach a certain confidence score. All this

happens quite fast. The speed is one of the best things about YOLO. It is the most

accurate model in the range of 5 to 160 frames per second (FPS) [21]. This makes it

the ideal tool for real time video processing. The reason why it is so fast is because

unlike other models, it does not have a complicated long pipeline but instead does

all the steps in a single CNN. [21]

The initial layers of the CNN extract features from the raw images. The first

detected features can be something very simple like a horizontal line cutting the

image. Then the later layers can combine some of these features and make out

shapes. The further layers then try to find these shapes from the images. Then

boxes are drawn around predicted locations of these shapes. These boxes are called

bounding boxes. Finally the model predicts which object class would the bounding

box belong to. All this can be done by initially splitting the image into a grid

of defined size and assigning each cell of the grid to find bounding boxes. This
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simultaneous process of predicting bounding boxes and class probabilities from a

grid is illustrated in Figure 2.8. In the left side of Figure 2.8 the image is split into

a 7x7 grid. Then the process is split into two simultaneous tasks. In the upper

image the bounding boxes are predicted. Each cell in the grid is responsible for any

object of which center point resides in it. For example only the cell in the center

point of the dog is going to detect a bounding box for the dog. Also, the confidence

of the bounding box is calculated and illustrated by the thicker lines in this image.

Simultaneously in the lower image, the probability of the correct class is determined.

In the example image the blue color represents the dog class and yellow represents

bike. Finally the class probabilities and bounding boxes are combined into the final

image where the most confident detections are shown by colored boxes.

Figure 2.8: YOLO process [11]

The grid structure helps to reduce the amount of duplicates of the same object

found because only one cell can be responsible of an object based on where the
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center of the bounding box lies. Another advantage of YOLO is that it can use the

whole image as context while making predictions which will increase its accuracy.

A downside for YOLO is that it can struggle with recognizing small, complicated

shapes and objects that are close to each other. This is because of the grid structure

which can only assign one class and a limited amount of bounding boxes per cell.

[11]

Faster R-CNN is the fastest version out of R-CNN, Fast R-CNN and Faster R-

CNN. Unlike with YOLO, Faster R-CNN uses multiple stages of detection. Figure

2.9 shows the process of Faster R-CNN. It consists of three main stages:

1. Region proposal network

2. Region of interest pooling (ROI)

3. Classification

Region proposal network is the new thing added in comparison to R-CNN and

Fast R-CNN. It is a module that is trained using a CNN to propose regions. The

region proposal has a sliding window go through the feature map output by the CNN.

The sliding window then leaves anchor boxes to mark the region proposals. After the

region proposal, ROI pooling is done. ROI pooling generates a fixed-length vector

of key features from each region proposal. After this, these vectors are classified

into the right object classes using the pre-trained CNN. To save processing time and

make the model more consistent, the Region proposal network and classification

use the same CNN which is trained in turns by the region proposal results and the

classification results. This training method is called alternating training. [12]

Faster R-CNN is more accurate with predicting smaller details and more com-

plicated shapes, but it requires a lot more computing power and so takes a longer

time to identify objects. Faster R-CNN is much faster than the previous implemen-
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Figure 2.9: Process of Faster R-CNN [12]

tations of R-CNN but it still does not even achieve 30FPS required for real-time

video detection.[12]

In this research I will experiment with both of these algorithms to see which

better fits the purpose. The goal would be to get accurate results which would be

slightly in favor of Faster R-CNN, but the latest versions of YOLO are almost as

accurate as well as being much faster and less computationally heavy. Also, the

symbols are standard form, size and color, so YOLO should be able to recognize

them quite reliably and faster.

2.3 Text recognition

Optical character recognition (OCR) is a technique used to digitally recognize text

from different sources. It generally works quite reliably and even has many com-

mercial uses like text translation, driver’s license and passport recognition, text-to-

speech services and many more. Unlike many other digital tools we use today, the

history of OCR goes quite far. It could be said that it originates as far as 1870
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when the retina scanner was invented. The first proper OCR systems were created

in the 1950s when the first digital computers came out. OCR machines were even

commercialized back then. [22]

Then in the 1980s and 90s the development of OCR took some big steps again.

Tesseract [23], the OCR engine that was selected for this research was also created

in that time period by Hewlett-Packard. The engine was further developed and

ported to Windows in the following years. In 2005 Hewlett-Packard made Tesseract

open-source and Google developed it between 2006 and 2018. Now Tesseract is one

of the best OCR engines available and it being open-source makes it even more

suitable for purposes like this research. [23]

The process of optical character recognition has a few stages. First the data

needs to be scanned whether it is in digital or physical form. Then some pre-

processing is done to the data. This usually includes pointing out where the text

is located and removing all of the unnecessary noise from the data. The quality of

the data can also be improved using different smoothing techniques. When the data

is pre-processed the character key features are extracted. Based on these features

the correct characters are hopefully recognized. Neural networks are also used to

recognize the characters in some implementations of OCR. After the main process,

some post-processing can be done to eliminate some of the errors and to possibly

group the results in a more readable form. [24]

Tesseract does some of the stages of OCR a bit differently. It skips the pre-

processing part of the process. This is the case because Tesseract was first developed

by HP and at HP they had their own pre-processing algorithm in use which was

not tied to Tesseract. Because of the lack of included pre-processing, the users have

to do this themselves before giving the data to Tesseract. After feeding Tesseract

the pre-processed data, it starts its process. It splits the text into lines and lines

into words. Some spaces between words are defined as fuzzy if they are uncertain.
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Words are then identified and there is also an adaptive classifier that analyzes the

whole text. After this analysis, the text is then swept through again to check if

the uncertain words can now be identified. Some linguistic analysis is also done to

determine if the words are identified correctly. Finally, the fuzzy spaces are cleared

and text is output to the user. [25]

2.4 Previous implementations

There are some previous implementations of extracting engineering symbol data

from drawings. A recent paper on the subject is “AI-Based Engineering and Pro-

duction Drawing Information Extraction” by Christoph Haar et al [26]. In this paper

they have used a combination of text recognition and computer vision algorithm to

detect certain elements from engineering drawings. YOLOv5 is used as the CV

model. The training data used is generated by adding desired symbols into white

background randomly instead of using actual drawings. The process in their paper

has them run the OCR and YOLO at the same time and the results are then com-

bined using a set of rules. These rules first match the position of the symbol and

text recognized and the text field is determined based on certain geometrical rules.

The results achieved are quite good. The reached Mean average precision scores

(mAP) with the synthetic testing data are really good at close to 0.9. However,

with actual drawings the mAp score drops quite a bit to around 0.4. In the end of

the paper they claim an overall accuracy of 70% which is good. [26]

Another implementation of similar purpose is “Usage of Computer Vision algo-

rithms to automatically extract information from Piping and Instrumentation Dia-

grams” by Yun Hua [17]. The symbols they are trying to recognize in their thesis

are not the same kind of engineering symbols as in this work but Piping diagram

symbols instead. However, the methods used to recognize the symbols are quite

similar. They combine multiple different techniques to extract all the needed infor-
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mation. First, Hough Circle Transforms algorithm is used to find all the circular

symbols of certain size. Then text recognition is applied to the extracted circles.

For the other kind of symbols, computer vision models are used. They use YOLOv4

model and the Faster R-CNN. The results are mixed. The circles are detected with a

very high accuracy of 97.72%. But the text recognition within the circles only gives

a correct prediction 47.20% of time. The computer vision models work also quite

well. Faster R-CNN gives slightly better accuracy than YOLO at 83.4% accuracy

to YOLOs 80.97%. R-CNN also has some critical problems like completely missing

certain symbols and a longer runtime than YOLO. It is stated in the thesis that

either of the models can be successfully used for symbol detection. [17]



3 Symbol recognition methods and

implementation

This chapter is about discovering the best methods to implement the symbol recog-

nition. Rectangle recognition, text recognition and machine learning methods of

symbol recognition are discussed. These different methods are tested on a surface

level through trial and error to see which methods would be the best for the actual

implementation. Then in Chapter 4 the selected methods are explored further.

3.1 Rectangle recognition

First part of recognizing different elements from the drawings is recognizing the

rectangular boxes which include a symbol, tolerance and possibly a letter to indicate

the surface it points to. Figure 3.1 shows an example of the boxes that this method

will be used for. This whole element is detected and then the symbol, number and

letter are recognized with different techniques. The operation of detecting the box

can be done without implementing machine learning. We can use python’s library

called OpenCV which includes many different computer vision functions that are

useful for computer vision tasks.

Before the detecting can be done, there are some preparations to be done.

OpenCV does not support pdf-format so the drawings need to be turned into png-

files. This can be done using another python library called pdf2image. Changing
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Figure 3.1: Example of box to be detected

the format like this keeps the quality of the images good while applying the right

format.

Another step in the preparations is to turn the drawings into grayscale colour.

This means that all the colours are turned into different shades of gray. Then the

colour can be presented as one value between 0 and 255. After the grayscale is

applied then a threshold is applied to the picture so that all values of below 200 are

turned into black (value 0) and all values above 200 are turned into white (value

255). Doing this removes all extra noise and leaves only the well-defined lines making

it much easier for the algorithm to detect the boxes we want to find. The value 200

was selected so that the symbols are caught even if they are not very black. This

is also enough to filter out any noise. If a higher value would have been selected,

some extra noise could be included in the drawing that could cause mistakes for the

algorithms and if a lower value was chosen, some data could be lost.

After these steps are done, the detection algorithms can be applied. OpenCV

has a function called findContours that finds all the outlines or contours of different

shapes found in the image. To find the specific boxes, the contour amount needs

to be set to 4 for the 4 sides of a rectangle and the shape needs to be defined as

a straight line for each contour. Then the limits for height and width of the boxes

are defined so the correct boxes are chosen among all the rectangles found from the

drawing. When the boxes are found, text recognition and symbol recognition can

be applied to get the full meaning of the contents of the boxes.

Rectangle recognition is very reliable in finding rectangles from images. Function

findContours was tested for all 27 images and all contours were found. All the found
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contours are marked by green colours in the example image Figure 3.2. As shown,

all contours were found. Then the rectangles can be found from this by simply

calculating areas connected by 4 perpendicular lines.

Figure 3.2: Example drawing with detected lines marked with green

However, there were some problems. The drawings often also have other rect-

angles than just the ones we want to detect. This means that if the dimensions of

the wanted boxes are not defined very specifically, we also get false positives that

we do not want. Even if the width and height are defined by specific pixel counts,

there could still be the same sized boxes containing non-wanted information. This

would be manageable but there is also another problem. The shapes of the targeted

rectangles can also vary. A tolerance number can have more decimals making the

box wider or the reference surfaces can be more than one also making the box wider.

Some drawings inspected were also formatted in two rows making it higher and some

drawings were even in different resolution making the sizes of the rectangles much

bigger or smaller. All these variations of rectangle sizes mean that to catch all of the

wanted rectangles, the pixel limits would have to be too wide for it to not recognize

unwanted elements too.
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After tests described in Section 3.3 it does seem that machine learning based

models can also do the work of this rectangle recognition step. Because of all the

problems and not actually needing the extra technology, this rectangle recognition

is not used in the final testing.

3.2 Text recognition

Text recognition is done using OCR engine Tesseract. It can be used together with

python using python’s library called pytesseract. Using Tesseract is quite easy and

straight-forward. It has been pre-trained with massive amounts of data so it just

needs to be applied with a few lines of code. Even with all of the default settings the

result can be quite good but it can also be fine-tuned. Tesseract has OCR Engine

modes (oem) and page segmentation modes (psm). Oem defines which engine model

is used. Psm defines which format of text is expected. In this research a custom

configuration of these is applied. Oem is set to default and psm is set to assume a

single uniform block of text. This is done because in this project the text recognition

is applied after the symbol recognition when we already have isolated an element

that has text only in one line. Another change that has been done for the same

reason to the default configuration is to replace new lines with empty, because the

text is always in one row and so new lines would be a mistake in the recognition.

Another thing that initially caused some problems was that there was not enough

space around the text for it to be recognized. The element box that was recognized

has the text really close to the edges which caused the text recognition to not work

properly. To address the problem a 10-pixel wide border of white was added to

each side of the text through code. This is visualized in Figure 3.3. So the border

marked with green is added to make the cropped image bigger. Note that the area

marked with green is actually white when used. This gave enough space for the

text recognition to work. This might become a problem once again when using the
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machine learning methods to extract the symbols since this test was only done to

the element recognition method described in Section 3.1.

Figure 3.3: Added border to help text recognition marked with green

After these changes the text recognition is very accurate. The text recognition

worked correctly in all the recognized symbol elements in the test data as shown in

the example of Figure 3.4. In Figure 3.4 a box element has first been recognized

using methods described in Section 3.1 and then OCR is applied to the result image.

The results of the OCR are marked on top of the box with red text.

Figure 3.4: Text recognition applied to box detected

3.3 Symbol recognition

3.3.1 Labelling and data preparation

Symbol recognition is done using a machine learning algorithm. A model is trained

to recognize certain kinds of symbols using a lot of pictures. First step in all of
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these models is to label the training data. In this research a tool called Label Studio

is used. All the drawings are imported into the tool and the symbols we want to

recognize are marked with boxes that have a label specifying the symbol. Figure 3.5

and Figure 3.6 show two different examples of a label drawn around an element. The

labels are marked with the red tint. These two different ways of labelling are tested

on the same kind of elements to see which is better. The one in Figure 3.5 would

be the easier way to go considering the next steps of the pipeline because it would

include all the related information and text recognition could be done right after

image recognition. It could also cause problems because most of the symbols look

similar apart from the symbol itself so the machine learning model could easily mix

up the different elements. The example in Figure 3.6 shows another type of labelling

where only the symbol part of the element is labelled. This way the symbol is always

the same which should be easier for the machine learning model. However, with this

version, the recognized area would need to be expanded afterwards to also include

the tolerances and related surfaces. An early build of the symbol recognition model

was run with both of these labelling methods on otherwise identical parameters. The

method in Figure 3.6 was the one that worked better initially. Trying to recognize

the whole box with symbol and tolerance would confuse the model and it would

predict the boxes in wrong classes. Recognizing only the symbol made the accuracy

better. However, with more extensive testing and more data the method in Figure

3.5 would show equally good results, which lead to it being chosen as the primary

method as it is the easier way for the whole pipeline.
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Figure 3.5: Labelled elements including tolerances

Figure 3.6: Labelled element excluding tolerances
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3.3.2 YOLO

When all of the images are labelled, the data can be exported from the tool in needed

format. For the first computer vision model we need the label data in YOLO format.

This format makes a text file for each image with each label’s position coordinates

and the index of the symbol name. Figure 3.7 shows the label file of one image. Each

line in the file represents one label. The first number is the index of symbol name

so for example 0 is surface roughness and 1 is parallelism. The next two numbers

mark the starting coordinates x and y and the last two numbers are the width and

height of the label. All the dimensions are given as a percentage of the image size.

Figure 3.7: Label data in YOLO-format: (Category index, x, y, width, height)

After the labelling is done, the images need to be separated into two different

folders: Train and Valid folders. Images in Train folder are used to train the model

with the labels and images in Valid folder are used to test the accuracy of the model

after each training iteration. Optionally a third set of images can be included in the

project. These images do not have to be labelled and they can be used to test if

the model works. The YOLO formatted label files need to be located in the same

parent folder as the images. This folder structure is shown in Figure 3.8.

After the images are labelled and organized in correct file structure, they can be
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Figure 3.8: Training data folder structure

brought into a machine learning model. As the first tested model we use YOLOv7.

Even though YOLO is usually not the best at recognizing small objects and is

mainly trained using photos instead of drawings, it was chosen because it is currently

the fastest and most precise model in the range of 5 to 160 FPS [21]. Figure 3.9

points out the speed and accuracy difference in relation to other YOLO models on

a commonly used COCO dataset. [19] The y-axis has the average precision, and

the x-axis has the detection time in milliseconds. As seen, YOLOv7 has the best

performance of the listed YOLO models. It is also 120% faster than the previous

YOLOv5.

Figure 3.9: The performance of YOLOv7 [19]
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The working environment used with YOLO is in Jupyter Hub that allows the

usage of external GPUs for the training as it requires a lot of processing power. The

GPU in use is NVIDIA Tesla T4 16GB. Other tools used within the environment

are the programming language python and CUDA that is an API that allows the

project to use the GPU for the calculations. There were various reasons to pick

these tools. Choosing python as the coding language was quite obvious since it is

the most commonly used language for machine learning and data processing and it

has the most tools related to that available. Jupyter Hub and CUDA were picked

later after some early tests. First tests were done locally on a computer and the

training process would completely freeze the computer so extra processing power

was needed. CUDA was needed to access the GPU but it was not working with

other than NVIDIA GPUs. Jupyter Hub was chosen because there was an existing

license to it. It also uses NVIDIA GPUs which meant that CUDA can be applied

to make the training process faster.

Table 3.1: Working environment

Tool name Version

Python 3.19.13

CUDA 10.2

When the model and training data is all set up the training can begin. Some

arguments and hyperparameters need to be set for the process. The hyperparameters

are different alterations to the learning process. They include the learning rate which

determines how quickly the learning happens. So the bigger the learning rate is, the

more do the results change with each iteration. Other hyperparameters include

modifiers like rotation, flip or color-scale. These automatically change the rotation,

color or orientation of the source images for each iteration to get more variable

training data. This makes the model more robust and less prone to over-fitting.
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Then there are the run arguments. These include epochs which means the iterations

of learning done with the same images. Other arguments include batch size, image

size and weights. Batch size means the number of images processed at once, image

size is presented as the side length in pixels since the images for YOLO need to be in

square size and weight is the pre-trained model that is further trained. Here we use

the YOLOv7 pre-trained weight file called yolov7.pt found from YOLOv7 Github

repository. [19]

All of these hyperparameters and arguments needed a lot of trial and error. The

training was started with the default parameters. The default parameters have quite

a few modifiers applied. These included a lot of color, size and rotation alterations

applied to the data during training. Also the initial learning rate was set quite high

at 0.01. All these modifiers were disabled and learning rate lowered to 0.001 to see

if any results are achieved even without them. There was a bigger issue with the

other arguments however. They were originally set up as in Table 3.2.

Table 3.2: Parameter setup for first tests with YOLO

Hyperparameter/argument Value

Learning rate 0.01

Epochs 2

Batch size 32

Image size 416

Weight yolov7.pt

Here the batch size was too big since not even 32 images were used so it was

lowered to 10. Image size was also a bit small since making the images smaller also

reduces the quality so the image size was increased to 640. The biggest problem

was the very small amount of epochs. With only 2 epochs the training results would

always come up with accuracy of 0%.
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Following these revelations, epoch amount was lifted to 300 with the other men-

tioned changes. The model accuracy only started to rise on the 50th epoch. It rose

quite irregularly. The accuracy could rise a lot on one epoch and then reduce by

even more on the next. This meant that the learning rate was still too high since it

would make too big assumptions based on the previous results and adjust too much.

The difference between 0.001 and 0.0001 learning rate is shown in Figure 3.10 and

Figure 3.11. The graph in Figure 3.10 shows the mAP score development through

epochs is jumping up and down with the higher learning rate and in Figure 3.11 the

graph goes up quite evenly until it reaches a peak score.

Figure 3.10: mAP score development with high learning rate

Because of this the learning rate was further lowered to 0.0001. Also the epoch

amount seemed to be still too low so it was set to 2000. After making these changes,

the mAP score looked like in Figure 3.11. The graph is much smoother until reaching

the higher scores of 0.8 mAP which seemed to be the upper limit. This was quite a
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Figure 3.11: mAP score development with low learning rate

good result so more extensive testing was done with these argument values shown

in Table 3.3. However, learning rate was finally adjusted back to 0.001 because with

bigger number of epochs it seemed to not be as uneven as previously thought and

the mAP scores achieved with it seemed better.

Table 3.3: Parameters after refinement
Hyperparameter/argument Value

Learning rate 0.0001

Epochs 2000

Batch size 10

Image size 640

Weight yolov7.pt
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3.3.3 Faster R-CNN

Another model was tested to see if it would perform better than YOLO. The model

chosen was Faster R-CNN and the implementation used was Facebook AI Research’s

Detectron 2 which is available in Github. [27] For Detectron 2 the working environ-

ment is the same using JupyterHub, Python and CUDA but the labels need to be

exported in a different format so they can be used. Instead of the YOLO format that

is used only in YOLO model, a format called COCO is used. COCO is a common

labeling format used in multiple different computer vision models. Like the YOLO

format, also the COCO format can be selected for export directly from the Label

Studio where the images have been labelled.

The COCO format is very different looking compared to the YOLO. It has more

information but is also more readable. Instead of having a file for each image’s

labels, COCO comes as one JSON file for the entire dataset. It has a structure as

shown in Figure 3.12. Images include the names and ids of each image included in

the dataset as well as the dimensions in width and height. Categories lists all the

different kind of labels used in the data which in this research means concentricity,

flatness, parallelism, position, surface roughness and symmetry. All these categories

are also given an id. Annotations includes all the individual labels. They refer the

correct image and category by the id and the dimensions of the label are listed in

format [x_min, y_min, width, height]. One annotation expanded can be seen in

Figure 3.13.

Figure 3.12: Structure of label data in COCO-format
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Figure 3.13: Data of one label expanded

This style of labelling is more readable but there were some problems with it.

Due to the way the images are saved in the Label Studio labelling tool, their names

are not correct. This does not matter when dealing with YOLO format data since

the name of the original file is not used in that format. However, COCO formatted

label data does require the names of the files. This means that after exporting the

data from Label Studio, the JSON file has to be manually gone through to change

the names for each image. Also, adding or removing images or moving them between

training and testing sets is difficult because changes are needed in multiple places

within the JSON file. In YOLO format files do not even need to be modified since

the individual label files can just be moved around.

The file structure of the labelling data is not relevant with Detectron 2 be-

cause the image destination and the label destination are individually pointed in

the code before starting the training process. This is done by registering the dataset

like shown in the code snippet in Figure 3.14. Here dataset_train is the name

of the training dataset that is registered, train.json is the path to the label file and

train_imgs is the path to the folder containing the training images. This is repeated
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Figure 3.14: Registering datasets in Detectron2

for the testing set.

Because of the different model being used, only two sets of images are needed.

Training set is the only dataset that is used during the training and the testing set

is used to test the performance of the trained model.

When the datasets were prepared, the training of the model could begin. In

the build of Detectron 2 available for this research, there was not as much hy-

perparameters to modify as in YOLOv7. The parameters that were available were

IMS_PER_BATCH which is the same as batch size from YOLO, BASE_LR which

is the learning rate and MAX_ITER which is the epoch amount. Also a weight file

is needed. The pre-trained model weight configuration was brought from the Detec-

tron2 Github repository. The chosen configuration file was faster_rcnn_R_50_FPN

_3x.yaml. At first Detectron 2 was tested with its default parameters. These are

listed in Table 3.4.

Table 3.4: Detectron 2 default parameters

Hyperparameter/argument Value

Learning rate 0.00025

Epochs 300

Batch size 2

Weight faster_rcnn_R_50_FPN_3x.yaml

As expected, the results were not good at all. The total accuracy for the model

ended at 6.4%. This consisted of 15.8% accuracy for surface roughness and 0%

for the rest of the symbols. After this the hyperparameters were adjusted to more
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closely match the ones from the best YOLO run. They were chosen as shown in

Table 3.5.

Table 3.5: Detectron 2 parameters close to YOLO

Hyperparameter/argument Value

Learning rate 0.0001

Epochs 2000

Batch size 10

Weight faster_rcnn_R_50_FPN_3x.yaml

Results were better but still a lot worse than with YOLO. The overall accuracy

was at 28.4% with parallelism rising to 90.1% and surface roughness at 25.8% and

the rest if the symbols at 0%. This was an interesting result as the parallelism rose

from 0% to over 90% compared to the default parameters but surface roughness only

rose by ten percent. This might be due to surface roughness having more occurrences

but also more variations in the data. Parallelism symbol is always similar but with

low epochs there is not enough occurrences to get a result. Surface roughness gets

results even with lower epochs due to more occurrences, but accuracy rises less

with more epochs because there are multiple versions of the symbol included in the

training data.

Because the accuracy in the second test was still quite low and the training time

was long at over five hours, one more set of parameters was tested. Other values

were kept as they were in the second test scenario, but the batch size was lowered

back to 2 because the Detectron 2 developers had mentioned that the batch size

should be kept as 2 in almost all cases.

With these parameters the training time dropped by a few hours, but the results

did not change by a lot. Overall accuracy was 29.2% rising by almost 4 percent.

Parallelism stayed at 90.1% and surface roughness climbed by two percent to 27.5%.
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After conducting these tests with Detectron 2 it was concluded that YOLO is

faster, easier and also more accurate so the focus in the further tests would be on

YOLO.



4 Results

In this chapter a larger test scenario is drafted, conducted and finally the results are

analyzed.

4.1 Test scenario definition

To get reliable results of the best possible accuracy of the model, multiple test runs

have to be conducted with different dataset sizes and hyperparameters. It needs to

be made sure that the results will not be overly optimistic or otherwise biased based

on some individual parameters.

The main focus is to see how the amount of training data affects the accuracy so

multiple different sizes of datasets are tested with otherwise identical parameters and

the results are analyzed. Then some additional test runs can be made for the most

optimal dataset sizes by introducing more hyperparameters to modify the training

data if this seems to be beneficial.

The datasets for each training instance will need training, validation and testing

sets of images. Training data includes most of the images, around 75%, the rest of

the images are shared between validation and testing sets. The dataset sizes are

listed in Table 4.1.

The images is each dataset are divided randomly but some prioritizing is made.

The data available for this research is composed of mostly just drawings of two kinds

of parts. One of these parts is the main focus in this research and the original tests
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were made on drawings of just those parts. However, more images were needed for

more accurate results. So the later added images of a different type of part now make

the most of the data. These two types of parts also have some different symbols

so when making the datasets, the original images were first split between training,

validation and testing sets. After this the rest of the images were added randomly

to fill up the rest of the needed images.

Table 4.1: Amount of images in each Dataset

Training images Validation images Testing images Total

Dataset 1 26 5 4 35

Dataset 2 56 10 9 75

Dataset 3 113 19 18 150

Dataset 4 250 42 41 333

Dataset 5 333 55 55 443

All of these test sets are run with the same parameters and no hyperparameters

that modify the training data are used. The used parameters are listed in Table 4.2.

Table 4.2: Parameters used in the test runs
Hyperparameter/argument Value

Learning rate 0.0001

Epochs 2000

Batch size 10

Image size 640

Weight yolov7.pt

There are six different symbols that are being detected from the drawings during

this testing. An example of each symbol along with its name is listed in Table 4.3.

Each symbol’s occurrences in each dataset is also crucial information as more

symbols should mean better results. In fact symbol amount is a more important
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Table 4.3: Examples of each symbol being detected

Symbol Name

Concentricity

Flatness

Parallelism

Position

Surface Roughness

Symmetry

metric than the amount of images used. So in the next five tables the symbol count

for every symbol in each dataset is listed.

From these tables can be seen that the symbols do not occur in even amounts.

This makes the amount of occurrences a much more relevant metric than the amount

of images. However the symbols seem to be fairly evenly split between the images

since the occurrences do increase from Dataset 1 to 5 with the amount of images.

Surface roughness can be expected to get the best results as it has much more

occurrences in the data than the rest of the symbols. Symmetry unfortunately only

has 2 occurrences in the whole data so the results will most likely be bad for it. Table

4.4 can be mentioned for its lack of symbols in testing data. This will result in bad

results. Another thing to note in Table 4.4 is that the amount of parallelism symbols

is bigger in relation to other symbols due to the prioritization of the original parts in
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Table 4.4: Dataset 1 symbol occurrences

Dataset 1 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 41 16 8 21 400 1

Validation 21 0 1 6 66 0

Testing 0 0 0 6 46 1

Table 4.5: Dataset 2 symbol occurrences

Dataset 2 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 102 25 9 55 981 1

Validation 8 6 2 5 177 0

Testing 19 1 2 10 114 0

Table 4.6: Dataset 3 symbol occurrences

Dataset 3 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 173 31 16 73 1266 1

Validation 5 7 3 5 180 0

Testing 36 5 4 16 251 0

Table 4.7: Dataset 4 symbol occurrences

Dataset 4 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 544 97 24 225 3666 2

Validation 31 15 5 27 523 0

Testing 61 14 5 37 640 0
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Table 4.8: Dataset 5 symbol occurrences

Dataset 5 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 761 115 29 266 5201 1

Validation 109 27 6 65 850 0

Testing 59 25 3 69 652 1

the dataset. Parallelism is more common in the original data and in Dataset 1 the

amount of original data in relation is bigger. In Table 4.5, 4.6 and 4.7 the symbol

occurrences increase gradually until finally all the training data is used in Table 4.8.

All of the symbol amounts increase somewhat linearly apart from symmetry that

only has 2 occurrences in the whole dataset. Surface roughness is also much more

prevalent in the data than the other symbols.

4.2 Results

After conducting the tests, some results were achieved. Results were good but also

a little bit confusing. The mAP scores for each symbol in each dataset are listed in

Table 4.9.

Table 4.9: mAP score results of first tests
Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Dataset 1 0.00 0.00 0.00 0.00 0.59 0.00

Dataset 2 0.06 0.00 0.00 0.00 0.72 0.00

Dataset 3 0.80 0.00 0.00 0.34 0.90 0.00

Dataset 4 0.90 0.55 0.41 0.75 0.96 0.00

Dataset 5 0.73 0.47 1.00 0.62 0.94 0.00
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The scores start to rise as expected: the symbols with most occurrences rise first.

Surface roughness already gets a result at the first dataset with the other symbols

staying at 0 mAP. As the occurrences rise in the further datasets, the other symbols

are also detected. Symmetry is not detected at all because there are not enough

occurrences in the data. Aside from symmetry and flatness, the symbols reach an

mAP score of over 0.70 which is a good result.

With all the symbols, when the mAP starts to rise it rises quite quickly and then

the rise starts to slow. The slightly confusing part is that with all but parallelism, the

mAP score drops on the last dataset with the most images and symbol occurrences.

This needs to be analysed in Section 4.3. In Figures 4.1 and 4.2 the mAP score

development is put in a graph. Surface Roughness is in its own graph because it has

so much more occurrences that it would make the others too cluttered.

Figure 4.1: mAP scores per symbol occurrences
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Figure 4.2: Surface roughness development for each dataset

4.3 Result analysis

Now results for each symbol are separately analyzed and then the bigger picture

is looked at. Surface roughness has the highest accuracy from the first dataset

onwards aside from the perfect score for parallelism in the last dataset. The mAP

score begins at 0.59 and then quickly rises to 0.96 to then slightly drop to 0.94. The

mAP for surface roughness is the highest among all of the symbols as expected. This

is because it has much more occurrences in the training data. The achieved mAP

score of 0.96 is extremely good but it is still not perfect. There are a few instances

of both false positives and false negatives. Precision was slightly higher than recall

which means that false positives were slightly rarer than the false negatives. The

best result is achieved on the 4th dataset and not the 5th. This is interesting as

the expectation would be that the more occurrences the better the result. This

same result happens with all the other symbols too aside from parallelism, so it is
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discussed more later in the end of this Section 4.3 when the results are looked at as

a whole.

Concentricity achieves the second-best mAP score at 0.90. This is also to be

expected as it has the second highest amount of training data. While the result is

good in the end, the models with smaller datasets struggled to detect concentricity

compared to the other symbols. This could be because of more variation in the

symbols for concentricity so the model would need more data to recognize the dif-

ferent variations. Another thing to note with concentricity is that it is mistakenly

predicted as another symbol more often than other symbols. Most often this mistake

happens when concentricity is detected as position. This is most likely caused by the

similar round symbol of position and concentricity. Concentricity also repeats the

drop in mAP score when trained with the 5th dataset and it is also more dramatic

than with surface roughness.

Assumptions are reinforced also with position. It has the next highest score

at 0.75 because it has the next most symbols in the data. It is also mistaken as

concentricity sometimes which supports the earlier hypothesis with concentricity.

The mAP score of position also drops when trained with the last dataset. Flatness

does not quite hit as high scores as the rest of the symbols but it still has a respectable

score of 0.55. The lower score can be explained with the lower amount of symbols

included in the data. Flatness also has a drop in the mAP score on the last dataset.

Parallelism is the outlier in the data. Unlike all the other symbols its score does

not drop in the last dataset but instead rises all the way to 1.0. It also breaks the

pattern of more data meaning better results. It has the least symbols in the training

data but reaches the highest score. This can be explained by a few observations.

Parallelism symbols are very similar in the data in similar drawings so it can be

easily learned. Also the testing set might have been just optimal for parallelism in

the last dataset.
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Symmetry is not reaching any sort of meaningful mAP score. Looking at the

amount of symbols, the reason can be easily seen. Due to the nature of the data

available, there is unfortunately only 2 symmetry symbols in all of the data. This

means that one of the datasets is always left with no instances of symmetry symbols

and therefore reaching any results is not possible.

For most of the data applies the assumption that the more data is used in

training, the better are the results. However, this assumption stops applying at the

last used dataset. The accuracy for all of the symbols apart from parallelism goes

down on the last dataset with the most data. This does not seem to make much

sense. The conclusion is that it must have something to do with the differences in

the type of symbols included in each dataset. To get rid of this effect on the results,

the datasets must be reorganized to be more similar.

4.4 Revised tests

For the second set of tests, the datasets are reorganized by having the larger datasets

include the smaller datasets in the same set. So the training images in Dataset 2 are

also included in the training images of Dataset 3, 4 and 5 along with added images.

This way the differences in data should not make the smaller datasets to have better

results as the bigger datasets also include the same images. This is illustrated in

Figure 4.3 where for example Dataset 4 consists of the training data of Dataset 3

and some added images that were not included in smaller datasets. The way this

was done in practice is by removing images from Dataset 5 to make Dataset 4 and

then remove images from Dataset 4 to make Dataset 3 and so on. After reorganizing

the datasets, the models are then trained again using these reorganized datasets.

In the below four tables the symbol occurrences are listed for the reorganized

datasets. Dataset 5 is not included as it remains unchanged. The contents of these

tables are clearly different from the tests in Section 4.2 but they are still similar.
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Figure 4.3: Smaller Datasets are included in the bigger ones

Symbol amounts are still ascending from smaller datasets to bigger ones.

Conducting the tests yield the results listed in Table 4.14. The results look

good and more logical than before. The accuracy only drops in one occasion while

symbol occurrences increase and the drop is very minor. However, to make the

results between datasets more comparable, the accuracy of each trained model is

tested on the testing set of Dataset 5. This way the actually best performing model

can be seen. The results of this test can be seen in Table 4.15.

The equally tested results that are shown in Table 4.15 show quite nice evenly

rising mAP scores. These results are also visually shown in Figure 4.4.
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Table 4.10: Symbol occurrences for revised Dataset 1

Dataset 1 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 34 2 7 10 255 0

Validation 0 1 2 1 28 0

Testing 0 0 1 6 32 1

Table 4.11: Symbol occurrences for revised Dataset 2

Dataset 2 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 171 15 7 38 922 0

Validation 27 3 2 6 139 0

Testing 0 3 1 11 109 1

Table 4.12: Symbol occurrences for revised Dataset 3

Dataset 3 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 310 40 13 110 1815 0

Validation 52 4 3 12 278 0

Testing 2 6 2 20 207 1

Table 4.13: Symbol occurrences for revised Dataset 4

Dataset 4 Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Training 586 81 24 196 3720 1

Validation 84 19 5 44 597 0

Testing 25 16 3 49 426 1
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Table 4.14: mAP scores with newly organized Datasets

Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Dataset 1 0.00 0.00 0.00 0.00 0.72 0.00

Dataset 2 0.00 0.34 0.00 0.10 0.91 0.00

Dataset 3 0.00 0.34 1.00 0.45 0.91 0.00

Dataset 4 0.52 0.49 1.00 0.46 0.93 0.00

Dataset 5 0.73 0.47 1.00 0.62 0.94 0.00

Table 4.15: mAP scores for each Dataset using testing set from Dataset 5

Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Dataset 1 0.04 0.00 0.00 0.004 0.68 0.00

Dataset 2 0.14 0.05 0.00 0.03 0.74 0.00

Dataset 3 0.11 0.09 0.67 0.31 0.80 0.00

Dataset 4 0.61 0.39 1.00 0.41 0.91 0.00

Dataset 5 0.73 0.47 1.00 0.62 0.94 0.00
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Figure 4.4: mAP scores rise consistently
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4.5 Revised tests analysis

With the revised tests, the results are more like expected. As seen from Figure 4.4

there is no drop in the mAP scores anymore aside from a very small drop between

Dataset 2 and 3 for concentricity. This shows that there is indeed a correlation

between the symbol occurrences and the mAP score. The one small drop can be

explained by Dataset 3 having some unfavorable images for concentricity that tem-

porarily drop the score. It can also be seen that as the symbol amounts rise, concen-

tricity and position start to line up with the graph of the surface roughness. This

is a good sign and indicates that with more training data, those symbols could also

get similar results to symbol roughness’ impressive score of 0.94. Of course more

tests are still needed to see if this would actually happen since this graph does not

give definitive proof on this.

Parallelism is still reaching surprisingly high scores, but it can still be explained

by the same reasoning as in Section 4.3. Since the parallelism symbols are most of

the time very similar and in similar locations, it is easily recognized even with a

much smaller sample size.

Next the mistakes happening in detection are inspected to get a better under-

standing why they are happening and how the accuracy could be improved based

on these learnings. Table 4.16 lists the number of mistakes found when using the re-

vised Dataset 4 and detecting the symbols from the testing set of Dataset 4. Dataset

4 was chosen for this inspection because of its reasonable size and decent accuracy.

Table 4.16 divides the mistakes in detection to three categories. Missing means

that a symbol in the image was not detected at all. Wrongly classified means that a

symbol was detected but classified in the wrong category, and false positive means

that a symbol was detected even when there was not a symbol there.

Most of the mistakes happen in the missing category and for surface roughness.

It happening most for surface roughness, even when the accuracy was over 94%,
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Table 4.16: Mistakes in detection on Dataset 4
Missing Wrongly classified False positive

Concentricity 15 1

Flatness 9

Parallelism

Position 18 3

Surface Roughness 32 4

is simply due to the huge amount of those symbols. There are a few reasons why

surface roughness was missed in some cases. Figures 4.5, 4.6 and 4.7 show a few

examples.

Figure 4.5:

Rotation

Figure 4.6:

Unique

symbol

Figure 4.7:

Crammed

In the example in Figure 4.5 the symbol is rotated quite a bit. This seemed to

make it harder to detect. It could possibly be fixed using hyperparameters to rotate

the training images so there would also be rotated examples in the training data.

Figure 4.6 shows a different variation of the surface roughness symbol. It does not

occur in many occasions in the training data. There was one particular image in the

testing set with multiple occurrences of this symbol and they were almost exclusively

missed. This problem could be fixed by having more occurrences of this variation of

the symbol included in the training data. Alternatively, the different variation could

be labelled as its own symbol in the data to separately detect this variation. If this

was done, the symbols could then be merged as one again after detection. In Figure
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4.7 the symbol is quite tightly placed between other lines and symbols. There were a

few cases where the symbol was missed due to it being so close to other things. This

could be difficult to fix. Having the rotation hyperparameter could help since in this

case the symbol is rotated. Also just training more should improve the situation.

Other things that could help are using hyperparameters to alter the sizes and colors

of the training images as there are bigger and smaller symbols as well as blue and

black symbols.

With the other symbols most of the missing ones can simply be explained by not

having enough data since there did not seem to be a clear pattern on why they are

missing, and these mistakes can be expected to go away with more training data

being introduced. However, there are also few cases where the reason for missing

the symbols is possible to see. In Figure 4.8 the parameters for the symbols are split

in two rows and the symbol sign is stretched to include both rows. These types of

symbols were missed more than detected. Again, with more data the problem could

be solved. Also changing the labeling could be considered too to separate these

types of symbols as their own.

Figure 4.8: Symbol parameters in two rows

There were only 4 instances of wrongly classified symbols in total. So, this does

not seem to be a big problem. The only symbols that were classified as the wrong

symbol in the testing data were concentricity and position. This is most likely due

to those two symbols being similar in shape with each other. They are both round

and the parameter boxes are also of similar shape, size and content. This was not a

major problem, and it should be fixed with more training data.

Another minor cause of mistakes in detection was false positives. This happened
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only with surface roughness in four instances. It is a very small percentage of the

whole amount of symbol roughness symbols present in the data. These mistakes

seemed to be because of a similar looking shape in the image. Figures 4.9 and 4.10

show two examples of such cases. Both of these examples have a triangular shape

and text on top or under a line just like the surface roughness symbol.

Figure 4.9:

Surface rough-

ness false posi-

tive 1

Figure 4.10:

Surface rough-

ness false posi-

tive 2

One thing that was not mentioned that could cause problems to the detection as

a whole is the resolution of the images. As seen from Figures 4.5-4.10 the resolution

gets quite blurry when zooming in the symbols. Improving the resolution could

possibly help with the detection. The resolution could also cause problems with the

text detection as the texts can be hard to read as seen for example in Figure 4.7.

4.6 Data augmentation testing

One more set of tests was run to test if data augmentation via hyperparameters

could be used to further improve the results. In Section 4.5 some problems arose

where changing rotation, scaling or colors in the training process could help with de-

tection. Based on these observations, some hyperparameters were adjusted. Colors

values were adjusted by altering hue, saturation and value of the hsv-color system

by a fraction of 0.3 each. This will add slightly different colored variants of the
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source images into the training. Rotation was adjusted so that training images were

randomly rotated between 90 and –90 degrees. Finally, also the scale of the images

was adjusted between 0 – 30%. Models were then trained with revised Datasets 4

and 5. The results in comparison to previous results are shown in Table 4.17 and

visualized in Figure 4.11.

Table 4.17: Results compared to augmented

Concentricity Flatness Parallelism Position Surface

Roughness

Symmetry

Dataset 4 0.61 0.39 1.00 0.41 0.91 0.00

Augmented

Dataset 4

0.55 0.52 1.00 0.52 0.93 0.00

Dataset 5 0.73 0.47 1.00 0.62 0.94 0.00

Augmented

Dataset 5

0.82 0.556 1 0.744 0.95 0.00

From Figure 4.11 it can easily be seen that the augmentation has improved the

results. In all cases but one the augmented result is better than its not augmented

counterpart. Only concentricity with Dataset 4 is worse on the augmented dataset.

With flatness, the augmented Dataset 4 result is even better than the base result

of Dataset 5. This result shows that the data augmentation can definitely improve

the results of the detection and in future developments it should be further explored

with different hyperparameter values and additional augmentations.
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Figure 4.11: Result compared to augmented visual
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4.7 Text recognition on symbols

After the detection of symbols, the text on them needs to be recognised to get all

the needed information from the symbols. As tested in Section 3.2 applying text

recognition is quite easy but there are a few preparations that are needed before it

can be applied to the symbols.

If the text recognition would just be applied to the whole drawing, it would be

impossible to tell which text belongs to which symbol and a lot of extra text would

also be detected. So, the symbols need to be isolated from the drawing. This can

be done simultaneously with the symbol detection. YOLOv7 has not implemented

a feature where a cropped image of the detection could be saved but YOLOv5

has. Following the example of YOLOv5 this feature was fairly simple to add to the

YOLOv7 build used in this thesis. The way this works is that while detecting the

symbols, the code also saves an individual image of each symbol.

When the images of each individual symbols are gathered, the text recognition

could be applied. But it turned out that it is still too hard for the OCR to collect

the text from the symbols, because it would detect certain lines and shapes in the

symbols as letters and the result of the text recognition would be wrong. The next

step would be to determine where the text is located in relation to the rest of the

symbol. Then the image could be further cropped to only include the text. This

process would also need to be done for each type of symbol separately because the

texts can be located in different areas. But there is still another problem why this

further cropping was not done yet. This problem is resolution as already mentioned

in Section 4.5.

The resolution is simply not enough to use text recognition on the detected

symbols using the available tools. It can be easily seen from Figure 4.12 that it is

really hard to tell what the numbers present in the symbol are. This was also tested

by manually cropping the text from the symbol and running the text recognition
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algorithm. The result with the symbol in Figure 4.12 was “LE Bo” which is not even

close to the real text. Some of the symbols were bigger than others so those could

potentially be detected. Another test was run with a larger symbol shown in Figure

4.13. The result of the text recognition was 0.92 which is much closer only getting

1 number wrong, but it is still wrong. Also this was one of the bigger and clearer

images available.

Figure 4.12:

Surface rough-

ness bad resolu-

tion

Figure 4.13:

Parallelism

better resolution

These results are quite disappointing since text recognition seemed like one of

the easiest parts of the implementation in the beginning. There are a few potential

fixes and workarounds for this. A workaround would be to get the coordinates

of the symbols from the symbol detection and then use them to crop the original

full resolution images and then apply text recognition to that. This way the symbol

detection would work as it is while the text recognition could still use good resolution

images. This really does feel like a workaround as the images would have to be saved

in many different versions and there could also be problems with locating the symbols

from the original images because the images are re-scaled in the process of symbol

detection.

As the problem with resolution seems to be caused by the symbol detection tool

not being able to handle big images, an optimal fix for the problem would be to have

the tool used for symbol detection to be able to handle larger images with bigger
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resolution.



5 Discussion

5.1 Future developments and feasibility for original

purpose

While the results in this thesis are promising with the detection scores, there is still

a way to go to make the detection good enough for the purpose it was intended for.

But with some future developments it can be made into a useful tool for multiple

purposes. The problems and possible fixes regarding the complexity indicator are

discussed in Section 5.2 but there are also more general problems that need to be

solved before the detection can fully be taken advantage of in different applications.

The symbol detection seems to get better and better with each test iteration and

when more data is added. While the scores are still not quite high enough, they

are getting there. The accuracy of surface roughness at 96% could already be good

enough as is to be used in some applications. With more training data including

the other symbols the accuracy for those other symbols could also rise to match the

good score of surface roughness. So in the future, more training data needs to be

labelled and fed into the training algorithm to improve the accuracy and confidence

of the model. The data augmentation also showed promising results so adjusting

the hyperparameters further could be beneficial and should be explored.

Some symbols in the data had multiple different variations. This seemed to be

the reason for many of the mistakes in detection. This problem could be solved by
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simply adding more training data, but it should also be considered, whether these

variations should be split into their own categories to be detected. If this would

be done, it would also benefit the localization of the text for the text recognition.

After the necessary detection steps, the variations could still be put together as one

symbol for whatever purpose needed.

Another more major problem was encountered with text recognition from sym-

bols. The resolution of the images was not good enough. It is possible that the

bad resolution also affected the symbol recognition but it was most noticeable in

text recognition. The images were too blurry for the text to be recognized. This

sounds like a major roadblock but it can potentially be solved in a few different

ways. The original images are high enough resolution as tested in Section 3.2. The

problem does not originate from the file conversion tool either. It happens because

the images need to be scaled down for the JupyterHub working environment and

YOLO possibly due to hardware limitations. YOLO gives an error of running out

of working memory if tried on original images. This would indicate that with more

available memory and better suitable tools, it would be possible to train the model

with the original images. This should improve the symbol detection as well as the

text recognition. Another way of fixing the issue with text recognition would be to

first run the symbol detection with the downscaled images and then use the text

recognition on the original images using the symbol coordinates given by the symbol

detection. Also slicing the images to smaller images of higher quality could also be

considered.

After these issues are solved, the detection is ready to be used for different ap-

plications. It can then be applied in the processes in different ways. One more thing

that would still be good to have is a complete pipeline for this process. Currently

the image source, file conversion, rescaling, symbol detection, text recognition and

the end purpose are all separate from each other. These would need to be summed
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up to one process that would hopefully work automatically in the background. An

example can be given using the first suggested use for this, the complexity indica-

tor. The goal is for the user to simply see a complexity score associated with each

part in the system. So there should be a process where after each part is added

to the company system, the detection process should be automatically run. First

the file would be converted to an image, then the symbol detection is applied, text

recognition applied to the results, complexity score calculated based on those results

and finally the score is put into the system for that part and the number would be

visible for the user. So the whole process would work in the background with no

extra work necessary for the user. This process is shown in Figure 5.1.

Figure 5.1: The automatic process from engineering drawing put to database, to

outputting the complexity score
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5.2 Complexity calculation and indicator

The first intended application for the symbol detection methods explored in this

thesis was supposed to be a complexity indicator. Each symbol would be given a

certain complexity score and then the sum of these scores for a part could then be

combined for a total complexity score. This score could then be used for various

purposes like more easily determining what certain parts should cost. For example,

if there were two similar parts, the part with a higher complexity score would then

be more expensive.

While working on this thesis, it came more and more apparent that implementing

the complexity indicator would most likely not be realistic in the scope of this

thesis. There are multiple problems that need to be solved before such metric can

be implemented.

Firstly, only the standard symbols that appeared in a limited set of data are

included in the trained models. For an accurate way to measure the complexity, all

of the standard and non-standard symbols would be needed. There are also some

markings and tables in some drawings that would need to be included in some way

to the calculation. Some of these could be included using the same methods as for

the other symbols but others would need some extra work to properly include them

in the calculation.

Another problem would be caused by the contextual nature of some of the sym-

bols. It turned out that simply allocating a fixed complexity for each symbol would

not work. Different types of parts would need different ways of calculating. Creating

the formula for calculating the complexity would most likely require another study

to be made by a specialist in mechanical engineering.

Due to reasons mentioned above, it is not possible to definitively answer RQ3.

More data would most likely need to be extracted from the drawings and the formula

for the calculation to be created to get an accurate complexity.



6 Conclusion

Engineering drawings contain a lot of information that does not exist in any other

format. The only way to access this information is to manually look at the drawing

and find the wanted information from it. This can be very difficult without the

technical knowledge to read engineering symbols or at least laborious if not difficult.

This thesis was done to address this problem.

The purpose was to create a way to extract symbol data from drawings and

create a way to calculate the complexity of certain parts based on this extracted

data. While working on achieving this goal, three research questions were addressed:

• RQ1: Are there previous implementations of extracting symbol data from

engineering drawings and are these techniques applicable for our purpose and

do they support machine learning?

• RQ2: Can we accurately extract symbol data from engineering drawings and

what is the best way to do it?

• RQ3: Can extracted engineering symbols be used to create an accurate repre-

sentation of part complexity?

The first question got its answer while studying the theory related to the topic.

There are implementations of somewhat similar cases, but for the standardized en-

gineering symbols there did not seem to be one. These similar implementations

however had some solutions that could be used as an example when creating the
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new implementation. And as expected, machine learning is in a critical role when

creating a proper implementation for detecting symbols. As the most helpful source

towards creating the implementation in this thesis, Y. Hua’s thesis "Usage of com-

puter vision algorithms to automatically extract information from piping and in-

strumentation diagrams" [17] from 2022 must be mentioned.

The answer to the second question began in Chapter 3 when the optimal methods

were explored. It was decided that a computer vision model called YOLOv7 would

be used for the symbol detection together with text recognition. Also the way to

label the training data was decided to include the whole symbol with attributes.

Then the tests were conducted using datasets with maximum image quantity of

443. Results were eventually good after some iterations of tests. The symbol with

most occurrences reached an accuracy of 96%. However, the text recognition did not

work with detected symbols due to bad resolution caused by hardware limitations.

The detection accuracy was not quite good enough yet either, but the results seem

promising so with more testing and getting rid of the hardware limitations this

method should be able to produce good enough results for applying the method in

real applications.

The third research question was left unanswered. This is because it turned out

that there are still too many variables not addressed in this thesis that would effect

the complexity of the part. This problem is also not in the field of information

technology but instead a thesis in mechanical engineering would be needed to create

the formula for calculating the complexity.
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