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Prostate cancer is one of the most common types of cancer in the world. To reduce
the number of deaths caused by it, effective diagnostic methods are of paramount
importance to detect the clinically significant cases early enough. The current diag-
nostic protocols include, among other methods, magnetic resonance imaging which
can be used to assess whether a patient suffers from prostate cancer and whether
the possible cancer lesions are clinically significant. However, the images are diffi-
cult to interpret, and thus the inter-reader reliability is not very good. To address
this problem, in this thesis machine learning models are trained to automatically
segment and classify prostate cancer lesions from magnetic resonance images.
The problem proved to be difficult even for computers, at least with the relatively
small data set size. The highest Dice similarity coefficients for the used Gleason score
groups approached 0.4, which is not enough to replace the work of professionals or
even provide meaningful help for doctors. In conclusion, the task of automatic
segmentation and classification of prostate cancer lesions remains an open problem.
Improving the performance to a useful level would likely require a noticeably larger
dataset or at least a model that better incorporates the knowledge of the trained
professionals.
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1 Introduction

Prostate cancer is the second most frequently discovered type of cancer among men

in the world, being only a tiny amount less commonly found than lung cancer. In

2020, it was estimated that there would be over 1.4 million new cases of prostate

cancer globally, and that the disease would cause 375,000 deaths. (Sung et al., 2021.)

Prostate cancer is especially commonly discovered in the more developed nations,

in which it is the most common cancer in men. However, when standardized for

age, prostate cancer is also very common in South America, Southern Africa, and

the Caribbean. (Center et al., 2012; Sung et al., 2021.) In 2011 the annual cost of

prostate cancer care was estimated at nearly 12 billion dollars in the United States

alone. Back then, this figure was projected to rise to around 16 billion dollars by

2020. (Mariotto et al., 2011.)

In order to reduce the number of deaths, diagnosing prostate cancer early enough

is important. Since it is not currently feasible to perform diagnostic tests for all men

frequently, it is critical to identify the people who are most likely to have prostate

cancer. Age is the most notable risk factor, and very significant portions of older

people have been found to be affected by prostate cancer in different studies. Other

risk factors include for example genetic background, taller height, vertex pattern

baldness, and certain diets. Over the last few years, performing widespread screen-

ing for prostate cancer among men with significant risk factors has been gaining

popularity. (Bergengren et al., 2023.)
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The screening method that is currently recommended by the EU council con-

sists of first measuring the amount of prostate-specific antigen (Bergengren et al.,

2023). The biggest drawback of this measurement is that it is known to produce

many false positive results, thus resulting in overdiagnosis (Schröder et al., 2009).

For this reason, the European Association of Urology recommends prostate-specific

antigen testing only for men who have at least 15 years of individualized life ex-

pectancy remaining and who are well-informed about the potential shortcomings of

the antigen-based tests (Mottet et al., 2021).

After prostate cancer is suspected, whether due to results of an antigen test or

other reasons, follow-up tests are needed. In the European Union, multiparametric

magnetic resonance imaging is recommended as the next test (Bergengren et al.,

2023). It allows trained doctors to further evaluate whether prostate cancer is

present and at the same time estimate the clinical significance of cancer lesions

if such are identified (Weinreb et al., 2016).

The standard method for confirming suspected prostate cancer and assessing its

clinical significance is a procedure known as biopsy (Mottet et al., 2021). In biopsy,

tissue samples are obtained from the prostate gland, and the samples are analyzed

at the cell-level. Because of its invasiveness and potential of infection, it would be

beneficial to perform biopsy only when the suspicion of prostate cancer is significant

enough.

Jambor et al. (2017) showed that the more widely used multiparametric magnetic

resonance imaging protocol could be efficiently replaced with a faster and cheaper

biparametric imaging protocol. In addition, this method uses neither an endorectal

coil nor intravenous contrast, which makes it much less invasive for the patient.

When combined with a targeted biopsy afterwards, this procedure was shown to

reduce the number of performed biopsies by 24% while missing only 2% of clinically

significant prostate cancer cases.
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In this thesis, machine learning models are developed in order to automatically

identify, segment, and classify possible prostate cancer lesions from magnetic res-

onance images acquired with the biparametric imaging protocol. It is known that

inter-reader reliability of interpreting magnetic resonance images with prostate can-

cer lesions is not very good even with the multiparametric imaging protocol which

has more available information than the biparametric protocol (Mottet et al., 2021).

As a result, it would be very beneficial to have a computational model that could

interpret the images in an optimal manner at all locations or at least assist profes-

sionals in the analysis of the magnetic resonance images.

The next section includes a brief introduction to prostate cancer grading from

magnetic resonance images, as well as necessary background to understand the used

machine learning models. After that, some closely related work by others is outlined.

The final sections include the description of the study, its results, and analysis of

those results. The study itself is divided into three distinct phases. First, in order

to validate that the chosen machine learning approach works, segmentation of the

entire prostate gland is attempted. After this, lesions of certain clinical significance

are segmented from the images without further classification. As the last step, the

lesions are simultaneously segmented and assigned to one of the five groups defined

by the International Society of Urological Pathology that indicate the severity of

the disease.



2 Background

2.1 Prostate cancer grading with MRI

2.1.1 Anatomy of the prostate and prostate cancer

The human prostate is an anatomically heterogeneous organ that can be divided

into four distinct anatomic regions: the central zone (CZ), the peripheral zone (PZ),

the transition zone (TZ) and the anterior fibromuscular stroma. These regions have

different tissue compositions, and thus they have distinct pathological properties.

(McNeal, 1981.)

The CZ surrounds the ejaculatory ducts and contains 20–25% of the glandular

tissue in the prostate (Greene et al., 1995; McNeal, 1981). It has been shown that it

is rare for prostate cancer to originate from the CZ. McNeal et al. (1988) estimated

the portion of prostate cancers originating from the CZ to be close to 10% based on

104 investigated prostate glands. However, Cohen et al. (2008) found the portion

to be only around 2.5% based on a much larger sample of nearly 2500 tumors from

over 1700 different patients. While the CZ tumors are not very common, they have

been found to be more aggressive than tumors originating from the other regions of

the prostate (Cohen et al., 2008).

The PZ is the largest region of the prostate, containing closer to 75% of the

prostatic gland. It is located at the base of the prostate and surrounds the CZ

partially. (Greene et al., 1995; McNeal, 1981.) The majority of prostate cancer



2.1 PROSTATE CANCER GRADING WITH MRI 5

tumors, over 60%, originate from the PZ (Cohen et al., 2008; McNeal et al., 1988).

The TZ is located around the urethra close to the bladder. It is normally in-

significant in size but can start growing, resulting in benign prostatic hyperplasia.

(McNeal, 1981.) Around 30% of prostate cancer tumors originate from the TZ,

which makes the TZ the second most important origin of prostate cancer tumors

after the PZ (Cohen et al., 2008). TZ tumors have been found to be less aggressive

than PZ tumors on average. They are less likely to spread outside the prostate and

the tissue in them is usually not as deformed as in PZ tumors. (Greene et al., 1991;

McNeal et al., 1988.)

There are no glands in the anterior fibromuscular stroma even though it contains

roughly 30% of the mass of the prostate tissue (McNeal, 1981). Because of this,

prostate cancer does not originate from the anterior fibromuscular stroma.

2.1.2 Prostate MRI

Magnetic resonance imaging (MRI) is a technique that can be used to get a view

inside the human body in a non-invasive way. The patient is placed inside a magnetic

field and the protons of the tissues are excited by oscillating the magnetic field at

a radio frequency. When the protons relax back to the original state, they radiate

the absorbed energy at a frequency which can be measured. The tissue in which

the protons are, affects the received signal, which makes MRI great for separating

different types of tissues. (Steyn and Smith, 1982.)

When MRI is used for prostate imaging, the images are often obtained using

several different settings which emphasize specific types of tissue. The Prostate

Imaging - Reporting and Data System Version 2 (PI-RADS™ v2) specifies standards

for the MRI sequences that should be obtained for the prostate (Weinreb et al.,

2016).

According to PI-RADS™ v2, both T1-weighted (T1w) and T2-weighted (T2w)
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images are important. T1w images are primarily used for finding the outline of the

prostate gland and detecting hemorrhage while T2w images reveal the zonal anatomy

of the prostate and can be used to locate tumors and other abnormalities. Clinically

significant tumors of the PZ appear as hypointense regions in T2w images but this

appearance can be caused by other conditions as well. Tumors of the TZ can show

up in several different ways in the T2w images, for example as a hypointense region

or as a lenticular shape. The likelihood of tumor correlates with the number of these

features that are present. (Weinreb et al., 2016.)

Diffusion-weighted imaging measures the random movement of water molecules

in the tissues. For prostate MRI, the PI-RADS™ v2 recommends using diffusion-

weighted images (DWI) with a b-value setting of over 1400 s/mm2 as well as apparent

diffusion coefficient (ADC) maps which are derived from several DWIs with different

b-values by using a model of signal decay. (Weinreb et al., 2016.)

Dynamic contrast-enhanced (DCE) MRI is performed by doing T1w gradient

echo scans before, during and after injecting a contrast agent into the bloodstream.

DCE MRI can reveal small but significant tumors that would be missed by the other

methods, which is why it is recommended in the PI-RADS™ v2. However, the added

value of DCE MRI is controversial and its role in classifying tumors is secondary to

the other methods. (Weinreb et al., 2016.)

Using T2w images, DWI, ADC maps, DCE MRI and sometimes other techniques

together is known as multiparametric MRI (mpMRI) (Weinreb et al., 2016). It has

recently been shown that using only T2w images along with the diffusion-weighted

imaging methods (Figure 2.1), which is known as biparametric MRI (bpMRI), can

achieve very good results while avoiding some of the problems with the traditional

mpMRI (Jambor et al., 2017; Stanzione et al., 2016). As DCE MRI is not performed

in bpMRI, the process becomes significantly less invasive and quicker. Stanzione et

al. (2016) were able to reduce the time spent for the MRI protocol from around 24
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Figure 2.1: A T2-weighted magnetic resonance image on the left and an apparent

diffusion coefficient (ADC) map on the right. The prostate is located at the center

of both images.

minutes to 17 minutes. Another benefit of dropping DCE MRI from the protocol

is avoiding the use of gadolinium based contrast agents which are known to be

relatively expensive and have been shown to likely accumulate in the dentate nuclei

of the brain (Stanzione et al., 2016; Tedeschi et al., 2016).

2.1.3 Prostate cancer grading

The prognosis of prostate cancer can vary greatly from case to case. The aggressive-

ness of the cancer is used to select an appropriate treatment, and in many slowly

progressing cases it may be unnecessary to use any treatment as the disease does

not have a significant effect on the expected survival rate during the next few years

(Wiederanders et al., 1963). Because of this, it is important to have an established

system for grading different prostate cancer cases.

Perhaps the most well-known prostate cancer grading system was developed by

Donald Gleason in 1966. The system assigns a score known as Gleason score to a
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patient with cancer based on the morphology of the cells. The score is composed of

two numbers, each of which can be between 1 and 5 and represents a cell pattern

found in the prostate. The larger the pattern number, the more aggressive and

dangerous the cancer is. The first of these numbers is the most prevalent pattern

found in the prostate. The second number was originally the second most prevalent

pattern found. (Gleason, 1966; Gleason and Mellinge, 1974.)

The Gleason grading system received a few updates at the 2005 International So-

ciety of Urological Pathology (ISUP) consensus conference. These changes included,

for example, that for each separate tumor found in radical prostatectomy, a distinct

grade should be reported. For needle biopsies, the second number of the Gleason

score was agreed to represent the highest grade instead of the second most prevalent

pattern. It was decided that Gleason scores 1 and 2 should not be assigned based

on needle biopsies as these scores are hard to reproduce, have a low correlation with

prostatectomy grades and may misguide clinicians and patients. (Epstein et al.,

2005.)

In 2014, the grading system was further updated at a new ISUP conference,

where the instructions for classifying certain patterns were updated. In addition

to the updates, a new grouping system for the Gleason scores was agreed upon.

This system reduced the number of grade groups to five from the large number of

possible Gleason score combinations. It also works better than the nine possible

groups that can be obtained by summing the two Gleason score numbers together

because combined scores lower than 6 are rarely assigned and patients with the

same combined score can have different prognoses. For example, Gleason scores 3 +

4 and 4 + 3 have a combined score of 7 even though 4 + 3 has a significantly worse

prognosis. The new ISUP grouping system is shown in Table 2.1. (Epstein et al.,

2016.)

While the Gleason scoring system is useful for grading tissue samples, it cannot



2.2 IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NEURAL
NETWORKS 9

Table 2.1: The ISUP Gleason grade grouping system.

ISUP grade group Combined Gleason group Gleason scores

1 ≤ 6 ≤ 3 + 3

2 7 3 + 4

3 7 4 + 3

4 8 4 + 4, 3 + 5, 5 + 3

5 9 or 10 4 + 5, 5 + 4, 5 + 5

be used to grade images obtained from MRI. The PI-RADS™ v2 includes a grading

system for quantifying the likelihood of clinically significant cancer being present in

the images. Grade 1 is assigned when clinically significant cancer is unlikely and

5 when it is likely based on the mpMRI. If the grade is high enough, a biopsy is

performed to get a more accurate diagnosis. (Weinreb et al., 2016.)

2.2 Image segmentation with deep convolutional neu-

ral networks

2.2.1 Machine learning

Machine learning encompasses computational techniques that learn how to perform

a task by becoming better at it, as measured by a defined performance metric,

when gaining more experience with data related to the task (Mitchell, 1997). Most

machine learning algorithms can be divided into two groups: supervised and unsu-

pervised learning algorithms. Unsupervised learning algorithms try to identify and

learn useful properties of the available data itself. On the other hand, supervised

learning algorithms experience target values in addition to the data and try to learn

how to predict these targets when given new data. (Goodfellow et al., 2016.) The

problems that are solved in this thesis fall into the domain of supervised learning.
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Most supervised learning algorithms can be further classified as either parametric

or non-parametric. When using parametric methods, the functional form is chosen

first, and the training of the model is performed afterwards by estimating coefficients,

or weights, that optimize a chosen loss function. For some learning algorithms, the

optimal weights can be easily found with a closed-form expression, but in most

cases an optimization algorithm must be used for the estimation. Non-parametric

methods do not make assumptions about the functional form of the model and

thus they have potential to fit the model to the data in more complex ways than

parametric methods. However, non-parametric methods typically require far more

data than parametric methods to obtain an accurate estimate. (James et al., 2013.)

The quality of the predictions made by a supervised learning algorithm can be

measured by using performance metrics that compare the predictions with the actual

target values. These metrics give an idea of how well the model is performing, and

make comparing results to previously conducted studies easier. (Goodfellow et al.,

2016.) In order to get a reliable estimation of the true performance of the model,

the performance metrics must be computed using data that were not used to train

the model. This can be done by dividing the data into training and test sets. The

model is then fit to the data of the training set, after which the performance can

be estimated on the test set. When there is not enough data for a separate test

set, a method known as cross-validation can be used to estimate the performance.

In cross-validation, the data is divided into folds of approximately equal size. The

first fold is then used as the test set while the model is trained on all the other

folds. This is then repeated until all the folds have been the test fold once. Finally,

the performance metrics of each fold are combined. There are additional benefits to

using cross-validation: it typically uses a larger portion of the available data to train

the model, giving a better estimate of the true performance of the model trained

on all the data, and it partially avoids the problem of some models having highly
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variable performance depending on the exact training set that was used. (Hastie

et al., 2009; James et al., 2013.)

Supervised learning algorithms typically have one or more parameters that de-

termine the complexity of the model. The model complexity affects the training and

test set errors, as measured by a performance metric. While the training set error

continues to decrease as the complexity of the model is increased, the test set error

starts to increase after the model passes a certain complexity threshold, which is

shown in Figure 2.2. When the complexity is too low, the model cannot properly fit

to the patterns present in the data and is said to underfit. On the other hand, when

the complexity is too high, the model overfits by adapting too closely to the data of

the training set, reducing the generalization capability. (Hastie et al., 2009.) The

parameters that determine the complexity of the model, as well as other parameters

that are not set by the fitting of the model, are known as hyperparameters. In order

to choose the optimal values for the hyperparameters, additional data, a validation

set, is needed. If the hyperparameters were set on the regular training set, the values

that result in the highest model complexity would be chosen which would lead into

overfitting. The validation set is split from the training data and if a simple split

is not enough, cross-validation can be used to select the optimal parameter values.

(Goodfellow et al., 2016.)

2.2.2 Feedfoward neural networks

Artificial neural networks are a group of machine learning techniques that are based

on attempts of McCulloch and Pitts (1943) to create a mathematical model of

the human nervous system. These techniques have grown to encompass a variety

of different approaches: for example, unsupervised methods such as self-organizing

maps (Kohonen, 1982) and supervised methods like feedforward and recurrent neural

networks.
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Figure 2.2: Effects of model complexity on training and test set errors as described

by Hastie et al. (2009). As the model complexity increases, the training set error

keeps decreasing, but the test set error starts to increase after a certain point.
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Feedforward neural networks are used to approximate some unknown function

by learning the parameters θ that give the best approximation of the function

y = f(x;θ). In feedforward networks, the information only flows forward, while

in recurrent networks there are backwards connections as well. (Goodfellow et al.,

2016.) The basic structure of a feedforward neural network can be thus illustrated

with a directed acyclic graph in which the vertices represent the units of the network,

and the edges the connections between them. An example of this is shown in Figure

2.3. Feedforward neural networks consist of multiple layers of functions which are

chained together. The first layer is called the input layer, the last one is known as

the output layer, and the layers between these are referred to as hidden layers. The

overall number of the layers determines the depth of the network. The number of

layers along with their dimensionality and the connections between them define the

architecture of the model. (Goodfellow et al., 2016.) Feedforward neural networks

with only one hidden layer have been proved to be universal approximators which

means that they are able to approximate any Borel measurable function (Hornik

et al., 1989). However, having multiple hidden layers is typically desirable as they

tend to perform better than a single layer with a large dimensionality (Goodfellow

et al., 2016).

The output of each layer of the network is defined by a function known as the

activation function g(z). These functions usually take in as parameters the affine

transformation z = W⊤x + b where x is a vector of the outputs of the connected

nodes of the previous layers, W is a weight matrix, and b is a vector of values known

as biases. Most activation functions apply an element-wise nonlinear transformation

to the parameters. (Goodfellow et al., 2016.)

Training of feedforward neural networks is a three-step process. First, the output

value of the network is computed. This step is known as the forward pass as the in-

formation flows through the network from the input layer to the output layer. After



2.2 IMAGE SEGMENTATION WITH DEEP CONVOLUTIONAL NEURAL
NETWORKS 14

Figure 2.3: The structure of a basic feedforward neural network.

this, the output value is compared to the true target value by using a loss function

to compute a cost of the error that the network made. In the third step which is

known as the backward pass, the weights of the network are updated according to

the loss value. This is typically done by using a gradient descent optimization algo-

rithm which updates the weights by a small amount to the opposite direction of the

gradient. In order to make calculating these changes possible, an algorithm known

as backpropagation is used to traverse backwards through the network and compute

the gradient. These steps are then repeated until the performance stops improving.

(Goodfellow et al., 2016.) The components of feedforward neural networks are next

discussed in greater detail.
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Activation functions

There are many activation functions that are commonly used for feedforward neural

networks. Typically, the activation functions of the hidden layers are the same for

every layer, and the activation function of the output layer is chosen based on the

type of the problem. (Goodfellow et al., 2016.)

Nair and Hinton (2010) introduced the rectified linear unit (ReLU)

g(z) = max(0, z)

which is one of the most common activation functions of the hidden layers currently.

The output of the ReLU is linear if the input is greater than 0, which helps training

the network as the gradients stay large and consistent. However, if the values of the

input vector z = W⊤x+ b are non-positive, the layer cannot learn anymore as the

gradient is 0 in every dimension. Because of this, multiple modified versions of the

basic ReLU have been created. These retain the good properties of the ReLU while

alleviating the weaknesses. (Goodfellow et al., 2016.) Some of the commonly used

modified versions include leaky ReLU

g(z) =

⎧⎪⎨⎪⎩ z for z ≥ 0

0.01z for z < 0
,

its generalization, parametric ReLU or PReLU which treats the coefficient as a

learnable parameter

g(z) =

⎧⎪⎨⎪⎩ z for z ≥ 0

αz for z < 0
,

and exponential linear unit (ELU)

g(z) =

⎧⎪⎨⎪⎩ z for z > 0

α(exp(z)− 1) for z ≤ 0

(Clevert et al., 2015; He et al., 2015; Maas et al., 2013).
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Before ReLU and its modifications became popular, common activation functions

of the hidden layers included the logistic sigmoid and hyperbolic tangent functions.

These functions are sensitive only when the input is close to 0 as the output saturates

to a constant value when the input is very positive and to another constant value

when the input is very negative. These functions are still used in some applications,

but the ReLU based functions have replaced them in the hidden layers of feedforward

networks. (Goodfellow et al., 2016.)

There are three activation functions which are commonly used for the output

layer. A linear function produces the output predictions

ŷ = W⊤x+ b.

The linear output function is usually used for regression problems where the task

is to output a value with no bounds. When the task involves predicting a binary

variable y with a Bernoulli distribution, the predictions are given by a sigmoid

output function

ŷ =
1

1 + exp(−w⊤x− b)
.

The third commonly occurring case is predicting labels for a variable with a categor-

ical distribution. The output function that is chosen for this problem type is known

as the softmax function. It uses the unnormalized log probabilities z = W⊤x + b

to compute the output for each category using the function

softmaxi =
exp(zi)∑︁
j exp(zj)

.

(Goodfellow et al., 2016.)

Loss functions

The loss function provides the target value that is minimized in order optimize the

neural network. In most simple cases, the cross-entropy between the predictions and
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the training data is used as the loss function, as this results in the maximum likeli-

hood solution. The exact form of the loss function then depends on the probability

distribution of the model. For example, if the model distribution is assumed to be

Gaussian, the mean squared error

MSE =
1

n

n∑︂
i

(yi − ŷi)
2

where y is the vector of true values and ŷ is the vector of predicted values, should be

used as the loss function. Likewise, in two-class classification problems the binary

cross-entropy

BCE = −y log ŷ − (1− y) log (1− ŷ)

is the loss function that produces the maximum likelihood solution. (Goodfellow

et al., 2016.)

Optimization

As mentioned earlier, neural networks are trained by optimizing the weights in a

way that reduces the loss value. The key component for efficiently optimizing the

weights of a feedforward neural network is the backpropagation algorithm which was

popularized by Rumelhart et al. (1986). The algorithm is based on the chain rule

of calculus
dz

dx
=

dz

dy

dy

dx

which can be generalized for both vectors

∇xz = (
∂y

∂x
)⊤∇yz

and tensors

∇Xz =
∑︂
j

(∇XYj)
∂z

∂Yj

.

By applying the chain rule recursively backwards through the network starting from

the loss function, the gradient can be computed with respect to every parameter of

the network. (Goodfellow et al., 2016; Rumelhart et al., 1986.)
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The network is trained by updating its weights against the gradient iteratively

with small steps. However, computing the exact gradient based on the whole training

set is computationally expensive, and training a neural network with a large data set

would become infeasible if this was done. Instead, an estimate of the true gradient,

g, is computed by sampling a small batch of data from the training set during each

iteration. The weights are then updated based on the estimate of the true gradient:

θ ← θ − ϵg

where ϵ represents the learning rate which determines the length of the steps taken

against the gradient. This simple optimization algorithm is known as stochastic

gradient descent (SGD). The learning rate of SGD is an important parameter: if it

is too low, the training of the network is slow, and if it is too high, the loss function

may not converge to a local minimum. The learning rate is usually decreased over

the duration of the training in order to make sure that the algorithm finds a local

minimum. (Goodfellow et al., 2016; Rumelhart et al., 1986.)

One of the reasons for the difficulty of training neural networks is that the op-

timization problems are highly non-convex. Because of this, the learning algorithm

most likely converges to a local minimum instead of the global minimum. (Good-

fellow et al., 2016; Gori and Tesi, 1992; Sontag and Sussmann, 1989.) However, it

has been proved that the local minima do not cause problems for large-size neural

networks as they all have quite low test errors (Choromanska et al., 2014). There are

still some other problems with the optimization process: for example, the Hessian

matrix may be ill-conditioned which causes the loss to increase even with a small

learning rate, there can be regions where the gradient is extremely flat or steep,

and the initial choice of the parameters can have a large effect on the result of the

optimization (Goodfellow et al., 2016).

There are a great number of more advanced optimization algorithms based on

the SGD that aim to converge faster and avoid some of the problems that the
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regular SGD may encounter. One way to improve the learning speed of SGD is by

using a momentum algorithm, discovered by Polyak (1964), which gives weight to

the previous gradients in addition to the current one. The algorithm updates the

weights in a two-step process:

v ← αv − ϵg

θ ← θ + v

where v is known as the velocity and α is a coefficient that gives the weight for the

previous gradients. (Goodfellow et al., 2016; Polyak, 1964.) A common alternative

for the regular momentum algorithm is known as the Nesterov momentum algorithm.

It is very similar to the momentum algorithm but it computes the estimated gradient

g at the position θ + αv instead of using the current parameters θ. (Goodfellow

et al., 2016; Nesterov, 1983.)

Using optimization algorithms with adaptive learning rates for every parameter

has been another strategy for improving the performance of SGD (Goodfellow et al.,

2016). For example, the AdaGrad algorithm and its improved version RMSProp, dis-

covered by Duchi et al. (2011) and Hinton (2012) respectively, achieve great results

by updating the learning rates after each iteration. Some of the newer optimization

algorithms, such as Adam and Nadam, combine the properties of adaptive learning

rate algorithms with the concept of momentum. Adam incorporates momentum and

some minor changes to the RMSProp algorithm, and Nadam modifies Adam to use

Nesterov momentum. (Dozat, 2016; Kingma and Ba, 2014.)

Adding so called batch normalization layers to the model is a very commonly used

method for achieving faster and more reliable optimization. Batch normalization

first computes the mean and variance of its inputs over the batch of data used for

the current training iteration. These values are then used to first normalize and
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then scale and shift the input:

yi ← γ
xi − µB√︁
σ2
B + ϵ

+ β

where yi is the output, xi is the input, µB is the computed mean, σ2
B is the computed

variance, ϵ is a small constant, and γ and β are learnable parameters. At test time,

µB and σ2
B are replaced by population statistics. (Ioffe and Szegedy, 2015.) Orig-

inally, batch normalization was thought to improve the optimization performance

by reducing a phenomenon known as internal covariate shift, but later it has been

shown that at least most of the benefits are a result of smoother gradients. (Ioffe

and Szegedy, 2015; Santurkar et al., 2018)

Regularization

When a neural network model is trained, it is most important that the model per-

forms well on new data, which is typically measured by computing the error rate

on a test set that has not been used for the training. There are many so called

regularization strategies that aim to improve only the generalization performance of

the model. (Goodfellow et al., 2016.)

One way to lower the generalization error is by avoiding overfitting. A com-

mon strategy for achieving this is using parameter norm penalties which limit the

capacity of the model by punishing high parameter values. A regularizing term

λΩ(θ), where λ is a parameter that scales the regularization strength and Ω(θ) is

the norm penalty function, is added to the loss function. Common norm penalty

functions include L2 regularization, where Ω(θ) = 1
2
||θ||22, and L1 regularization,

where Ω(θ) = ||θ||1. Compared to L2 regularization, L1 regularization results in

more parameters acquiring value of 0 during the training. (Goodfellow et al., 2016;

Hastie et al., 2009.)

Early stopping is another very common regularization strategy that aims to avoid

overfitting the model. It works by monitoring the validation set performance of the
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model during the training, and storing the parameter values every time the perfor-

mance improves. When the validation set error starts increasing due to overfitting,

the training is stopped, and the optimal parameters are returned. In order to ac-

curately conclude that the validation performance has started decreasing, a value

known as patience is used to decide how long the training continues after the last

improvement before stopping. (Bengio, 2012; Goodfellow et al., 2016.)

As the generalization performance of a neural network is very often limited by

the amount available training data, an effective method of improving the results in

some cases is creating more data for the training. This technique is known as data

augmentation, and it is useful especially for image classification tasks. Applying

randomized modifications such as rotation, translation and noise injection to image

data can produce a much larger training set and thus help reduce the generalization

error. (Goodfellow et al., 2016.)

Dropout is a regularization method which, as its name suggests, drops out some

random set of the nodes of the network during each training iteration. By doing

this, the nodes cannot co-adapt to the training data as some of the nodes are always

disconnected from the others. Dropout can be thought as a computationally effective

way to average many different pruned models. At test time, all nodes are connected

again, but the weights are scaled down to approximate the combination of the trained

models. (Srivastava et al., 2014.)

2.2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a specific type of neural networks that

use an operation known as convolution instead of normal matrix multiplication in at

least some of the layers (Goodfellow et al., 2016). The history of CNNs dates to the

work of Fukushima (1980). The studies of Hubel and Wiesel (1962), who discovered

how the mammalian visual nervous system functions, served as an inspiration for the
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first CNN model. The CNN models, as well as the hardware used for the training,

developed quite slowly over the decades until the 2010s (Schmidhuber, 2015). After

Ciresan et al. (2011) and Krizhevsky et al. (2012) achieved remarkable performance

levels on image classification tasks, the popularity of feedforward CNNs exploded.

These days CNNs are used especially for image-related tasks with great success

(LeCun et al., 2015).

Convolution

Convolution, denoted with the symbol ∗, is a mathematical operation between two

functions f and g:

(f ∗ g)(t) =
∫︂ ∞

−∞
f(a)g(t− a)da =

∫︂ ∞

−∞
f(t− a)g(a)da

or in the discrete case

(f ∗ g)(t) =
∞∑︂

a=−∞

f(a)g(t− a) =
∞∑︂

a=−∞

f(t− a)g(a).

The first function f is usually called the input and the second function g the ker-

nel. The convolution operation can be interpreted as a procedure that flips the

kernel, slides it along the input, and outputs a function where the value at point t

corresponds to the overlap of the input and the flipped kernel that is shifted by t.

Typically, CNNs do not use the regular convolution but rather the cross-correlation

which is a non-commutative version of convolution that does not flip the kernel.

In addition, when processing image data, the cross-correlation operation is usually

two-dimensional:

(f ⋆ g)(i, j) =
∑︂
m

∑︂
n

f(i+m, j + n)g(m,n).

(Goodfellow et al., 2016.)

When compared to the layers of a regular feedforward neural network, convolu-

tional layers have a few major differences. The weights that are optimized during
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training of the convolutional layers are the values of the kernel. The size of the

kernel is typically much smaller than the size of the input, which means that there

are fewer connections in the network. This benefits the computational efficiency and

reduces the memory requirements. As the same kernels are used at every location of

the inputs, the weights are shared, and as a result the memory required for storing

the weights becomes even smaller. Another consequence of the shared weights is

that CNNs are equivariant to translation: for example, if an object is moved in

an input image, its representation in the output will move by the same amount.

(Goodfellow et al., 2016; LeCun et al., 2015.)

In practice, the convolutional layers almost always use multiple kernels in parallel

to extract different kinds of features from the inputs. In order to further reduce the

computational cost of training the network, the output of a convolutional layer can

be downsampled by specifying a stride s so that the convolution is computed at only

every sth location of the input. (Goodfellow et al., 2016.)

Pooling

In most CNN architectures, the outputs of the convolutional layer are fed into an

activation function just like in regular feedforward neural networks. However, after

this step most CNNs add a pooling function. This function merges its inputs into

a summary statistic and thus introduces invariance to local translations. The most

used pooling function is called max pooling, and it simply outputs the maximum

value found inside its input. Pooling is often combined with downsampling by adding

a stride. (Goodfellow et al., 2016; LeCun et al., 2015.) The effect of max pooling

with striding is illustrated in Figure 2.4.
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Figure 2.4: The effect of a downsampling max pooling operation with input size of

3× 3 and stride of (3, 3) applied to a grid of size 6× 6. For the output, max pooling

picks the maximum value from each input rectangle, and these rectangles are made

non-overlapping with the stride.
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Deep convolutional neural networks

As CNNs are computationally more efficient than fully connected feedforward neural

networks, they can typically use more layers, which in turn seems to produce better

results. CNNs learn to combine hierarchical structures within the data. For example,

in the case of image data, the kernels of the first layer start to recognize simple colors

and edges, and these features are combined in the later layers to recognize more and

more complex patterns. (Goodfellow et al., 2016; LeCun et al., 2015.)

2.2.4 Image segmentation

Deep convolutional neural networks can be used for many different types of im-

age processing tasks. These tasks include, for example, image classification, object

detection, semantic segmentation, and instance segmentation. Image classification

tasks are about predicting whether an object is or is not present in the given image.

In object detection tasks, it is important to not only correctly predict that an object

of some type is present in the image but finding the locations of the objects is also

required. The locations are usually marked by boxes surrounding the objects. In se-

mantic segmentation tasks, every pixel of the image is assigned to a class. Detection

of separate objects is not deemed important in these problems. Instance segmenta-

tion tasks are a combination of object detection and semantic segmentation: every

individual object is detected and segmented on pixel-level. (Lin et al., 2014.) The

differences of these task types are explained with examples in Figure 2.5.

While the different types of image recognition tasks may sound similar, the

popular CNN architectures used for them can differ from each other. A good per-

formance can be achieved on image classification tasks with CNNs that have several

convolutional layers followed by fully connected layers and the softmax function that

outputs the probabilities of detecting each possible class in the image (Krizhevsky

et al., 2012). A network architecture known as R-CNN, as well as its more recent im-
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Figure 2.5: Different types of image recognition tasks. In image classification, the

task could be to predicted whether the original image a) contains an apple. In object

detection, the locations of the apples would be detected as shown in image b). In

semantic segmentation, the different fruits would be segmented into distinct classes.

For example in image c), the apples are segmented into one class and the avocado

into another. Finally, in instance segmentation all individual instances of the fruits

would be segmented, as shown in image d).
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proved versions like Faster R-CNN, are popular for object detection tasks. R-CNN

works by first using an algorithm to create proposals of regions that may contain

objects, then extracting features from these regions with a CNN that is pre-trained

on an image classification task, and finally using a linear support vector machine to

classify each region proposal (Girshick et al., 2014). Faster R-CNN is a model based

on the principles of the original R-CNN. Instead of an region-proposal algorithm, it

uses a fully convolutional neural network module to produce the region proposals.

These proposals are then used by another CNN module that classifies the regions.

These modules share convolutional layers, which makes the object detection compu-

tationally inexpensive. (Ren et al., 2017.) By adding a fully convolutional module

to the Faster R-CNN for predicting object masks, He et al. (2017) created a model

known as Mask R-CNN, which is a very popular tool for instance segmentation

tasks. Semantic segmentation tasks are often solved with fully convolutional neural

networks. U-net, which was created by Ronneberger et al. (2015), is a very widely

used fully convolutional model, and as it is used in this thesis, it will be discussed

in greater detail next.

U-net

U-net is a fully convolutional neural network model that was originally designed for

semantic segmentation of biomedical images. The model consists of a contracting

path and an expansive path. The contracting path is made up of blocks that have

two consecutive convolutional layers with kernel sizes of 3 × 3, and a 2 × 2 down-

sampling max pooling layer with a stride of 2. The convolutional layers are followed

by nonlinear activation functions, and the first convolutional layer of each block in-

creases the number of convolutional kernels used. The expansive path consists of an

equal number of blocks. These blocks first use an operation known as up-convolution

to upsample the input and undo the effects of the corresponding max pooling layer in
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the contracting path. The output of the up-convolutional layer is then concatenated

with the output of the corresponding contracting block. The block finally uses two

normal convolutional layers with 3× 3 kernels. The first convolutional layer reduces

the number of kernels, and each are again followed by a nonlinear activation func-

tion. After the desired number of contracting and expansive blocks are stacked on

top of each other, a 1× 1 convolution is used to map the final output to the correct

number of classes. (Ronneberger et al., 2015.)

Performance metrics for image segmentation tasks

The segmentation accuracy of a model is often evaluated and compared to the per-

formance of other models by using certain metrics that try to quantify the goodness

of the predictions.

Pixel accuracy is a simple metric that tells the percentage of correctly classified

pixels:

PA =

∑︁K
i=1 pii∑︁K

i=1

∑︁K
j=1 pij

where K is the number of classes and pij is the number of pixels belonging to class

i that are predicted to belong to class j. (Minaee et al., 2020.)

Precision and recall are metrics that are commonly used for evaluating many

kinds of machine learning models, and they are sometimes used for binary image

segmentation tasks as well:

Precision =
TP

TP + FP

and

Recall =
TP

TP + FN

where TP is number of true positives, FP is the number of false positives, and FN

is the number of false negatives. (Minaee et al., 2020.)
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Dice similarity coefficient (DSC) and intersection over union (IoU), which is also

known as Jaccard index, are some of the most popular metrics for image segmenta-

tion tasks:

DSC =
2|X ∩ Y |
|X|+ |Y |

and

IoU =
|X ∩ Y |
|X ∪ Y |

where X and Y are the true and predicted segmentation maps. These two values

are positively correlated with each other. (Minaee et al., 2020.)



3 Related work

3.1 Medical image segmentation with neural net-

works

Over the last couple of years, deep convolutional neural networks have been applied

to a large number of medical image analysis tasks. These tasks include classification,

localization and segmentation of organs, lesions or other objects of interest, as well

as many other types of tasks. The CNN models have been successfully applied

to many different medical imaging procedures such as MRI, computed tomography

scans and regular X-ray images. (Litjens et al., 2017.) In this thesis, the focus will

be on the segmentation of prostate cancer lesions from magnetic resonance images.

Segmentation of the whole prostate from magnetic resonance images by using

CNNs has been a popular area of research for years. One contributor to the popu-

larity has been The Prostate MR Image Segmentation challenge PROMISE12, for

which a quite large set of segmented prostate MR images were made freely available

for research. (Litjens et al., 2014.)

Next, some of the research more directly related to the topic of this thesis will

be reviewed. However, as noted by Litjens et al. (2014), the results of different

studies can be very difficult to compare for several reasons. First of all, most models

are not freely available and are typically very difficult to implement based on the

information available in the research papers. Secondly, the MR images between
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research groups can greatly differ from each other as variables such as the acquisition

protocol, magnetic field strength and scanner type can have a large effect on the

image appearance. (Litjens et al., 2014.)

3.2 Segmentation of prostate cancer lesions

Several studies have used CNNs to segment the cancerous lesions from prostate MR

images over the years. Schelb et al. (2019) used a modified U-net to segment both

T2w images and ADC maps into three classes: clinically significant prostate cancer

lesions (Gleason score ≥ 7), prostate tissue, and background. The segmentation

performance of the model was evaluated with DSC, and the segmentation of clinically

significant lesions received scores of 0.37 for ADC maps, 0.34 for T2w images, and

0.35 for the combination of these. The study included prostate MR images of 312

men which were divided into a training set of 80% and a test set of 20%.

Kohl et al. (2017) approached the problem with adversarial training, in which the

segmentation network competes with another neural network that tries to produce

real-looking fake images. The used segmentation network was a modified U-net

model. The data set included T2w images, ADC maps, and DWIs with a b value of

1500 s/mm2 for 152 patients, of which 55 had a Gleason score of 7 or higher. The

DSC of the clinically significant lesions was found to be 0.41 ± 0.28.

In the studies of Dai et al. (2019), Mask R-CNN was used to segment prostate

tissue as well as prostate cancer lesions. For the segmentation of the lesions, T2w

images and ADC maps of 120 men were used. These were laid on top of each other

with a registration algorithm and fed into the network. The resulting DSC for the

lesion detection was 0.46 ± 0.20.

Simultaneous automatic segmentation and classification of prostate cancer le-

sions from magnetic resonance images has seen little if any published research that

is directly comparable to this study.



4 Materials and methods

4.1 Data set

For this study, the axial T2w images and ADC maps as well as the corresponding

prostate gland and prostate cancer lesion masks of the MRI data set introduced by

Jambor et al. (2017) were used. The magnetic resonance images were obtained from

162 of the 175 men initially enrolled in the study between March 2013 and February

2015. All these men had a suspicion of prostate cancer as their prostate-specific

antigen levels were between 2.5 and 20.0 ng/ml and/or they had had an abnormal

digital rectal examination. (Jambor et al., 2017.)

The images were obtained using a 3T MR scanner (Verio, Siemens, Erlangen,

Germany) with surface coils. The imaging time varied between 14 and 17 minutes

per patient, but this value includes capturing T2w images in the sagittal plane

as well as DWIs with higher b values of 1500 and 2000 s/mm2. The ADC maps

used in this study were based on the axial DWI data obtained with b values of 0,

100, 200, 300 and 500 s/mm2. The acquisition voxel size was 2.0 × 2.0 × 3.0 mm3

without intersection gaps. The transmission repetition time was 5543 ms and the

transmission echo time was 80 ms. For the axial T2w images used in this study, the

voxel size was 0.6 × 0.6 × 3.0 mm3, the transmission repetition time was 6400 ms

and the transmission echo time was 101 ms. (Jambor et al., 2017.)

Based on the images, prostate cancer lesion masks were delineated and classified
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using the biparametric MRI Likert scoring system by a reader with 5 years of expe-

rience in prostate MRI. Targeted biopsy was performed for patients with suspicious

lesions based on the Likert scores, and systematic 12-core biopsy was performed for

all patients. These samples were analyzed separately by two genitourinary patholo-

gists with over 5 years of experience in genitourinary pathology, and Gleason scores

were assigned for each patient. (Jambor et al., 2017.)

4.2 Analysis platform

Most of the computationally expensive image analysis in this study was performed

on an NVIDIA TITAN V graphics processing unit using version 2.0 of TensorFlow

(Abadi et al., 2015).

4.3 Data preparation

The used data set contained multiple T2w image and ADC map slices of 162 patients.

For each of these patients, there were 0–3 prostate cancer lesion masks, which had

been assigned a Gleason score based on targeted biopsy and 12-core systematic

biopsy. In the cases where one of the Gleason scores obtained by performing biopsy

was higher than the Gleason score of the dominant lesion, the Gleason score of that

lesion was replaced with the higher score obtained with biopsy.

After assigning the Gleason scores for each lesion mask, the scores were grouped

using the standard ISUP Gleason grade grouping system. The distribution of the

highest Gleason group of each patient is displayed in Table 4.1.

The patients were split into stratified training and test sets with 70% and 30% of

the patients respectively. The split was done on the level of patients instead of single

prostate image slices in order to avoid leaking information from the training set to

the test set, and the stratification ensured similar distributions of Gleason score
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Table 4.1: Number of cases per ISUP Gleason grade grouping system. Each case is

assigned to the group according to its highest Gleason group score.

ISUP grade group Number of cases

Not assigned 63

1 14

2 37

3 23

4 10

5 15

groups in both sets. When training the models, 20% of the training set samples

were further split into a separate validation set.

4.4 Prostate segmentation

The popular U-net architecture (Ronneberger et al., 2015) was chosen as the ba-

sis of the deep convolutional neural network models that were used for the image

segmentation tasks. Before delving into the more difficult task of prostate cancer

lesion segmentation, the model architecture was validated by segmenting the entire

prostate glands.

The original sizes of the ADC images (128 × 128 pixels) and the T2w images

(256 × 256 pixels) were cropped to 64 × 64 and 128 × 128 pixels respectively by

removing the areas of tissue surrounding the prostate from the images. This was

done mainly in order to reduce training time. The values of the images were scaled

to the closed interval [0, 1] by simply dividing the values by 4095 which is the

maximum value of the 12-bit images.

Separate models were created for ADC maps and T2w images. The general

architecture of the tested models is displayed in Figure 4.1. For T2w images, the
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model architecture consisted of a contracting path with 4 blocks, a single middle

block, and an expansive path with 4 blocks. Each of these blocks was made up of

two 2-dimensional convolution layers with a kernel size of 3×3., followed by a batch

normalization operation. The blocks of the contracting path included a 2 × 2 max

pooling operation and a dropout layer after the convolutions. The blocks of the

expansive path first performed an up-convolution to upsample the input. After this,

the result was concatenated with the corresponding feature map of the contracting

path and a dropout operation was performed before feeding the result to the two

2-dimensional convolution layers. The number of network neurons was increased by

a factor of 2 at each block of the contracting path, and respectively decreased by a

factor of 2 at the blocks of the expansive path. A 1 × 1 convolution followed by a

sigmoid activation function was performed at the final layer. All other convolution

layers used a rectified linear unit as the activation function, and the initial values

of the convolution layers were drawn from a Gaussian distribution with a mean of

0 and variance computed as suggested by He et al. (2015). The ADC models were

identical to the T2w models except that the contracting and expansive paths had

only 3 blocks each because of the smaller image size.

As the segmentation problem is essentially a two-class classification problem,

binary cross-entropy was used as the loss function. However, when calculating the

loss, the pixels of the prostates were weighted by the ratio between background pix-

els and prostate gland pixels in the training set. This was done because the images

contained significantly more background areas than pixels belonging to the prostate

glands. The used optimization algorithm was Nesterov-accelerated Adaptive Mo-

ment Estimation (Nadam), first introduced by Dozat (2016).

As a simple form of data augmentation, the input images were flipped horizon-

tally with a 50% probability when training the model. A few models with varying

number of neurons were trained. Not a lot of time was spent on the optimization
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Figure 4.1: The general structure of used U-net models. The batch normalization

and dropout layers are not shown in the graph to keep it simpler.
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of these models because the purpose of this experiment was simply to validate the

usability of the U-net architecture. The performance of the trained models was

evaluated on the validation set before finally evaluating the best models using the

separate test set. The used metrics included DSC, IoU, percentage of correctly

classified prostate gland pixels, and percentage of correctly classified background

pixels.

4.5 Binary lesion segmentation

As the next step before moving to actual multi-class prostate cancer lesion seg-

mentation, a slightly easier task of binary lesion segmentation was attempted by

building onto the models created for prostate gland segmentation. Because some of

the lesions with lower ISUP grades can be difficult to detect, group 3 was chosen as

the cut-off value; thus, the task became finding lesions that belong to ISUP grade

group 3, 4, or 5.

The images were preprocessed using the same steps as described in the prostate

segmentation section, and the model had the same structure as well. However, for

this task, introducing small random changes to the pixel intensities was tested as

a data augmentation step in addition to random horizontal flipping of the images.

The random values were drawn from a zero-centered normal distribution with a

standard deviation 0.02. An advanced data augmentation technique known as elas-

tic distortion (Simard et al., 2003) was also tested since it deforms the images in

a more natural way than uniform shearing, rotation or translation. In order to

combat overfitting, adding both L1 and L2 regularization to all convolutional and

up-convolutional layers of the U-net model was assessed.

In addition to training the models with regular two-dimensional images, incor-

porating three-dimensional information was attempted by feeding groups of three

adjacent image slices as the inputs. This was done by choosing the slices below and
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above the central slice, and if the central slice was the first or last of the entire stack,

it was duplicated to fill the missing place. Ideally in order to use all available spatial

information, the entire stack of slices should have been fed to the model at once but

because different cases included different number of slices, this was not possible.

The same weighted binary cross-entropy loss function was used as in the prostate

segmentation task. It was anticipated that the function could have problems with

sometimes incorrectly classifying especially ISUP grade 2 lesions as positives, and

these false positive cases could penalize the model although even trained profession-

als could struggle with classifying the images correctly with the available informa-

tion. To combat this issue, a customized Dice loss function was tested as well:

Dice loss =
2
∑︁

(X ⊙ Y ⊙M) + 10−6∑︁
X +

∑︁
Y + 10−6

where X and Y are the true and predicted segmentation maps, and M is a binary

mask where ISUP grade 2 lesions have value 0 and all other pixels have value 1.

The best models were selected based on their DSC and IoU performance on the

validation set, and subsequently these models were evaluated on the test set using

the same metrics.

4.6 Multi-class lesion segmentation

As the final task, detection and automatic classification of the magnetic resonance

prostate images was attempted. The goal of this experiment was to detect cancerous

lesions and assign an ISUP group correctly to the detected areas.

The structure on the tested models was generally the same as in the previous

section with the small change of using a 5-dimensional output layer instead of one

that produces a single output value. Instead of only training the models from scratch,

using the parameters of the best-performing binary lesion segmentation models as
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Table 4.2: The used ordinal encoding system of the lesion masks compared to regular

one-hot encoding. The benefit of ordinal encoding is that it preserves the ordinal

nature of the lesion groups.

ISUP grade group One-hot encoding Ordinal encoding

Not assigned 00000 00000

1 10000 10000

2 01000 11000

3 00100 11100

4 00010 11110

5 00001 11111

the starting point was tested as well.

Rather than of using one-hot encoding for lesions masks, which is the default

option in most multi-class segmentation applications, the ordinal nature of Gleason

score groups was preserved by converting the masks to use ordinal encoding, shown

in Table 4.2.

The same data augmentation methods were used as for the binary segmentation

task. In addition to these, some models were trained with simpler data augmentation

techniques such as rotating, shifting, shearing and zooming the image by a relatively

small amount.

The tested loss functions included a modified Dice loss function which summed

the Dice scores of all five ISUP grade groups, as well as variations of weighted binary

cross-entropy, some of which gave different weights to the edges of the lesions.

Because the task included in essence five different optimization tasks, one for

segmentation of each ISUP grade group, the end result depended very heavily on

the possible weighting of the different subtasks. In real-world applications it could

be beneficial to give higher weights to clinically significant lesions at the cost of

decreasing performance for non-significant lesions, but in this case such weighting
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was not done because the possible applications of the study results did not have any

specific requirements.

The performance of the models was evaluated with DSC and IoU as well as pixel-

level precision and recall metrics, this time by calculating the values separately for

each ISUP grade group.



5 Results

5.1 Prostate segmentation

In order to validate that the U-net architecture works for segmentation tasks with

the prostate images, the entire prostate glands were segmented. The training pro-

gression of the models was evaluated by investigating how the binary cross-entropy

loss and several metrics evolved over the training duration. The progression of the

loss function value is shown in Figure 5.1, and the development of calculated DSC

metric is displayed in Figure 5.2.

After using the validation set DSC to select the models with the best performance

for both ADC and T2w segmentation tasks, the final models were evaluated on the

separate testing set. The evaluated metrics are displayed in Table 5.1. An example

of model predictions is shown in Figure 5.3.

Table 5.1: Test set performance of the U-net models for segmenting prostate glands

from ADC and T2w images.

Metric ADC T2w

Dice similarity coefficient 0.869 0.923

Intersection over union 0.768 0.864

Correctly predicted gland pixels 87.4% 94.2%

Correctly predicted background pixels 99.1% 98.9%
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Figure 5.1: The development of weighted binary cross-entropy loss function value

over the training duration of a model that segments prostate glands from ADC

maps. The loss function is evaluated separately on the training and validation sets.

Figure 5.2: The development of Dice similarity coefficient metric over the training

duration of a model that segments prostate glands from ADC maps.
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Figure 5.3: An example of prostate gland segmentation results. The original ADC

test set image is on the left, the true prostate mask delineated by a professional is

in the middle, and the mask predicted by the model is on the right.

5.2 Binary lesion segmentation

As the next step after prostate segmentation, segmentation of prostate cancer lesions

belonging to ISUP grade group 3, 4 or 5 was attempted.

By comparing the validation set metrics, it was determined that best perfor-

mance was reached by models that used three-dimensional images instead of two-

dimensional ones, and Dice loss instead of weighted binary cross-entropy. In addi-

tion, using elastic transformation for data augmentation and L1 and L2 regulariza-

tion for overfitting reduction proved to be efficient methods for improving the per-

formance. However, as seen in Figure 5.4, the validation set performance could not

reach the training set performance even with the models that used very heavy reg-

ularization. The best-performing model combined all these techniques and reached

a DSC of 0.389 and IoU of 0.241 on the validation set. When evaluated on the test

set, DSC was measured at 0.342 and IoU at 0.206.

Interestingly, the identical models had huge problems with T2w images. While

the training set DSC stabilized at around 0.6, the models struggled with the val-

idation set: the DSC seemed to get stuck bouncing between 0 and 0.2 with all
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Figure 5.4: Dice similarity coefficient measured on the training and validation sets

over the training duration of a model that segments prostate cancer lesions with

ISUP grade group 3 or higher.

models.

5.3 Multi-class lesion segmentation

The main goal of this study was to create a deep learning model which can both

segment prostate cancer lesions and at the same time assess the clinical significance

of the found lesions by assigning an ISUP grade group to them.

The final ADC model that was chosen based on its combined DSC performance

on the validation set used the parameters of the best-performing model from the last

section as its starting point. The model was trained using the simple loss function

that summed the five different Dice scores. The training progress of this model can

be seen in Figure 5.5. The validation set DSC values reached averages of around 0.4

but the variance between epochs was very high.

Because the final model displayed significant increase of variance towards the
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Figure 5.5: Dice similarity coefficient values measured on the training and validation

sets over the training duration of a model that segments prostate cancer lesions and

assigns ISUP grade groups to them. The five different lines represents represent

values for lesions that belong at least to ISUP grade group 1 to 5.
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Table 5.2: Dice coefficient factors, intersection over union, pixel-level precision and

pixel-level recall of the final ADC segmentation and classification model as measured

on the test set. Model version A represents the performance after the first 150

training epochs and version B the performance after all 250 epochs.

Version A Version B

ISUP group DSC IoU Precision Recall DSC IoU Precision Recall

≥ 1 0.297 0.174 0.628 0.195 0.389 0.242 0.523 0.310

≥ 2 0.319 0.190 0.628 0.214 0.398 0.249 0.539 0.316

≥ 3 0.388 0.241 0.549 0.300 0.268 0.155 0.576 0.175

≥ 4 0.379 0.233 0.406 0.355 0.180 0.099 0.566 0.107

5 0.234 0.133 0.199 0.285 0.049 0.025 0.114 0.031

end of the training process, the model was evaluated on the test set at two different

training points: version A of the model represented the performance after the 150

epochs and version B the highest performance after all 250 training epochs, as

measured on the validation set. The DSC, IoU, pixel-level precision, and pixel-level

recall values can be seen in Table 5.2. The performance of model A was much more

balanced while model B managed to improve the performance on the first two ISUP

grade groups while greatly sacrificing predictive capability of the groups 3, 4 and 5.

Just as in the binary segmentation task, the models trained on the T2w images

were not adequate for reliable analysis.



6 Discussion

6.1 Prostate segmentation

The deep learning models that were created for segmenting whole prostate glands

from ADC and T2w images achieved excellent performance. For example, the DSC

of T2w predictions matched some of the best models described by Gillespie et al.

(2020). The highest reported DSC of 0.943 in that study is only a bit higher than

the one achieved here. Similarly, Zabihollahy et al. (2019) managed to reach a mean

DSC of 0.925 for T2w images, and a mean DSC of 0.911 for ADC images. Overall,

it seems that the trained models were able to reach performance that is very close

to what others have attained despite the fact that very little effort was spent on

model optimization. Consequently, this means that the performance could probably

be pushed a tiny amount further if some time is invested into finding the absolutely

best architecture and parameters, but drastic improvements are unlikely.

One noteworthy observation is that the performance of the T2w model is slightly

higher than that of the ADC model. This could be due to at least two factors.

First of all, it could be that the prostate glands are simply a bit easier to find from

the T2w images. For example, the contrast between the gland and the background

seems to be greater in the T2w images than in the ADC maps. The second possible

reason could be the higher resolution of T2w images in this dataset. At the achieved

accuracy levels, most mistakes made by the model are at the very edges of the
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gland, which can be seen in Figure 5.3 if carefully inspected. As the ADC images

have lower resolution, the proportion of gland pixels that are on the edge is slightly

larger than in the case of T2w images, meaning that single pixel-level mistakes have

a larger impact on the DSC and IoU scores. The smaller resolution also means that

the professional who has delineated the glands has also likely made relatively larger

mistakes as classification of the pixels located at the outlines of the glands is very

unlikely to be exactly precise.

To conclude, the results of the prostate segmentation confirm that the deep

learning model architecture based on the U-net is indeed suitable for segmenting

the prostate images of the used dataset.

6.2 Prostate cancer lesion segmentation

When compared to the results of prostate gland segmentation, it is obvious that

the capability of the models that perform prostate cancer lesion segmentation is

much lower. For ADC maps, the best binary segmentation model reached a DSC of

0.342 on the test set, which is relatively close to the results of comparable published

models: 0.37 (Schelb et al., 2019), 0.41 ± 0.28 (Kohl et al., 2017), and 0.46 ± 0.20

(Dai et al., 2019).

Interestingly, version A of the final model that performed both lesion segmenta-

tion and classification managed to improve the DSC to 0.388 for lesions that belong

to ISUP grade group 3 or higher. Similarly, version B managed to segment lesions

belonging to group 2 or higher with a DSC of 0.398. While these values are slightly

higher than in the case of the binary segmentation model, they still fall into the

same band as the previously published results.

The results of the multi-class segmentation task indicate that the models had

difficulties optimizing their parameters for segmenting all different groups at the

same time. It is possible that the version A of the final model had more well-
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rounded performance than version B because after a certain point in training the

model could no longer perform easy optimizations without making compromises.

Increasing model size could have prevented this but training of the model was very

slow even at its current size.

Both the versions A and B of the final model reached performance levels, as

measured by DSC, that are comparable to the binary segmentation literature for

two ISUP grade groups at the same time. However, the DSC values for the other

groups were noticeably lower. Because version A excelled at segmenting lesions that

belong to at least group 3 or 4, and version B had its highest performance for groups

1 and 2, these two model versions could in theory be combined in order to obtain

an improved model that incorporates the strengths of both models.

The pixel-level recall values reveal how greatly the models struggled finding the

real prostate cancer lesions. Even for the best-performing groups, only around one

third of the true cancer lesion pixels were found. This means that the majority of

the lesions would likely go undetected if relying on the model, especially as glancing

over the result images indicates that the models either get a large portion of the

lesion pixels correct or none at all instead of reliably finding a small portion of pixels

in every lesion.

On the other hand, the pixel-level precision values are significantly higher except

for ISUP grade 5 lesions. This means that the number of false positive results should

not cause enormous problems.

Overall, it is obvious that the current performance of the lesion segmentation

models is nowhere near sufficient enough to replace a trained human. While it

is possible that the models could assist a professional, the negative impact of all

missed lesions would most likely be bigger than the positive impact of marginally

faster lesion detection.
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6.3 Possible limitations of the study

By examining the magnetic resonance images visually, it is clear that the task of

prostate cancer lesion segmentation can be very difficult for untrained humans. In

many cases the lesions may show up as only subtle changes in the images, and

especially exact detection of the edges of the lesions can be difficult. The task is

made more demanding by the fact that not all lesions look similar in the images. As

noted by Weinreb et al. (2016), different cancer lesions can cause a subset of several

indicative changes in the images, and these effects depend on which zone of the

prostate is affected. However, similar changes are also caused by numerous different

non-cancerous conditions such as benign prostatic hyperplasia, hemorrhage, and

cysts, which means that avoiding false positive predictions can be next to impossible

with only image data available.

Since all patients of this study had a suspicion of prostate cancer due to an ele-

vated prostate-specific antigen level, it is possible that some of the patients without

prostate cancer had other diseases which might cause difficulties for the machine

learning models. It is not known how big of a problem this really is.

Because the used data set was classified by a professional who had access to

all available information, it is not known what portion of the lesions would even

be possible to detect from the images using only either ADC or T2w images. For

example, according to Weinreb et al. (2016), tumor volume should be estimated

based on ADC images if the lesion is located in the peripheral zone, and conversely

the estimate should be based on T2w images if the lesion is in the transition zone.

There could possibly even be cases where a lesion shows up in only one imaging

mode.

It should also be noted that the Gleason scores and consequently the ISUP grade

groups were based on biopsy results, which means that the values may not directly

correspond to the information available in the magnetic resonance images. This,
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combined with the fact that lesion severity is in reality a continuous metric instead

of a discrete one, makes exact classification of lesion groups very difficult. This

might have potentially had a large effect on the multi-class segmentation results.

6.4 Future improvements

In order to develop lesion segmentation models with better performance, several

steps could be undertaken. First, the amount of data is of paramount importance.

Deep learning models generally require large amounts of training data even for

tasks that are easy for humans, and the task of lesion segmentation from magnetic

resonance images seems more difficult than regular object detection from normal

photographs. While the data set used in this study had around 1600 images for the

training of ADC models and around 2000 images for the training of T2w models,

these numbers are very low considering that only a small portion of these images

included positive cases, and most of those few positive cases were not independent

as they usually had intercorrelation with other images from the same patient.

While acquiring images of new patients is time-consuming, creating training set

images artificially with data augmentation is relatively quick and easy. The study

used fairly simple data augmentation, but more complicated methods could provide

samples that better resemble real prostate images. Creating such methods would

require considerable amounts of prostate MRI knowledge since it is not clear for a

non-expert what kind of differences are possible in the structure of the prostate or

in the properties of the magnetic resonance images.

Another possible improvement could be incorporating information about the

prostate zones into the model. As noted by Weinreb et al. (2016), the structure of

the prostate affects how the cancer lesions appear in the magnetic resonance im-

ages. If the model does not receive the information about the structure explicitly, it

must deduce the relationships from the data, which requires more time and training
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samples.

For the model to be able to generalize to all new cases, it must have seen training

examples that contain the necessary information. In this study, the training and test

set were split from the data by stratifying based on the ISUP grade groups. The

data should probably also be stratified based on the prostate zones of the lesions.

For example, according to Weinreb et al. (2016), cancer rarely occurs in the central

zone of the prostate. It is important that these cases are also included in the training

set because identifying such lesions could otherwise be difficult in the test set.

One of the greatest limitations of this study was the inability to combine infor-

mation from the ADC and T2w images into one model. As mentioned by Weinreb

et al. (2016), different imaging techniques are more useful than the others in differ-

ent cases. Because of this, it would be very important to include input images from

both methods to the same model. This is not a simple task when the images do not

align with each other because of different voxel sizes. There exists so called image

registration software which could be used to align the ADC and T2w images with

each other but such applications were not available for this study.

It could be worth investigating another interesting hypothesis: rather than

analysing just the structure of the images, it might be more meaningful to com-

pare the structure of the prostate with the corresponding area on the other side of

the vertical axis. At least as a non-professional, searching for the lesions from the

images is mostly based on comparing the image with its other side which is assumed

to be mostly symmetrical. It should be analyzed whether the professionals do this

as well, and if this is the case, the deep learning model could be structured in such

way that information is incorporated simultaneously from same regions both on the

left and the right side of the vertical axis.



7 Conclusions

The aim of this study was to develop machine learning models that could help doc-

tors with the analysis of magnetic resonance images of the prostate by segmenting

and classifying prostate cancer lesions automatically, thus saving time and poten-

tially finding cases of prostate cancer that would otherwise go undetected. The

achieved results are not yet at a level that could provide meaningful aid in real-

world applications. While the models could occasionally find cases that the doctors

would not, the number of missed lesions is too high and false positives remain com-

mon at the same time. Since the models do not find most lesions, the doctors could

more easily believe falsely that there are no lesions present in images.

It was shown that a model with the same structure can reach very good per-

formance for segmentation of entire prostate glands. This suggests that the most

important limitation of the prostate cancer segmentation was the lack of data. Le-

sion segmentation is a much more complex task than prostate gland segmentation

both for humans and machines because the physiological location influences how the

lesions show up in the images, there are a myriad of possible differences between in-

dividual cases, and the changes are more subtle in the images. Deep learning models

are notorious for requiring large amounts of independent data in order to generalize

well, and thus it is unlikely that a well-performing model could be trained without

acquiring a significantly larger dataset. Several possible methods of incorporating

domain knowledge into the models in order to improve their performances were dis-
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cussed about in the previous section. It is unclear how much these would help but

they could improve the performance until a certain point.

Overall, the task of automatically segmenting and classifying prostate cancer

lesions at a level that provides meaningful aid for the professionals remains an open

problem waiting to be answered.
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