

A Framework of DevSecOps for Software

Development Teams

 Master's Degree Programme in Information and Communication Technology

Department of Computing, Faculty of Technology

Master of Science in Technology Thesis

Networked Systems Security

June 2023

Dinesh Sapkota

 Supervisors:

Tahir Mohammad

Petri Sainio

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin Originality Check service.

UNIVERSITY OF TURKU

Department of Future Technologies

DINESH SAPKOTA: A Framework of DevSecOps for Software Development Teams

Master of Science in Technology Thesis, 83 pages.

Networked Systems Security

June 2023

This master's thesis explores a broad evaluation of automated security testing in the

context of DevOps practices. The primary objective of this study is to propose a

framework that facilitates the seamless integration of security scanning tools within

DevOps practices. The thesis will focus on examining the existing set of tools and their

effective integration into fully automated DevOps CI/CD pipelines.

The thesis starts by examining the theoretical concepts of DevOps and provides

guidelines for integrating security within DevOps methodologies. Furthermore, it

assesses the current state of security by analysing the OWASP Web API top 10 security

vulnerability list and evaluating existing security automation tools. Additionally, the

research investigates the performance and efficacy of these tools across various stages

of the SDLC and investigates ongoing research and development activities.

A fully automated DevOps CI/CD pipeline is implemented to integrate security

scanning tools, enforcing complete security checks throughout the SDLC. Azure

DevOps build and release pipelines, along with Snyk, were used to create a

comprehensive automated security scanning framework. The study considerably

investigates the integration of these security scanning tools and assesses their influence

on the overall security posture of the developed applications. The finding of the study

reveals that security scanning tools can be efficiently integrated into fully automated

DevOps practices. Based on the results, recommendations are provided for the selection

of suitable tools and techniques to achieve a DevSecOps practice.

In conclusion, this thesis provides valuable insights into security integration in DevOps

practices, highlighting the effectiveness of security automation tools. The research also

recommends areas for further improvements to meet the industry's evolving

requirements.

Keywords: SDLC, DevOps, Continuous Integration (CI), Continuous Development

(CD), DevSecOps, SAST, DAST, OSS Vulnerability Scanner

Table of Contents

1 Introduction 1

1.1 Background.. 2
1.2 Problem Statement .. 3
1.3 Research Question ... 4
1.4 Research Objective.. 4
1.5 Thesis Structure .. 5

2 Theoretical Background 6

2.1 DevOps ... 6
2.1.1 Continuous Integration 7
2.1.2 Continuous Delivery 8
2.1.3 Infrastructure as Code 10
2.1.4 Monitoring and Logging 11
2.1.5 Agile Practices 12

2.2 DevSecOps ... 12
2.2.1 DevSecOps Guidelines 13

2.2.1.1 Planning and Design 13
2.2.1.2 Development 14
2.2.1.3 Testing 14
2.2.1.4 Deployment 15
2.2.1.5 Operations and Maintenance 15

2.2.2 DevSecOps Challenges 16
2.3 OWASP Top 10 ... 16

2.3.1 Broken Object Level Authorization 17
2.3.2 Broken User Authentication 17
2.3.3 Excessive Data Exposure 18
2.3.4 Lack of Resource and Rate Limiting 18
2.3.5 Broken Function Level Authorization 19
2.3.6 Mass Assignment 19
2.3.7 Security Misconfiguration 20
2.3.8 Injection 20

2.4 Security Automation Tools ... 21
2.4.1 Static Application Security Testing 22
2.4.2 Dynamic Application Security Testing 22
2.4.3 Open-Source Software Vulnerability Scanner 23
2.4.4 Infrastructure as Code Security Testing 24

2.5 Related Work ... 25

3 Methodology 27

3.1 Applications Development .. 29
3.2 Production Applications Azure Infrastructures ... 30
3.3 Infrastructure as Code in Azure .. 30

3.3.1 Azure Boards 33
3.3.2 Azure Artifacts 33
3.3.3 Azure Test Plans 34
3.3.4 Azure Repos 34
3.3.5 Azure Pipelines 34

3.4 Security Integration in Azure DevOps .. 35
3.4.1 Snyk 36

3.4.1.1 Snyk Open Source 37
3.4.1.2 Snyk Code 37

3.4.2 GitGuardian 38

4 Implementation 39

4.1 Test Projects .. 39
4.1.1 Production Test Application 39

4.1.1.1 Web API 40
4.1.1.2 Console Application 40

4.1.2 Infrastructure as Code Implementation 42
4.1.2.1 Parameters 42
4.1.2.2 Resources 44
4.1.2.3 Outputs 46

4.1.3 Vulnerable Test Project 47
4.1.3.1 Broken Object Level Authorization Vulnerability 47
4.1.3.2 Broken User Authentication Vulnerability 48
4.1.3.3 Excessive Data Exposure Vulnerability 49
4.1.3.4 Lack of Resource and Rate Limiting Vulnerability 50
4.1.3.5 Broken Function Level Authorization Vulnerability 51
4.1.3.6 Mass Assignment Vulnerability 52
4.1.3.7 Security Misconfiguration Vulnerability 52
4.1.3.8 Injection Vulnerability 53

4.2 Azure DevOps and CI/CD Pipeline ... 54
4.2.1 Continuous Integration using Azure Build Pipelines 55
4.2.2 Continuous Deployment using Azure Release Pipelines 60

4.3 Shifting Security to the Left ... 63
4.3.1 Security Scanning in IDE 64
4.3.2 Security Scanning in SCM System 67
4.3.3 Security Scanning in Build Pipeline 70
4.3.4 Vulnerability Scanning in IaC 74

5 Results and Evaluation 76

6 Conclusion 81

6.1 Future Works .. 83

References 84

List of Figures

Figure 3.1: Flow chart for security integration in DevOps ... 28
Figure 3.2: Resources in the Development Environment Resource Group 30

Figure 3.3: Azure DevOps Services and its software development flow [57] 32
Figure 4.1: Code Map of event log service and queue service implementation 40
Figure 4.2: Code Map of Queue Receiver .. 41
Figure 4.3: Initial Development Flow ... 54
Figure 4.4: Complete Flow Until Build Pipeline .. 56

Figure 4.5: Complete CD pipeline Execution Flow .. 60
Figure 4.6: Release pipeline implementation in ADO .. 62
Figure 4.7: Release pipeline exaction flow in ADO ... 63

Figure 4.8:Code Scanning and Pull Request Flow.. 64
Figure 4.9: Open-Source vulnerabilities discovered in the test project. 65
Figure 4.10: Code Security Vulnerabilities discovered in the test project. 66
Figure 4.11: Security scan and execution flow in GitHub .. 68

Figure 4.12: GitHub pulls request execution flow. ... 68
Figure 4.13: Pull Requests dependency security scan details. .. 69
Figure 4.14: Privilege escalation vulnerability discovered in GitHub PR checks. 70
Figure 4.15: Snyk security test in CI pipeline ... 71

Figure 4.16: CI pipeline execution flow in Azure... 72
Figure 4.17: Brief information about security issues in azure build pipeline 73

Figure 4.18: Vulnerability Detected - Improper Verification of Cryptographic Signature

in Existing Dependency. ... 73

Figure 4.19: Snyk IaC security scan results. ... 74

Code Snippets

Code Snippet 4.1: Template parameters used for the implementation. 43
Code Snippet 4.2: Production environment parameters in the parameters file. 44

Code Snippet 4.3: Code for the deployment of the service app 45
Code Snippet 4.4: Server Farm and App Service outputs declarations 47
Code Snippet 4.5: Broken Object Level Authorization Example 48

Code Snippet 4.6: Broken User Authentication Example ... 49
Code Snippet 4.7: Excessive Data Exposer Example ... 50

Code Snippet 4.8: Endpoint that Lacks Resource and Rate Limit Vulnerability 51
Code Snippet 4.9: Broken Functional Level Authorization endpoint. 51

Code Snippet 4.10: Endpoint with Mass Assignment flaw .. 52
Code Snippet 4.11: Studied Security Misconfiguration .. 53
Code Snippet 4.12: SQL Injection Example ... 54
Code Snippet 4.13: Trigger, agent and build configuration. ... 57
Code Snippet 4.14: Pipeline restores and build configurations. 58

Code Snippet 4.15: Publish configuration for the project implementation. 59
Code Snippet 4.16: Publish artifacts tasks. ... 59
Code Snippet 4.17: Snyk security test task configuration... 72

List of Tables

Table 5.1: Vulnerable packages discovered in the test production application. 77
Table 5.2: Secrets detection results of different scanning tools 78

Table 5.3: Vulnerabilities detected in IaC implementations. .. 79
Table 5.4: Snyk code vulnerability detection results of OWASP Web API 10 list 80

Abbreviations and Acronyms

ADO Azure DevOps

API Application Programming Interface

ARM Azure Resource Manager

Azure AD Azure Active Directory

Azure AD B2C Azure Active Directory Business to Consumer

CD Continuous Delivery

CI Continuous Integration

CIS Center for Internet Security

PCI-DSS Payment Card Industry Data Security Standard

CLI Command Line Interface

CIS Controls Critical Security Controls

CROS Cross-Origin Resource Sharing

CSRF Cross-Site Request Forgery

CVE Common Vulnerabilities and Exposure

CWE Common Weakness Enumeration

CyRC Synopsys Cybersecurity Research Center

DAST Dynamic Application Security Testing

DB Database

DoS Denial of Service

DTO Data Transfer Object

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaC Infrastructure as a Code

IAST Interactive Application Security Testing

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

JSON JavaScript Object Notation

JWT JSON Web Tokens

LDAP Lightweight Directory Access Protocol

NIST National Institute of Standards and Technology

NoSQL Non-SQL

NVD National Vulnerability Database

ORM Object Relational Mapping

OS Operating System

OSSRA Open-Source Security and Risk Analysis

OWASP Open Web Application Security Project

PC Personal Computer

PR Pull Request

PII Personally Identifiable Information

QA Quality Assurance

SAST Static Application Security Tool

SCAP Security Content Automation Protocol

SCA Software Composition Analysis

SCM Source Control Management

SDLC Software Development Life Cycle

SIEM Security Information and Event Management

SQL Standard Query Language

TLS Transport Layer Security

URL Uniform Resource Locator

VCS Version Control System

XSS Cross-Site Scripting

YAML Yaml Ain't Markup Language

Chapter 1

1 Introduction

According to Internet World Stats [1] until March 2022, there were 5.4 billion Internet

users globally, which is 67.8% of the world population [2]. Since 2007, there has been a

significant increase in the number of internet users, growing at a rate of approximately

3% [1]. This growth rate is nearly three times higher than the global population growth

rate. In 2021 mobile devices contributed 54.5% of the global internet traffic [3] and it is

predicted that mobile devices will contribute 55% of total IP traffic by the end of 2025

[4]. According to projections by Cybersecurity Ventures, the global internet user

population is estimated to exceed 7.5 billion by 2030, including children from 6 years of

age [4].

This rapid growth has resulted in an overall expansion of the IT sector. At the same

time, both governmental and commercial entities are constantly increasing their

resources to deliver even more online services. This rapid expansion of communication

networks, digital hardware, cloud infrastructures, IoT applications, online apps, smart

cars, smart cities, smart healthcare devices, and other technologies has surpassed the

security industry's ability to secure them.

According to the Cyber Security Ventures report, the overall losses caused by

cybercrime worldwide in 2021 reached $6 trillion. The same source has predicted that

the cost of cybercrime damage would rise at a rate of 15% per year for the next five

years. There has been continuous investment in research and development to strengthen

the security posture of the IT industry, which has resulted in the rapid growth of the

global cybersecurity industry market value from $3.5 billion in 2004 to $120 billion in

 Chapter 1: Introduction

2

2017 [5]. The cyber security industry required 3.5 million security experts in 2021, but

due to a shortage of skilled professionals, those positions have remained vacant [4].

These figures clearly illustrate that the current security challenges cannot be solved with

the individual effort of the cybersecurity industry and security professionals.

DevSecOps is an approach that was created to adopt collaboration and communication

among developers, security teams, and operations teams. It involves integrating best

security practices throughout the entire software development lifecycle (SLDC). The

goal of DevSecOps is to deliver software that is not only fully functional and efficient

but also secure. This is achieved by integrating security practices early in the

development process and automating security testing.

In 2020, CyCR researchers analysed the security enforcement of existing 2,600

commercial software applications among various industries. According to their findings,

90% of target systems or apps had vulnerabilities, and 36% were critical or high-risk

vulnerabilities [6]. Similarly, CyCR conducted an OSSRA examination of 2,400

commercial code bases across 17 industries in 2021. It has been reported that, on

average, a codebase only consists of 22% of custom code written by the developers, and

the remaining 78% of the codes were open-source dependencies. By the same report,

97% of commercial codebases contained open-source libraries, and 87% of that

codebase had critical security threats [7]. Given this reality, solely having a secure

custom code does not guarantee overall security. Due to the substantial presence of code

in software dependencies, it becomes considerably more challenging to assess and

address potential vulnerabilities.

1.1 Background

Typically, in DevOps practices, a small portion of code is regularly incorporated into

the application's code base. Subsequently, the CI/CD pipelines, which encompass

continuous integration, testing, building, and deployment preparation, are executed

either manually or automatically. This process ensures the seamless integration and

delivery of the application to the production environment [8], [9], [10]. Subsequently,

the DevOps team forwards the application for a security audit to get approval for the

production release. This last stage of security audit normally causes an unacceptable

 Chapter 1: Introduction

3

delay in software releases, and it is also too expensive to fix the issues at this stage [11].

As a result, organizations are not able to exploit DevOps CI/CD benefits.

Simultaneously, there is always a potential for compromising certain security

considerations in order to meet the deadlines for software release. Considering this fact,

the new concept was developed to integrate security in DevOps practices with the

collaboration of development, operation, and security teams. This concept emphasizes

the shift of security measures from the final stage of pre-release security audits to the

early stages of the Software Development Life Cycle (SDLC) [11], [12]. This approach

has the potential to solve the bottleneck, facilitating rapid and cost-effective software

delivery while enhancing security.

1.2 Problem Statement

Despite the numerous benefits, DevSecOps has its challenges to integrate security in

SDLC. As previously mentioned, one significant challenge is the scarcity of security

professionals, who are currently occupied with conducting security audits, consuming

their valuable time. By leveraging the expertise of existing security professionals,

organizations have the opportunity to establish security integration guidelines tailored to

their current DevOps practices. Through the implementation of these guidelines and

adopting continuous collaboration between security and development teams, the

knowledge gap between the two teams can be effectively bridged. Simultaneously,

developers can be empowered by utilizing automated security scanning tools that allow

them to identify vulnerabilities. However, there is currently a need of recommended

security scanning tools that provide developers with comprehensive coverage of key

security aspects throughout the SDLC and offer actionable solutions for issue

resolution.

As a result of these factors, even large organizations with ample resources find it

challenging to fully automate security tests within their SDLC. In 2020, a survey

conducted by CyRC and Censuswide involved 1500 IT professionals in DevSecOps

roles who were working in the fields of cybersecurity and software development.

According to the survey report, 33% of the respondents reported that their organization

is on its way to developing mature DevSecOps practices, 30% reported that DevSecOps

 Chapter 1: Introduction

4

is used in limited scope for some specific project and the organization is expanding its

use, 47% of the respondent are not using DevSecOps [7].

The data suggest that DevSecOps is not widely adopted as a common practice, and

organizations with sufficient resources are creating their own approaches to meet their

specific requirements. However, further research and development are necessary to

automate security tests in DevOps and establish standardized best practices for

automation. Only then it can become a widespread practice in companies, leading to a

significant reduction in the workload of security professionals. This study will

concentrate on exploring the available tools and providing recommendations on which

ones would be beneficial for software developers to integrate security automation into

DevOps practices.

1.3 Research Question

The main focus of this thesis is to investigate the feasibility of integrating automated

security tests into DevOps practices for small development teams without relying on the

expertise of security professionals. To address this research question, it is essential to

acquire foundational knowledge about the performance of available tools by addressing

sub-questions such as:

1. What is the availability of supported security automation tools suitable for

DevOps?

2. How effectively do these tools cover various security aspects?

3. What is the accuracy and reliability of the security scan results they provide?

4. Can security automation be implemented early in the SDLC?

5. Will it contribute to faster software delivery and cost reduction?

1.4 Research Objective

The objectives of the thesis are:

1. To evaluate and assess the performance and effectiveness of different security

test automation tools.

2. To identify the most promising tools and recommend for integration into

DevOps practices to automate security testing.

 Chapter 1: Introduction

5

3. To automate and provide actionable feedback at each stage of the SDLC,

enabling developers to address any identified security issues promptly.

1.5 Thesis Structure

The study is divided into six chapters to comprehensively cover the research objectives.

Chapter 2 presents the theoretical concepts necessary for understanding and

implementing the proposed concept. It explores the perspective of developers in

DevOps practices, discusses the guidelines for integrating security in DevOps, examines

the OWASP Web API top 10 security vulnerability list and existing security automation

tools, and explores ongoing research and development initiatives in this field. Chapter 3

introduces the proposed security integration conceptual model and the complete set of

tools and technologies selected for the research. Chapter 4 dives into the

implementation of various test projects designed to assess the current security landscape

and the performance of security scanning tools. It discusses the integration of these

tools into fully automated DevOps CI/CD pipelines, highlighting the concepts and

security integrations in this context. The chapter also explores the performance of

security tools at different stages of the SDLC. Chapter 5 evaluates the findings of the

study and provides recommendations for implementing fully automated DevSecOps.

Finally, Chapter 6 concludes the results of the study and presents topics for future

research.

Chapter 2

2 Theoretical Background

This section only focuses on the relevant concepts related to DevOps and DevSecOps,

limiting the discussion to those concepts relevant to the study's context. The theoretical

background section is organized into five subsections, covering the essential concepts.

Subsection 2.1 addresses the relevant concepts of DevOps. Subsection 2.2 introduces

the high-level concept of DevSecOps and its challenges. Subsection 2.3 covers the

common security vulnerabilities discovered in 2019. Subsection 2.4 examines the

concepts, strengths, and weaknesses of the available security automation tools. Finally,

subsection 2.5 discusses the ongoing research and development on security automation

tools.

2.1 DevOps

In traditional software development practices, it was quite common for the software

development team to work in isolation without adequate communication within the

team. Due to this inadequate communication, teams were unable to use existing

knowledge within the group to its full potential. This lack of communication also

resulted in misaligned objectives, additional delays in development and challenges in

problem-solving. Traditionally software release cycles were long, and the software

deployment process was manual, which resulted in delayed feedback, slow innovation

and increased risks of bugs and errors. Due to the lack of agile methodologies

traditional approach was not flexible enough to adapt to changing needs. Traditionally,

stakeholders did not have enough visibility of the software systems and enough

 Chapter 2: Theoretical Background

7

feedback was not collected. All of these factors caused additional delays in software

delivery [13].

Patrick Debis encountered major difficulties as a consultant while working on the data

centre migration project for the Belgian government in 2007 and 2008. These

difficulties were primarily caused due to the lack of communication and coordination

between developers and system administrators. He explored an alternative method to

address this issue as he was unsatisfied with the current software development practices

[14]. Debis gathered like-minded software engineers and system administrators to a

conference called "Devopsdays" in 2009, where he introduced the concept of "DevOps"

[14], [9]. DevOps is a collection of practices designed to merge software development

(Dev) and IT operations (Ops) teams to enhance cooperation and communication

between them. It emphasises process automation through tools which enable more

frequent and efficient software releases. It also prioritizes continuous improvement

through continuous feedback loops [13].

The term "DevOps" has evolved through time to refer to a set of practices, culture,

philosophy, and mindset utilized to accelerate the complete software development

lifecycle (SDLC). It was developed to tackle weaknesses such as delayed and inefficient

delivery of software, inadequate teamwork, lack of agility and flexibility, and

insufficient accountability and visibility. Some of its key practices include continuous

integration (CI), continuous delivery (CD), infrastructure as code (IaC), monitoring and

logging, as well as lean and agile practices. These practices were crafted to improve the

efficiency, reliability, and quality of software delivery [13].

2.1.1 Continuous Integration

The old-fashioned approach of software integration was to develop, integrate and test

software components separately. Those separately developed components were

integrated into a larger system later at a final stage. This led to the identification of

integration problems at the final stage, which required a substantial amount of manual

effort to rectify the bugs. The developers were required to manually integrate and test

each component of the entire system. As the size and complexity of the system grow

 Chapter 2: Theoretical Background

8

over time, this manual integration and testing becomes more time-consuming and costly

[15].

The process of automatically building and testing software changes whenever

developers commit changes to a central repository is known as continuous integration

(CI). The main goal of the CI process is to detect problems early in the development

process so that they will be easy to detect and less expensive to fix. It requires frequent

code commits to a central repository, automated building and testing, and frequent error

reporting. It helps organizations in enhancing software quality, decrease the time and

cost required to identify and rectify bugs and reduce the likelihood of bugs in the

codebase [15], [13].

This frequent commit helps us to overcome the merge conflicts issues that appear in the

traditional approach. Whenever a developer merges code changes into a central

repository, it triggers an automated build process that compiles the code and runs an

automated test process. This automation helps us to get instant feedback whenever new

changes are merged in the codebase. In the event of a build or test failure, the errors are

promptly reported to the developers, enabling them to address the issues quickly. At this

point, it will be cost-efficient to fix the bugs because the whole implementation will be

fresh in the developer's mind. Normally, a CI pipeline is implemented to execute

multiple tasks in the specified sequence, and if a task fails, the next task will not be

executed. CI pipeline is triggered whenever some changes are detected in the codebase.

It extracts the most recent version of the code from the codebase and attempts to

compile and build the software. Then the pipeline runs pre-configured tests on the

successful test results, and pipeline execution will be successful. Additional tasks like

software security scanning could also be added in CI. After the successful execution of

the CI process, executable files are generated, which are later used in continuous

deployment [16].

2.1.2 Continuous Delivery

The continuous delivery (CD) concept was developed to eliminate the manual software

delivery process and prevent potential errors and misconfiguration issues associated

with the traditional software release approach. On the traditional approach, due to the

 Chapter 2: Theoretical Background

9

lack of communication and coordination between the development and IT operation

teams, the software delivery process used to be error-prone. The release process was a

time-consuming task due to the manual release process and human errors [17].

CD advocates automating the entire software delivery process from building and testing

to deployment and release. The CD process involves automatically building, testing,

and packaging software changes into a format that can be deployed. Configuration files

are created to deploy software to development, testing and production environments.

CD process uses those configuration files to deploy software to respective

environments. This approach reduces the risk of human error and enables organizations

to release or update their software frequently and confidently. Organizations could also

adopt A/B testing and canary releases to reduce the risk of issues and create a valuable

feedback loop[18].

By adhering to the CD approach, software development teams develop software through

short development cycles, assuring the reliable release of software at any given time.

Normally, the IT operations team sets up a CD pipeline based on the requirements, and

software developers use this pipeline to ensure the continuous delivery of their

applications. The CD uses the artifacts (i.e., executable files or deployable software)

build into the CI process to deploy the software in multiple (typically 2 to 5)

environments. Deploying and testing applications in multiple environments ensures

software quality. The CD process is constantly monitored and alerted by monitoring

systems to provide continuous feedback. After the CI pipeline is successfully executed

and executable files are generated, the CD pipeline is triggered to execute multiple tasks

that have been defined in the pipeline. Those multiple tasks are normally the

deployment of the application into different environments using preconfigured

environment-specific configuration files. The pipeline executes each task in a

prespecified sequence, and only once the current task has been successfully executed

the pipeline moves on to the next one. In the event of errors during the execution of the

pipeline, the pipeline stops and does not move on to the next task. Automatic or manual

approval is usually used during the implementation of CD pipelines to prevent damage

and allow human intervention as a safety net [18], [16].

 Chapter 2: Theoretical Background

10

2.1.3 Infrastructure as Code

IT operations teams faced challenges in provisioning and maintaining IT infrastructure

due to manual, time-consuming, and error-prone configuration processes. The

development of virtualization, cloud, containers, server automation, and software-

defined networking was supposed to simplify these tasks but detecting and resolving

issues quickly remained difficult. Configuring and updating systems was also a

challenge, requiring tremendous effort for routine manual provisioning and maintenance

work. Cloud Services and automation tools reduced the amount of the required changes

on the infrastructure side, but applications change management complexity was not

addressed. Due to that reason, IT operations teams are always required to put additional

effort into tracking changes. To overcome these challenges, a team of experts was

assigned to identify and develop appropriate tools and establish effective processes and

procedures to address the laborious task. A more efficient and reliable way of

provisioning, configuring, updating, and maintaining IT infrastructure was developed

with an approach called "Infrastructure as Code" (IaC). This approach involves writing

code to automate IT infrastructure deployment, making the process more efficient and

reliable [19].

IaC is an IT methodology that maintains and codifies the underlying software-based IT

infrastructure. Instead of manually configuring separate hardware devices and operating

systems, it allows operations or development teams to automatically manage, monitor,

and provision resources. The technique of IaC is sometimes referred to as

programmable or software-defined infrastructure since it relies on standard software

development methods [20], [21].

The goal of IaC is to establish repeatable and standardized processes for the creation

and configurations of new infrastructures. Resources are defined in the definition text

file, and configuration changes are made by updating the resource declaration. The

resource deployment process is unsupervised and includes an extensive validation

process to ensure proper deployment. Contemporary tooling can also handle

infrastructure in the same way it handles software and data. This enables infrastructure

management using software development tools like deployment orchestration,

 Chapter 2: Theoretical Background

11

automated testing libraries, and version control systems (VCS). Techniques like test-

driven development (TDD), CI, and CD can also be used. Major companies like

Amazon, Netflix, Google and Facebook are already using IaC in demanding

environments for large-scale, highly reliable IT infrastructures. The goal of IaC is to

make IT infrastructure support and promote changes rather than being a barrier. With

IaC implementation, resource creation, configuration, update, and deployment is no

longer challenging task that does not concern the operation team. Instead of doing

boring, repetitive jobs all day long, the operation team could spend their time on

worthwhile activities that challenge them. Additionally, IaC helps to prevent failures

and enables teams to recover from infrastructure disasters rapidly and effectively [19].

2.1.4 Monitoring and Logging

The traditional approaches of infrastructure management had some limitations such as a

lack of visibility into the underlying infrastructure, limited automation, and difficulty in

identifying the root causes of issues. The conventional methods of monitoring and

logging approach were not generating real-time feedback causing delays in resolving

problems [13].

DevOps emphasizes continuous and automated monitoring and logging by utilizing

tools that provide real-time visibility into the performance of software and

infrastructure. The monitoring process constantly collects and analyses data related to

the software and infrastructure performance. DevOps practices also enable real-time

feedback on system performance, leveraging infrastructure and system data analysis to

detect and address potential issues. DevOps advocates for continuous logging of

specific actions and events that occur during various user interactions with software and

infrastructure. This data can be extremely useful in identifying and resolving errors and

bugs during debugging and troubleshooting. Similarly, those data will also be useful for

insights into the software and infrastructure usage. That information could also be

useful for security audits and the detection of unusual user behaviours or attacks [22],

[13].

 Chapter 2: Theoretical Background

12

2.1.5 Agile Practices

Organizations were facing challenges like delayed software delivery, unaligned goals

between team members and stakeholders, and a lack of collaboration between the team

members. To overcome those challenges Agile software development methodology was

developed [13].

The agile methodology involves breaking down large projects into smaller, manageable

parts, and the complete software is delivered through multiple development iterations.

This approach enables better collaboration and communication between the team

members and stakeholders, which leads to improved alignment of development goals,

user needs, and business requirements [23]. It also enhances project management and

promotes transparency of the project's process development to all stakeholders

involved. Agile practices such as daily stand-up meetings and frequent communication

between development and operation teams increase transparency throughout the entire

development process. Improved communication and collaboration through agile

practices can reduce misunderstanding and help meet requirements [24]. However, the

topic of agile practices is broad and not the focus of this study, so it is only briefly

mentioned.

2.2 DevSecOps

Conventional security practices focus on securing applications and infrastructure at the

end of the development process. However, this approach resulted in expensive and

time-consuming security testing and remediation, leading to delays in releasing software

to production. Traditionally, vulnerabilities were often discovered only during the final

stage, making security mitigation a time-consuming and expensive process.

Additionally, the separation of development, operations and security teams resulted in a

lack of collaboration and communication, leading to numerous overlooked

vulnerabilities [25]. Similarly, the manual process of testing and detecting security

vulnerabilities was a time-consuming process that led to many vulnerabilities being

missed. Furthermore, traditional security practices were not equipped to deal with the

constantly evolving compliance and governance complexities [26].

 Chapter 2: Theoretical Background

13

A new methodology called DevSecOps was created to tackle these issues by integrating

security into the entire DevOps process. According to [26] DevSecOps is defined as "a

software development methodology that emphasizes the integration of security practices

into the software development process, from planning and design stages to development

and maintenance". In this methodology, secured and reliable software is developed with

active collaboration between development, security, and operations teams. It advocates

process automation, continuous testing, and continuous monitoring so that it will be

easier to identify and mitigate security risks in real-time [27]. This implies that security

is integrated throughout the entire SDLC, and teams utilize automated processes and

continuous testing to detect vulnerabilities as they occur. Continuous monitoring

enables the team to monitor security risks in real-time and promptly respond to any

issue. Overall, the goal is to build secure and reliable software by making security an

ongoing process that is integrated into each stage of development [26].

2.2.1 DevSecOps Guidelines

DevSecOps emphasizes implementing strategies and guidelines to develop a culture of

security-centric software development within an organization. It provides guidelines for

security integration into every stage of the software development process, including

planning and design, development, testing, deployment, and operations and

maintenance [26].

2.2.1.1 Planning and Design

DevSecOps mandates the early engagement of security experts from the beginning of

the project planning and design phase in SDLC. At this stage, security experts focus on

identifying potential security risks based on the business requirements. Those identified

risks are prioritised based on their potential impact. Security experts provide training

and resources on security best practices. Organizations focus on creating a security-

centric culture encouraging open communication and collaboration between different

teams [28]. Security controls are implemented at the design stage, which helps to

prevent and mitigate potential security risks. Organizations can conduct threat

modelling to identify potential security risks and design the system to mitigate those

risks. Following these guidelines, organizations can build a secure system that meets

 Chapter 2: Theoretical Background

14

their business requirements while ensuring security and compliance requirements are

met [26].

2.2.1.2 Development

In the development phase, secure software development practices such as code reviews,

static analysis, and vulnerability scanning are utilized to identify and mitigate security

issues early in the development process. Organizations could utilize security experts to

organize training sessions on secure coding practices, secure coding standards, secure

coding techniques, and a secure development lifecycle [25], [29]. The DevSecOps

guideline also stresses the importance of using automated security testing tools, such as

static and dynamic analysis tools, continuously to detect vulnerabilities throughout the

entire development process. It highlights the need for prompt mitigation of any security

issues as they are identified, which helps to reduce the additional delays in the release

process. The use of OWASP Top 10 and CIS Controls is recommended to enforce

security best practices throughout the development process. By following these

guidelines, organizations can ensure that security is integrated into development,

thereby reducing the chances of security vulnerabilities in the final product [26].

2.2.1.3 Testing

The DevSecOps guideline recommends carrying out various types of tests, including

unit tests, integration tests, functional tests, and tests specific to security. In addition, it

recommends conducting penetration testing and vulnerability scanning as part of

security testing [30]. Several security risks, such as flaws in authentication,

authorization issues, vulnerabilities in input data, cross-site scripting (XSS), cross-site

request forgery (CSRF), and exposure of sensitive data, must undergo testing according

to the guideline. Test environments should mirror the production environment to

identify security risks in the real-world setting. Security tests should be conducted

throughout the SDLC, including the build and development phases. Security tests

should be carried out using security testing tools and frameworks like OWASP ZAP,

Burp Suite, etc. These tools help to identify and mitigate security issues. Following

these guidelines organizations can ensure that their software is thoroughly tested for

 Chapter 2: Theoretical Background

15

security vulnerabilities and identified issues are mitigated before the software is

deployed to production [26].

2.2.1.4 Deployment

The guideline recommends implementing deployment security controls during the

deployment process. This can be achieved through access control mechanisms, change

management procedures, and configuration management. The practice of secure

configuration management ensures that all necessary systems and components are

configured in a secure and up-to-date manner. Deployments should be

scanned/monitored to detect security risks such as unauthorized changes and

misconfigurations in the system [31]. DevSecOps approach promotes the use of

deployment tools that automate the deployment process, which reduces the risks of

errors and misconfigurations. Similarly, after the deployment process, post-deployment

tests are conducted to verify that the deployment was successful and that all the system

components are working correctly. By following these guidelines, organizations can

make sure that their software deployments are secure, reliable, and operate correctly

[26].

2.2.1.5 Operations and Maintenance

Guidelines emphasise the implementation of security monitoring and incident response

procedures, which would be helpful for security incident detections in real-time. It also

enforces real-time incident reporting, which could be helpful in real-time security

incident response. Log management analysis tools could be used to collect and analyse

logs from different systems and applications. Those analysis results are helpful in

detecting potential security issues [32]. Vulnerability scans are regularly conducted to

identify potential vulnerabilities in the hosted applications. This can also ensure that

systems and applications contain the latest security patches. Network security controls

like firewalls, intrusion prevention systems (IPS), and virtual private networks (VPNs)

are implemented to secure applications from external threats. A proper access control

mechanism is implemented to ensure that only authorized users would have access to

sensitive data and systems. Organizations could follow these guidelines to ensure that

 Chapter 2: Theoretical Background

16

their systems and applications are monitored for security issues, vulnerabilities are

identified and remediated, and sensitive data is protected from unauthorized access [26].

2.2.2 DevSecOps Challenges

As discussed earlier, DevSecOps requires a wide range of tools and techniques to be

integrated into DevOps practices. Due to those reasons, organizations may face several

challenges while implementing secure DevOps practices. Lack of security expertise in

the DevOps team is the main challenge [28]. All small, medium, and big organizations

lack enough security experts. Due to this reason, some organizations may not have

security expertise, knowledge and skills required to effectively integrate security into

the DevOps process. Similarly, there is a lack of sufficient collaboration and

communication between development, operations, and security teams. DevSecOps

integration requires a major change in the existing process, tools, and workflows. Due

to that reason, there are hesitation and resistance to big change because it could slow

down the existing development flow. Currently, there are not a significant amount of

available security integration tools, and those available tools also have compatibility

issues with existing systems. These issues also result in technical challenges and

additional delays in DevSecOps implementations. It is challenging for organizations to

develop a DevSecOps methodology that ensures regularity requirements compliance.

Organizations must address these challenges to effectively integrate security practices

into the DevOps process and ensure their software development practices are secure and

compliant [26].

2.3 OWASP Top 10

The renowned non-profitable foundation called Open Web Application Security Project

(OWASP) has been used as the source of the top 10 vulnerabilities. OWASP was

launched on 1st December 2001 with the sole purpose of improving software security.

OWASP publishes the top 10 web application security risk every 3-4 years based on the

most common and critical vulnerabilities found during that period. Those items in the

top 10 list are considered the minimum baseline of security enforcement while

developing web applications [33]. OWASP API security top 10 list published in 2019 is

 Chapter 2: Theoretical Background

17

used to test the performance of SAST tool. All relevant items in the list will be

discussed in the upcoming sections.

2.3.1 Broken Object Level Authorization

An access control method known as Object Level Authorization ensures that a user can

only access the objects to which they are authorized. It is typically used at the code

level. In this approach, the API endpoint receives an object identifier like Id in a request

object and then it executes some operation on that object. Before performing any

operation, a security mechanism should be enforced to check Object Level

Authorization. This access check should confirm that the logged-in user is authorized to

perform the desired action on the requested Object. Unauthorized users can potentially

access, modify, or delete sensitive information if proper object-level authorization is not

ensured. The approach to authorization and access control has improved significantly,

and the latest best practices can efficiently tackle the issue of Broken Object Level

Authorization. It is quite common on web APIs because the server's component does

not track the client state and it fully depends on the parameters such as object Id in the

request to determine which objects to access. Even with the appropriate access control

and authorization in place, there is still a possibility that access checks may not be

enforced before sensitive data is accessed. Normally these access control

misconfigurations are not considered easily detected by SAST or DAST scanning [34].

2.3.2 Broken User Authentication

According to the study conducted in 2019 by OWASP, it was found that the user

authentication process was not properly implemented. As a result of that, attackers

could be able to compromise authentication tokens and impersonate a legitimate user

identity for a short period or permanently. This compromises the ability of a system to

properly authenticate users resulting in a compromised API [35] API Authentication is

considered a complicated process that could cause misunderstanding about the

authentication boundaries. At the same time, since API endpoints are exposed, the

authentication mechanism has become an easy target for attackers. Due to that reason,

authentication endpoints are vulnerable to exploits. While considering web API's

authentication endpoints, it is the crux for authorization while communicating with

 Chapter 2: Theoretical Background

18

other systems, and those endpoints must be secured. According to OWASP, an

authentication endpoint is not secure if it allows credential stuffing, allows brute force

attacks, allows weak password, sends authentication tokens in URL, tokens authenticity

is not checked, accepts unsigned tokens, uses non-encrypted or weekly signed

passwords, and uses week encryption keys [36].

2.3.3 Excessive Data Exposure

According to the same study, Excessive Data Exposure ended up as a third item in the

list where developers are kin to expose complete object properties without considering

the sensitivity of the data it holds. This also indicates that the endpoints completely

depend on the vulnerable clients for data filtration before displaying them to the user

[35]. The attacker could easily exploit this vulnerability by sniffing the network traffic

and analysing the endpoint responses. This vulnerability has been added as a third

security risk due to its severity and common practice. It often results in the disclosure of

sensitive data to clients due to flawed practices. Improper segregation of data based on

their sensitivity in API endpoints leads to severe vulnerabilities because it is the primary

data source. This vulnerability is considered difficult to be detected by automatic

security scanning tools. Because it is difficult for those tools to distinguish between

legitimate and sensitive data without knowing the context of the application [37].

2.3.4 Lack of Resource and Rate Limiting

The same study indicates that majority of API endpoints do not have any limits on the

number of requests a client can make to obtain a resource. Not having this restriction

makes the API endpoint wide open to Denial of Service (DoS) attacks. If the

authentication service does not enforce such restrictions, it is considered an

authentication flaw that is completely open for brute force attacks [35]. It is quite

common in the current practice that most existing APIs lack resource and rate-limiting

restrictions. Automatic security scanning tools can more easily detect this vulnerability

than the previous three vulnerabilities. API endpoints could be vulnerable without

setting an appropriate limit on execution timeouts, max allocable memory, numbers of

processors, request payload size, number of requests per client/resource, number of

records per page to return in a single response etc. [38].

 Chapter 2: Theoretical Background

19

2.3.5 Broken Function Level Authorization

In the current context, APIs are bound to have a complex access policy due to different

hierarchies of groups and roles. At the same time, endpoints seem to have ambiguous

separation of administrative and regular functions resulting in an authorization flow,

which could be exploited by the attacker to gain illegal access to sensitive user's

resources and administrative functions [35]. In this context, an attacker sends a

legitimate request to the endpoint to which they should not have access.

Mismanagement of user groups, roles, or administrative privileges, could expose

sensitive endpoints to anonymous or unprivileged users. In the context of functions,

authorization is done in the configurations and in some special situations, it is also done

in the code level. Enforcing a proper authorization check could be a confusing task for

the developer due to the complex user hierarchy with groups and roles. By exploiting

these flaws, attackers could gain access to unauthorized features because administrative

functions are the target of attacks. To prevent this kind of flaw, we could manually

check if a normal user could access administrative endpoints or send PUT, POST, or

DELETE request. Similarly, we could also check if the user from one user group could

access the resources from another user group by guessing the URL [39].

2.3.6 Mass Assignment

Mass assignment is usually caused due the direct binding of the data received in the

request body without data sanitization. Before processing the data, the endpoint should

have properties of filtration logic based on the allow list. The attacker must have some

understanding of the business logic, object relations and API structure to exploit this

vulnerability. Mass assignment attacks are easier in APIs because they normally expose

the application business logic and properties names. Since modern frameworks could

automatically bind request body into code variables and internal objects due to that

reason, it is quite common in existing APIs. Attackers could use this existing

mechanism to update or overwrite sensitive objects. Its exploits could cause a privilege

escalation, data tempering and security bypass. This vulnerability is also considered

most unlikely to be detected by automatic security scanning tools [40].

 Chapter 2: Theoretical Background

20

2.3.7 Security Misconfiguration

According to OWASP API security study, security misconfiguration has been ranked as

the 7th serious flaw. Security Misconfiguration is normally caused using the default or

incomplete configurations. Some of those missed configurations could be improper

HTTP headers configurations, usages of unnecessary HTTP methods, anonymous

allowance of CROS requests, and logging sensitive information in error messages [35].

To exploit these vulnerabilities, attackers try to find unpatched security flaws, generic

sensitive endpoints, and unprotected resources to gain unauthorised access. According

to the study, it is quite common in the API stack, network communication layer and

application layer. Large numbers of automatic tools are available to detect security

misconfigurations. Security misconfiguration could also expose sensitive internal

system details that could result in server hijack [41].

2.3.8 Injection

This vulnerability is categorized as a situation where the input data is not validated, and

those inputs are directly sent to the interpreter in the form of a command or query. It is

also known as SQL, NoSQL, and command injection attack [35]. An attacker could

exploit this vulnerability by sending crafted input data to the endpoint. The interpreter,

such as the database, may perform unauthorized queries or command execution that are

hidden in the input parameter. This could lead to the disclosure of sensitive PII, granting

administrative privileges to the attacker, or manipulation or destruction of sensitive

data. It has been a common vulnerability for a long time but is now declining in the top

10 list due to increased security risk awareness. However, it still remains a widespread

weakness. Sensitive information disclosure and data loss are considered the main

impact of injection attacks. It also has the potential of DoS and unauthorized hostile

takeover of the application. It is more easily detectable by SAST tools than other

vulnerabilities in the list. The leading causes for this vulnerability are lack of validation,

filtering and sanitation of input data and direct concatenation of the client inputs in

SQL, NoSQL or LDAP queries, OS command, XML parsers and ORM [42].

 Chapter 2: Theoretical Background

21

Improper assets management and insufficient logging and monitoring are last two

vulnerabilities in OWASP API security top 10 vulnerabilities. However, they are out of

the scope of this study. Therefore, they are not discussed in detail in this section.

2.4 Security Automation Tools

The National Institute of Standards and Technology (NIST) released Security Content

Automation Protocol (SCAP) in 2009 [43]. The protocol was designed to offer a

standardized approach to automate security automation tasks like vulnerability

scanning, configuration assessment, and compliance checking. This standardization

provides a common language for different security tools to interoperate and share data,

which allows collaboration between organizations to streamline security management

processes and reduce the risk of security breaches. The main goal of SCAP is to provide

a standard framework for automating security-related tasks, leading to increased

efficiency and effectiveness of security management. SCAP was designed to integrate

key security components like Common Vulnerabilities and Exposure (CVE) dictionary,

Common Platform Enumeration (CPE) dictionary, Common Configuration

Enumeration (CCE) dictionary, Extensive Configuration Checklist Description Format

(XCCDF) etc. SCAP standard has a certification process which evaluates different

products and tools against a set of requirements. This certification ensures that the

security tools fulfil the requirements and they are interoperable with other SCAP-

certified tools. Some of the giant security products and tools vendors like McAfee,

RedHat, IBM, tenable, RAPID7, ThreatGuard, Qualys etc. are SCAP certified [44].

SCAP covers a wide range of products and tools. However, considering tools that are

helpful for the software development process, those essential tools like software

composition analysis tools, static application security testing tools, dynamic application

scanning tools etc., are yet to be recognized as effective and recommended. These tools

cover most aspects of software security but are not platform-independent. Security

analysis is not fast enough, and security scan results are not actionable to mitigate the

issue. Due to those reasons, they are not widely used. Some of the available software

security tests are Snyk, Synopsys Code Sight, GitHub Advanced Security(codeQL),

GitGuardian, OWASP ZAP, Nessus, W3AF, Burp Suite, Nikto etc.

 Chapter 2: Theoretical Background

22

2.4.1 Static Application Security Testing

A study conducted by [45] states Static Application Security Testing (SAST) is a

technique used to identify security vulnerabilities in an application's source code.

Vulnerabilities are identified by analysing the code using predefined rules to identify

common vulnerabilities, such as injection attacks, cross-site scripting (XSS) attacks,

buffer overflows etc. SAST tools scan the source code without running the application.

During the scan, it builds a model of the code structure that is used for the detection of

potential vulnerabilities. All the potential vulnerabilities detected during the scan are

reported to the developer as scan results or reports which could be mitigated by the

developers. It is the most cost-efficient and effective approach because security risks are

detected in the early development process [45]. Security scan report normally contains

information like the location of the vulnerabilities in the source code, the severity score

of the vulnerability, and possible mitigation recommendations. Developers use this

report to mitigate security vulnerabilities.

Rule-based SAST tools are quite common, but they are known for generating large

numbers of false positives. To overcome that issue, machine learning based SAST tools

are being developed and they are more effective in the long term. Because those tools

could learn from new vulnerabilities and anadapt themselves to new coding patterns

[45]. But they are not that attractive for small and medium size companies due to their

higher initial setup cost. Existing SAST tools are known for their weakness like a large

number of false positives, limited vulnerability coverage, inefficient contextual

understanding, and difficulty in prioritizing result [46]. Due to all these reasons, SAST

tools are not commonly used by developers to mitigate security risks [47]. Some

available SAST tools are CodeQL, SonarQube, Checkmarx, Veracode, Fortify, Kiuwan,

Parasoft, AppScan, Coverity, RIPS etc.

2.4.2 Dynamic Application Security Testing

Dynamic application security testing is a technique used to access the security of the

software application while they are running in the production environment. Dynamic

testing uses an automated process that continuously interacts with the application in

 Chapter 2: Theoretical Background

23

real-time probing the application's inputs and outputs to detect potential vulnerabilities.

Normally it involves instrumentation, test execution, analysis, and reporting steps. In

the instrumentation step, additional code (i.e., instrumentation code) is inserted into the

application's executable files. This instrumentation code is used to monitor and gather

data for analysis. Test execution is the second step, where the testing tool generates

input data (i.e., test cases) and feeds those data to the application via a user interface of

API interface. In the third step testing tool monitors tests executions and records failed

executions or abnormal behaviour. Recorded information is analysed to detect security

vulnerabilities in the application. As a final step, after a complete analysis of the tests,

testing tools generate a report with the list of detected vulnerabilities [48].

Both SAST and DAST tools are recommended to be used together to ensure the

complete security assurance of the application. Currently, DAST is more effective than

the SAST tool. The strengths of DAST tool are real-world testing, rapid identifications

of vulnerabilities, easy to use, scalability, and detection of configuration-related

vulnerabilities. But DAST tools also has some weakness like limited code coverage,

difficulty in reproducing vulnerabilities, false negatives, limited testing scenarios and

performance issues [49]. Some of the available DAST tools are OWASP Zed Attack

Proxy, Acunetix, WebInspect, Acunetix, AppScan, Netparker, Quals, Nmap, Vega,

IronWASP etc.

2.4.3 Open-Source Software Vulnerability Scanner

According to Dann et al. study in 2022, open-source software (OSS) vulnerability

scanners are tools specifically designed to detect vulnerabilities in OSS libraries and

frameworks. Generally, it collects all the information about existing project

dependencies, including direct and transitive dependencies. Then it compares the

dependency information across the known vulnerability databases like the National

Vulnerability Database (NVD) or Common Vulnerabilities and Exposures (CVE).

Whenever it finds that the existing project dependencies are in those known

vulnerability databases, those dependencies are reported as vulnerable dependencies. In

some of the scanners, machine learning techniques are also used for the detection of

formerly unidentified vulnerabilities. The scanner first downloads software source code

 Chapter 2: Theoretical Background

24

and then analyses it using one or more analysis techniques. During the analysis, it

creates an abstract representation of the software and its dependencies. Then uses that

representation for its comparison with the known dependencies vulnerabilities database

and reports to the user if it finds any known vulnerabilities [50].

The existing open-source vulnerability scanner has some serious weaknesses, like

limited data source, false positive and false negative, scalability, context sensitivity,

limited support for non-code artifacts, and a false sense of security [51]. Currently, most

of the existing OSS vulnerability scanners provide mixed results; some have a high

detection rate with a high false positive rate and some have a lower false positive rate

with the possibility of missing some vulnerabilities. Due to that reason, organizations

are recommended to evaluate the existing scanners and use a scanner which is suitable

according to the requirements [50]. Some of the recently available OSS vulnerability

scanners are Sonatype Nexus IQ, OWASP Dependency-Check, Anchore, Clair, Snyk

etc.

2.4.4 Infrastructure as Code Security Testing

Infrastructure as Code (IaC) security testing tools are used to detect and mitigate

security vulnerabilities in IaC templates. IaC security testing tool analyses the code that

has been used to create and manage cloud infrastructure. It considers security

vulnerabilities and compliance issues during the test. This could be used while the

infrastructure is under development before deployment, or it could also be used in the

existing infrastructure to check if there are any potential security vulnerabilities.

Security testing could also use combinations of static analysis and dynamic testing to

detect security vulnerabilities and compliance issues in IaC. The tool could examine

common security issues like hard-coded secrets, insecure protocols, weak

authentication, authorization mechanism etc. Similarly, some of the tools also check

compliance issues using industry standards like CIS benchmark and PCI-DSS.

Normally most of the tools generate a report as a scan result which lists all the detected

vulnerabilities and provides mitigation suggestions to help the developer to fix the

identified issues [31].

 Chapter 2: Theoretical Background

25

Some of the challenges of IaC security scanning tools are lack of standardization, the

complexity of IaC, integration with existing tools, lack of expertise and false positives

[52]. Some of the benefits of IaC security scanning tools are improved security, early

detection of issues, increased efficiency, and better compliance. Due to all these

benefits, more organizations are showing interest towards the tools [31].

2.5 Related Work

SAST tools can be used to identify security flaws in software during the early stage of

development, which can result in cost-effective software delivery. However, current

SAST tools have limitations such as false positives, limited coverage of vulnerabilities,

inefficient contextual understanding, and difficulty in prioritizing results. Continuous

research is going on to improve the effectiveness of SAST tools because it has the

potential to empower developers to ensure security compliance. Work in [47] has

proposed a framework to enhance the effectiveness of SAST tools using some of the

steps like pre-processing the source code and extracting the feature from processed code

(e.g., syntax features, data flow features, and control flow features). After that, a

machine learning algorithm is used to analyse the extracted features to identify potential

vulnerabilities. The author also purposes to use supervised learning methods like

decision trees and support vector machines, as well as unsupervised learning methods

such as K-Means clustering, to achieve better performance [47].

It is recommended to use both SAST and DAST tools together to ensure complete

security assurance of the application. Currently, DAST tools are considered more

effective than SAST tools. According to [49] SAST and DAST integration into CI/CD

pipeline is not a common practice because of the lack of knowledge and skills, time and

resources, integration challenges, and false positives and negatives. Only 28% of

organizations have integrated security testing tools in their CI/CD pipelines, and among

them, only 10% have integrated DAST tools. Organizations have recognized the

importance of integrating security into the development process, and there is an

increasing interest in integrating security testing tools, including DAST, in CI/CD

pipelines. According to the research, integrating DAST tools into CI/CD pipelines can

 Chapter 2: Theoretical Background

26

be effective if the suitable tools are integrated with proper configuration addressing the

false positive issues [49].

The Open-Source (OSS) vulnerability scanner has undergone significant development.

Despite some limitations, organizations could benefit from using these tools. Various

tools are available that can be utilized in IDEs, repositories, and CI/CD pipelines.

However, it has not been common for organizations to use OSS vulnerability scanners.

According to the study, only 9% of the project that has been analysed in this study were

using some OSS vulnerability scanner. All the remaining projects relied on manual code

inspection or external security audits. This indicates that even though scanner has

potential benefits in detecting OSS vulnerability, it has not been commonly practised

yet [50].

Many organizations still use manual methods or ad hoc tools for IaC security testing,

and automated IaC security scanning tools are not used in these organizations. Existing

tools have some deficits, like lack of standardization in the security testing process,

insufficient automation, and lack of integration into the software development process.

The tool has the potential to help the developers in decreasing the security

vulnerabilities that might be introduced in the cloud infrastructure [31]. However, the

usage of IaC security scanning tools is not a common practice in organizations.

Despite the significant progress made in the development of security automation tools,

it is not yet a widespread practice for organizations to prioritize security in the early

stages of the software development life cycle. Although various tools have been

developed to address this issue, their adoption rates remain low. By leveraging these

tools, developers can implement security measures from the start of the SDLC. This

study aims to integrate security automation tools into a fully automated DevOps CI/CD

pipeline that enables developers to enforce security in small teams.

Chapter 3

3 Methodology

Since 2015, organizations have been adopting DevOps practices, but DevSecOps has

not become common practice due to various challenges [13]. Therefore, there is a

demand for security scanning tools that can be integrated into the software development

life cycle, enabling developers to enforce security. The primary goal of the research was

to implement a fully automated DevOps CI/CD pipeline with integrated security. The

intention was to automate security tests from the initiation of code development in the

IDE until deployment in the production environment. The study aims to provide

developers with security scanning tools that can be integrated into the DevOps CI/CD

pipeline.

To achieve this goal, the first step was to implement a fully automated DevOps CI/CD

pipeline. In this process, whenever a developer merges new changes in the version

control system, it triggers the CI pipeline in DevOps CI/CD automation. The CI

pipeline performs all configured tasks, such as running automated tests, building and

publishing artifacts. After the successful execution of the CI pipeline, the CD pipeline is

activated, which publishes the application to various infrastructures according to the

predefined configurations in the different release pipeline stages.

Once a fully automated DevOps CI/CD pipeline has been implemented, the next step is

to integrate security scanners into each stage of the pipeline in order to empower

developers to ensure security. This involves adding security scanner plugins in IDEs to

scan code for vulnerabilities before pushing any changes to the repository. Additionally,

Open-Source Vulnerability Scanner can be integrated into the Source Control

 Chapter 3: Methodology

28

Management (SCM) system to check each Pull Request (PR) before merging new

changes into the master branch. Security scanners can also be integrated into the CI

pipeline to detect security vulnerabilities before publishing the executable file used for

application deployment. However, in this study, security integration possibilities are

explored only until the CI pipeline in the DevOps flow. Detailed information on this

implementation will be presented in the next chapter, and a diagram of the proposed

security integration execution flow can be seen below.

Figure 3.1: Flow chart for security integration in DevOps

The flow diagram above shows the execution flow after integrating a security scanner

into a fully automated DevOps CI/CD pipeline. In the first stage, developers can

perform a security check on new features and mitigate existing vulnerabilities if the

 Chapter 3: Methodology

29

scanner detects any. After pushing the changes to the feature branch in the repository, a

Pull Request (PR) is created to merge the new feature into the master branch. Before

merging, the integrated security tool is triggered by the Source Control Management

(SCM) system to perform a security check. If the scanner detects vulnerabilities, the PR

is rejected, and if not, the PR is completed. The SCM system then triggers the CI

pipeline, which extracts the source code to build the executable files and performs a

security check before publishing the executable files into the drop folder. If the scanner

detects vulnerabilities, the pipeline execution fails, and if not, the pipeline triggers the

development CD pipeline. The development CD pipeline deploys the application into

the development environment cloud infrastructure and triggers the Quality Assurance

(QA) CD pipeline after the successful deployment. The QA CD pipeline requests pre-

deployment approval from the developer and deploys the application into the QA

environment if the approval is granted. The production CD pipeline is triggered after a

successful deployment in the QA environment and sends an approval request to the

manager for execution. The manager manually triggers the production CD pipeline after

receiving confirmation from the QA engineer.

3.1 Applications Development

A computer with the Windows 10 operating system was utilized for developing

applications using Visual Studio 2019 and Visual Studio Code IDEs. The objective was

to investigate the rate at which newly discovered vulnerabilities emerge and how

applications that are secured during development can still be vulnerable after a certain

period. Therefore, an older version of the ASP.NET Core 3.1 framework in C#

programming language was used for application development. The NuGet packages

available in 2019 were utilized to create and test the applications. Because of its

platform-independent nature, Web API applications are widely used. As a result, two

Web APIs and a console application were developed for the study. A test application

that uses microservice architecture was created using a combination of Web API and

console application. An Infrastructure as Code (IaC) project was created using an ARM

template for the deployment of the Azure infrastructure that was necessary for the test

production application. A Web API with vulnerabilities was developed to include the

 Chapter 3: Methodology

30

top 8 OWASP API Security vulnerabilities in order to test the performance of the SAST

tool.

3.2 Production Applications Azure Infrastructures

Azure provides a wide range of cloud services that can be used for hosting applications.

For this study, the two applications were hosted on Azure cloud using Azure App

Services, Azure Key Vault, Azure Active Directory, SQL Database, and Storage

Account, which are commonly used in the Microsoft technology stack for production

applications. As per standard best practices, it is recommended to host three different

versions of an application: development, quality assurance, and production, in separate

environments. In this study, the same application was deployed in Azure, with three

separate resource groups for each version. All the resources for each deployment

environment were created under the same resource group. This separation of resources

based on the deployment environment also helps in implementing Infrastructure as

Code deployment. The image below shows the various resources used in the

development environment resource group.

Figure 3.2: Resources in the Development Environment Resource Group

3.3 Infrastructure as Code in Azure

Microsoft released Azure Resource Manager in 2014 to address the challenges faced by

IT operation teams due to manual, time-consuming, and error-prone configuration

processes [53]. Azure Resource Manager can also be understood as an Azure

deployment and management system. It offers a management layer that lets us add,

modify, and remove resources in Azure subscription. Software development teams can

 Chapter 3: Methodology

31

use it to specify the required infrastructure to deliver solutions using declarative Azure

resource manager (ARM) templates. Similarly, other third-party IaC tools like

Terraform, Ansible, Chef, Pulumi etc., are also available [54].

Azure Resource Manager (ARM) Templates can also be used to develop IaC in Azure.

ARM template is a JSON file which normally defines the setup and settings of our

project. Since this template uses declarative syntax, we can declare what we want to

deploy without specifying the exact series of programming instructions that will be used

to create those Azure resources. Normally the information about resources to be

deployed and their associated characteristics are specified in the template [55]. The IaC

method is used to deploy a range of Azure resources, such as app services, functions,

SQL Server, storage accounts, networks, virtual machines, load balancers, and

connection topologies. This IaC model ensures that the same environment is produced

every time it is deployed, much like how the same source code generates the same

binary each time [54].

After deployment, we can secure and arrange our resources using management tools

like locks, tags, and access control. Resource Manager receives requests sent through

Azure APIs, tools, or SDKs which are then authenticated and approved before sending

those requests to the relevant Azure service [53]. Since the aim of this study was to

expose the threats that production applications are facing over time ARM templates

have been used for this study. Even though the more popular Bicep language was

already released in 2020, Azure DevOps

Azure DevOps (ADO) offers a set of services which are essential for rapid software

development and delivery. Those set of tools helps teams to organize their tasks,

collaborate while developing code, enforce quality assurance, and facilitate applications

build and deployments. Azure Boards, Azure Repos, Azure Pipelines, Azure Test Plans

and Azure Artifacts are the default standalone services of Azure DevOps. The

organizations in the Microsoft ecosystem frequently use these tools to create

collaborative cultures and procedures that unite developers, project managers, and

contributors. It allows companies to develop products and implement changes faster

compared to traditional software development methods. Azure DevOps offers both an

 Chapter 3: Methodology

32

on-premises and a cloud solution called Azure DevOps Service [56]. Because it requires

less setup time and resources, a cloud-based solution was chosen for this study. The

study focuses on integrating security into software delivery automation within the

context of DevOps. The image below shows the various features and services offered by

Azure DevOps.

Figure 3.3: Azure DevOps Services and its software development flow [57]

The above image illustrates different services that could be used in different stages of

SDLC. Azure DevOps flow is considered a continuous process which starts with

planning and ends with monitoring. Project planning is the initial phase of software

development. In this stage, project scopes are defined, user stories and relevant tasks are

created, and those user stories and tasks are prioritized. In the Microsoft ecosystem

Azure board service is used to facilitate those tasks. After that, developers will start

software development based on the priorities of user stories and tasks. At this stage,

source code collaborations are facilitated using Azure Repos service. As a third step,

whenever the new feature development is complete, the source code is built and tested

using the CI pipeline. After the successful completion, CI pipeline executable files are

generated, and those executables are stored in Azure Artifacts. Then CD pipeline

automatically fetches those executable files for the application deployment into various

environments. Azure Pipeline service is used for the implementation of the CI/CD

pipeline. Even though it is the final stage of the flow, but development team

continuously monitors production applications to ensure application integrity and

security. Azure Test Plans service could be used for extensive manual and automatic

testing of applications [56].

 Chapter 3: Methodology

33

A project was created in an Azure DevOps organization to use the services that are

required for the security automation test project. This project was implemented

considering the software developer’s perspective. Due to this, only Azure Repos, Azure

Pipelines and Azure Artifacts are covered in detail. The implementation focuses on the

development of completely automated continuous integration and continuous

deployment process.

3.3.1 Azure Boards

Software development teams commonly use Azure Board as it provides interactive and

scalable tools for managing software projects. It offers a wide range of features such as

integrated reporting, calendar views and customisable dashboards. It also provides

native support for Agile, scrum, and Kanban processes that facilitate software

development. These tools have a track record of being quick and simple to use while

tracking work progress, software-related concerns, and bugs. Azure Boards consists of a

large variety of useful tools for different purposes like Work Items, Boards, Backlogs,

Sprints, Queries and Delivery Plans [58]. Azure Boards is the service which facilitates

the management perspective of DevOps, which is out of the scope of this study.

3.3.2 Azure Artifacts

Azure Artifacts are used to share different packages from both public and private

sources within the team. Azure Artifacts can also be used to download and publish

different kinds of packages to public registries and Artifacts feeds. Azure Artifacts and

Azure Pipelines are used together for deploying packages from Azure Artifacts and

publishing build packages to Azure Artifacts. Similarly, these packages can also be

consolidated in build, test, or deployment stages in pipelines. Azure Artifacts supports

build artifacts, NuGet, npm, Maven, PyPI, universal packages etc. [59]. For this

research, Azure Artifacts were used to store the executables packages created during the

build procedure.

 Chapter 3: Methodology

34

3.3.3 Azure Test Plans

Azure Test Plans is a collection of tools that can be utilized to guarantee quality and

cooperation throughout the development process. It is a browser-based solution which is

used for test management. It is used for user acceptance testing, exploratory testing,

manual testing, and gathering stakeholder feedback. The main benefits of Azure Test

Plans are the ability to perform cross-platform tests, rich diagnostic data collection, end-

to-end traceability, integrated analytics, and an extensible platform [60]. Software

Quality Assurance was out of the scope of this study. Hence, it has been skipped in this

study.

3.3.4 Azure Repos

Azure Repos is a version control system used for source code management. Like any

other version control system, it is also widely used to save the snapshot of source code

and track the changes. Those snapshots and changes are recorded in such a way that we

can review and roll back to any version of the source code at any time. It is also

essential for source code management and collaboration of code changes across the

team [61]. Azure DevOps does not allow us to create a public repository in free trial and

student subscription. At the same time, Snyk free version does not support private

repositories. Therefore, Git repository was used for this study.

3.3.5 Azure Pipelines

Azure Pipelines are composed of one or more stages. Each stage is made up of one or

more jobs, and each job contains one or more steps. Typically, pipelines are run in

response to the triggers. Normally triggers are set up according to our business need to

start the pipeline executions. It is a common practice to configure pipeline executions

after new changes are merged in source control or at scheduled time intervals, or after a

successful build process. Stages are used to organize multiple jobs in the pipelines,

where each stage can have one or multiple jobs. We could have a separate stage for

individual steps for example build, test, and deploy stages. We could run a job in an

agent machine, and we could also have an agentless job. Steps are the smallest building

block of a pipeline and can be a task or script. Tasks are specially designed scripts

 Chapter 3: Methodology

35

which perform a specific action, e.g., publishing a build artifact or making an API call.

Some tasks might require running on the agent machine, and some can be agentless

[62]. The agent is a cloud computing infrastructure with agent software installed that

executes one job at a time. We need at least one agent to build or deploy our software

using Azure pipelines. More agents may be needed depending on the number of

executables to be built from the code, the software to be deployed, and the required

numbers of users access.

Azure Pipelines provides build and release services that aid in continuous integration

(CI) and continuous delivery (CD) in SDLC. Azure Pipelines is platform-independent

and supports almost any programming language or project type. The DevOps team

creates a build pipeline configuring tasks to test, build and publish artifacts. Continuous

integration is enabled in the build pipeline to automatically trigger its tasks whenever

the new changes are merged into the version control. Automated tests are also executed

in CI processes to ensure quality. Automated tests are effective in catching the bugs

early in the development process resulting in bug fixes being cost-effective. Azure

builds pipelines, builds artifacts and publishes them. The published artifacts are used by

the release pipelines for application deployment to development, QA, staging and

production environments [63]. The release process is automated by setting a trigger that

runs the release pipelines after the CI process is executed successfully. Azure Pipelines

was used to develop a fully automated DevOps CI/CD pipeline, and the details of it will

be explained in the implementations segment.

3.4 Security Integration in Azure DevOps

DevSecOps has always been a vague concept that starts from building secure work

culture and incorporating best security practices starting from design, development,

quality assurance, security audits and continuous system monitoring, which is a

challenging task even for big software corporations. Security guidelines and best

practices require continuous updates to mitigate continuously emerging vulnerabilities.

To address these challenges, there is a need for security scanning tools that could be

integrated into SDLC, which would empower developers to enforce security.

Integrating automated security scanning tools in DevOps practices has not yet become

 Chapter 3: Methodology

36

widespread. The security community has not yet recommended any specific set of tools

that can be considered reliable.

Numerous security scanning tools are currently available for scanning security

vulnerabilities. As previously mentioned, most of these tools fall under various

categories, including SAST, DAST, vulnerable dependency scanners, secret scanners,

container vulnerability scanners, IaC vulnerability scanners, and cloud vulnerability

scanners. To incorporate security into the early stages of development, it is important to

have a dependable tool that can be used in the IDE to enable developers to enforce

security while developing an application. However, most of the available tools are

limited to automating security tests on source control systems and CI pipelines.

Although there are some tools that can be used throughout the SDLC, they are mostly

paid versions. For this study, an open-source tool called Snyk was used to integrate

security scanning into a completely automated DevOps CI/CD pipeline. More

information about its implementation will be provided in the upcoming sections.

3.4.1 Snyk

The Snyk platform has the capability to identify and resolve vulnerabilities in various

areas, including custom code, open-source dependencies, container images, and IaC

configurations. It can be integrated into different stages of software development, such

as IDE, SCM systems, and DevOps automation pipelines [64]. The platform offers

several tools like Snyk Code, Snyk Open Source, Snyk PR Checks, Snyk Container,

Snyk IaC, and Snyk Cloud. These tools were created to address application security,

software supply chain security, and cloud security concerns. They are designed to

protect code, containers, and deployment. Snyk offers several products, including Snyk

Web UI, Snyk CLI, Snyk IDE extension, and Snyk API, which can be used to perform

security scans [65]. Snyk products provide features such as Snyk Open Source and Snyk

Code, which can perform Static Application Security Testing (SAST) and Software

Composition Analysis (SCA). These products have various integrations, including IDE,

git repository, and CI/CD integrations, which were implemented in this study [66]. The

study focused on Snyk CLI, Snyk IDE, Snyk PR Checks, and Snyk IaC while leaving

other Snyk tools for future investigations.

 Chapter 3: Methodology

37

3.4.1.1 Snyk Open Source

Like any other SCA tool, Snyk Open-Source scans all the dependencies that exist in the

application and checks if it contains any dependencies that have been marked as

vulnerable in Snyk Vulnerability Database. The Snyk Vulnerability Database is similar

to NVD and is a customized database of vulnerabilities. It is continually updated to stay

synchronized with NVD updates. The Snyk open-source tool is utilized to detect

vulnerabilities in open-source libraries. Whenever a vulnerable library is detected, the

tool produces a report detailing the vulnerability and provides recommendations to

address the issue [67]. Snyk Open-Source examines the language and package manager

of the project and generates a dependency tree accordingly. In the .NET ecosystem, the

dependencies are called NuGet packages. Once the project dependencies are restored,

the framework generates a project.assets.json file using the *.proj, *.proj *.csproj,

*.vbproj, and *.fsproj files. Snyk Open-Source security scanning can only be performed

after creating a project.assets.json file [68].

3.4.1.2 Snyk Code

Snyk Code is similar to other SAST tools and is used to identify vulnerabilities in

source code, bytecode, or binary code. Typically, SAST tools are specific to a particular

programming language [69]. The Snyk company asserts that Snyk Code is consistently

broadening its knowledge base regarding code security due to its integration with a

semantic analysis AI engine that gains insights from millions of open-source commits.

Additionally, it is combined with the Snyk Security Intelligence database. Snyk Code

scanning does not need projects to be compiled, and it can scan source code as it is

being written. Security scans are fast and produce a detailed and useful report on any

vulnerabilities found. The report contains detailed information on the vulnerability

along with its CVE score, and it also recommends the fix along with example code [70].

Snyk uses an AI-based analysis engine to detect hardcoded secrets, coding issues, type

inference, value ranges, data flow, API usage, control flow and point-to-analysis [71].

 Chapter 3: Methodology

38

3.4.2 GitGuardian

GitGuardian is a program that scans source code in real-time for API keys, passwords,

certificates, encryption keys, and other types of sensitive information. It uses an

automated detection engine to detect secrets in the SDLC. Developers can use this tool

to scan both public and private code repositories and will send alerts when secrets are

exposed in the repositories, thereby reducing the risk of secret exposure. In this study, it

was used to ensure that secrets were checked before merging the pull request into the

master [72].

Chapter 4

4 Implementation

4.1 Test Projects

Test projects are crucial for the evaluation of the available security scanning tools based

on their performance. At the same time, it is challenging to figure out the right test cases

that might produce valuable results. Since the proposed research topic had a fair amount

of research and implementational complexity, this study was conducted to cover a lot of

ground while leaving enough room for further development and research. Keeping this

in mind, the whole implementation and research was conducted to cover the most

important security concerns in this study. In this section, three test projects were

implemented to address specific purposes. The first project was developed to test the

security challenges of the old production applications infrastructure. The second part is

infrastructure as a code implementation for managing and provisioning the application

infrastructure using the code instead of a manual process. The last one implemented was

OWASP Web API top 8 vulnerabilities so that it could be used to test the performance

of the available Static Application Testing tool.

4.1.1 Production Test Application

A sample web API application and a console application was developed using asp.net

core framework version 3.1, released in 2019. Similarly, all the libraries and packages

were also selected from 2019 so that we will have a better understanding of new

vulnerabilities that appeared after 2019. Since the actual project implementation and

coding were out of the scope of this study. Due to that reason, the actual code of the

project has not been discussed.

 Chapter 4: Implementation

40

4.1.1.1 Web API

A web API was created with certain features, including an asynchronous endpoint that

can receive and process HTTP post requests. The endpoint first checks whether the

received data is valid and processes only the valid ones. The controller calls

BlobService to log the event in a storage account. In order to do so, the WriteLog

method is used to verify if there is a user-specific daily blob file. If the file exists, the

events are logged into that specific file. If there is no existing blob log file, the system

creates a new one and starts logging the events. The email addresses are hashed for

privacy while logging the events. All the events of the specific user are saved in the

user's blob file. Following the logging process in the previous step, the

MessageQueueService is invoked to transmit the messages to the storage account queue

for further processing. To ensure the data is transmitted accurately, the payload data is

converted to base64 encoding. The transmission of the message to the Azure storage

queue is done asynchronously. All significant steps in the entire process are recorded in

the same blob log file created in the previous step, which is specific to the user. The

implementation of this process can be demonstrated by the code map given below.

Figure 4.1: Code Map of event log service and queue service implementation

4.1.1.2 Console Application

A second microservice was created in the form of a console application named

QueueReceiver to receive messages that were stored in the storage account queue by

 Chapter 4: Implementation

41

MessageQueueService. The Base64 encoded messages were decoded and converted to a

message object. Then, the existing message attributes for that user were extracted from

the SQL message table and compared with the received message attributes to identify

any duplicate attributes. The number of existing attributes was also counted. Only the

new messages without duplicate attributes were processed and stored in the SQL

message table. If the count of message attributes was equal to or greater than 10, a

congratulatory email with the list of attributes was sent to the user using the third-party

service integration of Trillo SendGrid API for reliable email delivery. All the significant

events were written to the same individual user-specific daily blob file using the console

application, as in the previous steps. The implementational flow of this process is

illustrated in the image below.

Figure 4.2: Code Map of Queue Receiver

Azure app service was selected to host both web API and a console application. The

console application was deployed as a WebJob. Within this context, a storage account

was utilized to store various data objects, such as blobs and queues. To store structured

data securely, SQL server was employed. For cloud-based identity and access

management services, Azure Active Directory (Azure AD) was utilized [73]. All the

sensitive information, like database connection string, storage account connection

string, SendGrid API key etc., were stored in Azure Key Vault. Azure AD’s managed

identity service was used to enforce a coherent, unified access policy for hosted

applications (i.e., Web API and Web job) and developers. Using this feature application

and user may easily access other resources protected by Azure AD, such as Azure Key

 Chapter 4: Implementation

42

Vault, without any additional configurations in the application code and development

machines [74].

4.1.2 Infrastructure as Code Implementation

The basic structure of an ARM (Azure Resource Manager) template includes several

elements such as schema, contentVersion, parameters, functions, variables, resources,

and outputs, which are essential for implementing Infrastructure as Code (IaC). The

schema element is mandatory, and it specifies the location of the schema file and

language version that will be used as required. Similarly, the contentVersion element is

also necessary and contains a version value for the deployment file's versioning. The

parameter element is optional, but if included, it contains custom values for deploying

resources. Functions are also optional and define different functions available within the

template. The variables element is optional and, if included, contains values that define

JSON fragments that simplify the template. The resources element is a key required

element that contains resource types for deployment during template execution. Finally,

the outputs element is optional and defines the values returned after successful resource

deployment [75]. In this study, functions and variables were out of the scope, so they

are left for further improvements.

4.1.2.1 Parameters

Normally all the required parameters are defined with their respective values. These

values are normally resolved by the Resource Manager before starting the deployment

operation. Resource Manager replaces the parameter with the resolved value. ARM

template can only have 256 parameters. When defining the parameters, we must have a

name and value attributes. Other available optional attributes are secure parameters,

allowed values, default values, length constraints, Integer constraints and description.

Parameters can be used to pass resource names, app configuration references and key

vault references. Parameter functions can be used to reference parameters in the

template. ARM templates are normally reused to deploy the resources into different

environments. Due to that reason, environment-specific parameter files are used to

define the environment-specific values. Those environment-specific parameter template

files are used while deploying different resources in various environments. To

 Chapter 4: Implementation

43

accomplish that, ARM templates normally only contain the parameter name and type.

But the actual values are passed through parameter files [76]. In the following code

snippet, we can see an example parameter that has been used in this implementation.

"parameters": {

 "serverFarmsName": {

 "type": "String"

 },

 "appServiceName": {

 "type": "String"

 },

 "sqlSarverName": {

 "type": "string"

 },

 "sqlDBName": {

 "type": "string"

 },

 "sql-cs-key": {

 "type": "string"

 }

 }

Code Snippet 4.1: Template parameters used for the implementation.

The parameter files, like ARM template files, include the location of the file and

versioning information. The parameter values required for resource deployment are then

assigned in the parameter element. For different environments, such as development,

quality assurance, and production, separate parameter files are usually created. Because

the parameter file stores parameter values in plain text, it cannot be used to store secret

information. Therefore, all the secret values are stored in the key vault, and their

references are used in the parameters file [77]. The following code snippet shows some

of the parameters that have been used in the study.

 Chapter 4: Implementation

44

{

 "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentParameters.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {

 "serverFarmsName":{

 "value": "SecurityTestAutomationSF-prod"

 },

 "appServiceName": {

 "value": "SecurityTestAutomationAS-prod"

 },

 "sqlSarverName": {

 "value": "SecurityTestAutomationSQLServer-prod"

 },

 "sql-cs-key": {

 "value": "ConnectionStrings--ProdDB"

 }

 }

}

Code Snippet 4.2: Production environment parameters in the parameters file.

4.1.2.2 Resources

The resources section in an ARM template is used to specify the resources that will be

deployed when the template is run. A single template can only contain up to 800

resources. Within the resource element, there are several sub-elements, such as type,

apiVersion, name, comments, location, dependsOn, sku, identity, kind, scope,

properties, and resources. The type element specifies the resource type, which includes

the resource provider namespace and the resource type itself. The apiVersion element

specifies the version of the REST API used to deploy the resource. The name element

specifies the name of the resource. The location element specifies where the resource

should be deployed. The dependsOn element is used to indicate that a resource depends

on another resource and cannot be deployed until the dependency is met. The sku

element specifies the service tiers that will be used when deploying the resource. If a

resource supports managed identity, the identity element can be used to define its

identity. Any sub-resources are defined within the resource sub-element and will be

deployed alongside the main resource [75]. The following code snippet illustrates the

resource declaration to deploy the app service, which hosts web API and console

application discussed in the previous section.

 Chapter 4: Implementation

45

"resources": [

 {

 "type": "Microsoft.Web/serverfarms",

 "apiVersion": "2021-03-01",

 "name": "[parameters('serverFarmsName')]",

 "location": "East US",

 "sku": {

 "name": "F1"

 },

 "properties": {}

 },

 {

 "type": "Microsoft.Web/sites",

 "apiVersion": "2021-03-01",

 "name": "[parameters('appServiceName')]",

 "location": "East US",

 "dependsOn": [

 "[resourceId('Microsoft.Web/serverfarms', parameters('serverFarmsName'))]"

],

 "identity": {

 "type": "SystemAssigned"

 },

 "properties": {

 "serverFarmId": "[resourceId('Microsoft.Web/serverfarms',

parameters('serverFarmsName'))]"

 },

 "resources": [

 {

 "type": "Microsoft.Web/sites/config",

 "apiVersion": "2021-03-01",

 "name": "[concat(parameters('appServiceName'), '/appsettings')]",

 "kind": "string",

 "properties": {

 "VaultUri": "[parameters('vaultUri')]",

 "AzureWebJobsDashboard": "[parameters('azureWebJobsDashboard')]"

 },

 "dependsOn": [

 "[resourceId('Microsoft.Web/sites', parameters('appServiceName'))]"

]

 }

]

 }
]

Code Snippet 4.3: Code for the deployment of the service app

 Chapter 4: Implementation

46

The above code snippet uses the parameters function to retrieve the values from the

parameters file while the resource is being deployed. To host app service, we need

server farms, websites and app configurations as a resource for deployment. In the App

Service resource, it is marked that it depends on a server farm. Similarly, in the App

Config resource, it is marked it depends on App Service. Due to that reason, when

Resource Manager deploys Server Farm first, then App Service, and at last, it deploys

App Config. Since App Service supports managed identity, the system assigned identity

is used so that App Service can communicate with other Azure resources using system

assigned identity. East US location was used because all the free service tiers were only

available in that location. App Configuration properties element is used to store

application-specific configurations. A parameter file has been used to retrieve parameter

values to be used in the resources. For this application to work, we also need Key Vault,

Storage Account and SQL server. Storage Account contains blob service, queue

services, containers, and queue resources. Similarly, SQL servers contain databases.

Similar scripts should be written for the creation of Storage Account and SQL server

resources.

4.1.2.3 Outputs

The output section is used to define the values which are returned after the successful

deployment of the resources. It is used to keep track of the process of deployment as

well as to check if the deployment has been completed as expected. Currently, we can

only use 64 outputs in a template. The output section contains sub-elements like output

name, condition, type, value, and copy. For the resource that has been defined earlier

following output values in the code snippet were defined.

 Chapter 4: Implementation

47

 "outputs": {

 "serverFarmsName": {

 "type": "string",

 "value": "[parameters('serverFarmsName')]"

 },

 "serverFarmsId": {

 "type": "string",

 "value": "[resourceId('Microsoft.Web/serverfarms', parameters('serverFarmsName'))]"

 },

 "appServiceName": {

 "type": "string",

 "value": "[parameters('appServiceName')]"

 },

 "appServiceId": {

 "type": "string",

 "value": "[resourceId('Microsoft.Web/sites', parameters('appServiceName'))]"

 },
 }

Code Snippet 4.4: Server Farm and App Service outputs declarations

4.1.3 Vulnerable Test Project

OWASP Top 10 API Security risk published in 2019 was used to implement the

vulnerable Web API [35]. This vulnerable API was developed to test the performance

of available security scanning tools.

4.1.3.1 Broken Object Level Authorization Vulnerability

Broken Object Level Authorization could cause information disclosure to unauthorized

users. Attackers could easily take advantage of this vulnerability to have unauthorized

access to sensitive data and illegally modify or delete those data. The following

endpoint was implemented as an example of broken object-level authorization. Even

though the code seems to have proper checks for the user roles and the ownership of the

resources, it still contains that vulnerability because it lacks to ensure that the user has

the appropriate permission to access the specified resource. It would be better to check

the user’s permissions to access the specific resource rather than just checking the user’s

role. This issue could be solved using claims-based authorization using ClaimsPrincipal

 Chapter 4: Implementation

48

or AuthorizeAttribute which gives us more control to fine-tune access control for the

resources.

[Authorize]
[HttpGet]
public IActionResult GetResource(int id)
{
 var claimsIdentity = (ClaimsIdentity)User.Identity;
 var userName = claimsIdentity.Name;
 var userRole = claimsIdentity.FindFirst(ClaimTypes.Role).Value;

 var resource = _resourceRepository.GetResource(id);
 if (userRole == "admin")
 {
 // Allow access
 return Ok(resource);
 }
 else if (userRole == "user" && resource.Owner == userName)
 {
 // Allow access
 return Ok(resource);
 }
 else
 {
 // Deny access
 return Forbid();
 }
}

Code Snippet 4.5: Broken Object Level Authorization Example

4.1.3.2 Broken User Authentication Vulnerability

Broken user authentication could allow attackers to compromise authentication tokens

and impersonate an authentic user identity for a short period or permanently. The

following login endpoint was implemented as a broken user authentication example.

The Endpoint only checks username and password. But it does not check another key

issue, like if the user is locked out or the password is expired. Similarly, the password is

also stored as plain text in the database. After the successful login, the endpoint returns

a token which will be later used to authorize access to the protected resources. Token

generation logic in the example is insecure because it does not use encryption and

signing mechanism. A standard token generator must use JWT tokens which contain a

symmetric security key and secured algorithm to sign the token, claims, issuer,

audience, and expiry information.

 Chapter 4: Implementation

49

[HttpPost("Login")]
public IActionResult Login([FromBody] LoginModel model)
{

var user = _userRepository.GetUser(model.Username, model.Password);

 if (user != null)
 {
 var token = _encryptionService.GenerateToken(user);
 return Ok(new { token });
 }
 else
 {
 return Unauthorized();
 }
}
public string GenerateToken(User user)
{

var token = user.Username + ":" + DateTime.Now.ToString();

 return Convert.ToBase64String(Encoding.ASCII.GetBytes(token));
}

Code Snippet 4.6: Broken User Authentication Example

4.1.3.3 Excessive Data Exposure Vulnerability

Excessive Data Exposer could be easily exploited by the attacker by sniffing the

network traffic and analysing the endpoint responses. The following endpoint exposes a

complete user object which contains all sorts of sensitive information like SSN,

password, credit card number, bank account number etc. In this situation, an attacker

could easily obtain this PII information and conduct various serious attacks. This

problem could be solved by a simple solution where we could cherry-pick the required

parameters like Id, username, first name and last name to create a DTO for the user

objects which does not contain any sensitive information. Then we could return that

user DTO object as a response to the request.

 Chapter 4: Implementation

50

[HttpGet]
public IActionResult GetUser(int id)
{

var user = _userRepository.GetUser(id);
 return Ok(user);
 }

 public class User
 {
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Username { get; set; }
 public string Salt { get; set; }
 public string HashPassword { get; set; }
 public string Role { get; set; }
 public string SSN { get; set; }
 public string CreditCardNumber { get; set; }
 public string BankAccountNumber { get; set; }

}

Code Snippet 4.7: Excessive Data Exposer Example

4.1.3.4 Lack of Resource and Rate Limiting Vulnerability

Lack of resources and rate limiting restriction can cause API endpoint to be vulnerable

to denial of service (DoS) attacks and brute force attacks. According to OWASP, it is

quite common in the existing API’s endpoints. The following endpoint could be

considered as an example that does not limit resource and request rate. It does not

restrict file types and file sizes. To orchestrate the heavy processing load situation a

method with large numbers of iterations was used. It could consume large amounts of

CPU and memory resources. Due to all these reasons, it could be considered a good

example endpoint that lacks resources and a rate limit. To secure this endpoint, we

could use the .net core “AspNetCore.RateLimit” library to implement restrictions on the

number of requests that a specific client can make within the given time. We could also

restrict the input file to be a specific type and also restrict the file size in this context.

 Chapter 4: Implementation

51

[HttpPost]
public async Task<IActionResult> ProcesssFile(IFormFile file)
{
 if (file == null || file.Length == 0)
 {
 return BadRequest("File not found");
 }
 _logger.LogInformation("File received");
 var result = await _heavyProcessingService.ConductHeavyProcessing();
 return Ok(result);
 }

public async Task<int> ConductHeavyProcessing()
{
 _logger.LogInformation("Heavy Processing method called!");
 int result = 0;
 for (int i = 0; i < 1000000000; i++)
 {
 result += i;
 }
 return result;
}

Code Snippet 4.8: Endpoint that Lacks Resource and Rate Limit Vulnerability

4.1.3.5 Broken Function Level Authorization Vulnerability

Broken functional level authorization could be exploited by the attacker to gain illegal

access to sensitive users’ resources and administrative functions. Even though it is a

complex problem and usually has a complex hierarchy of groups and roles. But a simple

endpoint was used since the scope of this study was to test the performance of the SAST

tool rather than studying the complex hierarchy of access management. This example

does not have any function-level authorization, which means anyone could access this

administrative endpoint. Since it is an administrative function, it should have

authorization for the user in an admin role.

[HttpGet]
public IActionResult GetSensitiveData()
{
 var data = _userRepository.GetAllUsers();
 return Ok(data);
}

Code Snippet 4.9: Broken Functional Level Authorization endpoint.

 Chapter 4: Implementation

52

4.1.3.6 Mass Assignment Vulnerability

Mass assignment is quite common in APIs because they usually expose the application

business logic and properties names. Due to the automatic request body binding feature

of modern frameworks, developers are compelled to make this mistake. Attackers could

use this existing mechanism for privilege escalation, data tempering and security

bypass. The following example uses the automatic binding of the request body with the

sensitive user object. This example code does not use parameter whitelisting or

blacklisting mechanisms to restrict administrative parameter assignment. Due to that

reason, it is vulnerable to mass assignment. To overcome these issues, we could create a

user DTO object with permitted parameters to secure administrative parameters which

should not be accessed by the user.

[HttpPost("UpdateUser")]
public IActionResult UpdateUser(User user)
{
 _logger.LogInformation($"User the user");
 user.Salt = Guid.NewGuid().ToString("N");
 user.HashPassword = _encryptionService.HashPassword(user.Password, user.Salt);
 var result = _userRepository.UpdateUser(user);
 return Ok("User Updated Successfully!");
}

Code Snippet 4.10: Endpoint with Mass Assignment flaw

4.1.3.7 Security Misconfiguration Vulnerability

Attackers could try to find unpatched security flaws, generic sensitive endpoints, and

unprotected resources to gain unauthorised access. The following code was used to test

the performance of the SAST tool. It clearly illustrates that the application exceptions

are exposed in the exception page, anonymous clients are allowed to make any kind of

HTTP request, unsecured HTTP requests are not redirected to secured HTTPS, and

authorized users have full access. These vulnerabilities could be fixed with proper error

handling with quarantined error response schema, enforcing CROS policy allowing

access to the specific clients to the specific HTTP method according to the requirements

and redirecting all unsecured HTTP requests to secured HTTPS endpoints.

 Chapter 4: Implementation

53

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
 app.UseDeveloperExceptionPage();

 app.UseCors(options => options.AllowAnyOrigin().AllowAnyMethod());

 app.UseRouting();

 app.UseAuthorization();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllers();
 });
}

Code Snippet 4.11: Studied Security Misconfiguration

4.1.3.8 Injection Vulnerability

An attacker could use this vulnerability by sending crafted input data to the endpoint to

access sensitive PII, grant admin rights or manipulate or destroy the sensitive data. The

following code indicates that the received request is directly mapped with the category

object without any modal validation logic. Model validation attributes could have been

used in the model class to enforce model validation. Similarly, the received parameters

are directly concatenated in the SQL query such that they will be directly passed to the

database interpreter to execute the query. In this situation, the database is wide open for

all sorts of unauthorized SQL query execution. It could have been prevented by

enforcing model validation before binding the data to the category model. Category

class could have used model validation attributes to facilitate model validation.

Parameterized SQL query should have been used instead of the concatenated query so

that the crafted SQL query in the parameters would have been prevented from execution

by the database interpreter.

 Chapter 4: Implementation

54

[HttpPost]
public IActionResult AddCategory(Category category)
{
 var result = _categoryRepository.InsertCategory(category);
 if(result > 0)
 {
 return Ok("Category Successfully Added!");
 }
}

public class Category
{
 public int Id { get; set; }
 public string CategoryName { get; set; }
 public string Description { get; set; }
}

public int InsertCategory(Category category)
{
 string queryString =$"insert into Category (CategoryName, Description) Values
('{category.CategoryName}','{category.Description}')";
 using(SqlConnection connection = (SqlConnection)Connection)
 {
 var result = connection.Execute(queryString);
 return result;
 }
}

Code Snippet 4.12: SQL Injection Example

4.2 Azure DevOps and CI/CD Pipeline

Ideally, in all organizations, development flow starts only after completing project

planning. After planning, the project backlog is populated, creating well-defined work

items along with project requirements. Then in the next phase, DevOps teams create

CI/CD pipelines and cloud infrastructure according to the requirements. After that, the

actual software implementation phase starts, and the developer starts implementing the

feature in the work item. After the feature is fully implemented and thoroughly tested,

the source code is merged into the version control system using a pull request. This

action then activates the build pipeline, which builds and publishes the artifacts. The

following image showcases the initial development flow.

Figure 4.3: Initial Development Flow

 Chapter 4: Implementation

55

In the above flow, we observe that the developer selects a user story and undertakes

various tasks associated with it. Once the implementation is finalized, the developer

proceeds to push the changes to the git repository via a pull request. Following the

successful merging of the changes into the master branch, the SCM system triggers the

build pipeline. It is worth mentioning that Azure DevOps supports integration with

GitHub, and in this implementation, GitHub has been used due to the previously

mentioned reason.

4.2.1 Continuous Integration using Azure Build Pipelines

Azure build pipeline can be considered as a building job that executes different tasks in

the specified sequence. A simple build pipeline contains different tasks for getting

source code from SCM system, installing the required tools (i.e., NuGet Packages and

3rd parties’ libraries), building solutions, generating executable packages, running tests,

and finally publishing those packages to artifacts. It is similar to the tasks that are

performed locally in the local machine when a project is built and executed. In the

conventional deployment process, release configurations were used to generate

executable packages, which were subsequently manually deployed by developers to the

production environment. Similarly, in the context of a build pipeline scenario, a

comparable Azure machine is required to execute all of those identical tasks. Azure

Build Pipelines utilize agent machines to carry out these tasks. The agent machine can

either be a machine provided by Azure and rented for our usage, or it can be a self-

hosted machine located on-premises or in the Azure virtual environment. While the

build pipeline offers a wide range of testing capabilities, they are not included in this

particular implementation. The following flow diagram shows the various tasks and

their sequential execution within the build pipeline.

 Chapter 4: Implementation

56

Figure 4.4: Complete Flow Until Build Pipeline

In the above flow diagram, whenever a SCM system triggers-built pipeline, as a first

step, it extracts the latest code from the master branch. Then the pipeline installs

project-specific tools and dependencies as the second step. After the restore process is

completed, it triggers the built process to build the artifacts. In the publishing step, those

executable files a published to the output directory. As a final step, those executables

are extracted from the output folder and stored in Azure artifacts, which could be used

by release pipelines.

When we create a build pipeline, we need to select the source code repository that the

pipeline uses to get the source code. But this implementation uses a third-party SCM

system as we need to create a connection from Azure Pipelines to GitHub. In Azure

DevOps, we can create service connections to grant access to the Azure Pipelines to the

external services. Only after that build pipeline will be able to check out the source code

before the execution of the build task [78]. After that CI can be enabled in the SCM

system. Then whenever a new code is merged into the repository, it triggers the build

process defined in the CI pipeline. It is also possible to enable triggers in different git

branches. But for this context, the trigger is set only in the master branch.

In this implementation, the Azure-hosted agent pool was chosen as it provides

preconfigured host machines that are readily available for use. The host machine within

 Chapter 4: Implementation

57

the agent pool was configured with the latest Windows operating system to facilitate the

building of executable artifacts [79]. YAML files are commonly employed for

configuring CI/CD pipelines. YAML, a human-readable data serialization format, is

frequently utilized for creating configuration files and facilitating data exchange

between various programming languages. Similarly, the YAML configuration file can

be utilized to define workflows for building, testing, and deploying within the CI

pipeline [80]. The provided code snippet shows the configuration of the host for the CI

pipeline.

trigger:

 - master

pool:

 vmImage: 'windows-latest'

variables:

 BuildConfiguration: 'Release'

Code Snippet 4.13: Trigger, agent and build configuration.

In the code example above, the configuration of the CI pipeline was set to activate

whenever there are new merges in the GitHub master branch. Additionally, an Azure-

hosted agent was designated, utilizing the most recent Windows operating system for

building executable files. The build process was further configured to generate a release

directory dedicated to storing the resulting executable files.

Once these configurations are in place, the next step is to define the various tasks that

need to be executed during the build process or build job. In this particular

implementation, the hosted agent utilizes .NET Core CLI to carry out tasks such as

restoring dependencies, building the project, and publishing the output. The pipeline

process initiates the restore task, which uses NuGet to install all the required

dependencies and project-specific tools specified in the project file (e.g., .csproj file).

Subsequently, the build task is performed, resulting in the creation of the application

and its dependencies in the form of executable binaries (e.g., .dll) and additional

package files (e.g., .pdb, .deps.json, .runtimeconfig.json, etc.) [79]. The following code

snippet shows those configurations in YAML file.

 Chapter 4: Implementation

58

steps:

- task: DotNetCoreCLI@2

 displayName: Restore

 inputs:

 command: 'restore'

 projects: '**/*.csproj'

 feedsToUse: 'select'

- task: DotNetCoreCLI@2

 displayName: Build

 inputs:

 command: 'build'

 projects: '**/*.csproj'

 arguments: '--configuration $(BuildConfiguration)'

Code Snippet 4.14: Pipeline restores and build configurations.

Once the build task is successfully completed, the publish task is executed, which

compiles both applications and verifies the dependencies specified in the project file.

Subsequently, it publishes the generated files to the output directory called

ArtifactStagingDirectory. However, this particular step poses a challenge due to our

application architecture, as we are attempting to publish Web API and Console

application from the same build pipeline [79]. In the publishing stage, we had three sub-

tasks. The first two tasks utilized the .NET Core CLI to extract the executable files from

the release directory. These extracted executables were then published to the publish-

output directories in their respective locations, making them easily accessible for the

CD pipeline to deploy to the Azure app service. The final task involved publishing

artifacts from the output directory and archiving them in a designated location with

specific directory structures, all in a compressed zip format. The necessary

configurations for this process are illustrated in the code snippet below.

- task: DotNetCoreCLI@2

 displayName: Publish WebAPI

 inputs:

 command: 'publish'

 publishWebProjects: true

 arguments: '--configuration $(BuildConfiguration) --output

$(Build.BinariesDirectory)/publish_output'

 zipAfterPublish: false

 modifyOutputPath: false

 Chapter 4: Implementation

59

- task: DotNetCoreCLI@2

 displayName: Publish WebJob

 inputs:

 command: 'publish'

 publishWebProjects: false

 projects: '**/QueueReceiver.csproj'

 arguments: '--configuration $(BuildConfiguration) --output

$(Build.BinariesDirectory)/publish_output/App_Data/jobs/continuous/QueueReceiver'

 zipAfterPublish: false

 modifyOutputPath: false

- task: ArchiveFiles@2

 inputs:

 rootFolderOrFile: '$(Build.BinariesDirectory)/publish_output'

 includeRootFolder: false

 archiveType: 'zip'

 archiveFile: '$(Build.ArtifactStagingDirectory)/$(Build.BuildId).zip'

 replaceExistingArchive: true

Code Snippet 4.15: Publish configuration for the project implementation.

Finally, publish artifact task gets those achieved artifacts from the output directory and

publishes them to the artifact called the drop [79]. The following configuration code

defines the task as publish artifacts, specifies the existing artifact’s location, and defines

the artifact name, and publish location.

- task: PublishBuildArtifacts@1

 displayName: 'Publish Artifact'

 inputs:

 PathtoPublish: '$(Build.ArtifactStagingDirectory)'

 ArtifactName: 'drop'

 publishLocation: 'Container'

Code Snippet 4.16: Publish artifacts tasks.

The build process typically proceeds to the next task only after successfully completing

the current task. While the test task holds significant importance in the build pipeline for

ensuring software quality, it is not within the scope of this study and is thus left for

future development. This stage also serves as an appropriate point to conduct essential

security testing and scanning before releasing the changes to the production

environment. The integration of security scanning within the CI pipeline will be

discussed in the section dedicated to security integration.

 Chapter 4: Implementation

60

4.2.2 Continuous Deployment using Azure Release Pipelines

The main aim of the project implementation was to develop fully automated continuous

deployment pipelines. Azure classic pipelines were used to implement the required

release pipeline. The implementation was developed, creating a new Azure release

pipeline in Azure DevOps using the available Azure app service deployment template.

The release pipeline is configured to deploy both web API and web job applications in

the Azure app service. This release pipeline is set up to use the latest artifacts produced

by the build pipeline in the previous step. A continuous deployment trigger is enabled to

automate the execution of the release pipeline after the build pipeline successfully

builds the new artifacts. The following diagram shows the complete flow for the

executions of different tasks in the CD pipeline.

Figure 4.5: Complete CD pipeline Execution Flow

The above diagram illustrates the complete architecture of the CD pipeline that has been

implemented to fully automate a complete continuous release process. As discussed

earlier, whenever new executables files are published in the artifacts drop directory.

That event triggers the release pipeline and extracts the latest application artifacts.

 Chapter 4: Implementation

61

Those artifacts are used by the release pipeline to deploy applications into the pre-

defined deployment environments.

In this study, development, QA, and staging environment release were implemented in

three different steps. After the successful extraction of the artifacts CD pipeline triggers

a development release step. An approval policy has also been configured for all

deployments as a safety net to prevent accidental deployment. Due to that reason, the

pipeline sends approval requests, and after receiving the approval for the deployment,

the pipeline starts the process for the deployment of the application to the development

environment. After the successful deployment of the application, the pipeline triggers

the QA deployment step. All the processes of sending approval requests and application

deployment in the QA environment are like the previous step. When the application is

successfully deployed in the QA environment, the pipeline triggers the production

release step. It differs slightly from the previous two steps because it requires manual

approval from the authorized person. Once the pipeline receives approval, it first

deploys the application to the staging slot. Once the application has been deployed

successfully, if the staging slot is running a healthy version of the application, it will be

swapped with the production slot.

Azure app service deployment templates were used to create a release. A service

connection is created to grant access to the pipeline to publish our applications in the

Azure app service. Service connection could be configured to grant limited access to

enforce better security. The same service connection is used to configure the tasks. As

the first step, a development stage is configured with the development resource group

service connection using a Windows machine to publish the applications to the

development app service. Since asp.net core is platform independent, we can build the

project on a Linux machine and deploy it to a Windows machine or vice versa.

Similarly, another two stages are added with the QA and stagging service connection

using a Windows machine to publish those two applications to QA and staging app

service. All these stages are configured to publish the applications simultaneously after

successful publishing to the previous stage [81].

 Chapter 4: Implementation

62

While publishing the application in the production environment, there is a risk that the

application will be unavailable until the deployment is completed. To overcome this

issue, azure app services deployment slots are used. In this implementation, a staging

deployment slot is created in the production app service. With this setup, we can publish

the new changes to the staging slot and the application running in the production slot is

not affected. The main advantage of the Azure app service is that after the application is

published in the staging slot, the application can be swapped to the production slot

without any downtime. To configure the stagging stage, an additional configuration is

required where stagging deployment slot is also configured in the app service

deployment task. To perform the swap, we need to add one more task called Azure app

service management in the stagging stage. Azure app service manage task can be used

to start, stop, and restart app service. Similarly, the tasks like slot swap, slot delete,

installing site extensions, or enabling continuous monitoring can also be performed

using Azure app service management [81]. For this implementation, swap slots action is

configured to swap the staging slot with the production slot in the existing production

app service.

As a safety net, we can add automated approval in each stage so that each deployment

can be approved at the development and QA stages after testing and quality assurance.

Development approvals could be assigned to the development team members, and QA

approvals to the QA manager. While automating the whole process, it will be wise to

have manual intervention before publishing the application to production. In each stage

where approval is required, azure pipeline sends email notifications to all the reviewers.

CD pipeline configured in this stage is illustrated in the following image.

Figure 4.6: Release pipeline implementation in ADO

 Chapter 4: Implementation

63

The above picture illustrates a fully automated CD pipeline flow implemented for this

study. The Azure release pipeline provides a comprehensive view of all the stages in the

release process, including triggers and approval settings.

Whenever a new build artifact is available in the drop folder release pipeline receives a

trigger request to execute the development stage of the pipeline. After the successful

execution of the development stage pipeline sends the deployment approval request to

the reviewer. When the reviewer approves the request, it triggers the QA deployment

stage execution. After its successful execution approval request is sent to the QA

manager. Whenever the QA approval is received by the pipeline, it proceeds to the final

stage and the execution is paused to get the manual intervention from the project lead to

proceed to the production release. At the final stage, when the responsible person

resumes the execution, the application will be first published to the staging slot. After

that, it will be swapped to the production environment. On the successful execution of

the CD pipeline, we could review the process by checking the following flow diagram.

Figure 4.7: Release pipeline exaction flow in ADO

4.3 Shifting Security to the Left

As mentioned previously, the Azure infrastructure test project was utilized to automate

the entire SDLC using Azure CI/CD pipelines. In this implementation, the DevOps

CI/CD pipeline was used to integrate Snyk security tools into both GitHub and Azure

CI pipelines. Recognizing the significance of infrastructure as code (IaC) in ensuring

overall application and infrastructure security, IaC security scanning was also

incorporated as part of this study.

 Chapter 4: Implementation

64

4.3.1 Security Scanning in IDE

Presently, there exists a wide range of security scanning plugins or extensions designed

for various IDEs. Integrating security scanning tools directly into IDEs is a significant

step towards emphasizing security right from the beginning of the application

development process. However, it is worth noting that there is still a scarcity of

comprehensive tools available for all programming languages that developers can fully

rely on. In this research, a free edition of the Snyk Visual Studio extension was utilized

to conduct security scanning. However, it is important to note that the free version of

the extension has certain limitations on the number of tests that can be executed. Upon

installing the plugin or extension in Visual Studio, the most up-to-date Snyk CLI is also

installed concurrently. Both the extension and CLI can be used to carry out security

analysis. Both of them support Snyk Open Source and Snyk code scanners. Scans are

performed efficiently, yielding high-quality results that include detailed information

about vulnerabilities, their severity in CVE format, and recommendations for potential

fixes. Additionally, the tool provides references to the corresponding code within the

IDE. Automated algorithmic-based fix recommendations are generated for open-source

dependency issues, covering both direct and transitive dependencies. Snyk IDE

extensions leverage the artificial intelligence and machine learning capabilities of Snyk

Code to enhance the analysis and provide comprehensive recommendations. [82] The

following diagram illustrates the integration of Snyk into the application development

process within Visual Studio, including the security scanning steps performed prior to

merging a branch in a Git repository.

Figure 4.8:Code Scanning and Pull Request Flow

 Chapter 4: Implementation

65

The above figure illustrates software development best practices. As a first step

developer implements a feature in Visual Studio. Once the feature is finished, the

developer utilizes the Snyk extension to conduct a security scan, examining the

application for any potential vulnerabilities. The Snyk extension produces a scan report

that can be evaluated by the developer. If the scan report reveals the presence of

vulnerabilities, particularly those with critical or high severity scores, appropriate

measures must be taken to mitigate them. Only after fixing those security issues

developer should push the changes to git repositories.

As mentioned previously, a test application was created for this research using NuGet

packages that were available in 2019. This choice was made to gain insight into newly

discovered vulnerabilities that emerge quickly. Despite the limited features and

dependencies of this application, when conducting the security scan using the Snyk

extension, a total of four high-risk, two medium-risk, and one low-risk vulnerabilities

were detected. This indicates that within five years, four high-risk and two medium-risk

vulnerabilities have been identified. In the meantime, considering a significantly bigger

application, the number of vulnerabilities will also increase significantly. The following

snapshot illustrates the results generated by the Visual Studio Snyk extension.

Figure 4.9: Open-Source vulnerabilities discovered in the test project.

In the above figure vulnerabilities are divided into Open-Source Security, Code Security

and Code Quality categories. In this section, an example Open-Source Security issue is

selected to check the generated result. It generates a quality report pinpointing the

location of the existing vulnerabilities. The information provided in the result's detailed

 Chapter 4: Implementation

66

section includes the severity level, CWE id, the vulnerable dependency, an overview of

the vulnerability, and recommended fixes. This specific vulnerability was chosen as an

illustrative example because it highlights an important case. The main NuGet package

used in the application, "Windows.Azure.Storage," had an underlying dependency on

the "Newtonsoft.json" NuGet package. The version of "Newtonsoft.json" being utilized

by "Windows.Azure.Storage" was 10.0.2, which contained vulnerabilities related to

Insecure Defaults. These vulnerabilities had the potential to be exploited for a Denial-

of-Service (DoS) attack. The scan result indicates that the identified vulnerability has

been resolved in version 13.0.1 of the "Newtonsoft.json" package. Updating the affected

NuGet package to this version is recommended to mitigate the vulnerability. These

types of vulnerabilities can be challenging for developers to detect, and security

scanning extensions like Snyk prove valuable in ensuring security measures are

implemented early in the SDLC.

Similarly, in the following screenshot, an example code security issue is picked to check

the quality of the generated result.

Figure 4.10: Code Security Vulnerabilities discovered in the test project.

To conduct this portion of the study, a security vulnerability found in the vulnerability

test project was utilized as an illustrative example of code vulnerability. As in the Open-

Source Security scan result, it also pinpoints the vulnerability in the source code along

with the complete flow of the input data in 5 steps in the source code. The detailed

information section contains vulnerability severity, vulnerability name, CWE id and an

overview of the vulnerability. Upon examining the data flow steps, it becomes evident

 Chapter 4: Implementation

67

that the user input is directly incorporated into the SQL query, rendering the application

susceptible to SQL Injection attacks. The scan result also suggests some example fixes,

but in this current context, they were not accurate fixes.

4.3.2 Security Scanning in SCM System

Snyk integrations are compatible with the majority of available Source Code

Management (SCM) systems. In this study, Snyk was integrated into the GitHub

repository [83]. The integration of Snyk with GitHub allows for continuous security

scanning of the repository. It aids in the identification of vulnerabilities in open-source

dependencies and provides recommendations for fixing them, including upgrading the

dependencies to the mitigated versions. The Snyk UI provides the option to integrate a

GitHub repository for Snyk's services. It also allows for additional customization, such

as project-level reports, project monitoring, automatic pull requests for fixes, commit

signing, and pull request security testing. Enabling pull request security scanning in

GitHub is an essential component of achieving comprehensive and automated

DevSecOps integration.

Whenever a pull request is initiated in the repository, Snyk performs a vulnerability test

on the new changes and reports the test status back to GitHub. It is considered a best

practice to consider applications with vulnerabilities of critical and high severity scores

as insecure. Hence, in this study, the security checks are configured to mark the pull

request as failed if the application contains vulnerabilities with severity scores classified

as critical or high [84]. The Snyk PR checks feature allows us to examine each pull

request made for merging changes into the master branch. This feature assists

developers in addressing security issues in case they accidentally push code to the

repository without conducting an IDE scan. By utilizing pull request checks, vulnerable

code is prevented from being merged into the master branch, thereby avoiding the

automatic triggering of the CI pipeline. It is important to note that the current Snyk

SCM integration does not support static application security testing of source code [85].

As the existing version of Snyk Code was unable to identify sensitive information

stored in the configuration, GitGuardian was integrated into GitHub to address this

limitation. GitGuardian conducts secret checks during pull requests and notifies the

 Chapter 4: Implementation

68

designated contact person if any secrets are detected. It also fails the pull request in such

cases. The implemented flow in this study is shown in the following image.

Figure 4.11: Security scan and execution flow in GitHub

Upon creating a new pull request in the GitHub repository, the Snyk security scan and

GitGuardian secret scan are automatically triggered. The changes can only be merged

into the master branch once both scans report a successful status. After the changes are

merged, the CI pipeline is triggered to build the artifacts. The following figure

illustrates the triggered Snyk and GitGuardian scans along with the reported scan

statuses.

Figure 4.12: GitHub pulls request execution flow.

In the test production application, all the secrets were securely stored in the Azure Key

Vault and accessed using managed identity. As a result, the GitGuardian security check

did not detect any secrets and reported a successful status. However, since the

application was developed using NuGet packages from 2019, which are known to have

 Chapter 4: Implementation

69

vulnerabilities, as discussed earlier, the Snyk security scan failed and caused the pull

request to fail. Clicking on "details" provides additional information about the reported

security issues. The provided image displays a list of all the discovered vulnerabilities.

Figure 4.13: Pull Requests dependency security scan details.

All the detailed information about the vulnerabilities can be found on the Snyk account

PR check page. The provided image displays a list of project dependencies along with

the vulnerabilities detected in those dependencies. Upon closer inspection, it can be

observed that there are variations in the number of vulnerabilities reported. This is

because the GitHub repository is configured to only check for high and critical severity

vulnerabilities. In this particular case, the BlobStorage library identified six high

severity vulnerabilities in the PR check result. However, upon further investigation of

the vulnerabilities, it was found that these vulnerabilities were associated with

Windows.Azure.Storage NuGet package. The Snyk IDE security result, on the other

hand, only displayed the two most severe vulnerabilities discovered in the same NuGet

package. The following image showcases a privilege escalation vulnerability that was

discovered in the same package.

 Chapter 4: Implementation

70

Figure 4.14: Privilege escalation vulnerability discovered in GitHub PR checks.

Upon reviewing the specifics, it becomes evident that this vulnerability emerged in

version 9.3.3 of Windows.Azure.Storage. This package incorporates an internal

dependency on System.Net.Http version 4.1.2, which contains vulnerabilities such as

Denial-of-Service (DoS), improper certification validation, privilege escalation, and

information exposure. The provided image highlights the specific details of the

privilege escalation vulnerability. To address these vulnerabilities, it is recommended to

remove the deprecated Windows.Azure.Storage NuGet package and instead install the

necessary Azure.Storage.* NuGet packages.

4.3.3 Security Scanning in Build Pipeline

Snyk offers integration with various CI/CD platforms, including Azure Pipelines, which

was examined in this study. Azure Pipelines can integrate Snyk security as one of its

tasks. The security scan using Snyk can be executed after the creation and storage of

executable files in the archive folder. Within the Azure interface, a dedicated Snyk

security task is available, which can be inserted into the pipeline and customized as per

requirements. In the CI pipeline, the Snyk test can be integrated alongside other routine

tasks before publishing the executables to the artifacts store. Once the build task

successfully generates the executable files, the Snyk security test is triggered to identify

any security vulnerabilities in the application. The scan results can be accessed both in

 Chapter 4: Implementation

71

the Azure Pipelines output and the Snyk interface. For this particular study, the Snyk

security task was configured to fail if it detected vulnerabilities with critical and high

severity. Consequently, when the CI pipeline fails, no executables are published in the

artifacts store. The CD pipeline is only triggered when new artifacts are successfully

published. As a result, the vulnerable application is stopped in the CI pipeline, ensuring

that the production application remains safeguarded against vulnerabilities. The

following figure illustrates the execution flow from the master branch to the CD

pipeline.

Figure 4.15: Snyk security test in CI pipeline

To enable the merging of vulnerable application code into the master branch, the

GitHub Snyk PR check is deactivated. Once these changes are merged, the CI pipeline

is triggered. The subsequent steps, including the creation of separate executable files for

the Web API and Web Job projects and their publication in the archive output folder,

remain consistent with the previously discussed CI pipeline. Following that, the Snyk

security test utilizes the *.sln file to conduct a security scan and identify any existing

vulnerabilities. If the Snyk test identifies vulnerabilities with a severity score of critical

or high, the CI pipeline fails to push any artifacts to the drop folder. As the CD pipeline

 Chapter 4: Implementation

72

is activated only when there are changes in the artifacts, these modifications will not be

deployed in the production environment. The following code snippet exemplifies the

Snyk security test configuration employed in this study.

#For windows

- task: SnykSecurityScan@1

 inputs:

 serviceConnectionEndpoint: 'Snyk Service Connection'

 testType: 'app'

 targetFile: 'D:\a\1\s\SecurityAutomation.sln'

 monitorWhen: 'always'

 failOnIssues: true

 enabled: true

Code Snippet 4.17: Snyk security test task configuration

The given code snippet introduces the task named SnykSecurityScan, which utilizes the

Snyk Service Connection to perform the scan. It is set up to test applications using the

SecurityAutomation.sln file. The configuration ensures monitoring is consistently

enabled, and the pipeline fails when issues are detected, with security scanning enabled.

Upon executing this pipeline in the present context, the following outcome will be

observed in Azure.

Figure 4.16: CI pipeline execution flow in Azure

 Chapter 4: Implementation

73

The execution flow of the Azure CI pipeline reveals that the pipeline encountered a

failure during the execution of the Snyk Security scan, causing the subsequent task to be

skipped. The execution log provides a concise overview of the issue, and further details

can be accessed by clicking the provided snapshot link. Additionally, the Snyk report

within the pipeline allows for a comprehensive examination of all identified

vulnerabilities. The accompanying image visually demonstrates the condensed result

within Azure.

Figure 4.17: Brief information about security issues in azure build pipeline

The image summarises the scanned projects and the total number of vulnerabilities

detected. By scrolling further in the report, more information about the identified

vulnerabilities can be found. The subsequent image showcases one of the vulnerabilities

that were discovered.

Figure 4.18: Vulnerability Detected - Improper Verification of Cryptographic

Signature in Existing Dependency.

 Chapter 4: Implementation

74

The vulnerability in the above picture was detected in the SendGrid v9.23.0 NuGet

package, specifically in its inner dependency, starkbank-ecdsa v1.3.1. This vulnerability

is related to the usage of the Elliptic Curve Digital Signature Algorithm within the

package. To address this issue, it is recommended to update the package to version 1.3.2

or a higher version. It is important to highlight that across all versions of Snyk,

consistent and actionable results have been produced.

4.3.4 Vulnerability Scanning in IaC

Snyk's Infrastructure as Code (IaC) functionality can be employed to enhance the

security of cloud infrastructure, both before and after deploying cloud resources. Snyk

offers a comprehensive collection of security rules designed to identify

misconfigurations in IaC. By utilizing Snyk's IaC security scan, we can identify security

vulnerabilities within the current IaC [86]. In this research, the ARM template was

utilized to create the necessary Azure infrastructure. Similarly, the focus was solely on

scanning the IaC template file for security before deployment. As previously mentioned,

the ARM template contained the deployment of Azure Key Vault, SQL Server, Storage

Account, App Service, and App Service plan resources. The resources were created

using the default template, and customization was performed to fulfil specific

requirements. During the execution of the Snyk IaC security scan, the following

vulnerabilities were identified.

Figure 4.19: Snyk IaC security scan results.

The provided image demonstrates the detection of 12 vulnerabilities by Snyk. Among

these vulnerabilities, one had a high severity level, seven had medium severity, and four

 Chapter 4: Implementation

75

were classified as low severity. Regarding IaC security scanning, the generated result

included sufficient information about the identified issues and provided mitigation

recommendations, which would be valuable for developers. The vulnerability labelled

as "App service allows FTP deployments" was classified as high severity. This

vulnerability could expose the application to manipulation and eavesdropping attacks

due to the inherent lack of security in the FTP (File Transfer Protocol) protocol, which

transmits data in plain text. To address this issue, the recommended fix is to set the

value of the "ftpsState" parameter to "FtpsOnly". However, in the provided ARM

template, this setting was not defined resulting in the use of the default configuration

which was FTP. In addition, there were seven vulnerabilities classified as medium

severity. These vulnerabilities include the following issues: SAS token can be used over

insecure HTTP, Function App does not enforce HTTPS, Azure App Service allows

HTTP traffic, Storage Account does not enforce latest TLS, Storage Account geo-

replication disabled, use two or more App Service Plan instances and App Service

remote debugging enabled. It is recommended to address most of the medium-severity

risks before deployment due to their relatively easier fix. Neglecting to do so would

leave the Azure services vulnerable to a wide range of potential attacks. The remaining

four low-severity vulnerabilities include Storage Account Blob service delete disabled,

App Service HTTP/2 disabled, App Service mutual TLS disabled, and SQL Server

auditing disabled. Among these, three vulnerabilities do not pose any significant

security risks, while the remaining one has minimal security impact. It is advisable to

fix even the vulnerability with minimal risk, considering the simplicity of the fix.

Chapter 5

5 Results and Evaluation

The IT security industry has conventionally followed a reactive approach to mitigate

security vulnerabilities after security breaches are discovered. Vulnerabilities are

categorized based on their risk severity, such as critical, high, medium, and low, using

CVE identifiers. Security guidelines recommend mitigating critical and high-risk

vulnerabilities based on the specific requirements of the application. However, this

study demonstrates that most of the existing applications are unable to mitigate even all

the critical vulnerabilities.

To evaluate the situation, a test production application was developed using older

frameworks and libraries from 2019, following recommended security best practices.

The application was then tested for security vulnerabilities using the Snyk Visual Studio

extension. The test results indicated that the application did not contain any custom

code vulnerabilities. However, the tool detected four high-risk and three medium-risk

vulnerabilities in the NuGet packages used by the application. Despite the limited

features of the test application, it relied on 17 different NuGet packages. The results

revealed that approximately 41% of the used packages had new vulnerabilities

discovered within five years. Interestingly, most of the vulnerabilities identified in this

study were found in NuGet packages developed by Microsoft. Generally, the Microsoft

ecosystem is considered to have fewer open-source dependencies. Detecting

vulnerabilities in dependencies can be challenging due to the complex hierarchical

structure of inner dependencies. Table 5.1 lists the discovered vulnerabilities, along

with the actual dependencies used, their inner dependencies, and their severity scores.

 Chapter 5: Results and Evaluation

77

Actual Dependencies Inner Dependencies Severity

Windows.Azure.Storage v9.3.3 Newtonsoft.Json v10.0.2

System.Text.RegularExpression v4.3.0

High

High

SendGrid v9.23.0 Starkbank-ecdsa v1.3.1 High

Azure.Identity v1.2.2 System.Test.RegularExpression v4.3.0 High

System.Data.SqlClient v4.8.2 Medium

Swashbuckle.AspNetCore

v6.1.3

Swashbuckle.AspNetCore.SwaggerUI

v6.1.3

Medium

Azure.Storage.Queues v12.6.1 Medium

Table 5.1: Vulnerable packages discovered in the test production application.

The study reveals that modern applications heavily rely on dependencies, with

approximately 78% of the code coming from these external dependencies or libraries.

Only a small portion of the application-specific custom code is written by the developer.

Due to the complexity and volume of dependencies, manually checking for

vulnerabilities in each of the dependencies is challenging. However, existing

vulnerability scanning tools for open-source software (OSS) have proven to be effective

in detecting such vulnerabilities. To evaluate the performance of Snyk code and Snyk

open-source tools in detecting dependencies, ten known dependencies with

vulnerabilities were tested, and both tools successfully detected all of them.

In general, the study emphasizes the significance of automated vulnerability detection

tools. Still, it is recommended to use an OSS vulnerability scanner because those OSS

vulnerabilities are difficult to detect manually. The integration of these tools into the

development workflow helps us to ensure the security of applications throughout the

development and deployment process. To further streamline the security integration in

DevOps CI/CD pipelines, the Snyk open-source tool was integrated into both GitHub

and Azure build pipelines. However, it is important to note that Snyk open-source tool

does not support secrets detection. Due to that reason, GitGuardian secret scanner was

also integrated into GitHub to prevent the merging of source code containing secrets

 Chapter 5: Results and Evaluation

78

into the master branch. Similarly, Snyk code tool successfully identified hard-coded

secrets but did not detect secrets embedded within configuration files. To evaluate the

performance of both tools, a vulnerable application with five hard-coded secrets along

with five secrets in configuration files was tested. Table 5.2 shows the secret detection

results using these two tools.

Secret Types Total Known Secrets GitGuardian Snyk Code

Hardcoded secrets 5 5 5

Secrets in configuration files 5 5 0

Table 5.2: Secrets detection results of different scanning tools

As we can see in Table 5.2, the test result clearly showed that GitGuardian has a 100%

detection rate, whereas Snyk code only detected hardcoded secrets. Similarly,

GitGuardian integration supports automatic rejection of a developer's pull request if any

secrets are detected in the source code. Because of this, it is recommended to integrate

the GitGuardian secret scanner into the SCM system to detect any exposed secrets.

Although developing a secure application is important, it is equally crucial to ensure the

security of the underlying infrastructure on which the application is hosted. This is

because vulnerabilities in the infrastructure can make even a secure application

vulnerable. Therefore, it is necessary to establish a secure infrastructure as well. As

previously discussed, an IaC implementation was created for deploying the test

production application. During the creation of Azure resources using IaC, certain known

vulnerable protocols, such as FTP, HTTP, and TLS, were intentionally misconfigured to

evaluate the performance of the Snyk CLI tool in detecting security vulnerabilities.

Additionally, the scanning tool also discovered other vulnerabilities that were not

initially identified during the creation and configuration of Azure resources. The tool

identified one high-risk, seven medium-risk, and four low-risk vulnerabilities. Table 5.3

lists the high and medium risks identified by the tool.

 Chapter 5: Results and Evaluation

79

Azure Resource Discovered Vulnerability Severity

App Service App Service allows FTP deployments High

Storage Account SAS token can be used over insecure HTTP Medium

Function App Function App does not enforce HTTPS Medium

App Service App Service allows HTTP traffic Medium

Storage Account Storage Account does not enforce latest TLS Medium

Storage Account Storage Account geo-replication disabled Medium

App Service Plan Use two or more App Service Plan instances Medium

App Service App Service remote debugging enabled Medium

Table 5.3: Vulnerabilities detected in IaC implementations.

The scanning tool successfully detected the specific protocol-related threats that were

intentionally configured to test its performance. The infrastructure was deployed

specifically for the purpose of the study, and certain decisions, such as disabling geo-

replication and using a single app service plan, were made to minimize costs. However,

the scanning tool was able to identify the risk of potential data loss in the event of a

disaster at the hosted location, as well as the potential unavailability of the app service

when only one app service plan is used. Furthermore, the tool detected the default

configuration of the app service, which enabled remote debugging, and warned

developers that it might expose the application to unnecessary risk.

SAST tools currently available are not considered entirely reliable due to their known

weaknesses, such as high false positive rates and low detection rates. Moreover, these

tools cannot be integrated into SCM systems and CI/CD pipelines. Therefore, in this

study, the main focus was on identifying a set of tools that can be utilized within the

IDE to empower developers in enforcing security.

Among the available options, Snyk Code was chosen as an extension for Visual Studio

and used for evaluating its performance as a SAST tool. To assess its effectiveness, a

vulnerable test project was created, which contained eight security vulnerabilities

 Chapter 5: Results and Evaluation

80

according to OWASP Web API Security guidelines. Snyk Code successfully detected

only four out of the eight vulnerabilities, resulting in a detection rate of approximately

50%. While these results indicate that complete reliance on the tool may not be feasible,

it can still serve as a valuable resource for developers to improve security posture. Table

5.4 presents the different vulnerabilities and their detection using Snyk Code.

Known Vulnerabilities Snyk Code Detection

Broken Object Level Authorization No

Broken User Authentication Yes

Excessive Data Exposure Yes

Lack of Resource and Rate Limiting No

Broken Function Level Authorization No

Mass Assignment No

Security Misconfiguration Yes

Injection Vulnerability Yes

Table 5.4: Snyk code vulnerability detection results of OWASP Web API 10 list

The outcome provides a clear demonstration of the potential of SAST tools in

empowering developers to enforce security measures. However, it is important to note

that existing tools cannot be fully depended upon to guarantee comprehensive security.

Nevertheless, incorporating these tools remains advantageous as they are capable of

detecting a substantial number of vulnerabilities, contributing to improved overall

security practices.

Overall, the Snyk tools produce comprehensive vulnerability reports that include

accurate information and recommended mitigation measures. In all test cases, following

the provided recommendations successfully mitigated the identified security risks. The

generated reports by Snyk tools consistently maintain a high level of quality.

Chapter 6

6 Conclusion

This study involved an extensive exploration of multiple research questions related to

the integration and automation of security checks within the DevOps framework. The

main focus was directed towards investigating the implementation and assessing the

effectiveness of security scanning tools. The primary goal of this research was to

examine the feasibility of incorporating automated security checks into DevOps

practices.

Regarding the first research question, “What is the availability of supported security

automation tools suitable for DevOps?”, the study clearly demonstrates that there are a

wide range of security automation tools available that can be integrated into fully

automated DevOps CI/CD pipelines. However, these tools have not yet received a

definitive recommendation from the security community as efficient security scanning

tools. Nevertheless, they offer the opportunity to shift security practices to earlier stages

of the SDLC. In this particular study, Snyk was utilized among the available tools.

For the second research question, “How effectively do these tools cover various security

aspects?”, based on the evaluation results, it appears that Snyk open source can be

highly dependable for detecting vulnerabilities in open-source dependencies, i.e., NuGet

packages. It can be seamlessly integrated into SCM systems and CI/CD pipelines.

Additionally, GitGuardian can be integrated into SCM systems to identify secrets within

source code. Snyk Code can be used as an IDE extension to detect vulnerabilities in

custom code. These three tools address the most critical security considerations from

software development prospectives. By sticking to software development best practices

and leveraging these tools, developers could be empowered to create secure software.

Continuous research and development efforts are ongoing to enhance the performance

 Chapter 6: Conclusion

82

of SAST tools, which are gradually improving over time. Furthermore, Snyk CLI can be

employed to detect security misconfigurations in IaC, guaranteeing the deployment of

secure infrastructure.

Furthermore, the third research question, “What is the accuracy and reliability of the

security scan results they provide?” was also investigated in this study. Based on the

performance outcomes of the scanning tools, the integration of Snyk open source and

GitGuardian into a completely automated CI/CD pipeline guarantees the utilization of

secure dependencies and the absence of confidential information in GitHub repositories.

Snyk Code, while not completely perfect with a 50% detection rate, can also be utilized

to identify vulnerabilities in custom code. The study findings also indicate that Snyk

CLI can be relied upon to ensure infrastructure security.

The fourth research question, “Can security automation be implemented early in the

SDLC?” was also explored in this study. According to the findings, these suggested

tools have the potential to be employed right from the start of the SDLC. By adopting

the proposed guidelines and utilizing the recommended tools, developers can seamlessly

integrate security automation throughout the entire development process, from the IDE

to the CD pipeline. This shift to the left enables developers to perform security scanning

after completing each new feature, allowing them to identify any vulnerabilities in the

source code promptly.

Finally, for the last research question, “Will it contribute to faster software delivery and

cost reduction?”. Based on the findings of the study, upon reviewing the scan results,

developers can gain a deeper understanding of the vulnerabilities and follow the

recommended actions to mitigate them. This proactive approach is both efficient and

cost-effective, as the vulnerabilities are addressed while the implementation details are

still fresh in the developers' minds. Furthermore, this approach relieves some of the

workload of security experts, who can then focus on addressing security aspects not

covered by automated security integrations.

To prevent accidental and careless merging of vulnerable source code into the GitHub

repository, the integration of Snyk open source and GitGuardian provides an additional

layer of security. Similarly, integrating Snyk open source into the CI/CD pipeline

 Chapter 6: Conclusion

83

ensures that vulnerable applications are not deployed from the pipelines. This

comprehensive approach empowers software development teams to prioritize and

ensure software security throughout the development lifecycle. Organizations can

leverage this approach to streamline the security audit process, eliminating potential

bottlenecks in DevOps practices. By implementing this approach, small and medium-

sized organizations can enhance their overall security posture.

6.1 Future Works

The proposed framework currently does not include more efficient DAST tools.

However, integrating DAST tools into the framework can potentially address the

limitations of the previously discussed SAST tools. Therefore, it is recommended to

include DAST tool integration for further improvement.

This study primarily focused on the backend development aspects of web applications

using the C# programming language and Azure cloud services. Moving forward, the

framework can be expanded to include research on different security aspects related to

front-end application development. While this study specifically examined the

Microsoft ecosystem, the framework can be further extended to accommodate other

software development ecosystems as well.

References

[1] “Internet Growth Statistics 1995 to 2022 - the Global Village Online,” Internet

World Stats, 2022. https://www.internetworldstats.com/emarketing.htm (accessed

Jun. 16, 2022).

[2] “World Population Clock: 8.0 Billion People (2022) - Worldometer,”

WorldOMeter, 2022. https://www.worldometers.info/world-population/

(accessed Jun. 16, 2022).

[3] “Key Internet Statistics to Know in 2022 (Including Mobile) -

BroadbandSearch,” Broadband Search, 2022.

https://www.broadbandsearch.net/blog/internet-statistics (accessed Jun. 16,

2022).

[4] Steve Morgan, “2019/2020 Cybersecurity Almanac: 100 Facts, Figures,

Predictions and Statistics,” 2019. Accessed: Jun. 17, 2022. [Online]. Available:

https://cybersecurityventures.com/cybersecurity-almanac-2019/

[5] Morgan Steve, “Cybercrime To Cost The World $10.5 Trillion Annually By

2025,” Cybercrime Magazine, Nov. 13, 2020.

https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/

(accessed Jun. 16, 2022).

[6] “Software vulnerability snapshot - an analysis by Synopsys Application Security

Testing Services,” 2021.

[7] “Open Source Security and Risk Analysis Report,” 2021.

[8] “What is DevOps?,” IBM. https://www.ibm.com/cloud/learn/devops-a-complete-

guide (accessed Jun. 21, 2022).

[9] A. Ravichandran, K. Taylor, and P. Waterhouse, DevOps for Digital Leaders.

2016. doi: 10.1007/978-1-4842-1842-6.

[10] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE Softw, vol.

33, no. 3, pp. 94–100, May 2016, doi: 10.1109/MS.2016.68.

[11] G. Siewruk, W. Mazurczyk, and A. Karpiński, “Security assurance in Devops

methodologies and related environments,” International Journal of Electronics

and Telecommunications, vol. 65, no. 2, pp. 211–216, 2019, doi:

10.24425/ijet.2019.126303.

[12] “What is DevSecOps?,” IBM. https://www.ibm.com/cloud/learn/devsecops

(accessed Jun. 21, 2022).

[13] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective. in

SEI Series in Software Engineering. Pearson Education, 2015.

[14] M. Steve, “The Origins of DevOps: What’s in a Name?,” DevOps.com, 2018.

https://devops.com/the-origins-of-devops-whats-in-a-name/ (accessed Jul. 04,

2022).

[15] M. Meyer, “Continuous Integration and Its Tools,” IEEE Softw, vol. 31, no. 3,

pp. 14–16, May 2014, doi: 10.1109/MS.2014.58.

[16] G. G. Claps, R. Berntsson Svensson, and A. Aurum, “On the journey to

continuous deployment: Technical and social challenges along the way,” in

Information and Software Technology, Elsevier B.V., 2015, pp. 21–31. doi:

10.1016/j.infsof.2014.07.009.

 References

85

[17] M. Leppänen et al., “The highways and country roads to continuous

deployment,” IEEE Softw, vol. 32, no. 2, pp. 64–72, Mar. 2015, doi:

10.1109/MS.2015.50.

[18] M. Virmani, “Understanding DevOps & bridging the gap from continuous

integration to continuous delivery,” in Fifth International Conference on the

Innovative Computing Technology (INTECH 2015), IEEE, May 2015, pp. 78–82.

doi: 10.1109/INTECH.2015.7173368.

[19] K. Morris, Infrastructure as Code MANAGING SERVERS IN THE CLOUD,

First. 2016.

[20] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri,

“DevOps: Introducing infrastructure-as-code,” in Proceedings - 2017 IEEE/ACM

39th International Conference on Software Engineering Companion, ICSE-C

2017, Institute of Electrical and Electronics Engineers Inc., Jun. 2017, pp. 497–

498. doi: 10.1109/ICSE-C.2017.162.

[21] Stephen J. Bigelow, “What is Infrastructure as Code?,” TechTarget.

https://www.techtarget.com/searchitoperations/definition/Infrastructure-as-Code-

IAC (accessed Dec. 03, 2022).

[22] B. Chen, “Improving the Software Logging Practices in DevOps,” in 2019

IEEE/ACM 41st International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), IEEE, May 2019, pp. 194–197. doi:

10.1109/ICSE-Companion.2019.00080.

[23] T. Dyba and T. Dingsoyr, “What Do We Know about Agile Software

Development?,” IEEE Softw, vol. 26, no. 5, pp. 6–9, Sep. 2009, doi:

10.1109/MS.2009.145.

[24] M. Gokarna and R. Singh, “DevOps: A Historical Review and Future Works,” in

2021 International Conference on Computing, Communication, and Intelligent

Systems (ICCCIS), IEEE, Feb. 2021, pp. 366–371. doi:

10.1109/ICCCIS51004.2021.9397235.

[25] Van Wyk, Kenneth R., and G. Mcgraw, “Bridging the gap between software

development and information security,” IEEE Secur Priv, vol. 3, no. 5, pp. 75–

79, 2005, doi: 10.1109/MSP.2005.118.

[26] Tony Hsu, Hands-On Security in DevOps: Ensure continuous security,

deployment, and delivery with DevSecOps, First. Packet Publishing Ltd, 2018.

[27] V. Mohan and L. Ben Othmane, “SecDevOps: Is It a Marketing Buzzword? -

Mapping Research on Security in DevOps,” in 2016 11th International

Conference on Availability, Reliability and Security (ARES), IEEE, Aug. 2016,

pp. 542–547. doi: 10.1109/ARES.2016.92.

[28] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and

solutions when adopting DevSecOps: A systematic review,” Inf Softw Technol,

vol. 141, p. 106700, Jan. 2022, doi: 10.1016/J.INFSOF.2021.106700.

[29] M. A. Akbar, K. Smolander, S. Mahmood, and A. Alsanad, “Toward successful

DevSecOps in software development organizations: A decision-making

framework,” Inf Softw Technol, vol. 147, p. 106894, Jul. 2022, doi:

10.1016/J.INFSOF.2022.106894.

[30] R. N. Rajapakse, M. Zahedi, and M. A. Babar, “An Empirical Analysis of

Practitioners’ Perspectives on Security Tool Integration into DevOps,” in

Proceedings of the 15th ACM / IEEE International Symposium on Empirical

 References

86

Software Engineering and Measurement (ESEM), New York, NY, USA: ACM,

Oct. 2021, pp. 1–12. doi: 10.1145/3475716.3475776.

[31] A. Ibrahim, A. H. Yousef, and W. Medhat, “DevSecOps: A Security Model for

Infrastructure as Code over the Cloud,” in MIUCC 2022 - 2nd International

Mobile, Intelligent, and Ubiquitous Computing Conference, Institute of Electrical

and Electronics Engineers Inc., 2022, pp. 284–288. doi:

10.1109/MIUCC55081.2022.9781709.

[32] W. Baker and L. Wallace, “Is Information Security Under Control?: Investigating

Quality in Information Security Management,” IEEE Security and Privacy

Magazine, vol. 5, no. 1, pp. 36–44, Jan. 2007, doi: 10.1109/MSP.2007.11.

[33] “About the OWASP Foundation,” The OWASP Foundation Inc.

https://owasp.org/about/ (accessed Jan. 19, 2023).

[34] “API-Security/0xa1-broken-object-level-authorization.md at master ·

OWASP/API-Security · GitHub,” The OWASP Foundation Inc., 2019.

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa1-broken-

object-level-authorization.md (accessed Jan. 19, 2023).

[35] “OWASP API Security Project,” The OWASP Foundation Inc., 2019.

https://owasp.org/www-project-api-security/ (accessed Jan. 19, 2023).

[36] “API-Security/0xa2-broken-user-authentication.md at master · OWASP/API-

Security · GitHub,” The OWASP Foundation Inc., 2019.

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa2-broken-

user-authentication.md (accessed Jan. 20, 2023).

[37] “API-Security/0xa3-excessive-data-exposure.md at master · OWASP/API-

Security,” The OWASP Foundation Inc., 2019. https://github.com/OWASP/API-

Security/blob/master/2019/en/src/0xa3-excessive-data-exposure.md (accessed

Mar. 01, 2023).

[38] “API-Security/0xa4-lack-of-resources-and-rate-limiting.md at master ·

OWASP/API-Security · GitHub,” The OWASP Foundation Inc., 2019.

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa4-lack-of-

resources-and-rate-limiting.md (accessed Jan. 21, 2023).

[39] “API-Security/0xa5-broken-function-level-authorization.md at master ·

OWASP/API-Security · GitHub,” The OWASP Foundation Inc., 2019.

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa5-broken-

function-level-authorization.md (accessed Jan. 21, 2023).

[40] “API-Security/0xa6-mass-assignment.md at master · OWASP/API-Security ·

GitHub,” The OWASP Foundation Inc., 2019. https://github.com/OWASP/API-

Security/blob/master/2019/en/src/0xa6-mass-assignment.md (accessed Jan. 22,

2023).

[41] “API-Security/0xa7-security-misconfiguration.md at master · OWASP/API-

Security · GitHub,” The OWASP Foundation Inc., 2019.

https://github.com/OWASP/API-Security/blob/master/2019/en/src/0xa7-security-

misconfiguration.md (accessed Jan. 22, 2023).

[42] “API-Security/0xa8-injection.md at master · OWASP/API-Security · GitHub,”

The OWASP Foundation Inc., 2019. https://github.com/OWASP/API-

Security/blob/master/2019/en/src/0xa8-injection.md (accessed Jan. 22, 2023).

[43] “Security Content Automation Protocol | CSRC,” NIST, 2016.

https://csrc.nist.gov/projects/security-content-automation-protocol/ (accessed

Mar. 14, 2023).

 References

87

[44] S. Radack and R. Kuhn, “Managing security: The security content automation

protocol,” IT Prof, vol. 13, no. 1, pp. 9–11, Jan. 2011, doi:

10.1109/MITP.2011.11.

[45] R. Croft, D. Newlands, Z. Chen, and A. M. Babar, “An empirical study of rule-

based and learning-based approaches for static application security testing,” in

International Symposium on Empirical Software Engineering and Measurement,

IEEE Computer Society, Oct. 2021. doi: 10.1145/3475716.3475781.

[46] G. Hao et al., “Constructing Benchmarks for Supporting Explainable Evaluations

of Static Application Security Testing Tools,” in 2019 International Symposium

on Theoretical Aspects of Software Engineering (TASE), IEEE, Jul. 2019, pp. 65–

72. doi: 10.1109/TASE.2019.00-18.

[47] J. Yang, L. Tan, J. Peyton, and K. A Duer, “Towards Better Utilizing Static

Application Security Testing,” in Proceedings - 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in

Practice, ICSE-SEIP 2019, Institute of Electrical and Electronics Engineers Inc.,

May 2019, pp. 51–60. doi: 10.1109/ICSE-SEIP.2019.00014.

[48] S. B. Banks, “Dynamic software security testing,” IEEE Security and Privacy,

vol. 4, no. 3. pp. 77–79, May 2006. doi: 10.1109/MSP.2006.64.

[49] T. Rangnau, R. V. Buijtenen, F. Fransen, and F. Turkmen, “Continuous Security

Testing: A Case Study on Integrating Dynamic Security Testing Tools in CI/CD

Pipelines,” in Proceedings - 2020 IEEE 24th International Enterprise Distributed

Object Computing Conference, EDOC 2020, Institute of Electrical and

Electronics Engineers Inc., Oct. 2020, pp. 145–154. doi:

10.1109/EDOC49727.2020.00026.

[50] A. Dann, H. Plate, B. Hermann, S. E. Ponta, and E. Bodden, “Identifying

Challenges for OSS Vulnerability Scanners-A Study & Test Suite,” IEEE

Transactions on Software Engineering, vol. 48, no. 9, pp. 3613–3625, Sep. 2022,

doi: 10.1109/TSE.2021.3101739.

[51] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in

open-source software libraries,” in 2015 IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE, Sep. 2015, pp. 411–420.

doi: 10.1109/ICSM.2015.7332492.

[52] A. Rahman, C. Parnin, and L. Williams, “The Seven Sins: Security Smells in

Infrastructure as Code Scripts,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, May 2019, pp. 164–175. doi:

10.1109/ICSE.2019.00033.

[53] T. FitzMacken and D. Richards, “Azure Resource Manager overview - Azure

Resource Manager | Microsoft Learn,” Microsoft, 2022.

https://learn.microsoft.com/en-us/azure/azure-resource-

manager/management/overview (accessed Dec. 03, 2022).

[54] M. Jacobs, J. Kulla-Mader, T. Petersen, and E. Kaim, “What is infrastructure as

code (IaC)? - Azure DevOps | Microsoft Learn,” Microsoft, 2022.

https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

(accessed Dec. 03, 2022).

[55] T. FitzMacken and J. Gao, “Templates overview - Azure Resource Manager |

Microsoft Learn,” Microsoft, 2022. https://learn.microsoft.com/en-

us/azure/azure-resource-manager/templates/overview (accessed Dec. 03, 2022).

 References

88

[56] J. Liebermann, E. Urban, and D. Coulter, “What is Azure DevOps? - Azure

DevOps | Microsoft Docs,” Microsoft, 2022. https://docs.microsoft.com/en-

us/azure/devops/user-guide/what-is-azure-

devops?toc=%2Fazure%2Fdevops%2Fget-

started%2Ftoc.json&bc=%2Fazure%2Fdevops%2Fget-

started%2Fbreadcrumb%2Ftoc.json&view=azure-devops (accessed Aug. 07,

2022).

[57] “Azure DevOps Services,” CloudStrucc Inc, 2022.

https://www.cloudstrucc.com/services/devops/ (accessed Aug. 08, 2022).

[58] S. Leavitt, L. Casey, and D. Mabee, “What is Azure Boards? Tools to manage

software development projects. - Azure Boards | Microsoft Docs,” Microsoft,

2022. https://docs.microsoft.com/en-us/azure/devops/boards/get-started/what-is-

azure-boards?view=azure-devops (accessed Aug. 07, 2022).

[59] R. Bououni, K. Toliver, and G. Marlow, “Artifacts in Azure Pipelines - Azure

Pipelines | Microsoft Docs,” Microsoft, 2022. https://docs.microsoft.com/en-

us/azure/devops/pipelines/artifacts/artifacts-overview?view=azure-

devops&tabs=nuget (accessed Aug. 07, 2022).

[60] N. Trogh, R. Jagtap, and D. Lee, “What is Azure Test Plans? Manual,

exploratory, and automated test tools. - Azure Test Plans | Microsoft Docs,”

Microsoft, 2022. https://docs.microsoft.com/en-

us/azure/devops/test/overview?view=azure-devops (accessed Aug. 07, 2022).

[61] V. Machiraju, T. Sherer, and T. Petersen, “Collaborate on code - Azure Repos |

Microsoft Docs,” Microsoft, 2022. https://docs.microsoft.com/en-

us/azure/devops/repos/get-started/what-is-repos?view=azure-devops (accessed

Aug. 07, 2022).

[62] R. Pandey, O. Gomez, and D. Jarvis, “Azure Pipelines New User Guide - Key

concepts - Azure Pipelines | Microsoft Learn,” Microsoft, 2022.

https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/key-

pipelines-concepts?view=azure-devops (accessed Nov. 07, 2022).

[63] J. Kulla-Mader, S. Danielson, and D. Rea, “What is Azure Pipelines? - Azure

Pipelines | Microsoft Docs,” Microsoft, 2022. https://docs.microsoft.com/en-

us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-

devops (accessed Aug. 08, 2022).

[64] Z. Ahmed and S. Francis, “Integrating Security with DevSecOps: Techniques

and Challenges,” IEEE, 2019.

[65] “Introducing Snyk - Snyk User Docs,” Snyk. https://docs.snyk.io/getting-

started/introducing-snyk (accessed Jan. 25, 2023).

[66] “Scan application code - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-

application-code (accessed Feb. 11, 2023).

[67] “Snyk Open Source - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-

application-code/snyk-open-source (accessed Feb. 11, 2023).

[68] “Snyk for .NET - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-application-

code/snyk-open-source/snyk-open-source-supported-languages-and-package-

managers/snyk-for-.net (accessed Feb. 18, 2023).

[69] “SAST testing: how it works and why do you need it? | Snyk,” Snyk.

https://snyk.io/learn/application-security/static-application-security-testing/

(accessed Feb. 16, 2023).

 References

89

[70] “Snyk Code - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-application-

code/snyk-code (accessed Feb. 17, 2023).

[71] “Snyk Code AI Engine - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-

application-code/snyk-code/introducing-snyk-code/key-features/ai-engine

(accessed Feb. 18, 2023).

[72] “Git Security Scanning & Secrets Detection,” GitGuardian.

https://www.gitguardian.com/ (accessed May 13, 2023).

[73] B. Neira, L. O’Connor, R. Lyon, and G. Sinha, “What is Azure Active Directory?

- Microsoft Entra | Microsoft Learn,” Microsoft, 2022.

https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-

directory-whatis (accessed Dec. 01, 2022).

[74] C. Lin, S. Ouko, and L. Foust, “Managed identities - Azure App Service |

Microsoft Learn,” Microsoft, 2022. https://learn.microsoft.com/en-us/azure/app-

service/overview-managed-identity?tabs=portal%2Chttp (accessed Dec. 01,

2022).

[75] J. Gao, D. Smatlak, T. FitzMacken, and K. Sharkey, “Template structure and

syntax - Azure Resource Manager | Microsoft Learn,” Microsoft, 2022.

https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/syntax

(accessed Jan. 14, 2023).

[76] J. Gao, D. Smatlak, and K. Sharkey, “Parameters in templates - Azure Resource

Manager | Microsoft Learn,” Microsoft, 2022. https://learn.microsoft.com/en-

us/azure/azure-resource-manager/templates/parameters (accessed Jan. 17, 2023).

[77] M. Ribbins, K. Sharkey, and J. Gao, “Create parameter file - Azure Resource

Manager | Microsoft Learn,” Microsoft, 2022. https://learn.microsoft.com/en-

us/azure/azure-resource-manager/templates/parameter-files (accessed Jan. 17,

2023).

[78] R. Nair, J. Koke, and J. Erickson, “Service connections in Azure Pipelines -

Azure Pipelines | Microsoft Docs,” Microsoft, 2022.

https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-

endpoints?view=azure-devops&tabs=yaml (accessed Aug. 11, 2022).

[79] T. Dykstra, P. Poojari, and G. Warren, .“NET CLI | Microsoft Docs,” Microsoft,

2022. https://docs.microsoft.com/en-us/dotnet/core/tools/ (accessed Aug. 11,

2022).

[80] “The Official YAML Web Site,” YAML, 2021. https://yaml.org/ (accessed Mar.

02, 2023).

[81] “Azure App Service Management: ARM,” Microsoft, 2019.

https://github.com/microsoft/azure-pipelines-

tasks/blob/master/Tasks/AzureAppServiceManageV0/README.md (accessed

Nov. 09, 2022).

[82] “Use Snyk in your IDE - Snyk User Docs,” Snyk. https://docs.snyk.io/ide-tools

(accessed Feb. 18, 2023).

[83] “Git repository integrations (SCMs) - Snyk User Docs,” Snyk.

https://docs.snyk.io/integrations/git-repository-scm-integrations (accessed Feb.

19, 2023).

[84] “GitHub integration - Snyk User Docs,” Snyk.

https://docs.snyk.io/integrations/git-repository-scm-integrations/github-

integration (accessed Feb. 19, 2023).

 References

90

[85] “PR Checks for Snyk Code - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-

application-code/run-pr-checks/pr-checks-for-snyk-code (accessed Feb. 19,

2023).

[86] “Scan cloud deployments - Snyk User Docs,” Snyk. https://docs.snyk.io/scan-

cloud-deployment (accessed Feb. 19, 2023).

	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Question
	1.4 Research Objective
	1.5 Thesis Structure

	2 Theoretical Background
	2.1 DevOps
	2.1.1 Continuous Integration
	2.1.2 Continuous Delivery
	2.1.3 Infrastructure as Code
	2.1.4 Monitoring and Logging
	2.1.5 Agile Practices

	2.2 DevSecOps
	2.2.1 DevSecOps Guidelines
	2.2.1.1 Planning and Design
	2.2.1.2 Development
	2.2.1.3 Testing
	2.2.1.4 Deployment
	2.2.1.5 Operations and Maintenance

	2.2.2 DevSecOps Challenges

	2.3 OWASP Top 10
	2.3.1 Broken Object Level Authorization
	2.3.2 Broken User Authentication
	2.3.3 Excessive Data Exposure
	2.3.4 Lack of Resource and Rate Limiting
	2.3.5 Broken Function Level Authorization
	2.3.6 Mass Assignment
	2.3.7 Security Misconfiguration
	2.3.8 Injection

	2.4 Security Automation Tools
	2.4.1 Static Application Security Testing
	2.4.2 Dynamic Application Security Testing
	2.4.3 Open-Source Software Vulnerability Scanner
	2.4.4 Infrastructure as Code Security Testing

	2.5 Related Work

	3 Methodology
	3.1 Applications Development
	3.2 Production Applications Azure Infrastructures
	3.3 Infrastructure as Code in Azure
	3.3.1 Azure Boards
	3.3.2 Azure Artifacts
	3.3.3 Azure Test Plans
	3.3.4 Azure Repos
	3.3.5 Azure Pipelines

	3.4 Security Integration in Azure DevOps
	3.4.1 Snyk
	3.4.1.1 Snyk Open Source
	3.4.1.2 Snyk Code

	3.4.2 GitGuardian

	4 Implementation
	4.1 Test Projects
	4.1.1 Production Test Application
	4.1.1.1 Web API
	4.1.1.2 Console Application

	4.1.2 Infrastructure as Code Implementation
	4.1.2.1 Parameters
	4.1.2.2 Resources
	4.1.2.3 Outputs

	4.1.3 Vulnerable Test Project
	4.1.3.1 Broken Object Level Authorization Vulnerability
	4.1.3.2 Broken User Authentication Vulnerability
	4.1.3.3 Excessive Data Exposure Vulnerability
	4.1.3.4 Lack of Resource and Rate Limiting Vulnerability
	4.1.3.5 Broken Function Level Authorization Vulnerability
	4.1.3.6 Mass Assignment Vulnerability
	4.1.3.7 Security Misconfiguration Vulnerability
	4.1.3.8 Injection Vulnerability

	4.2 Azure DevOps and CI/CD Pipeline
	4.2.1 Continuous Integration using Azure Build Pipelines
	4.2.2 Continuous Deployment using Azure Release Pipelines

	4.3 Shifting Security to the Left
	4.3.1 Security Scanning in IDE
	4.3.2 Security Scanning in SCM System
	4.3.3 Security Scanning in Build Pipeline
	4.3.4 Vulnerability Scanning in IaC

	5 Results and Evaluation
	6 Conclusion
	6.1 Future Works

	References

