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ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) is a cutting-edge technology that enables
to quantify the transcriptome, the set of expressed RNA transcripts, of a group of
cells at the single-cell level. It represents a significant upgrade from bulk RNA-seq,
which measures the combined signal of thousands of cells. Measuring gene expres-
sion by bulk RNA-seq is an invaluable tool for biomedical researchers who want to
understand how cells alter their gene expression due to an illness, differentiation,
external stimulus, or other events. Similarly, scRNA-seq has become an essential
method for biomedical researchers, and it has brought several new applications pre-
viously unavailable with bulk RNA-seq.

scRNA-seq has the same applications as bulk RNA-seq. However, the single-cell
resolution also enables cell annotation based on gene markers of clusters, that is, cell
populations that have been identified based on machine learning to be, on average,
dissimilar at the transcriptomic level. Researchers can use the cell clusters to detect
cell-type-specific gene expression changes between conditions such as case and con-
trol groups. Clustering can sometimes even discover entirely new cell types. Besides
the cluster-level representation, the single-cell resolution also enables to model cells
as a trajectory, representing how the cells are related at the cell level and what is the
dynamic differentiation process that the cells undergo in a tissue.

This thesis introduces new computational methods for cell type identification and
trajectory inference from scRNA-seq data. A new cell type identification method
(ILoReg) was proposed, which enables high-resolution clustering of cells into popu-
lations with subtle transcriptomic differences. In addition, two new trajectory infer-
ence methods were developed: scShaper, which is an accurate and robust method for
inferring linear trajectories; and Totem, which is a user-friendly and flexible method
for inferring tree-shaped trajectories. In addition, one of the works benchmarked
methods for detecting cell-type-specific differential states from scRNA-seq data with
multiple subjects per comparison group, requiring tailored methods to confront false
discoveries.
KEYWORDS: Single-cell RNA sequencing, transcriptome, cell type identification,
trajectory inference, differential expression
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TIIVISTELMÄ

Yksisoluinen RNA-sekvensointi on huipputeknologia, joka mahdollistaa tran-
skriptomin eli ilmentyneiden RNA-transkriptien laskennallisen määrittämisen
joukolle soluja yhden solun tarkkuudella, ja sen kehittäminen oli merkittävä askel
eteenpäin perinteisestä bulkki-RNA-sekvensoinnista, joka mittaa tuhansien solujen
yhteistä signaalia. Bulkki-RNA-sekvensointi on tärkeä työväline biolääketi-
eteen tutkijoille, jotka haluavat ymmärtää miten solut muuttavat geenien il-
mentymistä sairauden, erilaistumisen, ulkoisen ärsykkeen tai muun tapahtuman
seurauksena. Yksisoluisesta RNA-sekvensoinnista on vastaavasti kehittynyt
tärkeä työväline tutkijoille, ja se on tuonut useita uusia sovelluksia.

Yksisoluisella RNA-sekvensoinnilla on samat sovellukset kuin bulkki-
RNA-sekvensoinnilla, mutta sen lisäksi se mahdollistaa solujen tunnistamisen
geenimarkkerien perusteella. Geenimarkkerit etsitään tilastollisin menetelmin
solupopulaatioille, joiden on tunnistettu koneoppimisen menetelmin muodostavan
transkriptomitasolla keskenään erilaisia joukkoja eli klustereita. Tutkijat voivat
hyödyntää soluklustereita tutkimaan geeniekspressioeroja solutyyppien sisällä es-
imerkiksi sairaiden ja terveiden välillä, ja joskus klusterointi voi jopa tunnistaa uusia
solutyyppejä. Yksisolutason mittaukset mahdollistavat myös solujen mallintamisen
trajektorina, joka esittää kuinka solut kehittyvät dynaamisesti toisistaan geenien
ilmentymistä vaativien prosessien aikana.

Tämä väitöskirja esittelee uusia laskennallisia menetelmiä solutyyppien ja
trajektorien tunnistamiseen yksisoluisesta RNA-sekvensointidatasta. Väitöskirja
esittelee uuden solutyyppitunnistusmenetelmän (ILoReg), joka mahdollistaa hien-
ovaraisia geeniekspressioeroja sisältävien solutyyppien tunnistamisen. Sen lisäksi
väitöskirjassa kehitettiin kaksi uutta trajektorin tunnistusmenetelmää: scShaper,
joka on tarkka ja robusti menetelmä lineaaristen trajektorien tunnistamiseen,
sekä Totem, joka on käyttäjäystävällinen ja joustava menetelmä puumallisten trajek-
torien tunnistamiseen. Lopuksi väitöskirjassa vertailtiin menetelmiä solutyyppien
sisäisten geeniekspressioerojen tunnistamiseen ryhmien välillä, joissa on useita koe-
henkilöitä tai muita biologisia replikaatteja, mikä vaatii erityisiä menetelmiä väärien
positiivisten löydösten vähentämiseen.
ASIASANAT: yksisoluinen RNA-sekvensointi, klusterointi, trajektorin tunnistus,
geeniekspressio
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1 Introduction

RNA sequencing (RNA-seq) is the gold-standard technique for quantifying a spec-
imen’s transcriptome, the complete set of expressed RNA transcripts [1]. RNA-seq
superseded the microarray as the leading transcriptome profiling technology due to
its superior ability to measure the whole transcriptome, which was a significant im-
provement over microarrays that use predefined probes to measure the expression of
predefined genes based on hybridization [2]. Initially, RNA-seq could only be used
to quantify the expression in cell bulks consisting of thousands of cells, and it was not
possible to demultiplex the sequenced RNA fragments, i.e., map the individual RNA
fragments to their parent cells. Therefore, the experiments needed to be carefully
conducted to ensure that the sequenced specimens contained only specific cell types.
The cell isolation step was prone to errors, and the resulting transcript signal would
represent only the joint signal of the cells instead of individual cells. However, this
”bulk RNA-seq” technology remains widely used to this day.

Single-cell RNA-seq (scRNA-seq) was developed to address the limitations of
bulk RNA-seq by enabling the measurement of the transcriptomes of individual cells.
From the large set of developed scRNA-seq protocols [3] that can extract the RNA
material from cells and transform it into a DNA library that can be sequenced and
demultiplexed, the first protocols were plate-based methods that were limited to a
small number of cells, typically 96, but were able to produce a full-transcriptome
profile of each cell [4]. Shortly after, droplet-based systems [5; 6] emerged, which
were able to profile a significantly higher number of cells, thousands or millions, at
the cost of a more limited transcriptome coverage for each cell. At the moment, the
droplet-based systems such as 10X Chromium are the market leader.

The single-cell resolution enables several applications that were not possible with
bulk RNA-seq. In particular, the cell-level transcriptome profile enables using unsu-
pervised learning, specifically clustering, to partition the cells into subsets (clusters)
that have high within-cluster similarity but low between-cluster similarity. If the
clustering is performed optimally, the clusters represent an accurate segregation of
the actual cell types of the sequenced sample. The clusters can be subsequently iden-
tified based on gene markers identified by performing statistical testing between the
clusters [7; 8; 9].

Cell type identification from scRNA-seq data based on clustering has been a
central research topic from the early days of the technology [10; 11; 12; 13; 14].
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The choice of the clustering algorithm is not the only critical step, and the pre-
processing steps, i.e., normalization, quality control, and dimensionality reduction,
that are performed prior to clustering all significantly impact the clustering result. In
Publication I of this thesis, we introduced a cell type identification method, ILoReg,
designed to improve the identification of cell types with subtle transcriptomic differ-
ences. ILoReg uses a novel iterative machine learning algorithm, the iterative cluster-
ing projection (ICP), to find clusters of cells that maximize the similarity between the
clustering and its projection by a logistic regression model. The logistic regression
model performs feature selection that selects highly variable genes essential for seg-
regating different cell types, helping to reduce noise and segregate cell types that are
separable by a small number of highly expressed genes. After convergence, ILoReg
uses the cluster probabilities of the logistic regression model as features that are in-
putted to principal component analysis (PCA) and subsequently clustered, and the
ICP is hence acting as a feature extraction step between normalization and cluster-
ing. We used a human peripheral blood mononuclear cell (PBMC) dataset [5] and a
human pancreas dataset [15] to investigate the cell populations that can be identified
visually based on a nonlinear embedding, such as t-distributed stochastic neighbor
embedding (t-SNE). In addition, we evaluated the clustering performance of ILoReg
and four other scRNA-seq cell type identification methods [9; 11; 12; 14].

In Publication II, we continued with a topic downstream of cell type identifi-
cation by investigating how to optimally perform cell-type-specific differential ex-
pression (DE) analysis between conditions, such as case and control patients, when
both conditions include multiple subjects or other biological replicates. DE analysis
of multi-subject scRNA-seq data is prone to false discoveries [16; 17; 18; 19; 20]
because the cells form a hierarchical structure in which cells within each subject are
more similar in their expression than cells between the subjects. Statistical tests pop-
ular in scRNA-seq DE analysis, such as Wilcoxon rank-sum test and MAST [21],
assume that the cells originate from a single population of statistically independent
samples, leading to inflated p-values and spurious findings. Due to the single-cell
resolution, the naı̈ve methods that do not model subjects in any way can, for exam-
ple, report a positive finding when a gene is upregulated in only one of the subjects.
We benchmarked naı̈ve DE analysis methods with pseudo-bulk methods [17; 19; 20]
that aggregate the data at the subject level and mixed models [18; 19; 22] that model
the subjects as a random effect. We also considered a fourth method type, the la-
tent variable models of the Seurat toolkit [9; 23], which can be used to account for
various batch effects in DE analysis with the naı̈ve methods.

While the cluster-level representation of cells is helpful, it is deficient because
it does not describe how the cell types are related. For example, in a sample that
consists of CD4+ T cells, it would also be informative to model how the CD4+ T cell
subsets, such as naı̈ve CD4+ T cells, Th17 T cells, and Th1 T cells, are connected
in the underlying biological process. Moreover, the cluster-level representation can
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be crude because there can often be additional transition states between cell types
that are not included in the clustering [24]. Frequently, the differentiation is a slow,
gradual process with an indefinite number of intermediate states [25], and the process
is most accurately modeled at the single-cell level. A significant number of trajectory
inference methods have been developed to address these limitations, which enable
modeling the cells in more depth as a trajectory [26].

In Publications III and IV of this thesis, we introduced two new trajectory infer-
ence methods, scShaper and Totem, that aim to improve or fill caveats in the current
state-of-the-art trajectory inference methods [27; 28; 29; 30]. The first method, sc-
Shaper, is an ensemble method for linear trajectory inference that combines multiple
weak trajectory models to create a robust, fast, and accurate model. scShaper gener-
ates the single models by optimizing a linear path through a graph of which nodes are
clusters computed using the k-means algorithm. The path optimization is performed
using a degree-constrained Kruskal’s algorithm. The main aim was to develop an ac-
curate, general-purpose algorithm for inferring linear paths through data that would
work better than the principal curves algorithm [31], which is a method that is widely
used in trajectory inference to infer paths through trajectory lineages [28].

The second trajectory inference method, Totem, was designed to provide an easy-
to-use, intuitive interface to trajectory optimization. Although many trajectory infer-
ence methods have been developed [26], easily exceeding one hundred at the mo-
ment, the generalizability of these methods is rather weak, meaning there are no
one-size-fits-all methods that work in every dataset. Therefore, to find an optimal
trajectory for a single-cell dataset, a lot of parameter tuning and method testing are
likely to be needed. Totem addresses this issue by generating a large number of
clustering results that are used to construct a catalog of minimum spanning trees
(MST), from which the user can select trajectories for further analysis that are bi-
ologically sensible. To facilitate the clustering-selection process, we developed a
metric called cell connectivity, which helps to visually locate transition states and
branching points from two-dimensional embeddings such as t-SNE. To thoroughly
benchmark scShaper and Totem, we used a benchmarking framework that consists
of hundreds of datasets, which were of both simulated and real origin [26].

1.1 Aims
The main aim of this thesis was to develop new computational methods for cell type
identification and trajectory inference from scRNA-seq data that improve the current
state-of-the-art methods. The second aim was to benchmark methods for DE analysis
of scRNA-seq data. The more specific aims of this thesis can be described as follows:

1. Develop a method for scRNA-seq clustering that can segregate cell types with
subtle transcriptomic differences

3
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2. Benchmark methods cell-type-specific DE analysis of multi-subject, multi-
condition scRNA-seq data

3. Develop a method for trajectory inference that is robust, fast, and performs
accurately with linear trajectories of varying complexity

4. Develop a method for inferring tree-shaped trajectories from scRNA-seq data
that is user-friendly and flexible

5. Make the benchmarking codes available for everyone to reproduce the analyses

6. Release the novel computational methods as free, open-source R packages

1.2 Content
Chapter 2 of the thesis briefly explains the background of scRNA-seq as a tech-
nology and the basic steps and goals of scRNA-seq data analysis. Since cell type
identification, trajectory inference, and DE analysis are our main focus in this the-
sis, Chapter 2 primarily focuses on them. Chapter 3 describes how the three new
computational methods introduced in Publications I, III, and IV work. Chapter 4
goes through the computational methods, data, and performance evaluation methods
that were used in the works. Chapter 5 presents the main results. In Chapter 6, we
discuss the novelty and scientific importance of this thesis, the main limitations of
it, what could have been improved, and future prospects of the new computational
methods. Finally, we summarize the four publications in Chapter 7.

4



2 Background

This chapter describes the background of single-cell RNA sequencing (scRNA-seq).
We begin by explaining what RNA sequencing is, its applications, and the main dif-
ferences between the bulk RNA-seq technology, which measures the transcriptome
of a population of cells, and the scRNA-seq technology, which measures the tran-
scriptome of individual cells. Later, we go through the basic steps of scRNA-seq
data analysis. Since the number of scRNA-seq protocols that can generate scRNA-
seq data is large [3], and the analysis practices vary between the protocols, we focus
here on droplet-based data, specifically 10X Chromium data [5], which was the pri-
mary data type in the original publications of this thesis. Regarding the data analysis
steps discussed, we emphasize more differential expression (DE) analysis, trajec-
tory inference, and cell type identification, which are the main themes of this thesis.
Other relevant steps, namely pre-processing, normalization, quality control, and joint
analysis of multiple datasets, are discussed briefly.

2.1 Single-cell RNA sequencing technology
RNA sequencing (RNA-seq) is a technology that is based on the general concept
of next-generation sequencing (NGS), sometimes also called massive parallel se-
quencing, which is a broad term for sequencing technologies that enable fast, par-
allel sequencing of millions of DNA fragments [1]. The NGS technologies differ
by the type of DNA fragments that are sequenced. For example, in RNA-seq, the
sequenced DNA fragments are complementary DNA (cDNA) fragments that are re-
verse transcribed from RNA fragments. Other commonly used NGS technologies
include whole-genome sequencing (WGS), which sequences DNA fragments of the
whole genome [32]; whole exome sequencing (WES), which sequences DNA frag-
ments of the exome [33], i.e. the protein-coding parts of the genome; and chromatin
immunoprecipitation sequencing (ChIP-seq), which uses the ChIP technology to ex-
tract certain proteins that are linked to DNA and sequences the extracted DNA [34].

The collection of RNA present in a cell or a population of cells is called the
transcriptome, which comprises several types of RNA. When a cell performs protein
synthesis to synthesize a protein from a DNA segment (gene), the gene is first tran-
scribed into a messenger RNA (mRNA) and then translated into a protein. Measuring
levels of different mRNA sequences present in a cell or a population of cells enables
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quantifying gene expression, one of the main applications of RNA-seq and the only
one that we focus on in this thesis. To mention a few other essential RNA-seq ap-
plications, RNA-seq can also be used to study alternative splicing of pre-mRNAs
[35; 36] or for variant discovery to detect single nucleotide variants or other muta-
tions [37; 38]. Besides being able to quantify the expression of protein-coding genes,
RNA-seq can also measure the expression of non-coding RNAs (ncRNA) that are not
translated into proteins [39; 40].

When an RNA-seq experiment is performed to measure mRNA expression, the
lab personnel must first prepare the cDNA library, which consists of cDNA copied
from mRNA through the process of reverse transcription. The process begins with
the extraction of mRNAs from the transcriptome, which involves the isolation of
the RNAs that have the poly(A) tail at the 3’ end of the RNA, enabling to separate
mRNAs from ribosomal (rRNAs) and transfer RNAs (tRNAs) that lack the tail. The
reverse transcriptase enzyme is used to generate the cDNA from the filtered mRNA,
which is usually amplified using the DNA polymerase enzyme [41; 42].

When RNA-seq and other NGS technologies were first introduced, they were
used to study the transcriptome of populations of cells that comprise thousands or
millions of cells. These RNA-seq experiments are now commonly referred to as bulk
RNA-seq experiments to distinguish them from single-cell RNA-seq (scRNA-seq)
experiments, which measure the expression of individual cells. When bulk RNA-
seq experiments are performed, the researcher must carefully plan which cell types
to include in the sequenced sample. This step requires lab validation to ensure that
the correct cell types are being investigated and is prone to errors. In contrast, in
scRNA-seq experiments, the cells can be identified by their gene expression in the
analysis step, which is generally accurate as long as the gene expression signal is
strong enough to segregate the cell types.

Because each cell has its own set of transcriptomic processes, it is more infor-
mative to measure the transcriptome of all cells individually than as a single, mutual
signal of all the cells. However, one common issue with scRNA-seq technologies is
that they often cannot measure the whole transcriptome. This issue is mainly related
to many droplet-based systems, such as 10X Chromium, which prioritize the cell
count over the sequencing depth [3] and can often capture only the highly expressed
genes. Furthermore, the 10X Chromium system can sequence only one end of the
transcript (5’ or 3’) but not both of them at the same time. In contrast, plate-based
technologies such as Smart-seq2 [4] prioritize the sequencing depth over the cell
count. High-depth sequencing is beneficial because it enables more accurate detec-
tion of lowly expressed genes, whereas a higher cell number allows more accurate
detection of rare cell types. However, a high cell number also improves the probabil-
ity of capturing weaker signals of the lowly expressed genes, and it also increases the
statistical power (sensitivity) in differential expression analysis, which is used study
gene expression differences between cell populations [43].
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2.2 Analysis of single-cell RNA sequencing data

This section gives a brief overview of the main steps of scRNA-seq data analysis.
We begin by describing the pre-processing of scRNA-seq data, which involves the
steps needed to generate the gene expression count matrix from the raw sequencing
images. In the next part, we go through downstream analysis steps that are required
to transform the gene expression counts into actual knowledge that researchers can
utilize to make findings. These steps include quality control, normalization, cell
type identification, differential expression analysis, visualization, joint analysis of
multiple datasets, and trajectory inference.

In recent years, the complexity of scRNA-seq analysis has grown substantially
[44], and therefore we do not discuss all essential topics. We leave out important
topics such as multimodal data analysis, which consist of additional modalities (data
layers) alongside RNA-seq [45; 46; 47; 48] and many downstream analysis steps,
such as pathway analysis [49; 50], regulatory network inference [51], cell abundance
analysis [52; 53], and ligand-target analysis [54].

2.2.1 Pre-processing

RNA-seq data analysis comprises a multitude of steps, from the analysis of the raw
sequencing images to the downstream analysis of gene counts. The downstream anal-
ysis is commonly referred to as the analysis phase after the initial, standardized pre-
processing steps that generate the gene expression count matrix [55]. Pre-processing
steps that are common in all RNA-seq analyses include the generation of the FASTQ
files from the raw image files generated by the sequencing instrument, such as the
BCL files by Illumina sequencers [56], quality control to ensure adequate data qual-
ity, read alignment to a reference genome to determine the genomic location of each
read [57; 58; 59], and read assignment to a reference annotation to generate the gene
expression count matrix from the aligned reads [49].

The pre-processing of scRNA-seq data includes several notable differences com-
pared to bulk RNA-seq data. Since the cDNA library of scRNA-seq data is a pooled
mixture of cDNAs from multiple cells, the cDNA reads need to be mapped (demul-
tiplexed) to their parent cells based on DNA barcodes (cell barcodes) added to the
transcript-coding sequences in the lab preparation step. The cell barcode is typi-
cally at least 16 bases in length and is often accompanied by a unique molecular
identifier (UMI) barcode, which is unique for each transcript [60]. The UMI tech-
nology aims to remove the confounding effect caused by the amplification step that
generates copies of the cDNAs randomly and causes a skewed distribution of the
transcripts compared to the original transcriptome. The UMI also helps combat the
overabundance of zero measurements in scRNA-seq data [61], that is, zero inflation.
The scRNA-seq systems that utilize the UMI technology, such as Chromium by 10X
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Genomics, will instead count the UMIs, and the counts are hence commonly referred
to as UMI counts.

Pre-processing pipelines such as Cellranger by 10X Genomics count the cell and
UMI barcodes for all the sequenced reads and assign the reads to cells and genes
to generate the cell-gene UMI count matrix. Initially, the counting is performed for
every possible cell barcode that the protocol allows, which comprises millions of cell
barcodes. The counting is based on measuring the similarity of two sequences using
distance methods such as the Levenshtein distance [62]. The counting is sensitive
to sequence errors, and thus, a few mismatches in the bases are typically allowed
[63]. Finally, the cells are ordered into a descending order based on the sum of
the UMI counts, and the positive cells are selected from the left side of the elbow
point, a point at which the UMI count sum will begin to decline sharply. The cells
on the right side of the curve are considered background from empty droplets and
excluded. Pre-processing pipelines such as Cellranger generate helpful summaries
that automatically alert quality issues. For example, for Chromium v3 data, the total
number of reads per cell should be close to 50,000 reads, or at minimum 20,000 [5].

2.2.2 Downstream analysis

While the pre-processing steps are mostly standardized for each scRNA-seq proto-
col, the downstream analysis that uses the pre-processed cell-gene expression count
matrix involves many steps that can be customized in numerous ways [44; 45]. The
downstream analysis steps are specifically tailored for each dataset depending on
the researcher’s questions and aims for the data. For this reason, it is also the most
challenging part of scRNA-seq data analysis. In this section, we describe the steps
that are practically always included in downstream analysis: quality control, normal-
ization, cell type identification, visualization, differential expression analysis, and
joint analysis of multiple datasets. In addition, we go through the background of
trajectory inference, which is one of the main topics of this thesis besides differential
expression analysis and cell type identification.

Quality control

The first step is always quality control in which problematic cells and genes are fil-
tered out [64]. These include cells with a high proportion of reads mapped to the
mitochondrial genes, typically above 5-10%. However, the optimal threshold can
also vary between tissues, and therefore caution is recommended when removing
any cells. Outlier cells with an abnormally high or low number of expressed genes
or UMI counts are usually discarded. These cell filtering steps involve visual inspec-
tion of the distribution of the quality parameters with violin plots and are adjusted
individually for each scRNA-seq dataset. Furthermore, there exists doublet detec-
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tion tools that can be used to automatically detect heterotypic doublets, which are
droplets that have gene expression signal from two different cell types [65].

A good practice is to identify the cells that are being removed based on clustering
and gene markers and determine for each identified cell type individually if the cell
type should be discarded. It can sometimes be a good idea to perform the quality
control for each sample separately if the quality attributes differ between the samples
substantially [66].

Compared to the cell filtering, gene filtering is more standardized, and non-
expressing genes or genes that are expressed in only a small number cells (e.g., fewer
than 3) are typically removed.

Normalization

After quality control, the next necessary step is normalization, which aims to si-
multaneously remove errors caused by technical factors in the preparation step of
a scRNA-seq experiment and preserve the underlying biological signal in the count
data [67]. Normalization methods used in bulk RNA-seq, such as trimmed mean of
M values (TMM) [68], and the counts per million (CPM), are generally not as such
applicable to scRNA-seq normalization [69; 70]. In widely used scRNA-seq toolkits,
such as Seurat [9] and Scanpy [8], the default normalization method is LogNormal-
ize, which divides the counts by the sum of the counts for each cell and multiplies
the ratios by a scaling factor, which is usually 10,000 for UMI counts. The method
closely relates to the CPM bulk RNA-seq normalization method. However, its scal-
ing factor is instead million because bulk RNA-seq measures amplified counts, and
its sequencing depth is higher than in UMI counts. As in bulk RNA-seq normaliza-
tion, the logarithmic transformation is commonly applied, with a pseudo-count value
(usually 1) added to the normalized counts before the transformation.

sctransform is another widely used normalization method, which builds a neg-
ative binomial regression model, models the cell sequencing depth as a covariate
in a generalized linear model, and uses Pearson’s residuals of the regression model
as the normalized data [67]. In contrast to LogNormalize, sctransform does not re-
quire pseudo-count addition or log transformation. scran [69] and SCnorm [70] are
normalization methods that have been developed explicitly for scRNA-seq data and
demonstrated to outperform bulk RNA-seq normalization methods in an independent
study [71]. Overall, the range of scRNA-seq normalization methods that bioinfor-
maticians actively use is relatively limited.

Cell type identification

Identification of cell types is another essential step that is performed in every scRNA-
seq data analysis. In some rare cases, the cell type identities can already be available
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before the analysis if a plate-based system is used [4; 72]. However, in droplet-based
systems, such as 10X Chromium, the cell identities are always unknown and need
to be identified based on the gene expression signal. Two main approaches exist for
cell type identification. The first is the unsupervised approach that uses clustering to
segregate the cells into clusters, followed by statistical analysis to find gene markers
that are differentially expressed between the clusters. The process requires a person
who can interpret the gene markers to assign the gene markers to the cell types.

The second, more automatized approach uses supervised learning to predict the
cell types with a model that has been trained using reference data [73; 74; 75; 76].
The reference data is typically from an older, independent study, which includes a
cell type annotation similar to the query data of which cells are being annotated.
This approach is convenient because it removes the need to find the correct clusters
and interpret their gene markers. However, even the supervised models cannot be
guaranteed to work accurately, and validation with gene markers is strongly recom-
mended. In addition, the supervised annotation methods can generally only annotate
cell types that are also present in the reference data. Many annotators also claim to
be able to automatically predict novel cell types, which is easier the more deviant
the new cell type is at the transcriptomic level compared to the reference cell types.
Therefore, the two approaches are not really meant to be used mutually exclusively
but together to compensate each other and facilitate cell type identification.

The unsupervised approach to cell type identification involves multiple steps be-
fore clustering. Clustering algorithms such as the Louvain community detection [77]
are not optimal for datasets with tens of thousands of features. In addition to the
high running time and memory requirement for such large datasets, it also becomes
difficult to accurately measure distances between cells that are close to each other
at the transcriptomic level. In machine learning, this phenomenon is known as ”the
curse of dimensionality” [10]. To mitigate the issue, developers have implemented
steps into their pipelines that reduce the dimensionality before clustering. The two
ways to reduce the dimensionality are feature selection, which selects a subset of the
original features, and feature extraction, which transforms the features into a smaller
set of new features that aim to maintain the cell distances of the original data. In
scRNA-seq data analysis, it is common to use both approaches.

The popular Seurat scRNA-seq analysis toolkit selects highly variable genes
(HVG) using a local regression (LOESS) model, which adjusts the feature variance
so that genes that are expressed in rare cells are not underrepresented in the selection,
scales the selected feature to unit variance, and then applies principal component
analysis (PCA) on the scaled features. Typically, the number of features in the PCA-
transformed data matrix varies from 5 to 50, which is selected based on the elbow
plot that visualizes the variance of each principal component (PC) or the jackstraw
method that measures the statistical significance of each PC.

In clustering, the cells of the dimensionally reduced data matrix are grouped
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into clusters (communities) using a clustering algorithm. The graph-based clustering
algorithms, such as Louvain [77] and Leiden [78], are popular because they are used
in Seurat [9] and Scanpy [8], the two by far most popular scRNA-seq data analysis
toolkits. The graph-based clustering algorithms differ from many commonly used
clustering algorithms, such as k-means, k-medoids, and the Gaussian Mixture Model
(GMM), because they do not generate a pre-defined number of clusters. Instead, the
algorithms infer an optimal clustering number for each dataset, which is higher for
datasets with more distinct communities. However, the resolution parameter, which
is a positive number typically between 0.2 and 2.0, can be increased to increase the
probability of finding more clusters. SC3 [11] is a consensus clustering algorithm
that was initially popular when the scRNA-datasets were smaller but has now been
largely superseded by graph-based clustering algorithms with better scalability.

Visualization

To visualize scRNA-seq data so that it accurately represents the cell heterogene-
ity of the dataset, the dimensionally reduced matrix is further transformed into a
two-dimensional representation, or sometimes three-dimensional, using non-linear
dimensionality reduction methods, most commonly t-distributed stochastic neigh-
bour embedding (t-SNE) [79] or Uniform Manifold Approximation and Projection
(UMAP) [80]. The features of the transformed data matrix (embeddings) are vi-
sualized as a scatter plot, which provides a general overview of the cell types that
are identifiable in the dataset. The visualization is useful for assessing whether the
clustering needs to be adjusted to include a different cell population composition, to
study relationships between different covariates, such as time point or individual, or
to visualize the expression of marker genes, which facilitates cell type identification.
While t-SNE and UMAP are the most popular visualization methods in scRNA-seq
data analysis, autoencoders [81] can also be used to visualize data [82]. However,
it is more common to use the latent variables of an autoencoder as input to t-SNE
or UMAP [83; 84], in which case the autoencoders are only used to perform data
integration and other analysis steps required before visualization.

Gene marker discovery and differential expression analysis

To find gene markers for the cell clusters, we need to compare the expression levels
of each gene between the cell types. The most common approach is the one-vs-
rest approach, in which the expression levels of one cell type are compared with the
expression levels of the rest of the cells, i.e., other cell types combined. The com-
parison involves statistical testing using methods that test some hypothesis, such as
whether the mean ranks of two populations differ (Wilcoxon rank-sum test). In the
Seurat toolkit, the Wilcoxon rank-sum test is the default method, but it also includes
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several other methods, such as DESeq2 and Student’s t-test, which are common in
DE analysis of bulk RNA-seq data. MAST [21] is an example of a method specifi-
cally designed for single-cell data and has become widely used. When finding gene
markers for cell types, it is common to include only markers that are positively ex-
pressed compared to the other cell types (positive markers) and discard markers that
are negatively expressed (negative markers). Similarly, genes that are expressed in
only a tiny proportion of the cells in either population (less than 10%) or have a low
logarithmic fold-change (logFC < 0.25), i.e., the logarithm-transformed ratio of
the two means, are usually discarded to accelerate the analysis. If the normalized
dataset is log-transformed, logFC is simply the difference between the two popula-
tion means.

Since the gene marker discovery involves testing tens of thousands of genes,
the p-values must be adjusted for multiple comparisons to decrease the number of
false positive findings. Seurat and Scanpy use the Bonferroni correction [85] be-
cause the adjusted p-values stay constant if the gene filtering criteria are changed
prior to testing, assuming the total number of expressed genes is always used to
correct the values. The Bonferroni correction is a conservative correction method,
meaning it can more effectively reduce false positive findings (type II error) than
other correction methods, such as the Benjamini–Hochberg procedure [86]. How-
ever, its ability to reduce false negative findings (type I error) is low compared to the
Benjamini–Hochberg procedure. When changing the correction method from Bon-
ferroni to Benjamini–Hochberg, it must be kept in mind that the adjusted p-values
can change depending on how the genes are filtered.

The process of DE analysis between any two cell populations is virtually the
same as for the gene marker discovery. However, if the objective is not to find gene
markers to identify cell types, it is also relevant to consider the genes with a nega-
tive logFC in the comparison. Furthermore, there are special considerations if the
dataset includes cells from multiple subjects or batches. The issues of joint analysis
of multiple datasets are discussed in the next subsection.

Joint analysis of multiple datasets

When scRNA-seq was introduced, the first datasets were mainly prepared using a
single cDNA library, replicate, and condition. However, researchers soon began to
create more complex scRNA-seq experiments that included multiple subjects and
different covariates, such as conditions, time points, age, and sex. Around the same
time, there also started to be a growing need to compare datasets between studies.

When joint analysis of multiple datasets is performed, the covariates often create
a hierarchical structure in the data in which the cells with similar covariate character-
istics are clustered closer together. This can sometimes be a favourable outcome if
the cells are clustered based on a condition central to the study’s aims, which implies
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that the condition is causing changes in gene expression. However, in many cases,
cells being clustered based on a covariate is harmful because it hinders the unsuper-
vised cell type identification that is performed using clustering, and the DE analysis
that is performed within each cell type based on the clustering. Researchers have
developed data integration methods to mitigate this issue by removing batch effects
prior to clustering and visualization [9; 87; 88]. The data integration methods aim to
transform the data so that the cell types are clustered based on cell types, not batches.
Data integration is practical even in cases where the segregation of cell types based
on a covariate is favourable to demonstrate a hypothesis because it facilitates DE
analysis within cell types.

As in unsupervised cell type identification, the DE analysis is also more com-
plicated when a scRNA-seq experiment includes multiple subjects or covariates that
cause batch effects in the data. Basic statistical tests such as the Wilcoxon rank-sum
test assume that the data points in both comparison populations are statistically in-
dependent. However, this assumption is only rarely valid in experiments that include
cells originating from multiple subjects or other biological replicates. In statistics,
the issue of dependent observations in populations is known as the pseudoreplication
bias [89], which can cause false positive findings [16]. To alleviate the pseudorepli-
cation bias in DE analysis of scRNA-seq data, researchers have introduced methods
[17; 18; 19; 22] that account for the subjects in the DE analysis model. The two main
approaches for multi-subject scRNA-seq data analysis are the pseudo-bulk methods
that aggregate the counts at the subject level and the mixed models that model the
subjects as a random effect. In Publication II, we benchmarked various methods for
DE analysis of multi-condition, multi-subject scRNA-seq data.

Trajectory inference

While the discrete cluster-level representation of the cells is helpful for applications
such as cell type identification and cell-type-specific DE analysis, it does not utilize
the full potential of the single-cell resolution. Cells can have additional transition
states [24] that are not part of the clustering, and the clustering does not model how
the cell types differentiate from one another. Sometimes cell differentiation can be a
gradual process with many intermediate states, and the differentiation is most accu-
rately modelled at the single-cell level.

To model dynamic processes with scRNA-seq data, many trajectory inference
methods, also known as pseudotemporal ordering methods, have been developed
[26], the current number easily exceeding hundred. A single-cell trajectory is a dy-
namical representation of the cells that models how the cells transition between states
at the discrete or continuous level, and pseudotime is the measure of cell differen-
tiation in the trajectory, a pseudotime of 0 being the starting point and the highest
possible pseudotime being the endpoint [90]. Trajectories can have different shapes,
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also called topologies [27], the simplest one being linear or cycle, and the most com-
plex ones having multiple disconnected parts and multiple branching points at which
cells diverge. Trees represent a topology type in which all cell types are connected
without forming cycles or disconnected parts. If a trajectory has multiple endpoints
to which cells diverge, it is said to diverge. In contrast, if it has multiple starting
points from which cells converge, the trajectory is said to converge.

Since the number of trajectory inference methods is so large, it is not straight-
forward to provide a comprehensive summary of them all. In general, all trajectory
inference methods require pre-processing steps that reduce the dimensionality, e.g.,
from 10,000 to 3, prior to the trajectory construction, while aiming to preserve the
cell heterogeneity after the transformation. The dimensionality reduction can be per-
formed similarly as in cell type identification, using feature selection and feature
extraction. Another shared feature of trajectory inference methods is the require-
ment of a user-specified startpoint, a cell or cluster, from which the pseudotime is
calculated.

Monocle [90] was one of the earliest trajectory inference methods for scRNA-
seq data, and it models the trajectory as a minimum spanning tree (MST) of cells.
Its successor, Monocle 2 [91], utilizes the reversed graph embedding (RGE) algo-
rithm [92] to enable more robust and accurate trajectory inference compared to the
first version of Monocle. Monocle 3 [93] was inspired by PAGA [94], which is a
method that uses k-nearest neighbour (k-NN) graphs and the Louvain community
detection algorithm to create a trajectory in which connected, neighbouring Louvain
communities (clusters) have more neighbouring cells in the kNN graph than would
be expected under a statistical model. The three versions of Monocle and PAGA are
among the most widely used and cited trajectory inference methods.

Slingshot [28] is another widely used trajectory inference method. It builds a
minimum spanning tree (MST) for a clustering to create a milestone network that
models how the milestones (clusters) differentiate from each other in the trajectory.
In the second phase, Slingshot uses the simultaneous principal curves algorithm
[31; 28] to infer lineages with respect to a user-specified starting cluster, creating
single-cell resolution pseudotime in the process. Slingshot allows the user to freely
decide the input clustering, but automated clustering optimization methods such as
the average silhouette width (ASW) [95] can be used as well [26].

The methods have significant differences in terms of the topology of the trajec-
tory that can be modelled. Slingshot is limited to diverging tree-shaped trajectories,
which can also be disconnected after a post-publication update, whereas Monocle 3
and PAGA can be used to model trajectories that have cycles and both converging and
diverging parts [96]. scShaper is a trajectory inference method that was introduced
in Publication III, and it is limited to linear trajectories.

A significant limitation of the above-mentioned trajectory inference methods is
that they require the starting cell or cluster to be specified by the user. However, RNA
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velocity methods [97; 98] overcome this limitation by leveraging information about
spliced and unspliced mRNA to infer the direction of the trajectory. While the RNA
velocity methods have been largely successful, their usage can be challenging with
cell types relatively close to each other at the transcriptomic level, such as immune
cells. In addition, the RNA velocity methods do not generally work with multi-
subject, multi-condition data [99]. In contrast, trajectory inference methods that do
not estimate RNA velocity can easily be combined with data integration methods
[55].

Compared to cell type identification methods, trajectory inference methods can
be challenging to use because the topologies for which they have been designed
vary, and the default parameters do not often work optimally with every dataset [26].
Method testing and parameter tuning can be time-consuming, requiring biological
knowledge to select the method and parameter combination that provides the most
optimal result. To facilitate trajectory optimization, helpful frameworks such as dyno
[26] have been developed, which provide a user-friendly interface for selecting an ap-
propriate method. In Publication IV, we proposed our solution to this challenge by
introducing Totem, a trajectory inference method that aims to simplify the inference
of tree-shaped trajectories by leveraging a large set of dissimilar clustering results.
Totem models each clustering as an MST and estimates the cell connectivity based on
the connectivity of the clusters in the MSTs, which helps to visually locate transition
states present in the data. The cell connectivity combined with a user-friendly inter-
face enables efficient trajectory optimization in a way that does not require in-depth
knowledge of the underlying methodology.

After a trajectory model has been built, DE analysis can be performed to iden-
tify genes that change along cell pseudotime. This task differs from the DE analysis
of clusters that compares two sets of expression values in which the observations
(cells) are unordered. Generalized additive models (GAM) are a popular approach to
performing DE analysis along pseudotime [90; 98; 100]. The dynverse pipeline for
trajectory inference analysis [26] includes a method that ranks the genes by their fea-
ture importance score based on a trained random forest regression model. switchDE
is a method that uses a likelihood ratio test for a sigmoidal expression model to find
monotonic trends [101], and ImpulseDE2 has a similar operating principle, but it
can also capture non-monotonic trends [102]. scGTM is a recently introduced model
that can model versatile gene expression trends more interpretably compared to the
previous methods [103].
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3 Computational methods

In this chapter, we briefly describe how the three novel computational methods in-
troduced in Publications I, III and IV work.

3.1 ILoReg
In Publication I, we introduced ILoReg, a cell type identification method devel-
oped for detecting cell types with subtle transcriptomic differences from scRNA-seq
data. Here we refer to cell type identification as the process that includes all or al-
most all steps required to identify cell types from scRNA-seq data: quality control
to filter poor-quality cells and lowly expressed genes, normalization, dimensionality
reduction, clustering, visualization, and gene marker discovery. The process is un-
supervised, meaning the cell types are identified without external scRNA-seq data
with a cell type annotation, which is the pre-requisite of supervised cell annotation
methods [9; 73; 74; 104].

Figure 1 illustrates the cell type identification workflow of ILoReg. ILoReg as-
sumes that quality control and normalization have been performed beforehand using
external software, such as Seurat [9; 23]. The key difference compared to other cell
type identification tools is the iterative clustering projection (ICP) step (Figure 1a),
which is applied on a normalized gene expression matrix before principal component
analysis (PCA). In scRNA-seq analysis toolkits such as Seurat, this step involves the
selection of highly variable genes (HVG), usually between 1000 and 3000 genes.
The purpose of the HVG selection is to reduce noise prior to PCA and decrease run
time [105].

The ICP algorithm (Figure 1a) is an iterative algorithm that seeks a clustering of
cells that has a high predictability when trained and projected using a logistic regres-
sion (LR) model, with the training performed using a subset of the whole dataset.
Starting from random cluster labels, 𝑆, ICP creates a balanced training set that has
the same number of cells, 𝑛 = ⌈𝑁𝑑/𝑘⌉, in each cluster, with 𝑁 denoting the number
of cells in the whole dataset, 𝑘 the number of clusters, and 𝑑 the hyperparameter
that controls the size of the training set with respect to the whole dataset (by default,
𝑘 = 15, 𝑑 = 0.3).

The ICP algorithm trains an LR model [106] using the training set and predicts
the cluster labels of the whole dataset, yielding the projected clustering 𝑆′. Cluster-
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Figure 1. Process diagrams of (a) Iterative Clustering Projection (ICP) and (b) ILoReg. PCA =
Principal Component Analysis. ARI = Adjusted Rand Index. UMAP = Uniform Manifold
Approximation and Projection. t-SNE = t-distributed Stochastic Neighbor Embedding. Adapted
from Publication I.

ing similarity of 𝑆 and 𝑆′ is assessed using the adjusted Rand index (ARI) [107], for
which 1 implies perfect similarity and 0 perfect dissimilarity. If ARI increases from
the starting value of 0, the clustering 𝑆 is replaced by the projected clustering 𝑆′, and
the iteration continues with the updated clustering. Otherwise, the iteration, with the
random training sampling step included, will be repeated 𝑟 times (by default, 𝑟 = 5)
with the old clustering, and the clustering 𝑆 and its LR-estimated probability ma-
trix are returned as output when the number of reiterations reaches 𝑟. Every time
the clustering 𝑆 is updated because ARI increases, the reiteration counter is reset to
zero.

The fourth hyperparameter of the ICP algorithm is the cost of constraints pa-
rameter (𝐶) of the LR model, which controls the trade-off between the training ac-
curacy and the stringency of L1-regularized feature selection, with 𝐶 = 0.3 being
the default value and a lower value increasing the stringency, i.e., fewer features are
selected.

To increase the robustness of the ICP algorithm to its hyperparameters and re-
duce the impact of the stochastic training sampling on the result, we developed a
consensus (ensemble) algorithm (Figure 1b) that aggregates the ICP probabilities
from 𝐿 ICP runs using PCA, where each ICP run is initialized using a different
random seed. Finally, ILoReg clusters the 𝑁 × 𝑝-dimensional PCA-transformed
data matrix using Ward’s method for hierarchical clustering and visualizes it using
t-distributed stochastic neighbor embedding (t-SNE) or uniform manifold approx-
imation and projection (UMAP). The number of principal components (𝑝) can be
selected using the elbow plot, which visualizes the standard deviation of each prin-
cipal component [9; 8]. Finally, the gene markers are identified using the Wilcoxon
rank-sum test and the one-versus-rest approach, in which cells of each cluster are
compared with the cells of the rest of the clusters [9; 8].
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The rationale behind the ICP algorithm is to obtain a set of cluster labels that
produce a well-generalizable LR model, that is, a model that can predict the cor-
rect labels when trained with only a subset of the data. In supervised learning, the
fundamental aim is to train a classification or regression model with a subset of the
data and optimize it to generalize to new, independent observations. In this regard,
the processes resemble each other. Although the ICP algorithm is an unsupervised
clustering method, the discrete cluster labels are, in the end, not required because
only the cluster probabilities are used in the consensus method. Therefore, the ICP
algorithm can be considered a soft, fuzzy clustering method. The ICP algorithm
also bears a resemblance to autoencoders [82; 83; 108; 109; 110; 111; 112; 113] ,
which learn a small number of new features from data, i.e., the latent layer features.
Similarly, the autoencoder activation functions can also be LR models.

3.2 scShaper
scShaper is a fast, robust, and accurate method for inferring linear paths through
single-cell data. The principle under which it operates is based on the graph theory.
scShaper generates a set of dissimilar clustering results using the k-means algorithm
and aims to find a path through each clustering that minimizes the weights between
the neighboring clusters (Figure 2). When the path-optimized labels replace the ini-
tial cluster labels, we obtain discrete pseudotime in which the numeric cluster labels
and the path are correlated. Since finding the globally optimal path is an NP-hard
problem, solving it requires a brute-force search, which is highly inefficient to com-
pute. Therefore, we utilize a greedy algorithm inspired by Kruskal’s algorithm for
finding the minimum spanning tree (MST). By limiting the maximum degree of the
graph to two, we obtain the degree-constrained Kruskal’s algorithm. which can be
used for path finding. However, unlike Kruskal’s algorithm for finding MSTs, the
degree-constrained Kruskal’s algorithm is sensitive to the input sequence of the clus-
ters. Therefore, the result can change depending on the order in which the clusters
are inputted to the algorithm.

To obtain a trajectory that is insensitive to the input sequence of the clusters, con-
tinuous instead of discrete, and less sensitive to the choice of the number of clusters
in k-means, we developed an ensemble (consensus) method that aggregates multiple
sets of discrete pseudotime into a consensus solution. By default, scShaper clusters
the data matrix 99 times, with the number of clusters (k) varying from 2 to 100, and
then aggregates the discrete pseudotime sets by performing PCA and selecting the
discrete pseudotime sets that have higher PCA loadings for the first principal compo-
nent than the second component. scShaper scales the selected discrete pseudotimes
by min-max scaling, flips the pseudotimes based on the signs of the variables in the
PCA loadings, and averages the selected pseudotimes. The aggregation approach
provided better overall performance than using the first principal component directly
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Figure 2. Process diagram of scShaper. PCA = Principal Component Analysis. t-SNE =
t-distributed Stochastic Neighbor Embedding. LOESS = Locally Estimated Scatterplot Smoothing.
k denotes the number of clusters. Adapted from Publication III.

(Supplementary Fig. 3 of Publication III). Finally, scShaper applies LOESS (Lo-
cally Estimated Scatterplot Smoothing) to perform smoothing on the scaled and av-
eraged pseudotime.

Trajectory inference requires the same pre-processing steps that are performed
before clustering and visualization. The gene expression count data must be filtered
to remove poor-quality cells and lowly expressed genes. Normalization is required
to reduce skewness caused by the varying library sizes between cells. In addition, di-
mensionality reduction steps are needed for the same reasons as in cell type identifi-
cation: to improve run time and mitigate ”the curse of dimensionality”. The upstream
analysis steps can be customized as the user sees best, but, by default, scShaper per-
forms dimensionality reduction using PCA with 50 components and t-SNE with three
components.

3.3 Totem

A comprehensive comparison of trajectory inference methods [26] suggested that
trajectory inference methods have weak generalizability; that is, the methods do not
perform accurately with every dataset. Therefore, the user will likely need to test
several different tools and adjust their parameters to obtain accurate trajectories. The
testing process can be arduous for users unfamiliar with the underlying methodology.
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To facilitate the optimization process, we developed a new trajectory inference
method, Totem, which enables user-friendly inference of tree-shaped trajectories
from single-cell data. Figure 3 visualizes the workflow of Totem. Like scShaper,
Totem assumes that the pre-processing steps, i.e., QC, normalization, HVG selec-
tion, and feature selection, have been performed beforehand, with the only exception
being the feature extraction, which can also be performed using the Totem R pack-
age.

Totem generates a large set of dissimilar clustering results (by default, 10,000)
using a k-medoids algorithm, CLARA [114], and models the differentiation network
(milestone network [26]) of each clustering as a minimum spanning tree (MST). The
number of clusters (k) ranges from 3 to 20, by default, and can be adjusted by the
user. The MST is obtained by finding a tree that minimizes the sum of the edge
weights, where the weights are the distances between the clusters calculated using
a Mahalanobis-like distance metric [115; 28]. For each MST, Totem calculates con-
nectivity of each cluster by counting the number of edges each cluster has in the
MST graph and dividing it by the number of clusters. The cluster-level connectiv-
ity is scaled by the maximum connectivity of the MST, and the scaled cluster-level
connectivity is transformed into cell-level connectivity values based on the cluster
membership of each cell. Finally, cell connectivity is obtained by averaging all cell-
level connectivity vectors across the different MSTs using the arithmetic mean.

The cell connectivity helps to give a general overview of the milestone transi-
tions that are present in the trajectory. For example, it can be used to compare the
topologies between different dimensionality reduction methods, such as PCA, multi-
dimensional scaling (MDS) or t-SNE, which could not otherwise be compared due
to their high dimensionality. With the cell connectivity as a guidance, the user can
browse the MSTs and choose the ones for further analysis that accurately model the
transition states and are biologically sensible. Totem selects the most optimal MST
using the variance ratio criterion (VRC), with the cell connectivity used as input to
it.
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4 Materials

In this chapter, we go through the materials that were used in all publications of
this thesis, including the computational methods that were compared, the benchmark
data, and the performance evaluation methods.

4.1 Benchmarked computational methods
In this section, we briefly describe the computational methods that were bench-
marked with the novel computational methods introduced in the publications of this
thesis.

4.1.1 Cell type identification methods

An extensive number of cell type identification methods have been developed, which
enable identification of cell types in an unsupervised manner from scRNA-seq data
based on gene marker signatures of cell clusters [10; 116; 117]. In addition to
ILoReg, our method introduced in Publication I, we considered four additional cell
type identification methods (CIDR [12], RaceID3 [14], SC3 [11], and Seurat [9]),
which were popular among the scRNA-seq research community at the time, and es-
pecially Seurat continues to be. The methodologies of these methods vary consider-
ably in terms of the pre-processing steps performed prior to clustering (Table 1). To
mention a few notable differences, CIDR is the only method that uses imputation to
replace missing values (dropouts), a step that is still controversial among researchers
as to whether it brings any significant benefit to the analysis of scRNA-seq data
[71; 118], and the method for selecting the optimal number of clusters is different
for each cell type identification method.

4.1.2 Differential state detection methods

In Publication II, we benchmarked methods for detecting differential states (DS)
between conditions (e.g., knock-out versus wild-type or sick versus healthy) from
scRNA-seq data, which include multiple subjects or other biological replicates per
condition. The methods that were compared in the publication can be divided into
two main categories (Figure 3): pseudo-bulk methods and single-cell methods.
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Table 1. Properties of the cell type identification methods compared in Publication I. *SC3 is a
clustering algorithm, but t-SNE and UMAP can be used to visualize using the scater R package
[119]. ICP = Iterative Clustering Projection. PCA = Principal Component Analysis. MDS =
Multi-Dimensional Scaling. CSPA = Cluster-based Similarity Partitioning Algorithm. kNN =
k-nearest neighbors. t-SNE = t-distributed stochastic neighbor embedding. UMAP = Uniform
Manifold Approximation and Projection. VRC = Variance Ratio Criterion.

ILoReg CIDR RaceID3 SC3 Seurat
Feature se-
lection

L1-
regularization
in ICP

- HVG HVG HVG

Feature ex-
traction

ICP + PCA MDS - Three
distance
matrices
+ PCA,
Laplacian
eigenmap

PCA

Other pre-
processing
steps

- imputation random-
forest-based
reclassifi-
cation for
a separate
outlier de-
tection step

- -

Clustering
method

hierarchical hierarchical k-medoids k-means
+ CSPA +
hierarchical

graph-based
(Louvain)

Visualization
method

t-SNE,
UMAP

MDS t-SNE, kNN
graph

none* t-SNE,
UMAP

Method for
selecting
the number
of clusters

silhouette VRC saturation random ma-
trix theory

resolution-
controlled

Reference [120] [12] [14] [10] [9]
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The pseudo-bulk [17; 19; 20; 121] methods aggregate the gene expression data
within each cell type (cluster) and subject (or other biological replicate) by either
averaging the counts that have been normalized at the single-cell level (mean aggre-
gation) or by summing the raw counts and then applying bulk normalization (sum
aggregation). After the aggregation, the pseudo-bulk methods use statistical tests
from bulk RNA-seq analysis, such as Limma [122] or ROTS [123], to perform the
differential expression analysis.

The single-cell methods include naı̈ve methods that do not model the subjects in
any way, as well as mixed models [18; 19; 22; 93] that model the subjects as a random
effect. The naı̈ve methods comprise classical statistical tests, such as the Wilcoxon
rank-sum test, and DS analysis developed explicitly for scRNA-seq data, such as
the MAST two-part hurdle model [21]. An additional single-cell method category
(”Other” in Figure 3) includes methods that were primarily designed as batch effect
correction methods, such as ComBat [124] or Seurat’s latent variable models [9],
and so far, there has not been supportive evidence about their applicability to multi-
subject DS analysis [18; 125].

Naive methods Mixed models Other

- Wilcoxon rank-sum test
- Logistic regression model
- Negative binomial generalized 
linear model
- Poisson generalized linear model
- MAST two-part hurdle model

- MAST_RE
- muscat_MM
- NEBULA

- latent variable models

Sum aggregation Mean aggregation

- pseudobulk_ROTS_sum
- pseudobulk_Limma_sum
- pseudobulk_edgeR_sum
- pseudobulk_DESeq2_sum

- pseudobulk_ROTS_mean
- pseudobulk_Limma_mean

Single-cell 

methods

Pseudo-bulk 

methods

Multi-subject DS 

analysis methods

Figure 4. Overview of the differential state (DS) detection methods compared in Publication II.

4.1.3 Trajectory inference methods

From the large number of trajectory inference methods that have been published, we
included methods that performed well in a benchmark study by Saelens et al. [26].
To benchmark scShaper, which is a method introduced in Publication III for linear
trajectory inference, we considered the best-performing methods in the comparison
that are restricted to linear trajectories, i.e., Comp 1 [26], Elpilinear [29], Embeddr
[126], and SCORPIUS [30]. Comp 1 uses the first principal component as pseudo-
time. In contrast, the other three methods use the principal curves algorithm [31]
or the elastic principal graphs algorithm [127] to perform the pseudotime estimation
(Table 2). In both Publications III and IV, we also considered the popular Sling-
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shot method [28], which is a method for inferring tree-shaped trajectories based on
a user-provided clustering and a low-dimensional embedding. Slingshot models the
differentiation network as an MST and estimates pseudotime using the simultaneous
principal curves algorithm. We also considered TinGa [27], which is a more recently
introduced method that utilizes the growing neural gas (GNG) algorithm [128] and
can also infer trajectories that have cycles and disconnected parts.

Table 2. Properties of the trajectory inference methods compared in Publications III and IV. In
Publication IV, we compared only Slingshot, TinGa, and Totem. *Elpilinear uses the elastic
principal graphs algorithm, which is related to the principal curves algorithm. **SCORPIUS,
Slingshot, and Totem use a clustering to infer the milestone network, whereas scShaper uses an
ensemble of clustering results to estimate pseudotime. ***All methods except Elpilinear and
Embeddr can be used with any dimensionally reduced data matrix. PCA = Principal Component
Analysis. MDS = Multi-Dimensional Scaling. t-SNE = t-distributed stochastic neighbor embedding.
LMDS = Landscape MDS.

Comp 1 Elpilinear Embeddr SCORPIUS scShaper Slingshot TinGa Totem
Restricted
to linear
trajectories

yes yes yes yes yes no no no

Uses princi-
pal curves *

no no yes yes no yes no yes

Clustering-
based **

no no no yes yes yes no yes

Default fea-
ture extrac-
tion ***

PCA PCA Laplacian
eigenmaps

MDS PCA + t-
SNE

PCA LMDS LMDS

Reference [26] [29] [126] [30] [129] [28] [27] [130]

4.2 Benchmark data
Each work included datasets that were used to benchmark the novel computational
methods (Publications I, III, and IV) and the methods for differential state detec-
tion (Publication II). All datasets were either simulated or acquired from public
databases.

4.2.1 Benchmark data for cell type identification

To compare the ability of ILoReg (Publication I) and the other cell type identifi-
cation methods to visually identify cell populations from scRNA-seq data based on
a two-dimensional embedding plot, such as t-SNE or UMAP, we used a peripheral
blood mononuclear cell (PBMC) dataset (pbmc3k) that includes 3,000 cells gener-
ated using the version 1 of Chromium by 10X Genomics [5]. The pbmc3k dataset
is widely used in tutorials to showcase scRNA-seq analysis methods, such as Seurat
[9] and Scanpy [8]. In addition, we considered a second public dataset, which was
originally extracted from human pancreatic tissue (named Baron1) [15], consisting
of 2,000 cells. The Baron1 dataset included a cell type annotation created by the
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original study’s authors, and the pbmc3k dataset included an annotation provided by
the developers of the Seurat toolkit.

To benchmark ILoReg for clustering of scRNA-seq data, we considered 11
datasets from three different studies [15; 72; 131]. The Pollen dataset was the only
gold-standard dataset, meaning the cell labels were known prior to the sequencing
based on laboratory experiments. The remaining ten datasets were silver-standard,
meaning the cell type labels were used as they were identified in the original studies
based on clustering.

4.2.2 Benchmark data for differential state detection

Our comparison of methods for DS detection between conditions from multi-subject
scRNA-seq data (Publication II) included synthetic data generated based on real
scRNA-seq data as a reference. Data generated with reference-based simulation [19;
89] is meant to be more realistic than data simulated without reference. This can
be achieved by modeling characteristics of individual genes and samples from the
reference data. These characteristics include the mean expression of genes, library
sizes of cells, and dispersion at the sample (subject) level. The simulator can then
generate new multi-subject, multi-condition data that include the same characteristics
as the reference, and ground truth on which genes have differential states.

To perform reference-based simulation, we used the muscat R package [19],
which can simulate genes with different DS types: changes in mean expression (DE),
changes in modality (DM), changes in proportions of low and high expression parts
(DP), and changes in both modality and proportions (DB). The differential modal-
ity (DM) means that a dataset has a different number of expression peaks between
groups, and they overlap at least partially. When a gene has both differential pro-
portions and modality (DB), the peaks do not overlap, and their number differs. The
muscat simulator uses a negative binomial generative model to simulate count data
and requires control scRNA-seq samples as input. As the reference data for the mus-
cat simulator, we used control samples from four studies [17; 132; 133; 134]. If the
number of simulated subjects per group (condition) exceeds the number of control
samples in the reference, the extra samples will be technical replicates from the bio-
logical replicates. Therefore, the number of simulated subjects per condition (group)
was kept, at maximum, at the number of control samples, except when we performed
an additional analysis in which we investigated the impact of the number of samples
on the performance. Overall, the number of simulated subjects in both case-control
groups varied from four to ten. logFC between the case-control groups varied from
0.5 to 1.25 for the genes with differential states, generating genes that have relatively
subtle changes between conditions. In total, we simulated 54 datasets (clusters, cell
types) with the reference-based simulation approach.

In addition to the reference-based simulation, we performed a simulation that
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does not utilize reference data [22]. As in the reference-based simulation, the
reference-free simulation adds between-subject and between-cell variance into the
data. However, the magnitudes of these effects are not estimated from reference data
but set manually. In total, we generated 1280 datasets by varying the two variance
parameters, the number of samples per case-control group, the number of cells, and
the average expression. The genes with a logFC of 0 were classified as not having
differential states (negative), and those genes with a logFC between 0.5 and 2 had a
differential state (positive).

4.2.3 Benchmark data for trajectory inference

For the Totem and scShaper trajectory inference tools (Publication II and IV), we
used the dynverse environment [26], which comprises a versatile set of R packages
for running trajectory inference methods, analyzing their results, and benchmark-
ing. The Zenodo data repository [135] of dynverse comprises close to 300 datasets
in total, from which we used 69 datasets with a linear trajectory to benchmark sc-
Shaper [129] and 216 datasets with a tree-shaped trajectory to benchmark Totem
[130], which includes the 69 datasets with a linear trajectory. The synthetic datasets
were simulated using PROSSTT [136] (19 datasets), Splatter [137] (35 datasets),
dyngen [138] (30 datasets), and dyntoy [138] (52 datasets) tools. In addition to
the synthetic data, the benchmark data also included real data (80 datasets) with
either silver-standard ground truth (54 datasets), meaning the cell types and their tra-
jectories were based on earlier annotations from published works, or gold-standard
ground truth (26 datasets), meaning the cell types were known prior to the sequenc-
ing, and their differentiation order is known with high certainty. In all gold-standard
datasets, as well as some of the silver-standard datasets, the trajectories had only dis-
crete pseudotime, which models the differentiation at the cell type level. However,
some silver-standard datasets also had continuous, single-cell resolution pseudotime
generated using a trajectory inference method.

4.3 Performance evaluation

4.3.1 Clustering performance

To measure clustering performance in Publication I, we used the adjusted Rand
index (ARI) [107], which has been widely used in scRNA-seq studies to evaluate
clustering performance [11; 12; 116; 117]. ARI is a modification the normal Rand
index and adjusts the result for chance.
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4.3.2 Performance evaluation of differential state detection
methods

Simulated data

When performing DS detection between two cell populations, a gene can be seen as
having one of two possible states: the gene either has a differential state (positive),
or it does not have one (negative). Therefore, benchmarking DS detection meth-
ods involves comparing the actual, ground-truth state, i.e., the state we obtain from
simulation or somehow else, with the state that is computationally predicted using a
method. The comparison is performed for many genes, typically thousands, mean-
ing the comparison is performed between two large binary variable lists. In this type
of binary classification task, we can use binary classification performance metrics
[139], which can be derived from a 2 × 2 contingency table (confusion matrix) that
counts the true positives (TP), true negatives (TN), false negatives (FN), and false
positives (FP) for all genes between the two lists. In Publication II, we used sensi-
tivity (recall, power, true positive rate), specificity (true negative rate), precision, F1
score, and Matthew’s correlation coefficient (MCC).

Sensitivity measures what proportion of the true positives were identified as pos-
itives (𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)), which can be maximized by detecting all genes as pos-
itives. Specificity, its counterpart, measures what proportion of the true negatives
were identified as negatives (𝑇𝑁/(𝑇𝑁 + 𝐹𝑃 )), and it can similarly be maximized
by not reporting any positives.

Precision measures what proportion of all positive findings were true positives
(𝑇𝑃/(𝑇𝑃 +𝐹𝑃 )), and its drawback is that it cannot be calculated if no positives are
detected. Notably, we obtain the false discovery rate (FDR) by subtracting precision
from one, the metric controlled by the Benjamini-Hochberg procedure for correcting
p-values for multiple testing, which was used in Publication II. Comparison of the
estimated FDR based on how many false discoveries are found in benchmarking and
the expected FDR based on the FDR cutoff enables to determine whether a method
is too conservative, i.e., it produces fewer false discoveries than expected, or if it is
too permissive, i.e., it produces more false discoveries than expected. We compared
each method’s estimated and expected FDR levels based on the results of the two
simulations.

The F1 score is the harmonic mean of sensitivity and precision, providing a more
general-level assessment of the performance than the two metrics alone. The MCC
is another metric for evaluating overall performance. It has been suggested to be
less negatively affected than the F1 score and accuracy when the class labels are
imbalanced [140], a property that is commonly present in RNA-seq data and was
also in our benchmark data.

In differential state detection, an intricate part is defining when a gene has a
differential state. In RNA-seq data analysis, the definition is typically based upon the
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p-value of a gene, or more often its value after adjustment for multiple comparisons
[85; 86], and its log-transformed fold-change (logFC), i.e., the log-transformed ratio
of the average expression between the two groups. In Publication II, we defined
a gene as a positive if its 𝐹𝐷𝑅 ≤ 0.05. In practice, the p-value criterion is often
accompanied by a logFC threshold (by default, 0.25 in Seurat) to exclude genes with
only a tiny difference in the average expression between two groups. However, we
decided to neglect the logFC filtering step to avoid removing weaker signals that may
be decisive in determining the superiority of the methods.

A single p-value or FDR cutoff to determine positive and negative discoveries
may not be conclusive enough to compare methods because the values of the binary
classification metrics change depending on which cutoff is used. Therefore, it is com-
mon to perform an analysis that tests different cutoffs, calculates their corresponding
metric values, and calculates a new metric that summarizes the values. The receiver
operating characteristic (ROC) curve is the most widely used method to perform this
type of multi-threshold performance evaluation. ROC uses multiple p-value cutoffs
to calculate sensitivity and false positive rate, specificity subtracted from one, cre-
ates a curve from the values, and calculates the area under the curve (AUROC). To
perform ROC analysis in Publication II, we used the pROC R package [141]. Al-
ternatively, the precision-recall curve can be more suitable than ROC if a dataset has
a high proportion of negatives and the positive instances are rare [142; 143; 144].
However, we did not use the precision-recall method in our work.

Mock comparison to estimate false positive rate

Besides simulation, we performed a mock comparison [145] to estimate the false
positive rate (FPR), which is one minus specificity, by creating randomly assigned
groups from 14 control subjects of the Liu dataset [134], and by calculating the ratio
of the number of positive (false positive) findings to the number of negative (true
negative) and positive findings. Using the uncorrected p-values to define the posi-
tive and negative findings, we estimated the type I error (false positives) control by
comparing the estimated and expected FPR levels [146]. This is based on the notion
that with a p-value of 0.05, we can expect a 5% chance that the null hypothesis was
rejected incorrectly (type I error). The interpretation is similar to the FDR control
analysis based on the precision from the simulation, i.e. those methods that exceed
the FPR are overly permissive, and those that fall below it are overly conservative.

Reproducibility

As the final analysis in Publication II, we assessed reproducibility of the DS de-
tection by comparing how similar the results between different subsets of the same
dataset are. We created 100 random subsets of the Liu [134] case-control samples
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that were generated based on the reference-based simulation by the muscat R pack-
age. To measure reproducibility, we calculated Spearman’s rank correlation coeffi-
cient between every dataset pair using the p-values.

4.3.3 Performance evaluation of trajectory inference methods

We used the dynverse trajectory inference framework [26] to benchmark trajectory
inference methods in Publications III and IV. In total, dynverse comprises 17 per-
formance evaluation metrics, but only four were used to assess the overall perfor-
mance in the original study by Saelens et al. [26] and our studies.

The first of the four metrics is the correlation between geodesic distances. In
the two trajectories that are compared, i.e., the ground-truth and inferred trajectories,
the geodesic distance is calculated between every possible cell pair in both trajec-
tories. The geodesic distance is a distance method that can be easily applied to
milestone network models that have regions of delayed commitment. The regions of
delayed commitment are trajectory regions in which a lineage diverges into multiple
new lineages (bifurcating or multifurcating), and the cells that are within the regions
can simultaneously have non-zero progression along more than one of the diverging
lineages, which is, in contrast to linear regions in which cells are only progressing
between two milestones (cell types). After the pairwise geodesic distances have been
calculated in both trajectories, Pearson’s correlation coefficient is calculated between
the two geodesic distance lists.

The second main metric is the accuracy of differentially expressed features. dyn-
verse uses the ranger software [147] to build a random forest (RF) regression model
and assess the feature importance of each feature (gene) using the trained model. As
the predictor variable that the RF model aims to predict, dynverse uses the geodesic
distance, which is calculated from each cell to all milestones. A separate RF model
is trained for each milestone, and the feature importance scores are averaged over the
milestones. The Pearson’s correlation coefficient is calculated between the ground-
truth and computationally inferred average feature importance lists. To place more
weight on features that are ranked higher in the ground-truth feature importance list,
dynverse calculates the weighted correlation by weighting the features by their fea-
ture importance scores in the ground-truth feature importance list.

The third metric is the Hamming-Ipsen-Mikhailov distance (HIM) [148], which
measures the topological accuracy, i.e., how similar the milestone network graphs
are in terms of structure. The two compared trajectories are represented as adjacency
matrices in which the edges are weighted based on the edge weights in the milestone
network of the trajectories, which is usually the Euclidean or Mahalanobis distance
between the milestone centroids. The HIM is a linear combination of the normalized
Hamming distance and the normalized Ipsen-Mikhailov distance calculated between
two graphs, which assess the local structural similarity and the global structural sim-
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ilarity of the graphs, respectively.
The fourth and final main metric is the F1 branches, which estimates accuracy

of branch assignment. The cells are mapped to their nearest branches, i.e., linear
segments of the trajectory between milestones, generating a discrete clustering, and
clustering similarity between the ground-truth and inferred clustersets is assessed
using a method based on the Jaccard index [149].

The four above-described metrics are averaged using the geometric mean, which
penalizes small values. Therefore, if one of the metrics has a value close to zero and
the rest of the metric values are high, the overall score will still be small. In Publica-
tion III, we only considered the correlation of geodesic distances and the correlation
between differentially expressed features when calculating the overall score because
including the two other metrics would have unfairly penalized the Slingshot and
TinGa methods that can also predict non-linear trajectories. In Publication IV, we
considered all four metrics when calculating the overall score.
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5 Results

5.1 Unsupervised cell type identification using ILoReg
– Publication I

To benchmark ILoReg for cell type identification from scRNA-seq data, we carried
out a two-part comparison. In the first part, we evaluated the clustering accuracy of
ILoReg and four other cell type identification methods: CIDR [12], RaceID3 [14],
SC3 [11], and Seurat [9]. In the second part, we compared cell populations that were
visually identifiable from a PBMC dataset (pbmc3k) based on two-dimensional em-
beddings, such as t-SNE, UMAP, or MDS. We performed a closer examination of the
cell types that could be identified from the PBMC dataset and a pancreatic dataset
using ILoReg and Seurat. In addition, we constrained the parameters of ILoReg by
investigating how the parameters’ adjustment affected the identifiable cell popula-
tions.

5.1.1 Benchmarking ILoReg for clustering of scRNA-seq data

To assess clustering accuracy, we used ARI [107], which measures clustering simi-
larity between two clustersets, with 1 indicating perfect similarity and 0 indicating no
similarity. For each of the 11 datasets and five clustering methods, we calculated ARI
between the ground-truth and inferred clustersets. The results (Figure 5) suggested
that ILoReg and Seurat achieved good overall performance regardless of the dataset
size. SC3 performed well with the smaller datasets (Pollen, vanGalen BM 1), but its
performance was moderate for the larger datasets (Baron). Overall, CIDR performed
worse than the other methods. Two of the van Galen datasets (BM 5 1 and BM 5 2)
had a highly imbalanced distribution of cells between the cell types, and all methods
performed poorly (ARI below 0.25) with these datasets.

5.1.2 Visualizing peripheral blood mononuclear cell populations
using ILoReg

ILoReg was designed to identify cell populations from scRNA-seq data that can be
difficult to identify with conventional methods such as Seurat [9], which select a
set of highly variable genes (HVGs) prior to PCA. To demonstrate the ability of
ILoReg to identify cell populations with subtle transcriptomic differences, we used
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Figure 5. Evaluating clustering accuracy in Publication I. The benchmark data include 11
datasets from three studies. ARI = adjusted Rand index. Adapted from Publication I.

the pbmc3k dataset [150], which is an example dataset in tutorials of Seurat [9]
and Scanpy [8]. In Publication I, we compared the visualizations (Figure 5 of
Publication I) of the five methods, which differ in the steps that are performed prior
to the visualization (Table 2).

The results showed that ILoReg was able to identify distinct B and T cell
populations that were not visible in the visualizations of the other methods.
Specifically, ILoReg identified a cell population that expressed gene markers
(CCR7+/S100A4-/S100B+) of the naı̈ve CD8+ T cells (Figure 4c of Publication I).
In addition, ILoReg identified B cell populations that expressed markers of naı̈ve
(TCL1A+/CD27-) and memory B cells (TCL1A-/CD27+) [151; 152], as well B cell
subpopulations with differential expression of immunoglobulin light chain markers
IKGC, IGLC2, IGLC3, indicating segregation of B cells with lambda and kappa
light chains [153]. The t-SNE embeddings in Figure 6 show the same analysis
but with a more stringent feature selection (𝐶 = 1) and a larger training set size
(𝑑 = 0.5). With these parameters, the small B cell subpopulations with varying
expression of the light chain markers disappear, but the rest of the cell populations
remain unchanged.
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Figure 6. Comparing ILoReg and Seurat for identifying PBMC populations from t-SNE
visualizations in Publication I. S100A4-/CCR7+ indicate naı̈ve T cells, and S100A4+/CCR7 -
indicate memory T cells. CD8B is a marker of CD8+ T cells, and TCL1A is a marker of naı̈ve B
cells. PBMC = peripheral blood mononuclear cell. ICP = iterative clustering projection. HVG =
highly variable genes. PCA = principal component analysis. t-SNE = t-distributed stochastic
neighbor embedding.

5.1.3 Visualizing pancreatic cell populations using ILoReg

For a human pancreatic scRNA-seq dataset (Baron1 [15]), we performed a similar
comparison as for the PBMC dataset. Overall, the t-SNE visualization of ILoReg in-
cluded more distinct cell populations than the t-SNE visualization of Seurat (Figure
5 of Publication I). An example of such a population was the IAPP+/MALAT1-
beta cell population, which we hypothesized to be stressed (injured) beta cells be-
cause MALAT1 has been shown to be downregulated in injured beta cells [154]. This
conclusion was supported by a functional analysis using the Metascape tool [155],
which revealed enriched pathways linked to cell stress, such as endoplasmic reticu-
lum stress [156]. Figure 7 visualizes some of the markers that were downregulated in
the injured beta cells. While the t-SNE visualization of Seurat included a population
that had similar markers, it was clustered closely together with the rest of the beta
cells. The example shows how ILoReg can more easily distinguish cell populations
that are subsets of the same cell type.

5.1.4 Robustness, run time and parameters of ILoReg

The ICP is stochastic because it includes a step that selects cells randomly into the
training set. To obtain robust, reproducible results with ILoReg, we developed a
consensus (ensemble) method that aggregates results from multiple ICP runs (𝐿)
using PCA. Figure 2 of Publication I shows that the consensus approach of ILoReg
achieved more robust and better performance than single ICP runs.

The run time is an important part of algorithm performance. The ICP algorithm
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Figure 7. Comparing ILoReg and Seurat for identifying beta cell populations from t-SNE
visualizations in Publication I. IAPP is a beta cell marker that encodes the islet amyloid
polypeptide hormone shepherd2004transcriptional. MALAT1, NEAT1 and TMED10 are
downregulated in the injured beta cells.

is the computational bottleneck of ILoReg because it requires training thousands of
logistic regression models and projecting cells using the models. With the default
parameters and the pbmc3k dataset that includes 3,000 cells, the run time of ILoReg
was approximately one hour on a laptop with 8 GB of RAM and four logical proces-
sors (threads). When the number of cells was increased to 20,000, the run time was
ten hours.

ILoReg includes six parameters (hyperparameters) that needed to be constrained
to default values: 1) the number of clusters in ICP (𝑘), 2) the proportion of cells in the
training data of the LR model (𝑑), 3) the cost of constraints (𝐶) that regularizes the
trade-off between training accuracy and feature selection in the ICP, 4) the number
of reiterations (𝑟) that affects how far the ICP algorithms converges, 5) the number
of ICP runs (𝐿), 6) the number of principal components in the PCA aggregation step
(𝑝).

For the number of clusters, 𝑘 = 15 was set as the default value because this is, on
average, close to the number of cell types that are identifiable in many tissues, such
as pancreas and PBMC. Tuning the 𝑘 parameter may be necessary if more complex
tissues, such as mouse brain [157], are analyzed.

Figure 6 shows the same comparison as in Figure 4c of Publication I, except
that the 𝐶 parameter was increased to 0.3 from 1, increasing the number of selected
features and decreasing the training error in the LR model. Changing the parameters
did not impact the T cell populations identified by ILoReg, but the four separate B
cell populations became merged into a single continuous B cell population. Based on
the expression of the TCL1A gene, which is a marker of the naı̈ve B cells, the upper
part of the B cell population constitutes memory B cells that have differentiated from
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naı̈ve B cells, which are in the lower half of the B cell population. The example shows
how the 𝐶 parameter can be used to control the resolution of the cell population
identification, with a higher value decreasing the resolution. The difference in the
resolution occurs because the algorithm becomes less sensitive to cell populations
that are segregable by a small number of highly variable genes.

The 𝑑 parameter controls the number of cells in the training data (𝑛 = ⌈𝑁𝑑/𝑘⌉).
Increasing 𝑑 has a similar impact as increasing 𝐶, i.e., the resolution of the cell
type identification decreases. The resolution decreases because the ICP runs become
more dissimilar and the PCA aggregation has fewer correlated cluster probabilities
as input.

The number of principal components (𝑝) can be adjusted based on the elbow plot
that visualizes the variance of the principal components, which is the most common
approach for choosing its value. The default value of 50 was chosen because using
too many principal components is generally considered to be less harmful than using
too few.

For the number of ICP runs (𝐿), we selected a high default value (200). The
objective of the consensus approach is to obtain robust results, and we did not observe
significant differences between the results generated using 100, 150, or 200 ICP runs.
However, each dataset has its own point at which the consensus approach begins to
produce results that are robust and reproducible, and hence a high default value was
chosen to ensure robustness.

5.2 Benchmarking methods for detecting differen-
tial states between conditions from multi-subject
scRNA-seq data – Publication III

Here we report the main results of Publication II in which we benchmarked meth-
ods for detecting differential states between conditions from multi-subject scRNA-
seq data. The benchmark involved assessing the false positive control, sensitivity,
area under the receiver operating characteristic curve (AUROC), and reproducibil-
ity. When discussing the results of Publication II, we use the term differential state
instead of differential expression because differential expression is one of the six dif-
ferential state types considered in the work. However, elsewhere in this thesis we
primarily use the term differential expression because it has been widely adopted as
the term for referring to changes in gene expression.

5.2.1 False positive control

Since the assignment of positive and negative findings was based on a single FDR
threshold of 0.05, we can expect that 5% of the positive results are false. Comparison
of the expected FDR with the estimated FDR level will enable to evaluate the FDR
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control [146]. No single rule exists to determine when the FDR control is accurate.
However, the median of the estimated FDR should be close to the expected FDR, and
the deviation from the median should be minimal. We considered the FDR accurate
if the expected FDR was within the 0.25 and 0.75 quartiles of the estimated FDR and
the variation was visually judging moderate.

For the simulation results, we obtained the estimated FDR by subtracting pre-
cision from one. The simulation results (Figure 8) showed that the pseudo-bulk
methods achieved the most accurate FDR control of the different method types.
In the reference-based simulation (Figure 8b), the estimated FDR levels of mus-
cat MM and NEBULA-LN indicated that their FDR control was too loose, whereas
the FDR control of MAST RE was accurate. However, in the reference-free simu-
lation (Figure 8a), the FDR control was too loose for all three mixed models. In
contrast, the pseudo-bulk methods achieved, in general, accurate FDR levels. The
FDR control of the naive and latent methods was too loose in both simulations.

The mock analysis (Figure 8c) measures the false positive rate (FPR) by com-
paring the number of positive findings (false positive) with the number of negative
findings (true negative). If we use the raw p-values that are uncorrected for multi-
ple testing to define positive and negative findings, we can evaluate the FPR control
(type I error control) for each method [146; 22]. The results of the mock analy-
sis were, on average, in line with the simulation results, with the naı̈ve and latent
methods exhibiting overly high FPR levels and the pseudo-bulk methods showing
accurate FPR control. However, unlike in the simulation results (Figure 8a-b), mus-
cat MM had the lowest FPR levels of the methods that reported positive findings,
considerably below the expected FPR of 0.05. Furthermore, when the p-values were
corrected for multiple testing using the Benjamini-Hockberg procedure, the FPR of
all pseudo-bulk methods and mixed models was clearly below the FPR of 0.05 (Fig.
4 of Publication II), with NEBULA-LN reporting more false positives than the other
methods for some of the mock datasets.

5.2.2 Sensitivity and ROC analysis

Besides the false positive (type I error) control, another important aspect is the ability
to detect true positives or avoid false negative findings (type II error). We measured
sensitivity, i.e., what proportion of the positives in the truth set were predicted as
positives (Figure 9c,d). The naı̈ve methods achieved the highest overall sensitivity
in both simulations. In the reference-based simulation, the naı̈ve methods outper-
formed the latent methods in terms of sensitivity, but in the reference-free simula-
tion the two method types achieved comparable levels of sensitivity. However, the
pseudo-bulk methods and mixed models achieved considerably lower sensitivity than
the naı̈ve and latent methods. The sensitivity of the pseudo-bulk methods that use
mean aggregation was lower than the sensitivity of the pseudo-bulk methods that use
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sum aggregation. ROTS achieved the lowest sensitivity of the four statistical tests.
NEBULA-LN achieved the highest overall sensitivity of the three mixed models,
whereas muscat MM had the lowest sensitivity.

The receiver operating characteristic (ROC) curve is a popular method for eval-
uating performance in a way that is not restricted to a single cut-off that defines the
positive and negative findings. It simultaneously considers both the sensitivity and
the false positive ratio aspects of the performance. The area under ROC (AUROC)
results for the simulation (Figure 9a,b) indicated that the pseudo-bulk methods out-
performed the other method types. However, the pseudo-bulks that use the mean
aggregation were slightly inferior to the sum aggregation methods, which we also
observed from the sensitivity results (Figure 9c,d). Compared to sensitivity, the
differences between the mixed models and pseudo-bulk methods were more pro-
nounced in the AUROC results, with the pseudo-bulks generally outperforming the
mixed models in terms of AUROC. The AUROC of the naı̈ve methods was rela-
tively high, suggesting that although they were more susceptible to false positives
than the other method types (Figure 9c,d), they were still generally able to rank the
genes with differential states higher than the genes without differential states. The
latent models clearly had the lowest AUROC in the reference-based simulation, but
in the reference-free simulation their AUROC levels were comparable with the naı̈ve
methods.

5.2.3 Reproducibility

Finally, we measured how reproducible the results of each method were between
different subsets of the same dataset. We took 100 random subsets of the reference-
simulated Liu dataset, which included ten replicates per group and 20,000 cells in
total. We used Spearman’s rank correlation coefficient to assess the correlation be-
tween the p-values. The results (Figure 10) show that all methods had relatively low
average reproducibility, on average below 0.5. The moderate correlation is likely due
to the high proportion of genes that do not have differential states, which makes the
gene ranks sensitive to changes in the group composition. The pseudo-bulk method
that uses ROTS for statistical testing and mean aggregation had the best average re-
producibility. The latent methods achieved abnormally high reproducibility for a
small proportion of the datasets due to constant p-values.

5.3 Linear trajectory inference using scShaper – Publi-
cation II

The results of Publication III consist of three parts. First, we benchmarked scShaper
for linear trajectory inference from scRNA-seq data. Second, we compared scShaper
and the principal curves algorithm [31], which is a method that is commonly used
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in trajectory inference to infer smooth paths through lineages (linear segments) of
the trajectories with respect to a user-specified starting point [28; 30]. Finally, we
investigated the impact of the parameters of scShaper on the performance and run
time.

5.3.1 Benchmarking scShaper for inference of linear trajecto-
ries from scRNA-seq data

dynverse is a software environment for running and benchmarking trajectory infer-
ence methods [26]. The original benchmark data of dynverse included 69 linear tra-
jectories, which we used to evaluate the performance scShaper and six other trajec-
tory inference methods (Component 1 [26], Elpilinear [29], Embeddr [126], SCOR-
PIUS [30], Slingshot [28] and TinGa [27]) in Publication III. dynverse includes 17
different performance evaluation metrics that are summarized in Supplementary Ta-
ble 1 of Publication III. Two of these metrics, the correlation of geodesic distances
(accuracy of cell ordering) and the weighted correlation of feature importance (accu-
racy of differentially expressed genes), were averaged using the geometric mean to
create the overall score.

The results suggested (Figure 11a-c) that scShaper achieved similar or better
performance in terms of the accuracy of cell ordering but significantly better perfor-
mance compared to the other methods in terms of the accuracy of differentially ex-
pressed features and the overall score (Wilcoxon signed-rank test; p-value ≤ 0.01).
When grouping the overall scores by the data type (Figure 11d), the results indi-
cated that scShaper outperformed the other methods for three of the four simula-
tors (PROSSTT [136], dyngen [138], dyntoy [26]) and the real data. All methods
achieved moderate performance for the Splatter-simulated data [137].

5.3.2 Comparing scShaper and the principal curves algorithm

scShaper can be used as a general-purpose method for inferring linear paths through
data. To showcase this ability, we simulated two three-dimensional datasets and com-
pared the performance of scShaper and the principal curves algorithm (Figure 12).
The principal curves algorithm [31] is a commonly used method for inferring linear
paths through data with arbitrary dimensions, and it is used by popular trajectory in-
ference methods, such as Slingshot [28]. These examples are similar to the examples
provided in Supplementary File of Publication III. Unlike the principal curves al-
gorithm, scShaper managed to accurately infer the correct path through both datasets.

Finally, we showed that scShaper outperformed the principal curves algorithm
with scRNA-seq data (Figure 13). We performed the same dimensionality reduc-
tion steps (50 principal components and three t-SNE dimensions) for all datasets
and compared the performance of the two methods. The rationale behind this com-
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parison was to show that scShaper performs better because of the differences in the
pseudotime estimation and not because of the differences in the pre-processing steps.

5.3.3 Robustness, run time and parameters of scShaper

Unlike Kruskal’s algorithm for finding a minimum spanning tree (MST), the mod-
ified Kruskal’s algorithm that scShaper uses for finding a solution to the shortest
Hamiltonian path problem is sensitive to the input sequence of the vertices (clusters).
Therefore, the algorithm is not guaranteed to find the minimum spanning path even
when the graph weights are unique. To obtain robust results with scShaper, we devel-
oped an ensemble (consensus) method that aggregates multiple discrete pseudotimes
by PCA. The ensemble method showed robust performance for a spiral trajectory
when we shuffled the cells and ran the workflow thousand times with different ran-
dom seeds (Supplementary Figure 2 of Publication III).

The run time of scShaper is largely determined by the set of cluster numbers
for which the discrete pseudotime is generated. The number of edges determines
the time complexity of Kruskal’s algorithm, 𝒪(𝐸 log𝐸), where 𝐸 is the number of
edges [159]. The number of edges is the main factor because Kruskal’s algorithm
sorts the edges into a descending order based on their weights, and the number of
edges grows quadratically with the number of clusters (vertices). When the num-
ber of clusters ranges from 2 to 100, the run time of scShaper, with dimensionality
reduction excluded, is ∼ 2 seconds, depending on the hardware (Supplementary
Figure 1 of Publication III). Increasing the upper limit of the number of clusters to
200 increased the run time to ∼ 1 minute.

scShaper includes a few parameters that may need to be adjusted by the user
when applied to different applications. Most importantly, the number of clusters
needs to be increased when the complexity of the trajectories increases. Such exam-
ples would include spiral trajectories (Figure 12) that have more rounds. However,
linear paths through single-cell data are unlikely to have this level of complexity.

5.4 Cell-connectivity-guided trajectory inference using
Totem – Publication IV

The results of Publication IV consist of three parts. In the first part, we used the
dynverse environment to benchmark Totem with other trajectory inference methods.
In the second part, we investigated the utility of the cell connectivity as a metric for
choosing a clustering that is used to construct the trajectory network as an MST. In
the third part, we provided practical examples of how the cell connectivity can aid
trajectory optimization.
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5.4.1 Benchmarking Totem for trajectory inference from scRNA-
seq data

To benchmark our second trajectory inference method, Totem, in Publication IV, we
used the dynverse framework, which was also used in Publication III to benchmark
scShaper. dynverse comprises 216 benchmark datasets with a tree-shaped trajectory,
i.e. linear, bifurcation, multifurcation, or some other more complex tree. dynverse
also includes 17 performance evaluation metrics that assess different performance
properties, which are summarized Supplementary Table 2 of Publication III. The
results of the four main metrics that determine the overall performance are visualized
in Figure 14.

The results show that Slingshot performed well in datasets with a linear trajec-
tory (overall score, Wilcoxon signed-rank test; p-value ≤ 0.01), but its average per-
formance for the non-linear datasets was the lowest among the three methods. Totem
had the best performance for the datasets with a non-linear trajectory (Wilcoxon
signed-rank test; p-value ≤ 0.01), with TinGa providing the second-best overall per-
formance. The performance difference is mainly attributable to the topology and
branch assignment accuracy. Totem achieved better topology and branch assignment
accuracy than TinGa for linear trajectories, but the accuracy of feature importance for
linear trajectories was comparable with Slingshot. For the datasets with a non-linear
trajectory, Totem had the best performance in terms of all four performance met-
rics. However, there were only negligible differences in the cell ordering accuracy
between the three methods.

5.4.2 Comparison of clustering selection methods

We assessed how the clustering selection method of Totem that uses the cell con-
nectivity and VRC performed compared to three other clustering selection methods.
These methods were the random selection, which ranks clustering results into a ran-
dom order, ASW, and VRC, all of which use the low-dimensional embedding as
input. We generated 10,000 random clustering results using the CLARA clustering
algorithm for each of the 216 dynverse benchmark datasets, selected the 100 highest-
ranking clusterings with each selection method, performed trajectory inference using
Slingshot for each clustering, and calculated the overall score for each trajectory. We
varied the number of selected trajectories and calculated the average performance of
the datasets in two ways: by considering only the best-performing trajectory of the
selected trajectories (Figure 15a) and by calculating the average performance of the
selected trajectories (Figure 15b).

As expected, the random selection method achieved the best performance when
we considered only the best-performing trajectory (Figure 15a). However, it had
the lowest average performance (Figure 15b) of the methods. The selection method
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of Totem achieved comparable average performance with VRC, which was the best
method in terms of average performance. However, it had a more sharply increasing
performance curve when we considered only the best-performing trajectory. ASW
was the weakest-performing selection method due to its below-average performance
in both comparisons.

5.4.3 Examples of trajectory inference using Totem

We showcased the benefits of cell-connectivity-guided trajectory inference with two
examples. The first example involved a simulated dataset [26; 135] with a multi-
furcating trajectory, i.e., one starting point and more than two endpoints to which
the cells diverge from the starting point. When we used the ground-truth trajec-
tory and the clustering that can be derived from its milestone percentages as input
to Slingshot, the resulting MST incorrectly implied that the trajectory was linear
(Figure 16a). However, when we used Totem to select a trajectory in line with the
cell connectivity, we obtained a trajectory with the correct topology. The cell con-
nectivity correctly suggested that the trajectory had one branching point, the region
with highest cell connectivity, and four start or endpoints, the regions with lowest
cell connectivity.

The second example was a real, unsimulated dataset from mouse thymus [160]
with a bifurcating topology, i.e., two endpoints and one starting point (Figure 16b).
While this time Slingshot was able find the correct milestone network, the cell-
connectivity-guided trajectory inference of Totem also provided accurate informa-
tion about the topology of the trajectory, suggesting that the dataset was bifurcating
because it had one branching point and three start or endpoints.
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Figure 8. Precision and false positive rate (FPR) of differential detection methods in Publication
II. (a-b) In both simulations, we used FDR=0.05 to assess FDR control by comparing the expected
FDR levels (dashed, vertical line at 0.95 precision) with the estimated FDR levels. The FDR
estimation was based on the Benjamini-Hochberg procedure. In the reference-based simulation,
precision could not be calculated for Seurat LR latent because no positives were detected. (c) In
mock analysis, the FPR levels of each method are compared with the expected FPR of 0.05 by
considering uncorrected p-values [158; 145]. For Seurat LR latent method, FPR is zero for each
mock comparison because no positives were detected. FDR = False Discovery Rate. FPR = False
Positive Rate. Adapted from Publication II.
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Figure 9. AUROC and sensitivity of differential state detection methods in Publication II. In both
simulations, we used an FDR of 0.05 to define negative and positive findings. AUROC = Area
Under Receiver Operating Characteristic. FDR = False Discovery Rate. Adapted from Publication
II.
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Figure 10. Reproducibility of differential state detection methods in Publication II. Reproducibility
is Spearman’s rank correlation coefficient between p-value lists obtained using 100 different
subsets of a reference-simulated dataset (Liu). Adapted from Publication II.
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Figure 11. Benchmarking scShaper for linear trajectory inference from scRNA-seq data using
dynverse framework in Publication III. (a) The correlation of geodesic distances (cordist) between
the ground-truth and inferred trajectories, measuring accuracy of cell ordering. (b) The weighted
correlation (wcor) between the feature importance lists of the ground-truth and inferred trajectories,
obtained by DE analysis of the trajectories using random forest regression, measuring accuracy of
DE genes. The overall score measuring the geometric mean of cordist and wcor. (d) The results
grouped by data type. dyngen, dyntoy, prosstt and splatter are simulators, and real denotes real
data. DE = Differential Expression. Adapted from Publication III.
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Figure 12. Inferring linear paths through spiral trajectories using scShaper and the principal
curves algorithm in Publication III. The upper trajectory of which radius increases quadratically
includes 179 data points, and the lower trajectory of which radius increases linearly includes 1785
data points. In addition, we added Gaussian noise with a standard deviation of 0.5 to the
components of the linearly widening trajectory. Before scShaper analysis, the data points were
randomly shuffled. Both methods were run with their default parameters.
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Figure 13. Benchmarking scShaper and the principal curves algorithm (princurve) for trajectory
inference from scRNA-seq data in Publication III. DE = Differential Expression. Adapted from
Publication III.
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Figure 16. Examples of trajectory inference using Slingshot and Totem in Publication IV. (a) A
simulated dataset with a multifurcating trajectory. (b) A real dataset from mouse thymus, with a
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dynverse benchmark dataset. The second column shows the MST inferred by Slingshot when
using the ground-truth clustering as input, i.e., the clustering that was inferred from the milestone
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6 Discussion

In this chapter, we discuss the findings of this thesis. We begin by discussing the
scientific importance and novelty. We continue with discussions of the challenges
faced during conducting the studies, the limitations in the benchmarks, and the novel
computational models introduced. Furthermore, we discuss the future prospects of
the works, that is, what could be potentially done to improve the novel computational
methods and the related benchmarking.

6.1 Scientific importance and novelty
Our studies introduced three new computational methods for scRNA-seq data anal-
ysis. The machine learning algorithms that form the basis of the methods are, to our
knowledge, novel. While there exist comprehensive reviews that aim to summarize
the existing methods, authors are sometimes forced to limit the number of reviewed
methods if the number of algorithms is high to those that are in active use, which
is especially true for many intensively studied machine learning fields, such as clus-
tering [161]. Although a literature review is part of every scientific work to ensure
novelty and give credit to related, existing works, its success largely depends on the
accuracy of the scientific literature search engines, and performing it can be very
time-consuming.

The algorithms proposed in this thesis open new avenues for machine learning
research. Since cross-field use of algorithms is a routine practice in computational
science, data analysts outside the single-cell field can adopt the algorithms for other
applications. After all, none of the machine learning algorithms that are now rou-
tinely used in scRNA-seq analysis, such as PCA, t-SNE, or graph-based clustering,
were originally developed for this application.

It is not enough to invent new algorithms that solve computational problems. The
tools that implement the algorithms need to be computationally efficient, easy to use,
and clearly documented so that new users can use them with a moderate effort to
extract knowledge from data. In trajectory inference, the main issue slowing down
the process is the lack of one-size-fits-all methods, and the users are often forced to
test different methods and adjust their parameters to obtain biologically meaningful
or otherwise satisfactory trajectories [26]. Many new users are unaware of this issue
because tool manuals rarely address it adequately, which results in extra work and
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suboptimal trajectories. This issue motivated us to develop Totem (Publication IV),
of which central idea is to facilitate the trajectory optimization process by provid-
ing a a metric called cell connectivity as a reference, which helps locate transitions
states and give an overview of the trajectory topology. Totem generates a large cat-
alogue of trajectories from which the user can select those for further analysis that
are in line with the cell connectivity, providing more flexibility compared to current
state-of-the-art trajectory inference methods. The cell-connectivity-guided trajectory
inference of Totem represents a novel approach to trajectory inference.

Besides method development, it is equally important to produce benchmark stud-
ies that systematically compare computational methods to provide guidelines and
recommendations that method users can effortlessly follow. Without benchmark
studies, an average user will have difficulties in deciding which tools to choose for
certain analyses. In particular, independent studies that do not consider methods
developed by the authors of the benchmark studies are valuable [158] because it is
a common issue that researchers favor their own methods if they are included in
their own studies. Publication II provided new information about DE analysis of
multi-subject, multi-condition scRNA-seq data that helps users to select appropriate
methods for their analyses. Prior to Publication II, it was unknown whether the
latent variable models of the Seurat toolkit could be applied to DE analysis of multi-
subject scRNA-seq data. More importantly, the recently introduced mixed models
that model the subjects as a random effect (muscat MM, MAST RE, and NEBULA-
LN) had not been benchmarked before in an non-partisan manner.

6.2 Challenges and limitations in benchmarking
Benchmarking computational methods was pivotal in all four publications of this
thesis. In benchmarking, the key challenges are deciding what we want to show
with the benchmarking and how to perform it in a way that accurately answers the
objectives. In retrospect, it is easy to conclude that the benchmarking and especially
its interpretation could have been improved in some of the works.

In Publication I, we compared ILoReg and four other multi-step cell type iden-
tification methods in terms of their clustering accuracy and the ability to identify rare
cell types based on visualization. We measured the clustering accuracy using ARI
[107], which is a widely used metric for evaluating the performance of scRNA-seq
clustering algorithms [12; 14; 11]. However, while clustering is the central aim of
ILoReg in order to generate clusters of cells that represent cell types, and the ICP
algorithm that is at the core of ILoReg is essentially a clustering algorithm, we did
not design ILoReg to compete with other clustering algorithms, such as the Lou-
vain algorithm for graph-based clustering. Instead, it was designed to address the
issues in clustering of high-dimensional data, which requires prior dimensionality
reduction, and the ICP algorithm mitigates these issues with model-based feature se-
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lection. To cluster the cells into cell populations based on the PCA-aggregated ICP
probabilities, ILoReg uses hierarchical clustering with Ward’s agglomeration. How-
ever, the clustering algorithm used downstream of ICP and PCA could practically be
any clustering algorithm. Therefore, the clustering performance evaluation in which
the clustering algorithms varied between the cell type identification methods likely
reflected to a significant extent the performance of the clustering algorithms and not
the pre-processing steps. To demonstrate the utility of the ICP algorithm, it would
have been more relevant to use a single clustering algorithm, or several algorithms,
and instead change the dimensionality reduction steps prior to the PCA aggregation
and compare the dimensionality reduction methods.

Another thing that could have been improved in the clustering comparison of
Publication I would have been using the same number of clusters for each bench-
marked method. Our original idea was to compare the cell type identification meth-
ods with the default settings, which include different methods for selecting the opti-
mal number of clusters. However, the main weakness of our comparison is that we
do not know which parts of the cell type identification workflow actually explain the
differences in the clustering performance, and it remains unknown whether the ICP
algorithm actually has a positive impact on the clustering accuracy.

Especially in Publication I, we can also ask whether the number of benchmark
datasets was large enough to make reliable conclusions about the average perfor-
mance. 11 datasets in the clustering performance evaluation are undoubtedly not
persuasive enough to assess the overall performance, considering the scRNA-seq
technology comprises tens of protocols that can be used to generate data and tissues
with varying levels of heterogeneity. In addition, scRNA-seq datasets can include
batch effects that aggravate clustering, and the data quality can vary depending on
the quality of the biological samples and the lab preparation steps. Considering all
these different factors in the benchmarking was not feasible back when the available
benchmark data was scarce and would still require considerable effort. A major chal-
lenge would be finding benchmark data that would not bias the comparison in favor
of Seurat and Scanpy, which are the most widely used scRNA-seq analysis toolkits,
because a significant proportion of the publicly available datasets have been ana-
lyzed using these tools, and we would need to use the cell type annotation inferred
by authors of the studies as ground truth.

In addition to evaluating the clustering performance in Publication I, we pro-
vided two examples of how the high-resolution visualization of ILoReg can identify
cell types that are difficult to detect with other cell type identification methods. In the
first example, ILoReg identified a cell population from a PBMC dataset (pbmc3k),
of which gene markers indicated it to encompass naı̈ve CD8+ T cells. The pbmc3k
dataset is used as a primary example in the tutorials of Seurat and Scanpy toolk-
its. Around the same time as ILoReg was introduced, the developers of Seurat in-
troduced a new normalization method, sctransform [67], and their analysis of the
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pbmc3k dataset showed similar results, with an improvement in the identification of
the CD8+ naı̈ve T cells, which were previously not identifiable with Seurat when the
LogNormalize method was used to normalize the data. Despite this strong example
showing ILoReg can identify naı̈ve CD8+ T cells from the pbmc3k dataset, even
with the older normalization method, the true cell type annotation was not available
for this dataset. The CITE-seq technology [45] that measures cell surface protein
(epitope) levels besides transcriptomics would provide a more reliable validation be-
cause cells are not always expressing all marker genes, but the surface proteins are
generally more stable.

Overall, a significant limitation in this thesis’ works was the lack of interpretation
of central findings. In Publication II, we had the same limitation as in Publication
I of not providing answers as to why some methods performed better than others.
For example, it would have been interesting to know why the pseudo-bulk methods
that use mean aggregation were generally inferior to the pseudo-bulk methods that
use sum aggregation. In Publication III, we did not investigate or speculate why the
metric that measures feature importance was higher for scShaper, even though it was
the main reason why scShaper outperformed the other trajectory inference methods.

Publication II would have benefited from a better summarization of the re-
sults to reach a consensus on which DS detection methods were superior and to
improve the result interpretation for readers. It would have been especially helpful
in ranking the methods within each method type, of which performance differences
were more subtle than the differences between the method types. The results of the
two simulations, mock comparison, and reproducibility comparison could have been
summarized in the same way as was done in several pioneering benchmark studies
[26; 55; 146; 162]: by ranking the methods based on the average of all performance
scores and visualizing the relative performance scores as a table. However, one could
ask whether the metrics should be weighted equally or if, for example, precision or
specificity is more important than sensitivity. Moreover, a perfect precision of one
would mean that the method is too conservative because it exceeds the expected
precision of 0.95 (expected FDR of 0.05). Therefore, metrics that assess the false
positive control, such as the precision, would need to be adjusted to measure the
difference between the expected and estimated false positive control levels.

In general, the performance evaluation metrics were used correctly in all works
of this thesis, and they are the gold-standard metrics that researchers use in similar
situations. However, AUROC, which was used in Publication II, is not optimal in
situations where the distribution of positive (differentially expressed) and negative
(not differentially expressed) observations is highly imbalanced [163], which is of-
ten the case in gene expression data in which only a small proportion of the genes
are differentially expressed. In imbalanced data, AUROC values are more likely to
be inflated and can hence misleadingly suggest that the performance is better than
what it actually is. It is widely recommended to use the precision-recall curve in-
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stead of the receiver operating characteristic (ROC) curve when the distribution is
imbalanced [142; 143; 144], which would have hence made it a worthwhile addition
to the comparison.

Moreover, as was noted at the beginning of this section when discussing Publi-
cation I, it would have been better if the number of clusters was equal for the two
clustersets that were compared using ARI. We observed during benchmarking that it
was possible to achieve ARI values as high as 0.80 for the Baron pancreatic datasets
[15] when the predicted number of clusters was only 6 and the true number of cell
types in the annotation was 13. The contradiction occurred because the distribution
of the cell types was imbalanced, and ARI weights the impact of clusters based on
their size; and while the large cell types were clustered accurately, the small, rare cell
types were not. However, other publications have conducted the clustering compar-
ison similarly, using deviant numbers of clusters [12; 164]. Performing the compar-
ison in both ways would have given a more comprehensive picture of the clustering
performance.

In all works except Publication I, simulation provided the means to acquire
benchmark data that included accurate ground truth. The general issue of simula-
tion, however, is that it can never truly model the complex processes that constitute
the transcription of mRNA in cells [165] because the gene expression signal that
is measured by sequencing is biased by a large number of technical and biological
factors [166; 167], and it is questionable whether count data without biasing factors
would still follow any mathematical models, such as the negative binomial distribu-
tion. The simulation of scRNA-seq count data is mostly based on negative binomial
generative models [19; 22], which can lead to poor-fitting models [168].

6.3 Limitations in novel computational methods
In Publication IV, we introduced Totem, a tool that facilitates the search for a clus-
tering that generates an MST that accurately models the true cell development net-
work by utilizing the cell connectivity metric. The main drawback of this method is
its inability to handle more complex trajectories with cycles or disconnected parts. In
addition, Totem does not support converging trajectories, i.e., trajectories that con-
verge to a single cell from multiple lineages and trajectories that have both diverging
and converging parts, diverging meaning trajectories in which the cells diverge from
a single cell to multiple lineages. While the directions in the milestone network are
easy to adjust by flipping, creating the correct pseudotime for the more complex
trajectories is not as straightforward when the pseudotime estimation is performed
using the principal curves algorithm.

scShaper and Totem (Publications III and IV) have the same limitation of being
unable to determine the trajectory direction automatically. In this aspect, they are in-
ferior to RNA velocity methods [97; 98], which can estimate the direction based on
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RNA splicing information. However, scShaper and Totem allow more freedom in the
dimensionality reduction and pre-processing steps. They can be easily used with any
dimensionality reduction method, which can be useful in joint analysis of multiple
datasets that requires data integration to remove batch effects. RNA velocity meth-
ods are currently not optimal for datasets that have batch effects because the samples
need to be modeled independently [99], which raises further issues regarding how to
accurately and analytically compare multiple trajectories. Suppose the experimental
design involves multi-subject, multi-condition data as in Publication II. In that case,
a sensible approach is to perform separate data integration for each condition, infer a
trajectory for each condition, and investigate the differences between the trajectories,
which are significantly smaller in number than the number of subjects. Alternatively,
a single trajectory can be generated for the whole dataset, and the differential ex-
pression analysis can be effortlessly performed between the conditions along each
lineage.

6.4 Future
The works of this thesis open intriguing avenues for future method development and
studies. In this section, we discuss some ideas for the future development of the
works presented in this thesis.

In Publication I, we showed that ILoReg was a promising tool for identifying
cell populations with subtle transcriptomic differences from scRNA-seq data. How-
ever, we have only introduced the first version of the algorithm, which can certainly
be improved to enable even more accurate cell type identification and better compu-
tational efficiency. After all, the first algorithm is often flawed, especially when the
underlying principle is unique, and developers continue to improve their algorithms
over time.

A modification that would likely improve the cell type identification accuracy
would be implementing a mechanism that controls the learning rate in the ICP algo-
rithm, i.e., how fast the clustering similarity (ARI) is allowed to change during the it-
eration process. In machine learning, we know from objective function optimization,
such as stochastic gradient descent (SGD), that a lower learning rate generally yields
better optimization results [169]. In SGD optimization, it is common to use only a
subset of the training data, referred to as the batch. Implementing a mechanism that
would allow using a specific batch size during the ICP learning would probably not
significantly decrease the performance but would decrease the run time. Moreover,
we have only tested one supervised classification algorithm, logistic regression, but
the range of available classifier algorithms is broad. Methods such as random for-
est and support vector machines, which work well with high-dimensional data, are
worth considering. It would also be interesting to investigate how the ICP algorithm
would work with dimensionally reduced data, which would allow testing classifica-
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tion algorithms such as k-nearest neighbor algorithms that perform better when the
number of features is small. It may also be possible to improve both the run time and
accuracy by a better initialization of the ICP clusters. For example, instead of ini-
tializing the ICP clusters randomly, the clusters could be initially defined as clusters
estimated using a different clustering algorithm, such as k-means or k-medoids.

The ICP algorithm of ILoReg holds potential as a beneficial pre-processing
method in trajectory inference. Methods such as Palantir [170] use diffusion maps
[171] to improve the capture of differentiation trajectories in scRNA-seq data
because the cell types are often clustered too tightly to infer the correct trajectory
topology. MARGARET [172] uses refined embeddings to adjust the distances be-
tween neighboring cell types to provide a more accurate topological representation.
Since we observed from the t-SNE visualizations that ILoReg could segregate cell
types into more distinct subsets, this could also facilitate trajectory inference when
the cell types are otherwise too tightly clustered.

We hinted in Publication III that scShaper could potentially be used for gen-
erating smooth, linear paths through the lineages of tree-shaped trajectories, which
is how Slingshot [28] operates. However, a few issues need to be solved before sc-
Shaper can be applied to this purpose. Pseudotime measures the progress of cell
differentiation at the single-cell level, and it would need to correlate with the cell
distances in the input data. However, pseudotime in scShaper is currently calculated
by averaging the discrete pseudotimes derived from the numeric cluster labels that
increase in even intervals from 1 to k, from 0 to 1 when min-max-scaled, without
correlating with the cell distances in the input embedding. Discrete pseudotime that
would correlate better with the cell distances in the input data could be obtained
using cluster centroid distances, which would be used to adjust the numeric cluster
labels. The discrepancy in the cluster distances forms an issue in lineage smoothing
because the length of the lineages can vary considerably, and the pseudotimes of the
lineages need to be synchronous when they are averaged in trajectory parts that have
several smoothed curves passing through simultaneously.

Furthermore, while we were developing Totem (Publication IV), we observed
that the k-means algorithm used in scShaper produced more similar clustering re-
sults when the number of clusters was small, and k-medoids (CLARA) generated
more dissimilar clustering results than k-means. Using k-medoids to generate more
dissimilar clustering would likely benefit scShaper by creating more varying discrete
pseudotime results, which would, in turn, generate more precise pseudotime in the
aggregation step because it would provide more information about the relative cell
positions in the trajectory.

Although Kruskal’s algorithm is efficient for graphs with many vertices (clus-
ters), it becomes slower when the graph is dense and includes many edges. There-
fore, it would be interesting to investigate whether other MST algorithms, such as
Prim’s algorithm, would be more efficient for the purpose of path optimization in
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scShaper. However, like Kruskal’s algorithm, these algorithms are not directly appli-
cable to pathfinding and would need to be modified. The run time of scShaper can
also be decreased by changing the clustering algorithm. For example, the mini-batch
k-means [173] algorithm is a faster implementation of the basic k-means algorithm.

Each computational method has a multi-step workflow, and each step should be
provided with a reasonable argument and actionable proof of its utility. It is possible
that some of the steps are not beneficial. For example, in scShaper the average dis-
crete pseudotime is transformed into rank values (integers) before LOESS smooth-
ing. The original idea was to make small pseudotime changes between cells appear
more pronounced, which would help capture small transition states in trajectories.
While LOESS can be justified as a step to correct local unevenness, it is not entirely
clear how suitable it is for rank-transformed data for which monotonic smoothing
has already been performed. Totem includes a step that scales the cluster-level con-
nectivity values so that the maximum connectivity of each clustering is one. The
scaling was intended as a step to bring the different cluster-level connectivity vectors
to a uniform scale before averaging. However, no proof was provided for that this
step actually is beneficial.

Publication II and other similar studies [18; 19] have reached the same con-
clusion that the pseudo-bulk methods can sometimes be underpowered, that is, their
ability to identify true positive findings is weak due to a small sample size. In ad-
dition, they can only compare the mean shift between subject groups and not the
variance or other attributes in the expression distributions of the subjects. Novel
statistical methods that can compare the distributions of subjects or other biological
replicates between conditions have been developed [174; 175], and they reportedly
provide better sensitivity than the pseudo-bulk methods. However, the performance
of these methods need to be still validated in an independent manner.
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I: ILoReg: a tool for high-resolution cell population iden-
tification from single-cell RNA-seq data

In this paper, we introduced a novel machine learning algorithm, ICP, as a solution to
address the ”curse of dimensionality” phenomenon in unsupervised cell type identifi-
cation from scRNA-seq data. In ICP, the high-dimensional scRNA-seq input data are
clustered iteratively by training a logistic regression model with a subset of the data,
projecting the whole dataset with the trained model, and optimizing the clustering
similarity between the projected and training cluster labels. The logistic regression
model learns to select the most important genes using the L1-regularization, making
the clustering outcome depend on a subset of informative genes that segregate cell
types. In the next phase, the cluster probabilities from an ensemble of ICP models
are used as features, which are processed further to identify the cell types by visual-
ization, clustering, and gene marker discovery. Our examples showed how ILoReg,
the R package that implements the pipeline, could identify biologically relevant cell
populations with subtle transcriptomic differences that the other methods could not
find.

II: Benchmarking methods for detecting differential
states between conditions from multi-subject single-cell
RNA-seq data

DS analysis of scRNA-seq data involves comparing expression levels between cell
populations. scRNA-seq experiments are increasingly designed to study gene ex-
pression changes between two or multiple conditions, such as healthy and sick sub-
jects. Suppose the cells within the conditions are from different subjects. In that
case, this can result in a hierarchical data structure in which cells within subjects are
at the transcriptomic level more similar than cells between the subjects. Therefore,
the expression levels of cells within a condition are not statistically independent,
resulting in a pseudoreplication bias that induces false positive findings. Two ap-
proaches have been developed to mitigate the pseudo-replicate bias in multi-subject
DS analysis: pseudo-bulk methods that aggregate counts at the subject level and use
bulk RNA-seq tools for DS analysis and mixed models that model the subjects as a
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random effect. Our comprehensive comparison showed that the pseudo-bulk meth-
ods and mixed models were superior to the methods that do not model subjects in
any way. Generally, our findings indicated that pseudo-bulk methods outperformed
mixed models.

III: scShaper: an ensemble method for fast and accurate
linear trajectory inference from single-cell RNA-seq data
In this work, we developed a new general-purpose algorithm, scShaper, for infer-
ring linear paths through high-dimensional data. scShaper is based on graph the-
ory and uses a modified Kruskal’s algorithm to optimize linear paths for graphs.
scShaper runs the k-means clustering algorithm a large number of times with dif-
ferent k values to generate dissimilar clustering results, calculates the centroids of
the clusters in each clustering, estimates the optimal path through the centroids of
each clustering using a modified Kruskal’s algorithm, and uses the paths from all the
clustersets to obtain discrete pseudotimes that measure the cell differentiation at the
cluster level. The discrete pseudotimes are aggregated with PCA and smoothed with
LOESS, generating continuous pseudotime that measures cell differentiation at the
cell level. Comprehensive benchmarking using scRNA-seq datasets suggested that
scShaper was superior to state-of-the-art trajectory inference methods. Moreover,
the results indicated that scShaper outperformed the principal curves algorithm, a
popular method for inferring linear paths through single-cell data.

IV: Totem: a user-friendly tool for clustering-based infer-
ence of tree-shaped trajectories from single-cell data
In clustering-based inference of tree-shaped trajectories, a clusterset is used as the
basis to infer the milestone network as an MST, which models how the cell types
(milestones) are connected as a network. The MST is then smoothed to generate a
directed trajectory, along with pseudotime that measures the cell differentiation at
the single-cell level. A key challenge in this process is finding an optimal clustering
that will generate the correct milestone network. Even if accurate cell type labels are
available, the resulting MST will not necessarily correlate accurately with the true
milestone network. To address this challenge, we developed a user-friendly tool,
Totem, that enables fast and effortless search for an optimal clustering used to gener-
ate the MST. To facilitate the clustering selection, we introduced a new metric called
cell connectivity, which enables to locate milestones relevant to the trajectory and
give a general overview of the trajectory. With the cell connectivity as a reference,
the user can compare different MSTs generated from different clustersets and select
the ones for downstream analysis that are in line with the cell connectivity profile.
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of single-cell rna-seq data for complex differentiation processes. Bioinformatics, 35(18):3517–
3519, 2019.

[137] Luke Zappia, Belinda Phipson, and Alicia Oshlack. Splatter: simulation of single-cell rna se-
quencing data. Genome biology, 18(1):1–15, 2017.

[138] Robrecht Cannoodt, Wouter Saelens, Louise Deconinck, and Yvan Saeys. Spearheading future
omics analyses using dyngen, a multi-modal simulator of single cells. Nature Communications,
12(1):1–9, 2021.

[139] Alaa Tharwat. Classification assessment methods. Applied Computing and Informatics, 2020.
[140] Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient

(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics, 21(1):1–13,
2020.

[141] Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti, Frédérique Lisacek, Jean-
Charles Sanchez, and Markus Müller. proc: an open-source package for r and s+ to analyze and
compare roc curves. BMC bioinformatics, 12(1):1–8, 2011.

[142] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pages 233–240, 2006.

[143] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc
plot when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.

[144] Max Schubach, Matteo Re, Peter N Robinson, and Giorgio Valentini. Imbalance-aware machine
learning for predicting rare and common disease-associated non-coding variants. Scientific re-
ports, 7(1):1–12, 2017.

[145] Maria K Jaakkola, Fatemeh Seyednasrollah, Arfa Mehmood, and Laura L Elo. Comparison of
methods to detect differentially expressed genes between single-cell populations. Briefings in
bioinformatics, 18(5):735–743, 2017.

[146] Charlotte Soneson and Mark D Robinson. Bias, robustness and scalability in single-cell differ-
ential expression analysis. Nature methods, 15(4):255–261, 2018.

[147] Marvin N Wright and Andreas Ziegler. ranger: A fast implementation of random forests for high
dimensional data in c++ and r. arXiv preprint arXiv:1508.04409, 2015.

[148] Giuseppe Jurman, Roberto Visintainer, Michele Filosi, Samantha Riccadonna, and Cesare
Furlanello. The him glocal metric and kernel for network comparison and classification. In

67



Johannes Smolander

2015 IEEE international conference on data science and advanced analytics (DSAA), pages 1–
10. IEEE, 2015.

[149] Paul Jaccard. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44:
223–270, 1908.

[150] Datasets-Single Cell Gene Expression-Official. 10x genomics support, 2021.
[151] Kazunaga Agematsu, Sho Hokibara, Haruo Nagumo, and Atsushi Komiyama. Cd27: a memory

b-cell marker. Immunology today, 21(5):204–206, 2000.
[152] François Brinas, Richard Danger, and Sophie Brouard. Tcl1a, b cell regulation and tolerance in

renal transplantation. Cells, 10(6):1367, 2021.
[153] Tobias Roider, Julian Seufert, Alexey Uvarovskii, Felix Frauhammer, Marie Bordas, Nima Abed-

pour, Marta Stolarczyk, Jan-Philipp Mallm, Sophie A Herbst, Peter-Martin Bruch, et al. Dis-
secting intratumour heterogeneity of nodal b-cell lymphomas at the transcriptional, genetic and
drug-response levels. Nature Cell Biology, 22(7):896–906, 2020.

[154] Wilson KM Wong, Guozhi Jiang, Anja E Sørensen, Yi Vee Chew, Cody Lee-Maynard, David
Liuwantara, Lindy Williams, Philip J O’Connell, Louise T Dalgaard, Ronald C Ma, et al. The
long noncoding rna malat1 predicts human islet isolation quality. JCI insight, 4(16), 2019.

[155] Yingyao Zhou, Bin Zhou, Lars Pache, Max Chang, Alireza Hadj Khodabakhshi, Olga Tana-
seichuk, Christopher Benner, and Sumit K Chanda. Metascape provides a biologist-oriented
resource for the analysis of systems-level datasets. Nature communications, 10(1):1–10, 2019.

[156] Décio L Eizirik, Alessandra K Cardozo, and Miriam Cnop. The role for endoplasmic reticulum
stress in diabetes mellitus. Endocrine reviews, 29(1):42–61, 2008.

[157] Rachel C Bandler, Ilaria Vitali, Ryan N Delgado, May C Ho, Elena Dvoretskova, Jo-
sue S Ibarra Molinas, Paul W Frazel, Maesoumeh Mohammadkhani, Robert Machold, Sophia
Maedler, et al. Single-cell delineation of lineage and genetic identity in the mouse brain. Nature,
601(7893):404–409, 2022.

[158] Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander
Hapfelmeier, Paul P Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D Robinson. Es-
sential guidelines for computational method benchmarking. Genome biology, 20(1):1–12, 2019.

[159] Prasanta K Jana and Azad Naik. An efficient minimum spanning tree based clustering algorithm.
In 2009 Proceeding of International Conference on Methods and Models in Computer Science
(ICM2CS), pages 1–5. IEEE, 2009.

[160] Xiaoping Han, Renying Wang, Yincong Zhou, Lijiang Fei, Huiyu Sun, Shujing Lai, Assieh Saa-
datpour, Ziming Zhou, Haide Chen, Fang Ye, et al. Mapping the mouse cell atlas by microwell-
seq. Cell, 172(5):1091–1107, 2018.

[161] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash Patel, Aruna Ti-
wari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A review of clustering techniques and
developments. Neurocomputing, 267:664–681, 2017.

[162] Lijia Yu, Yue Cao, Jean YH Yang, and Pengyi Yang. Benchmarking clustering algorithms on
estimating the number of cell types from single-cell rna-sequencing data. Genome biology, 23
(1):1–21, 2022.

[163] Edieal Pinker. Reporting accuracy of rare event classifiers. NPJ digital medicine, 1(1):1–2, 2018.
[164] Yuchen Yang, Ruth Huh, Houston W Culpepper, Yuan Lin, Michael I Love, and Yun Li. Safe-

clustering: single-cell aggregated (from ensemble) clustering for single-cell rna-seq data. Bioin-
formatics, 35(8):1269–1277, 2019.

[165] Yue Cao, Pengyi Yang, and Jean Yee Hwa Yang. A benchmark study of simulation methods for
single-cell rna sequencing data. Nature Communications, 12(1):1–12, 2021.

[166] Wei Zheng, Lisa M Chung, and Hongyu Zhao. Bias detection and correction in rna-sequencing
data. BMC bioinformatics, 12(1):1–14, 2011.

[167] Michael I Love, John B Hogenesch, and Rafael A Irizarry. Modeling of rna-seq fragment se-
quence bias reduces systematic errors in transcript abundance estimation. Nature biotechnology,
34(12):1287–1291, 2016.

68



[168] Stijn Hawinkel, JCW Rayner, Luc Bijnens, and Olivier Thas. Sequence count data are poorly fit
by the negative binomial distribution. PloS one, 15(4):e0224909, 2020.

[169] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[170] Manu Setty, Vaidotas Kiseliovas, Jacob Levine, Adam Gayoso, Linas Mazutis, and Dana Pe’Er.
Characterization of cell fate probabilities in single-cell data with palantir. Nature biotechnology,
37(4):451–460, 2019.

[171] Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick
Warner, and Steven W Zucker. Geometric diffusions as a tool for harmonic analysis and structure
definition of data: Diffusion maps. Proceedings of the national academy of sciences, 102(21):
7426–7431, 2005.

[172] Kushagra Pandey and Hamim Zafar. Inference of cell state transitions and cell fate plasticity
from single-cell with margaret. Nucleic Acids Research, 50(15):e86–e86, 2022.

[173] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international confer-
ence on World wide web, pages 1177–1178, 2010.

[174] Mengqi Zhang, Si Liu, Zhen Miao, Fang Han, Raphael Gottardo, and Wei Sun. Ideas: individual
level differential expression analysis for single-cell rna-seq data. Genome biology, 23(1):1–17,
2022.

[175] Simone Tiberi, Helena L Crowell, Lukas M Weber, Pantelis Samartsidis, and Mark D Robinson.
distinct: a novel approach to differential distribution analyses. bioRxiv, pages 2020–11, 2020.



Johannes Sm
olander

F 25
A

N
N

A
LES U

N
IV

ERSITATIS TU
RK

U
EN

SIS

ISBN 978-951-29-9392-5 (Print)
ISBN 978-951-29-9393-2 (PDF)
ISSN 2736-9390 (Painettu/Print)
ISSN 2736-9684 (Sähköinen/Online)

Pa
in

os
al

am
a,

 T
ur

ku
, F

in
la

nd
 2

02
3


	ABSTRACT
	TIIVISTELMÄ
	Acknowledgements
	Table of Contents
	Abbreviations
	List of Original Publications
	1 Introduction
	1.1 Aims
	1.2 Content

	2 Background
	2.1 Single-cell RNA sequencing technology
	2.2 Analysis of single-cell RNA sequencing data
	2.2.1 Pre-processing
	2.2.2 Downstream analysis


	3 Computational methods
	3.1 ILoReg
	3.2 scShaper
	3.3 Totem

	4 Materials
	4.1 Benchmarked computational methods
	4.1.1 Cell type identification methods
	4.1.2 Differential state detection methods
	4.1.3 Trajectory inference methods

	4.2 Benchmark data
	4.2.1 Benchmark data for cell type identification
	4.2.2 Benchmark data for differential state detection
	4.2.3 Benchmark data for trajectory inference

	4.3 Performance evaluation
	4.3.1 Clustering performance
	4.3.2 Performance evaluation of differential state detection methods
	4.3.3 Performance evaluation of trajectory inference methods


	5 Results
	5.1 Unsupervised cell type identification using ILoReg – Publication I
	5.1.1 Benchmarking ILoReg for clustering of scRNA-seq data
	5.1.2 Visualizing peripheral blood mononuclear cell populations using ILoReg
	5.1.3 Visualizing pancreatic cell populations using ILoReg
	5.1.4 Robustness, run time and parameters of ILoReg

	5.2 Benchmarking methods for detecting differential states between conditions from multi-subject scRNA-seq data – Publication III
	5.2.1 False positive control
	5.2.2 Sensitivity and ROC analysis
	5.2.3 Reproducibility

	5.3 Linear trajectory inference using scShaper – Publication II
	5.3.1 Benchmarking scShaper for inference of linear trajectories from scRNA-seq data
	5.3.2 Comparing scShaper and the principal curves algorithm
	5.3.3 Robustness, run time and parameters of scShaper

	5.4 Cell-connectivity-guided trajectory inference using Totem – Publication IV
	5.4.1 Benchmarking Totem for trajectory inference from scRNA-seq data
	5.4.2 Comparison of clustering selection methods
	5.4.3 Examples of trajectory inference using Totem


	6 Discussion
	6.1 Scientific importance and novelty
	6.2 Challenges and limitations in benchmarking
	6.3 Limitations in novel computational methods
	6.4 Future

	7 Summary of publications
	List of References



