
Development of a Cyber Range with
description language for network topology

definition

Master of Science Thesis
University of Turku
Department of Computing
Cyber security
2023
Dalla Costa Andrea

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

Abstract

Cyber Ranges are an essential tool for cybersecurity trainings and experiments be-

cause they enable to setup virtual, isolated and reproducible environments that can

be safely used to execute different types of tests and scenarios. The preparation

of scenarios is the most time-consuming phase, which includes the configuration

of the virtual machines and the definition of the network topology, so it is impor-

tant for a Cyber Range to include tools that simplify this operation. This work

focuses on how to implement and setup a Cyber Range that includes the necessary

features and tools to simplify the setup phase, in particular for large topologies.

The literature review provides an analysis of the selected open-source and research

solutions currently available for Cyber Ranges and their configuration for use in

different scenarios. This work presents the development of a Cyber Range based

on the open-source framework OpenStack and the entire design process of a new

Description Language, starting from the analysis of the requirements for the defined

use-cases, defining and designing the required features, the implementation of all

the required components, and the testing of the correctness and effectiveness of the

whole system. A comparison of the implemented solution against the selected so-

lutions in the literature study is provided, summarising the unique features offered

by this approach. The validation of the Description Language implementation with

the defined use cases demonstrated that it can reduce the complexity and length of

the required template, which can help to make the setup of scenarios faster.

Preface

I would like to thank Rautila Mika for the initial supervision and topic definition,

Kuusijärvi Jarkko for the supervision and support during my work. I would also

like to thank Hakkala Antti for the support and feedbacks on the thesis.

This thesis was written at VTT Technical Research Centre of Finland at the Safe

and connected society research area as part of VTT’s work in the EU project Cyber-

MAR. This project has received funding from the European Union’s Horizon 2020

research and innovation program under grant agreement No. 833389. The content

of this document reflects only the author’s view and the European Commission is

not responsible for any use that may be made of the information it contains.

Lastly, I would like to thank all my friends who supported me during the process

of writing this thesis.

Contents

1 Introduction 1

2 Background 3

2.1 Cyber Ranges . 4

2.2 OpenStack . 6

2.2.1 OpenStack components . 6

2.2.2 Networking in OpenStack . 9

2.2.3 Limitations of OpenStack . 14

3 Existing solutions 15

3.1 Existing Cyber Ranges . 15

3.2 Templating capabilities of existing Cyber Ranges 19

3.3 HOT Language . 21

4 Specification and Design 26

4.1 General specifications and requirements 26

4.2 Topologies . 28

4.2.1 Topology 1 . 28

4.2.2 Topology 2 . 30

4.2.3 Topology 3 . 30

4.2.4 Topology 4 . 32

CONTENTS 4

4.3 Cyber Range infrastructure . 32

4.4 Description Language . 34

4.4.1 Features required . 34

4.4.2 Grammar specification . 35

4.4.3 Grammar specification - Preprocessor 41

5 Implementation 45

5.1 Description Language compiler . 45

5.1.1 Preprocessor . 47

5.1.2 Parser . 52

5.1.3 Validator . 54

5.1.4 Translation . 55

5.1.5 Extensibility . 56

5.2 Cyber Range infrastructure . 57

5.2.1 Installation and deployment of OpenStack 57

5.2.2 OpenStack modifications . 57

5.2.3 Cyber Range CLI . 58

6 Testing 61

6.1 Correctness of translation . 62

6.2 Complexity and length . 72

6.3 Features supported . 76

7 Conclusion and Future Work 82

7.1 Conclusion . 82

7.2 Future work . 84

References 86

1 Introduction

The growing number of cyber-attacks is increasing the demand for security equip-

ment and professionals, which makes testing and hand-on trainings on realistic net-

works a key aspect. Recreating networks using physical devices is very complex,

expensive and difficult to setup, thus virtualized environments are often preferred,

making Cyber Ranges are a popular solution because they provide virtualized and

isolated environments that are easier and cheaper to setup and manage than repli-

cating networks using real equipment. Moreover, Cyber Ranges allow to configure,

deploy and reset the entire network structure automatically, simplifying the opera-

tions required to reproduce multiple trainings.

Despite being easier to setup, the planning and configuration of the scenario of

training or simulation exercises is still the most time-consuming phase and usually

requires the operators to define the network topology (or topology later in the text)

and the various configurations of all the machines present in the virtual network. In

our work we focus on the creation of a Cyber Range that makes use of a templating

system that aims to simplify the topology definition process, by using a Description

Language that we designed.

Chapter 2 provides a more complete description of Cyber Ranges and introduces

OpenStack, the virtualization environment that we used as a base for our Cyber

Range. Then existing Cyber Ranges and their templating systems are presented

in Chapter 3. In Chapter 4 we provide the specific requirements that our solution

CHAPTER 1. INTRODUCTION 2

must be able to support and we present the grammar structure of our language.

Chapter 5 shows the implementation of the compiler for our language and also of

the other components that we developed. Our implementation is then tested in

Chapter 6, to verify that the requirements identified before are fulfilled and it is also

compared to other existing solutions. Lastly, Chapter 7 presents the conclusions

and future work.

2 Background

In recent years, the number of cyber-attacks is constantly growing also thanks to the

increasing number of devices connected to the internet. Moreover, the magnitude

of their impact is more and more significant with more sensible data being store

digitally. For example, the recent attack to Vastaamo, a Finnish psychotherapy

service provider, resulted in the distribution of the highly sensible data related to

the patients online [1].

In order to properly defend the IT infrastructure, assets and data from criminals,

multiple technologies and solutions have been developed, with a notably increasing

trend also in the research effort, with a growing number of published papers [2]. How-

ever, implementing and deploying security equipment in the network infrastructure

is not sufficient, it is also necessary to both properly train security professionals and

raise awareness among all employees on how to respond to possible cyber-attacks.

Therefore, simulations and hand-on exercises are key components to test and

validate security equipment and to provide a realistic but safe environment for train-

ings. The setup of the system is not trivial, since it is usually not possible to use

the real network in order to avoid disruptions to the normal operations. A possible

solution is to replicate the network, setting up a dedicated environment that acts

as clone of the real on, using the same devices and configurations. This solution

is quite problematic for multiple reasons. Firstly, it is very expensive to recreate a

large network, also in terms of time required to configure it. Secondly, resetting the

2.1 CYBER RANGES 4

network to a clean state to start a new exercise or simulation can be difficult.

Another option is to virtualize or simulate part or the entirety of the testing

environment, which alleviates many of the problems regarding the complexity of the

setup and management of the network. These virtual environments are called Cyber

Ranges.

2.1 Cyber Ranges

Cyber Ranges provide an isolated, reproducible and controlled environment that

can be programmatically created, which can be used to emulate or simulate various

kind of devices and configurations. Cyber Ranges make extensive use of virtualiza-

tion technologies and use different stacks and different technologies to manage the

virtualization of the devices and networks, depending on the goal. Physical devices

can also be integrated in the virtual scenario. The technology used influences the

accuracy of the simulated environment, its adaptability and performance.

Different virtualization technologies provide advantages in different aspects. Hy-

pervisor based virtualization offers the best isolation and fidelity but requires the

hypervisor module to be present in the kernel, which introduces some overhead.

Host virtualization does not require a kernel module and provides good isolation

but has a much higher overhead. Lastly, container technology, such as Docker,

LXD or Podman, has very low overhead but also a much lower level of isolation. A

good comparison of the three virtualization technologies is provided in [3], with a

focus on the performance and overhead of the different solutions.

Moreover, some Cyber Ranges have the possibility to integrate also physical

devices within the virtual environment. This is very useful in specific uses-cases,

when the fidelity of a specific device is a very important aspect. However, using

real devices reduces the flexibility of the system, resulting in a Cyber Range that is

more difficult to manage, change or scale.

2.1 CYBER RANGES 5

In recent years the interest in the topic has been increasing and many researches

focused on implementing and improving the state of the art of Cyber Ranges, with

focus on different aspects. There exist many literature review that summarize the

advancement produced, and in particular [4], [5] provide a good view on the current

status of Cyber Ranges development and also show the increasing number of papers

published on the topic.

Cyber ranges can be used for different use-cases, depending on their implemen-

tation and the features they provide, but security testing and trainings are the most

common ones. For security testing it is important to have an isolated environ-

ment, especially when potentially dangerous software is tested, such as malware.

Moreover, being able to reset the environment to a clean state and re-perform the

tests with different configurations or parameters is an essential feature. Moreover,

the possibility to execute multiple test in parallel can produce faster and more sig-

nificant results.

In the case of trainings, Cyber Ranges are a great tool to develop skills in

multiple areas of cybersecurity [6]. For the exercises, often a virtual representation

of a real network is deployed in the Cyber Range and the participants can be divided

between red, attackers, and blue, defenders, teams. This allow to gain significant

experience without the need to use and disturb the real network. Moreover, the

ability to recreate large and different virtual scenario is clearly a key feature.

In fact, Cyber Ranges usually provide a templating system, which is used to

create a configuration of the virtual environment, including the simulated network

topology, the software used and other details, that can then be used to deploy and

execute the scenario multiple times. The templating component is implemented

differently depending on the use-cases and focus of the Cyber Range, and varies

from graphical interfaces applications to configuration text files.

A good templating system allows the user to easily define all the required aspects

2.2 OPENSTACK 6

of the scenario, making the planning phase of exercises simpler. In fact, when

considering security trainings, the preparation phase of the exercise is usually what

requires most time and effort [7], [8]. Therefore, there is still the need to develop

tools that can reduce the complexity and time spent on preparing trainings [9].

2.2 OpenStack

OpenStack is an open source project that can be used for creating public and private

cloud computing platforms [10]. It enables the automatic deployment and configu-

ration of virtual machines, virtual networks and other type of resources, with the

possibility to distribute them between multiple physical servers, without manual

intervention. This makes it quite easy to scale the infrastructure capabilities by

adding additional dedicated or generic servers to extend the virtual environments

capabilities. The scalability is achieved thanks to the OpenStack structure, which

is composed of multiple components that can be installed and scaled independently.

Due to the feature that it provides, OpenStack is also a good base infrastructure

to use for the development of a Cyber Range, as it automates many of the tasks

required by a Cyber Range, as shown in Section 4.3. Therefore, many Cyber Ranges

are developed using OpenStack as the underlying platform, as shown in Chapter 3.

The main components of OpenStack are described in the following Section and

the networking component is analysed more in detail in Section 2.2.2. Then Sec-

tion 2.2.3 shows some of the limitations of OpenStack, especially when it is used as

a base infrastructure for developing a Cyber Range.

2.2.1 OpenStack components

OpenStack is composed of multiple components that interacts with each other over

HTTP APIs and messages exchanged over the RabbitMQ [12] broker. This result

2.2 OPENSTACK 7

Figure 2.1: OpenStack components [11]

2.2 OPENSTACK 8

in a modular system, that can be adapted and customized to the requirements of

different use-cases, by configuring or installing different and additional components.

The main components, that are usually present in every OpenStack installation,

are the following [13] and are shown also in Figure 2.1 with their interactions:

• Keystone is the identity service of OpenStack and act as authentication point

for both the users and the other components.

• Nova is the component that manages the virtual machines. The physical

servers that have Nova installed are usually called compute nodes, since Nova

create, start and stops the virtual servers utilizing different virtualization tech-

nologies, such as QEMU, KVM, Hyper-V and others. When multiple compute

nodes are available, Nova also decides which physical node is the best suited

for hosting a new virtual server, depending on the resources available on each

node.

• Neutron manages the networking aspects of the virtual environments. It

controls the virtual networks that are used by the virtual servers and provides

other networking services, e.g. DHCP, Firewalls and other. Usually neutron

is installed on every compute node but there might be the need to deploy be

one or more dedicated networking nodes, depending on the requirements of

the cloud platform. The next section will provide more details on how virtual

networks are created and handled.

• Glance is used for storing images used by the virtual machines, together with

additional metadata.

• Cinder is the Block Storage service that is used mainly for the volumes of

virtual machines. It can be configured to provide advanced features like high

availability, fault-tolerant and recoverable storage.

2.2 OPENSTACK 9

• Swift provides Object Storage, which is used for storing all the additional

assets and data that are required for the deployment of the virtual machines.

• Horizon provides a web based interface that can be used to monitor and

interact with the cloud platform.

• Heat is the orchestration component of OpenStack. It adds templating ca-

pabilities to OpenStack by providing a template language, based on YAML,

that can be used to define a topology with virtual machines, networks and

every other details. The template can then be used to deploy the topology

multiple times and also allows to define arguments that are used to modify

certain aspects of the topology when it is deployed.

• Celiometer is the telemetry service that is designed for collecting data on the

usage of the cloud infrastructure, which can then be used to provide customer

billing if needed. This is the only service that is not useful for a Cyber Range,

but could be integrated to offer paid access to third parties.

2.2.2 Networking in OpenStack

As presented before, Neutron is the OpenStack component that handles all the

operations related to the networking of the virtual environments. It provides two

kind of networks that can be used by the virtual machines. Tenant networks are

fully virtualized and it is possible to create an unlimited amount of them. On the

other hand, Provider networks are based on the physical networks and allows the

virtualized environment to communicate with the real network. This is used when

there is the need to connect to the Internet from a virtual machine. For both network

types, it is possible to extend the virtual network between multiple physical server,

which is needed when multiple compute nodes are used. More details on how both

types of network are implementation is provided below.

2.2 OPENSTACK 10

Neutron is highly configurable to adapt to the physical infrastructure and envi-

ronment, by using different plugins and agents. In particular, the mechanism used

to interact with the Layer 2 of the physical network makes the most difference,

with multiple option to transport frames between network and compute nodes, e.g.

VLAN, VXLAN and GRE.

Open vSwitch (OVS) [14] is the most commonly deployed agent for both level 2

and level 3 management, also due to its better performances in comparison to the

Linux Bridges agent [15].

OVS can be configured and adapted to the layout of the physical servers and

required features. When a dedicated Network Node is used, the components and

connections that OVS creates for connecting a virtual machine to a tenant network

is shown in Figure 2.2

In particular, it creates:

• Tap port connected to the virtual machine.

• Linux Bridge that acts as local switch for the tenant network. Each virtual

machine deployed on the same Compute Node that is connected to the same

tenant network, will have its tap port connected to this bridge.

• OVS Integration Bridge integrates the networking services provided by OVS,

such as DHCP and routing between networks, and connects to the tenant

network bridge described before. This bridge is deployed on every compute

and network node.

• OVS Tunnel Bridge is used to extend the tenant network between multiple

physical servers by tunnelling it, which can be done with different technologies

depending on the OVS configuration. Usually VLAN or VXLAN technologies

are used. Therefore, the OVS Tunnelling Bridge connects to the OVS Integra-

tion Bridge and then forwards the tunnelled packets to the destination node

2.2 OPENSTACK 11

Figure 2.2: Neutron - OVS components structure

2.2 OPENSTACK 12

on the Overlay network. It is possible to configure OVS such that it uses a

dedicated physical network for the tunnelled traffic. When OpenStack is de-

ployed on a single physical node the OVS Tunnel Bridge is not used since all

the components are installed locally.

• On the dedicated network node, the configuration is similar, with the addition

of the routing components and the OVS Provider Bridge, which connects the

provider networks to the physical network infrastructure.

As presented before, OpenStack capabilities can be extended by deploying mul-

tiple compute nodes. Therefore, it is possible that virtual machines connected to

the same tenant network are deployed on different compute nodes. In the case that

this happens, Neutron needs to route the tenant network traffic from one node to

the other. An example of the traffic flow from Instance 1 to Instance 2 is shown in

Figure 2.3, that shows the traffic going through the following components:

1. Node 1 - Virtual machine 1 tap port

2-3-4. Node 1 - Tenant network Linux Bridge

5-6. Node 1 - OVS Integration Bridge

7-8 Node 1 - OVS Tunnel Bridge, VXLAN encapsulation

9-10-11. Physical Network, from Compute Node 1 to Compute Node 2

12-13. Node 2 - OVS Tunnel Bridge, VXLAN decapsulation

14-15. Node 2 - OVS Integration Bridge

16-17. Node 2 - Tenant network Linux Bridge

18-19. Node 2 - Virtual machine 2 tap port

2.2 OPENSTACK 13

Figure 2.3: Neutron - OVS flow between multiple compute nodes

2.2 OPENSTACK 14

2.2.3 Limitations of OpenStack

As described before, OpenStack is composed of many components and is highly

configurable, which makes it flexible and easy to adapt to different data-center

layouts but also increase the complexity of the setup phase. However, the installation

is usually done only once, so it is not an aspect that introduce overhead during the

utilization of the Cyber Range.

Instead, one missing feature that is more important is the lack of virtual Layer

2 cable entity. When specifying a network interface for a virtual machine, it is

required that it is assigned an IP address and thus that it is connected to a Layer 3

network. This is usually not a limitation, but if we want to simulate two machines

that are directly connected with a Ethernet cable, we have to create a dedicated

virtual network and assign IP addresses to both virtual machines’ interfaces.

The second aspect that can be considered a limitation for certain uses cases is

related to HEAT, the orchestration component, and in particular the templating

language it uses, HOT. HOT can be used to describe every element of the topology

and all the details of virtual machines, networks and other element of the virtual

environment. While this is useful for normal use-cases, it results in templates un-

necessary verbose when OpenStack is used as base infrastructure of a Cyber Range,

because for this use-case it is required to specify some details that are not necessary.

Section 3.3 provides more detail on HOT and shows an example of its verbosity.

3 Existing solutions

This Chapter presents existing Cyber Ranges and templating solutions. First, var-

ious implementations of Cyber Ranges and their use-cases are presented, then Sec-

tion 3.2 focuses on the templating capabilities of some of the analysed Cyber Ranges

and lastly Section 3.3 presents HOT, the template language used by the orchestra-

tion component of OpenStack, HEAT.

3.1 Existing Cyber Ranges

ViSR [16] was developed to provide a virtualized environment that is realistic,

repeatable and reproducible, that can be used to execute valuable experiments.

It uses OpenStack as a base infrastructure with the addition of custom modules

developed for the specific use case. In particular, the work was focused on analyzing

and improving the realism of the virtual environment. For this, they developed

Haystack [17], a tool that can emulate user interactions with the virtual environment.

Heat is used for defining and deploying network topologies, but an additional feature

was developed to allow users to create a HOT template from an already deployed

topology.

The Cyber Range Automated Construction Kit (CRACK) is a framework

developed to help with all the phases required to develop a scenario, including the

design, automated verification, deployment and testing [18]. For this, they defined a

Scenario Definition Language, called CRACK SDL as an extension of TOSCA [19],

3.1 EXISTING CYBER RANGES 16

which uses the YAML format. CRACK SDL is similar to HOT, the language used

by HEAT, the orchestrator component of OpenStack, with additional elements used

to define characteristics of the scenario other than the network topology. It also sup-

ports the derivation of elements’ types, increasing the extensibility of the language.

Moreover, in addition to the simple topology, CRACK SDL supports the definitions

of Vulnerabilities, Users, Principals, Software, Artifacts and Policies, enabling the

scenario designers to automatically deploy on the cyber range also all the required

software and (mis)configurations. In order to verify the correctness of the scenario,

CRACK uses logic programming, in particular Datalog [20], converting the SDL def-

inition to a Datalog specification and performing formal verification to check that

the specified scenario and its objectives are correct and coherent.

KYPO CRP is the “Cyber Range Platform” developed by the Masaryk Uni-

versity [21]. They use a topology definition based on YAML, which specifies hosts,

routers, networks, router mappings and network mappings, which define the connec-

tions of routers and hosts to networks respectively, and groups of hosts or routers.

A second group of YAML files, is used for defining the software configurations re-

quired, which are then applied during the deployment to the hosts defined in the

topology file using Ansible. The last scenario configuration component is a JSON

file that contains the definitions and properties of the training.

The Doman Specific Language (DSL) proposed for the Norwegian Cyber

Range (later Norway 1) uses a YAML-based language to represent the scenario [8].

The DSL definition can also be generated using a graphical tool, which they call

“cyber security strategy game”. The DSL can be used to define multiple aspects

of the scenario, including the properties of the scenario, nodes, which are used to

define virtual machines and their configurations, routers, services, vulnerabilities,

challenges, teams, agents, phases, objectives and rules. For the deployment, they

provide a compiler for DSL that performs Syntax and semantic validation of multiple

3.1 EXISTING CYBER RANGES 17

aspects of the scenario. The result of the compilation are three artifacts: the HEAT

template to be deployed on OpenStack, an Ansible template, that is used to deploy

software configurations on the virtual machines, and an external artifact containing

additional information.

The Norwegian Cyber Range developed also a different and more complex system

(later Norway 2) for automating and making the creation of scenarios efficient [22].

This system uses a JSON-based language for generating the topology, injecting

vulnerabilities, defining attacker and defender behavior and providing traffic gener-

ation. The system uses a formal verification mechanism that translate the JSON

language to a Datalog formal model, similarly to what is done in CRACK. If the

formal verification succeeds, then the language is used to generate the infrastruc-

ture orchestration artifacts: a HEAT template for the topology deployment, the

vulnerability injector scripts, which use SSH to connect to the virtual machine and

perform the required configurations, attacker agent scripts, defender agent artifacts,

that instruct the defender agent on how to response to certain attacks, and the

traffic generation scripts. The artifacts are then used by the scenario orchestrator

to execute the scenario.

The framework developed in [23] uses the Virtual Scenario Description Lan-

guage (VSDL) domain-specific language for defining the topology and high-level

details of the scenario. The language uses a custom syntax to describe the elements

of the scenario and it is compiled to a satisfiability modulo theory (SMT) speci-

fication which is then submitted to the CVC4 [24] solver. If the specification is

satisfiable, the solver returns a model, that is translated to Terraform and Packer

scripts that are finally used to deploy the scenario on OpenStack.

CRATE is the Cyber Range developed by the Swedish Defence Research Agency

(FOI) [9]. It is composed of multiple components that allow to create emulated en-

vironments but also include hardware devices. The different components communi-

3.1 EXISTING CYBER RANGES 18

cate through the “Core Api” and the CRATE Exercise Control (CEC) [25] is used to

manage the Cyber Range, by deploying and monitoring the virtual topologies. The

system allows to automatically provision the virtual environment, including specific

configuration of the virtual machines, and provides features such as user actions

emulation, data collection and the injection and execution of different tests. This

Cyber Range was developed to provide a system capable of performing controlled

experiments as well as trainings and exercises.

CytrONE [26] is a Cyber Range used for trainings that focus attacks reproduc-

ing known vulnerabilities, forensic analysis and defense skills. Therefore, the design

of this system focus mainly on trainings and they provide also CyPROM [27], a

scenario progression management module that guides the user through the training

executing the required steps in the virtual environment based on the single user

progress. Moreover, the Cyber Range in integrated also with the Moodle LMS to

provide a a better learning platform.

CyberVan [28] is a Cyber Range designed to provide a high fidelity simulation

of mobile wireless tactical networks and strategic networks. It support multiple

virtualization technologies for the virtual hosts and includes various elements to

improve the realism of the testbed, such as traffic simulation, including malicious

traffic, cyber attacks mechanisms and realistic network topologies.

INSALATA [29] is a framework that focus on the automatic replication of

real network in virtualized environments. In order to achieve this, the management

component receives data from the collector and gives instructions to the deployment

component to modify the virtual environment. The collector unit, uses multiple

techniques to obtain information on the network, both active, such as Nmap, SSH and

SNMP, and passive, like tcpdump. Moreover, it is possible to manually provide some

information on the physical topology with XML files. The deployment component

uses the XEN virtualization platform to deploy the virtual copy of the network.

3.2 TEMPLATING CAPABILITIES OF EXISTING CYBER RANGES 19

The analysis provided in [30] shows a Cyber Range implementation focused on

a very specific use case, the cyber-physical tests for Autonomous vehicle shuttles. In

particular this is used for testing possible attacks that target the autonomous nav-

igation algorithms. In this case, the use of real hardware becomes more important

as full software simulation might not provide high enough fidelity. However, the

use of hardware reduces the flexibility and ease of use of the testbed. Anyway, this

is a good example of use case specific Cyber Range, but this solution will not be

considered later because of the very limited and unique scope that differs from the

more generic Cyber Range that we aim to develop.

3.2 Templating capabilities of existing Cyber Ranges

We are particularly interested in systems that can be used to deploy various kind of

virtual topologies and that can be applied to multiple use-cases. Therefore, of the

cyber ranges presented before, we selected those that provide a clear and detailed

description of the language used.

CRACK uses a YAML syntax which is almost identical to HOT, so it is possible

to generate all the topologies supported by OpenStack. However, this means that

it also derives the verbosity and complexity issues of HOT, as shown in the next

section. One important feature of their implementation is the formal verification,

which makes sure that the topology and all the additional software configuration are

correct. Moreover, for the configuration of the hosts, many details can be modelled

directly in the language. Finally, the language supports the derivation of element

types, providing the option for the users to extend the language.

Kypo uses also a YAML file for describing the topology but it is much more com-

pact than HOT, since it is structured differently and it does not require to specify

some details like ports elements or IP addresses allocation ranges. However, it pro-

vides only three elements for constructing the topology: routers, networks and host.

3.2 TEMPLATING CAPABILITIES OF EXISTING CYBER RANGES 20

From the language description it seems that the routers are always interconnected,

but it should be possible to not connect a network to a router, thus the topologies

that can be created should be quite flexible. Moreover, they use separated Ansible

files to provide software configurations to the hosts.

Norway 1 uses a YAML configuration file as the two previous cyber ranges.

They provide only two elements for representing the topology: Node, which represent

a virtual machine, and Router. The Router is used to define the subnets that are

connected to it and in the Node definition it is possible to define a list of router and

subnet pairs to which connect the Node. Since all the routers are connected together,

the structure of the topologies that can be represented is limited. For the software

configuration, the language provides elements such as Service, Vulnerability and

Challenge to define the configuration of the hosts. These elements are then used to

generate Ansible templates which are used during the topology deployment. Finally,

for the validation they use both syntax and semantic validation.

Norway 2 is the only cyber range to use a template language based on JSON

and it uses Datalog to execute a formal verification of the scenario as in CRACK.

The language provides only two elements for the topology definition: Machine and

Subnet. The Subnet require the ID of a Network already existing in OpenStack, thus

it seems that a network must be first manually generated. Moreover, the grammar

definition seems to suggest that a Machine can be dependent, which is how they

define the connection relationship between Machine and Subnet, only on a single

subnet. This really limits the topology structure, or requires then some manual

intervention directly on the OpenStack infrastructure. Moreover, they provide an

example of the creation of a large topology, with similar or identical networks repli-

cated multiple times. For this example, they generated the template for a single

network and deployed it multiple times, which probably required a final manual

intervention to interconnect the networks. For the software configuration, the lan-

3.3 HOT LANGUAGE 21

guage supports the definition of vulnerabilities, that are then used to deploy the

required software in the Machines using SSH. Moreover, the language supports also

the modelling of attacker and defender behaviors, as well as traffic generation, which

are used to emulate the actions of red and blue teams. This aspect is especially use-

ful in the dry run phase, where the scenario is executed to verify that everything

works correctly.

VSDL uses a custom syntax that defines only two type of elements for describing

the topology, node and network, and it allows to define properties of the elements

based on logical connectives instead of fixed ones, e.g. disk is larger than 100

GB. Moreover, it includes time-based modifiers to enable or disable properties at

specific moments of the execution, which is a unique feature not present in the other

analyzed works. For the software configuration, the language provides two properties

in the node element that can be used for defining the software and vulnerabilities

that should be present in the virtual machine. This configuration is then handled

by Packer and there seems to be no option to define and use custom scripts directly

in the template. Finally, there is no feature to produce large topologies easily, which

is an aspect recognized also by the authors.

Table 3.1 provides a summary of the features included in the various templating

solutions.

3.3 HOT Language

As seen in Chapter 2 Heat is the component of OpenStack that enables the use

of templates to allocate topologies of virtual servers, networks and other resources.

HOT, Heat Orchestration Template, is the templating language that is used by

Heat. Moreover, as shown in the previous section, OpenStack is used as a base

infrastructure by multiple Cyber Ranges, but most of them prefer to use a different

language that is then translated to HOT and finally used to deploy the virtual

3.3 HOT LANGUAGE 22

Cyber Range
Language

format
Topology elements Verification Host configuration

CRACK YAML

Similar to HOT:

Host, Network,

Subnet, Port

Formal verification

with Datalog

Language elements

to model Software,

Vulnerabilities,

Users and more.

Kypo YAML

Host, Router, Net-

work and network,

router mappings

Not specified
Ansible YAML con-

figuration files

Norway 1 YAML

Node and Router.

Subnets are defined

by routers

Syntax validation

and semantic vali-

dation

Language elements

to model Software,

Vulnerability, Chal-

lenge, Teams and

more

Norway 2 JSON Subnet, Machine
Formal verification

with Datalog

Language elements

to model Services,

Vulnerabilities,

Challenge

VSDL
Custom

grammar
Network and Node

Formal verification

with CVC4

Software and vul-

nerabilities proper-

ties

Table 3.1: COMPARISON SUMMARY

3.3 HOT LANGUAGE 23

environment. This approach is very common because of different requirements for

the templating feature of the Cyber Ranges, such as including additional details of

the scenario, and also due to the verbosity and complexity of HOT. We now present

it a bit more in details and show an example of its verbosity.

HOT is based on YAML and is composed of 5 sections used to define different

aspects of the virtual environment [31]. The main section is the resources one,

where all the components elements that compose the virtual topology are defined

with all their parameters and details. The other sections are used mainly to provide

some customization of the template, such as defining parameters that can be defined

at deployment time to modify certain aspects of the topology.

An example of a very simple topology is shown in Listing 3.1. The topology

contains only a virtual machine VM_1 that is connected to a virtual network net_1

with the fixed IPv4 address of 1.2.3.4. In order to achieve this simple topology,

with hot it is required to define the following entities in the resource section:

• The virtual network net_1.

• A sub network subnet_1, related to net_1, which is used to specify the IPv4

allocation range of the network.

• A port, VM_1_port, which defines a connection on the network net_1, with

a fixed IPv4 address.

• The virtual machine VM_1, which uses the port VM_1_port to connect to

the network net_1.

3.3 HOT LANGUAGE 24

Listing 3.1: Example of the HOT language
1 heat_template_version: 2016 -10 -14
2

3 description: Simple HOT example
4

5 resources:
6 net_1:
7 type: OS:: Neutron ::Net
8 properties:
9 name: net_1

10

11 subnet_1:
12 type: OS:: Neutron :: Subnet
13 properties:
14 name: subnet_1
15 network_id: { get_resource: net_1 }
16 cidr: "1.2.3.0/24"
17 gateway_ip: "1.2.3.1"
18 allocation_pools:
19 - { "start": "1.2.3.1" , "end": "1.2.3.254" }
20

21 VM_1_port:
22 type: OS:: Neutron ::Port
23 properties:
24 network: { get_resource: net_1 }
25 fixed_ips:
26 - "ip_address ": "1.2.3.4"
27

28 VM_1:
29 type: OS::Nova:: Server
30 properties:
31 image: image_name
32 flavor: flavor_1
33 networks:
34 - port: { get_resource: VM_1_port }

HOT allows to define many additional details for every type of resource compos-

ing the topology, other than those shown in the example. However, when OpenStack

is used as the base infrastructure for a Cyber Range, in most use-cases many of the

additional details are not required. For example, the port entity is a concept that

it is usually not required nor used in a Cyber Range, instead a simpler mechanism

to define the connection of a virtual machine to a network is desired. The same

applies to the sub-network entity, where its properties could be defined directly in

the network entity.

The possibility to specify all these details make HOT a very complex and pow-

erful language, but at the same time very verbose and not ideal for many Cyber

3.3 HOT LANGUAGE 25

Ranges application, given the added complexity that is not required.

Moreover, when there is the need to define topologies that are composed by a

high number of similar entities HOT provides limited features to avoid repeating

multiple definitions of the similar resources.

Therefore, these aspects limit the usability of HOT as a direct templating system

for Cyber Ranges, but it can still be used as a target for the translation of other

systems, which is a solution adopted by multiple Cyber Ranges, as shown in the

previous section.

4 Specification and Design

This Section presents the design process for out Cyber Range and in particular the

new Description Language that we use for the templating system. First the general

requirements of the Cyber Range are provided with all the elements it must be

able to simulate. Then these requirements are used to create some base topologies

that should be easily recreated. From the topologies we extract the actual features

required for the Cyber Range and the Description Language. Finally, the language

grammar is presented.

4.1 General specifications and requirements

For the design of the Cyber Range structure and features we started with defining

the specific use cases that it should support.

In particular, we are interested in performing security testing of different net-

working components, but we want to be able to use the Cyber Range also for train-

ings and demonstrations. Therefore, a flexible Cyber Range that can support many

different topology elements and configurations is required.

The general features that our Cyber Range infrastructure should support are the

following:

• Automatic deploy of virtual machines, networks and other components of

the topology. The Cyber Range should interface with the chosen virtualization

4.1 GENERAL SPECIFICATIONS AND REQUIREMENTS 27

technology and automatically setup the environment and start the virtual

machines.

• Scalability. It should be easy to extend the Cyber Range in order to support

the virtualization of topologies with a higher number of elements.

• Isolation. When testing certain security features we want to have a virtual

environment that is completely isolated from the real external network. There-

fore the Cyber Range needs to have private virtual networks. Moreover, when

multiple experiments are executed concurrently on the same Cyber Range

infrastructure, there is the need to keep the different virtual environment iso-

lated.

• Initialization of virtual machines. It is often required to provide some

initial configuration or data to the virtual machines, such as additional network

settings or commands to execute after the booting sequence is completed.

• Templating system. The Cyber Range needs to support the creation of

topologies from a template file. Ideally, the templating system should be

able to easily model various aspects of the virtual environments and provide

features to facilitate describing very large topologies.

• Graphical interface. A nice feature to have for a Cyber Range is a graphical

interface that allows to see and interact with the deployed topologies.

• Access to the virtual machines. It is needed to access the virtual machines

to execute the tests, so the Cyber Range must provide a mechanism to achieve

that.

Regarding the security testing, we identified the following fundamental configu-

rations and features of network security components that we are interested in testing:

4.2 TOPOLOGIES 28

• Base components, such as virtual machines, Firewalls, Intrusion Detection

Systems (later IDS) or Intrusion Prevention Systems (later IPS).

• Multi-link connections, where two machines can correctly communicate using

two different connection paths. This simulates a network that has multiple ISP

connections for improved reliability.

• VPN Multi-link connections, similar as the one described before, but in

addition the two nodes should use VPN connections.

• Dynamic routing that similarly to Multi-link occurs when multiple paths

are available for delivering packets.

• Firewall/IDS clustering, differently from single Firewalls a cluster can pro-

vide higher reliability.

• Layer 2 Firewall/IDS to not limit the testing to only Layer 3 systems.

• Performance of security systems under heavy load.

4.2 Topologies

Based on the requirements identified before, we defined four base topologies that

can be used to test them. The Cyber Range should provide enough features to easily

deploy the topologies and a templating system to easily describe them.

4.2.1 Topology 1

The first topology, shown in Figure 4.1, includes two set of networks, both behind

a Firewall, that are divided by some external networks. In particular, each Firewall

is connected to two external networks and it has three internal interfaces for three

different sub-networks:

4.2 TOPOLOGIES 29

Figure 4.1: Topology 1

• Management, which includes the host used to configure the Firewalls.

• Intra, the internal network used by normal hosts.

• DMZ, where servers that expose services accessible from the external networks

are located.

We can use this first topology to test multiple configurations, such as multi-link,

since the two private networks are connected to two different external networks via

their Firewalls. The same applies for the VPN multi-link and dynamic routing re-

quirement. Moreover, many base components are already tested with this topology,

with only IDS and IPS missing.

4.2 TOPOLOGIES 30

Figure 4.2: Topology 2

4.2.2 Topology 2

The second topology, shown in Figure 4.2, is very similar to the first topology, but

instead of single Firewalls, a cluster composed of two Firewalls is used for separating

both private networks from the external ones.

This topology is able to test all the configurations of the first topology, but

focuses on the clustering of Firewalls, which is a feature tested only in this topology.

4.2.3 Topology 3

The third topology, shown in Figure 4.3, is quite different from the previous two.

This topology includes a single external network and many, 8 or more, private net-

works, each protected by a Firewall. One of the Firewalls protects also the manage-

ment sub-network, as seen in the previous topologies.

This topology focuses on testing the performance of the security systems when

a high number of nodes, and thus a heavy load, is used.

4.2 TOPOLOGIES 31

Figure 4.3: Topology 3

4.3 CYBER RANGE INFRASTRUCTURE 32

Figure 4.4: Topology 4

4.2.4 Topology 4

The last topology, represented in Figure 4.4, is similar to the first one presented,

but only one external network is used and both private networks have an additional

IPS, which could also be replaced by a IDS, that is connected between the Firewalls

and the external network.

Layer 2 IPS or IDS are uniquely used in this topology, which is the main char-

acteristic tested with it. This requires the use of a Layer 2 connection, that is not

used in any other topology.

4.3 Cyber Range infrastructure

The general requirements for the Cyber Range infrastructure identified in Section 4.1

are supported by various features and components of OpenStack. As seen in Chap-

ter 3, OpenStack is a popular platform that is adopted to create the base infrastruc-

ture of many Cyber Ranges.

4.3 CYBER RANGE INFRASTRUCTURE 33

In particular, the requirements are fulfilled by the following features:

• Nova provides automatic deploy of virtual machines, their configurations and

initialization. It supports different virtualization mechanisms. Moreover, it

is possible to deploy Nova on multiple physical servers, making possible to

extend the virtualization capabilities of the Cyber Range.

• As shown in Section 2.2.2, Neutron supports tenant networks which are not re-

lated to real networks, allowing to create virtual networks that are completely

isolated.

• OpenStack has a graphical web interface to interact with the virtual environ-

ments, provided by the Horizon component, in addition to the command lines

utilities.

• It is possible to access and interact with the virtual machines using different

protocols, such as VNC, Spice, RDP, and MKS.

• The templating system of OpenStack is provided by HEAT but the language it

uses, HOT, is not ideal for a Cyber Range, as shown in Section 3.3. However,

we can use a different language and then translate it to HOT, which is done

in many other Cyber Ranges.

This shows that OpenStack is a good base infrastructure and that we can use it

to develop our Cyber Range. Moreover, it is released as open-source software, which

makes it possible to make changes and adapt it to our need if we require aspects that

are not currently supported. For example, the four testing topologies shows that,

in addition to the requirements identified in Section 4.1, we require the use of Layer

2 connections between two virtual machines and a virtual machine and a network.

This type of connection is not currently supported by Neutron and Chapter 5 shows

also how this feature was integrated.

4.4 DESCRIPTION LANGUAGE 34

Regarding the templating system for our Cyber Range, we explained already

that HOT is not suitable. Therefore we decided to develop a new language, later

called Description Language, that is used to describe the topologies and it is then

translated to HOT in order to use HEAT to automatically deploy the scenarios.

4.4 Description Language

4.4.1 Features required

From the four topologies shown before, we defined the following features that the

Description Language must support, in order to be able to recreate them:

• Hosts entities: represent the virtual machines that will be deployed. For every

host we should be able to specify some options, such as the amount of resources

dedicated to the machine, usually called flavor, the image that is used to boot

the machine and some initialization option. Moreover, being able to specify

special hosts, like firewalls, should be supported.

• Networks: the virtual networks that the hosts will be connected to. The

language must support certain options also for the network entities, such as

the CIDR used.

• Network connections: each host entity can be connected to one or more

network, so the language needs to provide a function to specify the connections

between hosts and networks.

• Layer 2 cables: for the fourth topology, described in Section 4.2.4, it is

required to connect two hosts directly, without the need of defining a network,

since the two devices will communicate directly and they will not require IPv4

addresses assigned on the interfaces in order to properly work. In particular,

4.4 DESCRIPTION LANGUAGE 35

in the fourth topology this is used when the Layer 2 IPS or IDS is placed

between the Firewall and the external networks. The Firewall will not see

that its interface is not connected directly to the external network, since the

Layer 2 IPS or IDS operate in a transparent way. Therefore, defining a network

between the two is unnecessary.

• External networks: this entity represents a network that we do not need

to manage directly, for example it could represent the ISP network. It could

be possible to use the normal Network entity, but it might be useful to a

separate one to reduce the amount of detail that is required, or also to provide

a different semantic value that can be used to better document the topologies.

• Clusters of hosts: It is possible to manually create a cluster of hosts by just

using the previously described entities, but the Description Language should

provide a simpler mechanism to create a cluster of virtual machines, which

should also be more semantically explicit, in order to obtain a more easily

understandable topology description.

Moreover, the Description Language should ease the creation of a large number

of similar entities, in order to reduce the verbosity of the topology description.

Finally, it would be interesting to have some features that improve the extensi-

bility to the language. This can be useful for both the creation of large topologies

and the flexibility and customization that might be required in certain scenarios and

use-cases.

4.4.2 Grammar specification

Given the requirements specified above, we created the following grammar.

The Description Language is composed by a list of statements. Each statement

represents and describes an entity, is terminated by the ; character and multiple

4.4 DESCRIPTION LANGUAGE 36

<type> <name> [<attribute>(<value1>, ...)]* ;

Figure 4.5: Statement syntax

white-spaces are ignored.

Each statement is constructed with the syntax shown in Figure 4.5, which is

composed by the type of the entity, its name, which must be unique in the template,

and multiple attributes, when needed.

The type of the entity and its name are always required. Then multiple attributes

can be used, depending on the type of entity and each attribute can have multiple

values.

The format of entity’s names and attributes’ values can be quoted strings or

identifier format [a-z,A-Z,0-9][a-z,A-Z,0-9,_]*, with some exception such as

IPv4 addresses or CIDR values.

Listing 4.1 shows an example topology described with the Description Language

grammar.

4.4 DESCRIPTION LANGUAGE 37

Listing 4.1: Example of the Description Language grammar
1 ext_net public;
2

3 host attacker
4 image(attacker_img)
5 interface(public);
6

7 network intranet cidr (192.168.10.0/24);
8 network dmz cidr (192.168.20.0/24);
9

10 cable firewall_to_ips;
11 cable "ips to public" connection(public);
12

13 host ips image(ips_img)
14 interface ("ips to public ")
15 interface(firewall_to_ips);
16

17 firewall FW
18 interface(firewall_to_ips)
19 interface(intranet , gateway)
20 interface(dmz , gateway)
21 cinit(" fw_setup_script.sh");
22

23 host simple_host
24 interface(intranet);
25

26 host server1
27 image(server_img)
28 interface(dmz , 192.168.20.1)
29 cinit(" server_setup_script_1.sh");
30

31 host server2
32 image(server_img)
33 interface(dmz , 192.168.20.2)
34 cinit(" server_setup_script_2.sh");
35

36 cluster server_cluster
37 host(server1)
38 host(server2)
39 interface ("dmz", 192.168.20.10);

The following entity types are currently supported:

Network

Create a virtual network with the given name and cidr. The attribute cidr is

mandatory and defines the range of IPv4 addresses that will be used in the network.

network <name> cidr(<cidr value>)

Figure 4.6: Network entity syntax

4.4 DESCRIPTION LANGUAGE 38

Host

Create a virtual host.

host <name> [image(<image_name>)]? [flavor(<flavor_name>)]?

[interface(<network name> [, <ip> | "gateway"]?)]+

[cinit(<init_file> [, (<from>, <to>)]*)]?

Figure 4.7: Host entity syntax

The syntax of the host entity is more complicated because there are more at-

tributes:

• image: Select the image that will be used during the boot of the host. If not

specified, the default image will be used.

• flavor: Select the flavor to use for the host. If not specified, the default flavor

will be used.

• interface: Connects the host to the given network, external network or cable.

Each host needs at least one interface. The first value of the interface attribute

is the name of the network, external network or cable. The second one is

optional and is used to specify the IPv4 address that the host will have. The

value can be an IPv4 address or the keyword gateway, if the host will be the

default gateway for the network. If the second value is not specified, the host

will receive a random IPv4 in the network range from the DHCP service.

• init: Select the file that cloud-init should use for the host initialization. If not

specified, no initialization file will be used. It is possible to specify a list of

pairs of strings that will be replaced in the given file.

4.4 DESCRIPTION LANGUAGE 39

External network

Create an virtual network that represents an external network that we do not want

to manage, such as a ISP network. It is not very different from the normal network

entity, but it is useful to make the topology semantically more clear.

ext_net <name> [cidr(<cidr>)]? [route(<ext_net name>)]*

Figure 4.8: External network entity syntax

The cidr attribute is the same as the network entity one, but it is not mandatory.

The route attribute is not mandatory, can be repeated multiple times and represents

a connection to another external network, so that traffic can be routed between the

two. It does not matter on which external network the attribute is specified.

Cluster

Create a cluster of hosts. A cluster could be created also manually, but the cluster

entity makes it less verbose and more semantically understandable.

cluster <name> [cidr(<cidr>)]? [[firewall|host](<name> [,

<ip_addr>]?)]+ [interface(<network name> [, <ip> | "gateway"]?)]+

Figure 4.9: Cluster entity syntax

The cidr attribute is used to define the cidr of the management network that is

created for the cluster. Every host is connected also to this network when added to

a cluster. If it is not defined, a default value will be used.

Multiple host attributes can be defined and the keyword firewall can also be

used, since in the test topologies the cluster is used mainly for firewall instances.

For every hosts, the name of an existing instance must be declared and optionally

it is possible to specify the IPv4 address that the host will have in the management

network.

4.4 DESCRIPTION LANGUAGE 40

Multiple interface attributes can be used, similarly to the host entity, and it is

used to specify a connection between the cluster and the network with the given

name. Every hosts must be connected to all the networks on which the cluster has

an interface. The IPv4 address of a cluster interface, if specified, will be assigned

to all the interfaces, on the same network, of all the host or firewalls in the cluster,

as virtual IPv4 addresses. It is possible to use the keyword gateway if the cluster

will be the default gateway for the network. If not specified, the cluster will get a

random IPv4 address in the network range, similarly to a host instance.

Cable

Create a virtual Layer 2 connection between two hosts or a host and a network.

Connecting two networks using a cable is currently not supported.

cable <name> [connection(<entity_name>)]?

[connection(<entity_name>)]?

Figure 4.10: Cable entity syntax

The attribute connection can be used two times or less. It is possible to connect

a host to a cable also using the interface attribute in the host instance. A cable

must always be connected to two different entities, hosts or networks, independently

from how the connections are specified.

Firewall

The firewall type is derived from the host type, which means that it is equivalent to

a host type but it uses different default values. In particular, the default image and

flavor are different from the host ones. Therefore, the syntax to create a firewall is

the same as the host one, but with a different type name.

4.4 DESCRIPTION LANGUAGE 41

firewall <name> [image(<image_name>)]? [flavor(<flavor_name>)]?

[interface(<network name> [, <ip> | "gateway"]?)]+

[<init_type>(<init_file> [, (<from>, <to>)]*)]?

Figure 4.11: Firewall entity syntax

All the attributes of the firewall type are defined equally to the host ones. There-

fore, it is possible to directly use the host type if values different from the default

ones are used for the image and flavor attributes. However, it is more semantically

significant to a reader if the correct type is used.

4.4.3 Grammar specification - Preprocessor

In addition to the grammar specified in the previous section, additional features

are needed to improve the extensibility and reduce the verbosity of the topology

descriptions. The structure of these additional constructs and their grammar is

different from the statements syntax described before and it is interpreted in a

different phase, called preprocessor which is executed earlier than the parsing of the

statements. This allows to achieve scalability in a more flexible way.

Listing 4.2 shows the same topology described in Listing 4.1 integrated with the

preprocessor directives.

This grammar is composed by the following directives:

4.4 DESCRIPTION LANGUAGE 42

Listing 4.2: Example of the Description Language grammar and preprocessor fea-

tures
1 // Topology that showcase all the features
2 // of the language
3

4 ext_net public;
5

6 host attacker
7 image(attacker_img)
8 interface(public);
9

10 network intranet cidr (192.168.10.0/24);
11 network dmz cidr (192.168.20.0/24);
12

13 cable firewall_to_ips;
14 cable "ips to public" connection(public);
15

16 host ips image(ips_img)
17 interface ("ips to public ")
18 interface(firewall_to_ips);
19

20 firewall FW
21 interface(firewall_to_ips)
22 interface(intranet , gateway)
23 interface(dmz , gateway)
24 cinit(" fw_setup_script.sh");
25

26 // Host with default image
27 host simple_host
28 interface(intranet);
29

30 #for i (1,3):
31 host server{i}
32 image(server_img)
33 interface(dmz , 192.168.20.1{i})
34 #if ({i} = 1):
35 cinit(" server_setup_script_1.sh");
36 #else
37 cinit(" generic_setup.sh", (ID, {i}));
38 #endif
39 #endfor
40

41 cluster server_cluster
42 #for i (1,3):
43 host(server{i})
44 #endfor
45 interface ("dmz", 192.168.20.10);

For directive

The For directive is composed by a header, Figure 4.12, and a footer, Figure 4.13.

Every character between the header and the footer is considered part of the body.

4.4 DESCRIPTION LANGUAGE 43

#for <label_name> (<range_start>, <range_end>):

Figure 4.12: For directive: header syntax

#endfor

Figure 4.13: For directive: footer syntax

The header specifies a label that can be use in the body with the syntax {<label_name>}

and a range of values, with both ends inclusive. For each value in the range, the

body will be replicated, replacing every instance of the label, as specified before,

with the correct value.

If directive

The If directive is composed by a header, Figure 4.14, and a footer, Figure 4.15.

Every character between the header and the footer is part of the body and optionally,

the body can be divided by the else header, Figure 4.16. If the else header is used,

every character between the else header and the footer is part of the else body.

#if (<string_1> <comparison> <string_2):

Figure 4.14: If directive: header syntax

#endif

Figure 4.15: If directive: footer syntax

#else

Figure 4.16: If directive: else syntax

The header specifies a comparison between two strings. The only comparison

supported by the Description Language at the moment is the equal comparison.

4.4 DESCRIPTION LANGUAGE 44

If the comparison is true, then the body is left unchanged. Otherwise, the body

will be deleted. In the case that the else body is specified, using the else header, it

will be left unchanged if the comparison is false, or deleted otherwise.

Nesting

It is possible to nest directives, in order to create more complex structures and

obtain a more powerful extensibility of the Description Language, that allows to

describe large topologies more easily and less verbosely.

It is possible to use a label declared in a for directive in the comparison of a if

directive, or in the body of the if directive, if the second directive is contained in

the body of the first one.

The only limitation to the nesting of directives is that it is required to properly

nest directives. Therefore, it is not possible to have the footer of the outer directive

before the footer of the inner directive. The Listing 4.3 shows the described incorrect

nesting.

Listing 4.3: Example of incorrect nesting of directives
1 #for i (1, 3):
2 #if ({i} = 2)
3 #endfor
4 #endif

Comments

The last feature supported by the Description Language is comments, which are not

directly useful for the description of the topology but act as documentation.

The Description Language supports C-style single line comments, which means

that when the tag // is found, everything until the end of the line is considered

comment and ignored by the parser.

5 Implementation

This chapter focuses on the implementation of the components we developed for the

Cyber Range. In particular, Section 5.1 describes the implementation of the De-

scription Language compiler and Section 5.2 shows the other components developed

for the Cyber Range infrastructure.

5.1 Description Language compiler

In Chapter 4, the design of the grammar for the Description Language was presented.

It was also shown how OpenStack provides a good base infrastructure for the Cyber

Range and how HOT is too verbose but can be used as a translation target for our

Description Language.

Therefore, the workflow needed to deploy a certain topology will be to write

a template describing the topology using the Description Language, then use the

compiler to translate it to an equivalent HOT template and finally use the output to

deploy the topology on the Cyber Range by either uploading it on the web interface

or using the command line utilities.

This section presents the implementation of the compiler that translates between

the two languages taking as input a template written with the Description Language

and outputting the corresponding HOT template.

The compiler is implemented in Rust, extensively using the parsing library

NOM [32], which allows to produce fast and correct parsers, and provides functions,

5.1 DESCRIPTION LANGUAGE COMPILER 46

Figure 5.1: Compilation process

macros and traits to facilitate the implementation of parsers and error handling.

The only other dependency used for the compiler is the library lazystatic [33],

which is used for creating a static configuration structure that is used in different

parts of the parser and its values can be modified by setting the correct environment

variables, as described later.

Compilation is divided in 4 phases, as shown in Figure 5.1, each handled by a

different component:

• The Preprocessor is the component that parses and resolves directives. It out-

puts a modified version of the original file, that contains only the entities that

compose the Description Language grammar, as described in Section 4.4.2.

• The Parser takes the result of the preprocessor as input, parses the entities

and allocate all the corresponding structures that are required to represent the

topology. This step verifies that the template is syntactically correct.

• The Validator performs various verification on the entities allocated by the

parser, checking that the entities have a valid semantic and not only a valid

syntax. This step also ensures that the described topology does not contain

5.1 DESCRIPTION LANGUAGE COMPILER 47

configuration errors.

• Finally the translation takes all the entities that have been checked by the

validator and creates the correct respective HOT template as output.

Each component is presented in more details in the following sections.

5.1.1 Preprocessor

The first step executed by the preprocessor is the removal of all the comments. To

achieve this, it parses the input searching for all the instances of the tag // and,

when found, removes every character from the start of the tag until the first end of

line found.

Once the comments are removed, the preprocessor parses the resulting input

again, this time creating a tree, or forest, of nested directives. In order to do so, in

addition to the directives presented in Section 4.4.3 a Base directive is used, which

is used as a container for all the characters that are not part of the other directives’

headers and footers. The parsing technique used for this step works by reading

character by character until # is found. A Base directive is created with all the

characters that were parsed before the #. Then, the header or footer is parsed and

the corresponding directive is allocated or updated. Then, the parsing algorithm

starts over with the Base directive parsing.

The preprocessor’s parser is constructed using a combinations of functions pro-

vided by NOM. Listing 5.1 and 5.2 show how the high level parsing functions for

the If and For directives are constructed. The functions if_header, if_body,

else_header, else_body, if_footer, for_header, for_body and for_footer are

other parsing functions we defined, while the other functions used to combine and

construct the parsers are provided by NOM.

5.1 DESCRIPTION LANGUAGE COMPILER 48

Listing 5.1: Parsing code for If directive
1 pub fn if_cond<'a, E: ParseError<&'a str> + ContextError<&'a str>>
2 (input: &'a str) -> IResult<&'a str, IfDir, E>
3 {
4 context(
5 "If␣directive",
6 map(
7 terminated(
8 tuple((
9 if_header,

10 context(
11 "body",
12 if_body
13),
14 opt(
15 preceded(
16 else_header,
17 else_body
18)
19)
20)),
21 if_footer
22),
23 |(header, body, else_body)|
24 IfDir {
25 header: header,
26 body: body,
27 else_body: match else_body {
28 Some(b) => Some(b),
29 None => None
30 }
31 }
32)
33)(input)
34 }

Listing 5.2: Parsing code for For directive
1 pub fn for_loop<'a, E: ParseError<&'a str> + ContextError<&'a str>>
2 (input: &'a str) -> IResult<&'a str, ForDir, E>
3 {
4 map(
5 terminated(
6 pair(
7 for_header,
8 for_body
9),

10 cut(for_footer)
11),
12 |(header, body)|
13 ForDir {
14 header: header,
15 body: body
16 }
17)(input)
18 }

5.1 DESCRIPTION LANGUAGE COMPILER 49

The result of this parsing is a sequence, hence why it is a forest and not a simple

tree, of nested directives. Each directive can be either:

• BaseDir: represents the test that is not part of headers and footers.

• IfDir: it is composed of a header, a footer, a body and optionally an else body.

The body, and also the else body, is another forest of directives, which means

that is can be composed of a single BaseDir, if there are no nested directives,

or a list of nested directives otherwise.

• ForDir: it is composed of a header, a footer and a body. Its body is a forest

of nested directives, as the IfDir one.

The resulting list of directives is then inserted in a stack and processed, by

resolving the top directive in the stack iteratively. The resolve action depends on

directive type:

• BaseDir: no action required. The directive is pushed in the output list.

• IfDir: the condition in the header is checked. If it is true the directives con-

tained in the body are pushed on top of the stack. Otherwise, if the else body

is present the directives contained in it are pushed on top of the stack, if it is

not present, no action is needed and the directive can be discarded.

• ForDir: for every value contained in the range specified in the header, the

body is replicated with a replacement of the variable label with the current

iteration value in every directive that composes the body, recursively executing

the replace function in the nested directives. Then, the resulting directives

are pushed on top of the stack and the ForDir directive is discarded.

5.1 DESCRIPTION LANGUAGE COMPILER 50

Listing 5.3: Example input of the preprocessor
1 #for i (1,3):
2 network net{i} cidr(10 .0.0.0/24);
3 #for j (1,3):
4 #if ({i} = 1):
5 host "server {i} {j}" interface(net{i});
6 #else
7 host "vm {i} {j}" interface(net{i});
8 #endif
9 #endfor

10 #endfor

This process will resolve every directive and produce a list of resulting BaseDir.

The list is then processed by extracting the body of each directive and concatenating

it. The resulting string is the output of the preprocessor.

As an example of the preprocessor execution, Listing 5.3 shows a possible input,

which is parsed and a simplified representation of the resulting forest of directives is

shown in Listing 5.4. Then, the directives in the forest are resolved and the output

produced by the parser is shown in Listing 5.5.

5.1 DESCRIPTION LANGUAGE COMPILER 51

Listing 5.4: Forest of directives generated by the preprocessor
1 Directives:
2 [
3 ForDir {
4 header: ForHeader {
5 var_name: "i",
6 range: Range {
7 from: "1",
8 to: "3",
9 },

10 },
11 body: [
12 BaseDir {
13 body: "network net{i} cidr (10.0.0.0/24);\n",
14 },
15 ForDir {
16 header: ForHeader {
17 var_name: "j",
18 range: Range {
19 from: "1",
20 to: "3",
21 },
22 },
23 body: [
24 IfDir {
25 header: IfHeader {
26 left: "{i} ",
27 right: " 1",
28 comparison: Equal ,
29 },
30 body: [
31 BaseDir {
32 body: "host \" server {i} {j}\" interface(net{i});\n",
33 },
34],
35 else_body: [
36 BaseDir {
37 body: "host \"vm {i} {j}\" interface(net{i});\n",
38 },
39],
40 },
41],
42 },
43],
44 },
45 BaseDir {
46 body: "\n",
47 },
48]

5.1 DESCRIPTION LANGUAGE COMPILER 52

Listing 5.5: Output of the preprocessor
1 network net1 cidr(10 .0.0.0/24);
2 host "server 1 1" interface(net1);
3 host "server 1 2" interface(net1);
4 host "server 1 3" interface(net1);
5

6 network net2 cidr(10 .0.0.0/24);
7 host "vm 2 1" interface(net2);
8 host "vm 2 2" interface(net2);
9 host "vm 2 3" interface(net2);

10

11 network net3 cidr(10 .0.0.0/24);
12 host "vm 3 1" interface(net3);
13 host "vm 3 2" interface(net3);
14 host "vm 3 3" interface(net3);

5.1.2 Parser

As described before, the parser takes the output of the preprocessor, parses it, and

allocates a the required entities. The main function of the parser in the compilation

process, is to verify that the template is syntactically correct and to allocates the

structures of the entities that are later used by the validator and for the translation.

The entities that can be parsed and created are Host, Network, ExtNet, Cable and

Cluster.

The parsing functions, similarly to the preprocessor ones, are constructed based

on NOM, which provides many parsing functions that can be combined in order to

create the complete parser. As an example of the parsing code, Listing 5.6 shows

the high level statement parser function and Listing 5.7 shows the main function

that parses Network entities. The parsers for the other entities are constructed in a

similar way.

5.1 DESCRIPTION LANGUAGE COMPILER 53

Listing 5.6: Parsing code for statements
1 fn statement<'a, E: ParseError<&'a str> + ContextError<&'a str>>
2 (i: &'a str) -> IResult<&'a str, Statement, E>
3 {
4 context(
5 "statement",
6 delimited(
7 multispace0,
8 alt((
9 host,

10 network,
11 cable,
12 ext_net,
13 cluster
14)),
15 multispace0
16)
17)(i)
18 }

Listing 5.7: Parsing code for Network entity
1 fn network<'a, E: ParseError<&'a str> + ContextError<&'a str>>
2 (i: &'a str) -> IResult<&'a str, Statement, E>
3 {
4 context(
5 "network",
6 map(
7 tuple((
8 tag("network"),
9 cut(

10 preceded(
11 multispace1,
12 alt((
13 identifier,
14 quoted_string
15))
16)
17),
18 cut(
19 preceded(
20 multispace1,
21 cidr
22)
23)
24)),
25 |(_, name, cidr)| Statement::Network(
26 Network{
27 name: name.to_string(),
28 cidr: cidr.to_string(),
29 ..Default::default()
30 }
31)
32)
33)(i)
34 }

5.1 DESCRIPTION LANGUAGE COMPILER 54

Figure 5.2: Example of error message

One interesting and useful feature provided by NOM is the context function, which

is used often in the code in order to provide relevant error messages generation,

similarly to a calltrace. Figure 5.2 shows an example of error message that the

parser produces when executed with a syntactically incorrect template as input. In

the example, the mask of the cidr attribute is not a valid value, because it is not a

8-bit integer.

5.1.3 Validator

The validator is responsible to verify that the topology template is semantically

correct. To achieve it, it receives as input the list of entities that the parser allocates

and performs multiple checks, including:

• Entity names: it checks that there are no duplicate names, or missing ones.

For example, it verifies that when a host is connected to a network, the network

5.1 DESCRIPTION LANGUAGE COMPILER 55

with the given name actually exists and similarly for all the other relationship

between entities.

• Correct connection: cables must be connected to two entities and the validator

enforces this. Also verifies that, when a cluster is created with an interface on

a certain network, all the hosts in the cluster have an interface on the same

network.

• IPv4 allocation: it checks that there are no multiple hosts with the same IPv4

address on the same network.

Moreover, the validator also completes the instances with missing information.

This can happen for example with the Cable entity, since it possible to specify

the two connection both in the cable statement or in the host interface attribute.

Therefore, the validator will combine the two information, verify the correctness

and add the missing information. Another example is with clusters. Each host in a

cluster will receive a virtual IPv4 address on the interfaces used by the cluster. The

validator adds this information to the host instances.

After all the validation steps are successful, the validator outputs the list of

entities with the updated fields.

5.1.4 Translation

The final step of the compilation from the Description Language to HOT is the trans-

lation, which takes the list of entities from the validator and outputs the resulting

HOT file.

During this step, the list of entities is iterated, and for each one the method

to_hot() is called. This function fills a template using the instance data, creating

the correct HOT template needed for each entity. This function is implemented

slightly differently for every entity type, since some types only have to replace their

5.1 DESCRIPTION LANGUAGE COMPILER 56

name in the template, others have a more complicated logic, such as Host and

Cluster.

5.1.5 Extensibility

One of the requirements identified in the design phase was the extensibility to the

language. The current implementation of the compiler provides only limited feature

regarding this aspect.

One feature currently supported provides the possibility to set environment vari-

ables that modify various default values, such as host’s and firewall’s image and

flavor, ExtNet’s and cluster’s internal network cidr.

Another desired feature is to be able to define derived types, such as the firewall

described in Section 4.4.2. The current implementation facilitates this but it still

requires editing the compiler code. For example, to implement a new type derived

from the host, we only need to add the type to the HostType enum, add a function

that returns the default values and modify the parsing function to accept also a

different type name for the host entity.

Lastly, for creating new types that are not derived from existing ones, some

traits and macros are provided to simplify the parser creation for the new entity.

With that, it is possible to create a struct that contains as fields all the attributes

of the type and use the derive attribute with the trait ParseStatement. This will

provide a default implementation of the parse function, which creates a parser that

includes all the fields of the struct. However, this requires the type of the field

to implement the ParseAttributeValue trait, with some common implementations

already provided. The result is that to create a parser for the new type it is required

only to implement the ParseAttributeValue trait for the custom types used in the

struct. Therefore, this feature makes it much easier to implement and integrate new

types in the compiler.

5.2 CYBER RANGE INFRASTRUCTURE 57

5.2 Cyber Range infrastructure

As explained before, we use OpenStack as a base infrastructure with some modifi-

cations and additional components developed to better adapt it to our needs and

integrate the Description Language.

5.2.1 Installation and deployment of OpenStack

Different options and methods are available to install OpenStack. It is possible to

install and configure every component manually but it is a very time-consuming

method. Therefore, it is suggested to use other deployment systems that automate

the installation and configuration of the different components, such as Ansible [34],

Packstack [35] and Devstack [36].

The deployment system we use is Packstack, a tool developed by the RDO

project, which is a community of people using and deploying OpenStack on CentOS,

Fedora, and Red Hat Enterprise Linux [37]. It is particularly useful also during the

testing phase because it allows to rapidly deploy OpenStack from a given configura-

tion file that contains multiple options to correctly install and configure the required

components. Moreover, it is also possible to extend the OpenStack infrastructure

by automatically deploy additional compute nodes when required. Therefore, once

the configuration file is created correctly, it is very easy to deploy multiple times or

on different machines.

5.2.2 OpenStack modifications

As presented before, we require the use of Layer 2 connections, which OpenStack

does not support directly since it does not provide any entity to represent a cable con-

nection. Moreover, it requires all virtual machine’s interfaces to have an IP address

when connected to a network. In details, Neutron supports allocating networks that

5.2 CYBER RANGE INFRASTRUCTURE 58

do not have Layer 3 services enabled and the creation of ports without IP addresses

associated to them, but Nova, before deploying a virtual machine, verifies that all

the ports associated with it have an IP address. To solve this issue, we have to patch

Nova to remove this check in certain conditions. This modification was implemented

in a pull request [38] that was not merged for lack of interest. Therefore, we rebased

the pull request’s changes on the current version of the Nova’s code and created a

patch that we can apply to every compute node that we deploy. The result is that

when a cable instance is used in a Description Language template, the compiler can

set the property port_security_enabled to false of virtual machine’s ports that

are connected to a cable and OpenStack correctly deploys the template. Moreover,

when a cable is connected to two virtual machines a dedicated tenant network is

created. Instead, when a cable is used to connect a virtual machine to a network,

creating an additional network is not required.

The second patch we created slightly modifies the visualization of the topology

in the web dashboard. This is needed because we use some entities that are different

from those used by OpenStack, or that have a different semantic value. The firewall

and cable types of the Description Language are translated to normal virtual ma-

chines and networks respectively, with no difference to host and network types. To

improve the visualization, the compiler adds tags to the HOT template’s entities,

which are normally ignored by OpenStack and the web interface. Then, we created

a patch for the dashboard that modifies the topology graph, rendering it differently

according to the tags associated with the entities.

5.2.3 Cyber Range CLI

Section 5.1 explained how the workflow required to deploy a scenario from a De-

scription Language template requires to first manually compile the template and

then upload the resulting HOT template and have OpenStack deploy it.

5.2 CYBER RANGE INFRASTRUCTURE 59

Figure 5.3: Example of the CLI used to deploy a scenario

In order to simplify this process we created a command line interface (CLI) that

automates the various steps. The CLI is also written in Rust and interfaces directly

with OpenStack using the library rust-openstack [39]. However, the library does

not provide the functions and structures required to interact with Heat, but only

with Nova, Neutron, Glance and Cinder. Therefore, we implemented all the missing

components and functions that enable the interactions with the complete Heat APIs.

The result is that the CLI can be used to list, start and stop scenarios on the

Cyber Range infrastructure. In particular, to start a scenario it is required to only

provide a Description Language template and a name. The CLI will then compile

the template, check if the cloud-init configuration files used in the template, if any,

are present, verify that the images and flavors used by the virtual machines exist

and deploy the topology on OpenStack. Figure 5.3 shows an example execution of

the CLI.

Moreover, the CLI can also be used as a Rust library and not only as a stand

5.2 CYBER RANGE INFRASTRUCTURE 60

alone program. This is important for future development because if there will be the

need to implement a custom graphical interface then the CLI can be used as library

to provide the required interactions with both the Description Language compiler

and OpenStack.

6 Testing

This chapter describes the validation testing of our Cyber Range, focusing only on

the Description Language, since it is the key component that we developed and that

characterize our Cyber Range.

To test the Description Language, we will use the four topologies that we defined

in Chapter 4, in order to verify that the Description Language is able to produce a

valid result for the requirements of the Cyber Range.

For testing and validating the result, the following parameters will be used:

• Correctness of translation. We check that the Description Language can

be correctly compiled to a valid HOT template that represent the required

topology.

• Complexity and length required to write the template using the Description

Language. In particular, it is interesting to compare it to the equivalent HOT

template, since the new language was designed to be easy to use and to avoid

the verbosity of HOT. This test will show whether the implementation of

Description Language is effective.

• Features and complexity comparison between the Description Language,

HOT and other CR templating systems described in Chapter 3. With this test

we want to compare what features difference exists between the templating

languages and if there are particular topologies or configurations that is not

possible to achieve using one templating system or the other.

6.1 CORRECTNESS OF TRANSLATION 62

6.1 Correctness of translation

For the correctness test, for each testing topology, we will analyze what features are

required, what is the Description Language template used and check that the result

of the compilation can be correctly deployed on OpenStack, generating the desired

topology.

Topology 1

The first topology, requires many basic features that are provided by the Description

Language . In details, the topology requires the definition of many hosts that are

connected to different private networks, each network with different settings. Then,

two external networks are used and two hosts that act as Firewalls are defined and

connected to both external networks and multiple private networks. Moreover, some

hosts requires the use of a specific image and not a generic one. For example, the

servers will have a different image than the normal hosts that can use a more generic

one.

The template that implements the first topology is shown in Listing 6.1 and

includes the definitions for all the elements described above.

6.1 CORRECTNESS OF TRANSLATION 63

Listing 6.1: Description Language template for topology 1
1 // Template for topology 1
2

3 ext_net N1;
4 ext_net N2;
5

6 // First set of private networks:
7 // Management network for smc host
8 network management cidr(192 .168.10.0/24);
9 host smc image(smc_image) interface(management);

10

11 network "intra 1" cidr(192 .168.20.0/24);
12 network "dmz 1" cidr(192 .168.30.0/24);
13

14 host h1_1 interface("intra 1");
15 host h1_2 interface("intra 1");
16

17 host "server 1"
18 image(server_img)
19 interface("dmz 1", 192 .168.30.11);
20

21 firewall FW1
22 interface(management, gateway)
23 interface("intra 1", gateway)
24 interface("dmz 1", gateway)
25 interface("N1")
26 interface("N2");
27

28 network "intra 2" cidr(192 .168.21.0/24);
29 network "dmz 2" cidr(192 .168.31.0/24);
30

31 host h2_1 interface("intra 2");
32 host h2_2 interface("intra 2");
33

34 host "server 2"
35 image(server_img)
36 interface("dmz 2", 192 .168.31.12);
37

38 firewall FW2
39 interface("intra 2", gateway)
40 interface("dmz 2", gateway)
41 interface("N1")
42 interface("N2");

The template can be correctly compiled to HOT and deployed on OpenStack.

The final deployed topology can be seen in Figure 6.1.

Topology 2

The second topology, is very similar to the first one but in addition it requires the

cluster feature. It includes two clusters, each composed by two firewalls. The other

elements, networks and hosts, are identical.

6.1 CORRECTNESS OF TRANSLATION 64

Figure 6.1: Topology 1 deployed on OpenStack

6.1 CORRECTNESS OF TRANSLATION 65

The second topology is implemented as shown in Listing 6.2. Each firewall has

two IPv4 addresses assigned to each interface, one specified by the interface attribute

in the firewall entity and the second one, the gateway IPv4 address, is assigned by the

cluster, since the cluster instance assigns the IPv4 address specified in the interface

attribute to each host composing the cluster.

6.1 CORRECTNESS OF TRANSLATION 66

Listing 6.2: Description Language template for topology 2
1 ext_net N1;
2 ext_net N2;
3

4 network management cidr(192 .168.10.0/24);
5 host smc image(smc_image) interface(management);
6

7 network "intra 1" cidr(192 .168.20.0/24);
8 network "dmz 1" cidr(192 .168.30.0/24);
9

10 host h1_1 interface("intra 1");
11 host h1_2 interface("intra 1");
12

13 host "server 1" image(server_img) interface("dmz 1", 192 .168.30.21);
14

15 firewall FW1_1
16 interface(management, 192 .168.10.11)
17 interface("intra 1", 192 .168.20.11)
18 interface("dmz 1", 192 .168.30.11)
19 interface("N1")
20 interface("N2");
21

22 firewall FW1_2
23 interface(management, 192 .168.10.12)
24 interface("intra 1", 192 .168.20.12)
25 interface("dmz 1", 192 .168.30.12)
26 interface("N1")
27 interface("N2");
28

29 cluster cluster1
30 firewall(FW1_1)
31 firewall(FW1_2)
32 interface(management, gateway)
33 interface("intra 1", gateway)
34 interface("dmz 1", gateway);
35

36

37 network "intra 2" cidr(192 .168.21.0/24);
38 network "dmz 2" cidr(192 .168.31.0/24);
39

40 host h2_1 interface("intra 2");
41 host h2_2 interface("intra 2");
42

43 host "server 2" image(server_img) interface("dmz 2", 192 .168.31.22);
44

45 firewall FW2_1
46 interface("intra 2", 192 .168.21.11)
47 interface("dmz 2", 192 .168.31.11)
48 interface("N1")
49 interface("N2");
50

51 firewall FW2_2
52 interface("intra 2", 192 .168.21.12)
53 interface("dmz 2", 192 .168.31.12)
54 interface("N1")
55 interface("N2");
56

57 cluster cluster2
58 firewall(FW2_1)
59 firewall(FW2_2)
60 interface("intra 2", gateway)
61 interface("dmz 2", gateway);

6.1 CORRECTNESS OF TRANSLATION 67

Figure 6.2: Topology 2 deployed on OpenStack

The template can be correctly compiled to HOT and deployed on OpenStack .

The final topology deployed on OpenStack can be seen in the diagram in Figure 6.2.

For the two cluster entities, an additional network is created, cluster1_cluster_network

and cluster2_cluster_network in the Figure, with all the hosts and firewalls that

compose the cluster connected to it with an additional interface. In the second

topology only firewalls are part of the clusters but that is not a requirement.

Topology 3

The third topology is quite different from the previous ones and it is used to test

the performance of the security components in a high traffic situation. Therefore,

6.1 CORRECTNESS OF TRANSLATION 68

the topology of the private networks is simpler, but more networks and hosts are

included. Therefore, no additional features are required to describe this topology,

other than those already presented in the previous tests.

The third topology is described in the template in Listing 6.3.

Listing 6.3: Description Language template for topology 3
1 ext_net N1;
2

3 network management cidr(192 .168.100.0/24);
4 host smc image(smc_image) interface(management);
5

6 network "intra 1" cidr(192 .168.10.0/24);
7 host h1 interface("intra 1");
8 firewall FW1
9 interface("management", gateway)

10 interface("intra 1", gateway)
11 interface("N1");
12

13

14 network "intra 2" cidr(192 .168.20.0/24);
15 host h2 interface("intra 2");
16 firewall FW2
17 interface("intra 2", gateway)
18 interface("N1");
19

20

21 network "intra 3" cidr(192 .168.30.0/24);
22 host h3 interface("intra 3");
23 firewall FW3
24 interface("intra 3", gateway)
25 interface("N1");
26

27

28 network "intra 4" cidr(192 .168.40.0/24);
29 host h4 interface("intra 4");
30 firewall FW4
31 interface("intra 4", gateway)
32 interface("N1");
33

34

35 network "intra 5" cidr(192 .168.50.0/24);
36 host h5 interface("intra 5");
37 firewall FW5
38 interface("intra 5", gateway)
39 interface("N1");

The template can be correctly compiled to HOT and deployed on OpenStack.

The final topology deployed on OpenStack can be seen in the diagram in Figure 6.3.

6.1 CORRECTNESS OF TRANSLATION 69

Figure 6.3: Topology 3 deployed on OpenStack

6.1 CORRECTNESS OF TRANSLATION 70

Topology 4

The last topology includes two Layer 2 IPS/IDS which are placed between the

Firewalls and the external network. In order to use a layer 2 host, the topology

requires the use of layer 2 connections. The Description Language provides the

layer 2 connection features with the cable entity, which is used four times in the

template shown in Listing 6.4, to connect both IPS/IDS to the Firewall and the

external networks.

6.1 CORRECTNESS OF TRANSLATION 71

Listing 6.4: Description Language template for topology 4
1 ext_net N1;
2

3 network management cidr(192 .168.10.0/24);
4 host "smc" image(smc_image) interface(management);
5

6 network "intra 1" cidr(192 .168.20.0/24);
7 network "dmz 1" cidr(192 .168.30.0/24);
8

9 host "h1" interface("intra 1");
10 host "server 1"
11 image(server_img)
12 interface("dmz 1", 192 .168.30.11);
13

14 cable ips1_ext connection(N1);
15 cable ips_fw_1;
16

17 host "ips1"
18 image(ips_img)
19 interface(ips1_ext)
20 interface (ips_fw_1);
21

22 firewall FW1
23 interface(ips_fw_1)
24 interface("management", gateway)
25 interface("intra 1", gateway)
26 interface("dmz 1", gateway);
27

28

29 network "intra 2" cidr(192 .168.20.0/24);
30 network "dmz 2" cidr(192 .168.30.0/24);
31

32 host "h2" interface("intra 2");
33 host "server 2"
34 image(server_img)
35 interface("dmz 2", 192 .168.30.12);
36

37 cable ips2_ext connection(N1);
38 cable ips_fw_2;
39

40 host "ips2"
41 image(ips_img)
42 interface(ips2_ext)
43 interface (ips_fw_2);
44

45 firewall FW2
46 interface(ips_fw_2)
47 interface("intra 2", gateway)
48 interface("dmz 2", gateway);

The template can be correctly compiled to HOT and deployed on OpenStack.

The final topology deployed on OpenStack can be seen in the diagram in Figure 6.4.

The cable entities are translated to normal networks but without any IPv4 allocation

pools, since there is no Layer 2 connection feature in OpenStack, when the cable

6.2 COMPLEXITY AND LENGTH 72

Figure 6.4: Topology 4 deployed on OpenStack

connects two hosts, like the connection between the IPS/IDS and the Firewall.

Instead, when the cable connects a host to a network, a port without an IPv4 address

is created on the given network and associated to the host. This second variant of

the implementation is used to connect the IPS/IDS to the external network.

6.2 Complexity and length

To evaluate the complexity of the Description Language, for each testing topology

we analyze the features used in the template, the number of entities and lines, and

compare it to the equivalent HOT template. Moreover, we compare both a template

6.2 COMPLEXITY AND LENGTH 73

using only the Description Language entities and a template that makes also use of

the preprocessor, which should reduce the complexity and length.

For the first topology, Listing 6.1 uses the host, network and extnet entity types,

with a total of 16 statements used. Listing 6.5 shows an equivalent template that

also uses the preprocessor features, which reduce the number of entities from 16

to 9 but also introduces 4 directives. The compilation result uses network, subnet,

port and host resources types, with a total of 30 resources declared. If we consider

the number of lines used in the three templates, they have 42, 31 and 244 lines

respectively.

Listing 6.5: Description Language template for topology 1 with the use of prepro-

cessor directives.
1 ext_net N1;
2 ext_net N2;
3

4 network management cidr(192 .168.10.0/24);
5 host smc image(smc_image) interface(management);
6

7 #for i (1,2):
8 network "intra {i}" cidr(192 .168.20.0/24);
9 network "dmz {i}" cidr(192 .168.30.0/24);

10

11 #for j (1,2):
12 host "h{i}_{j}"
13 #if ({j} = 2):
14 image(custom_img)
15 #endif
16 interface("intra {i}");
17 #endfor
18

19 host "server {i}"
20 image(server_img)
21 interface("dmz {i}", 192 .168.30.1{i});
22

23 firewall FW{i}
24 #if ({i} = 1):
25 interface("management", gateway)
26 #endif
27 interface("intra {i}", gateway)
28 interface("dmz {i}", gateway)
29 interface("N1")
30 interface("N2");
31 #endfor

For the second topology, Listing 6.2 uses the same entity types of the first topol-

ogy plus the cable, with a total of 20 statements used. Listing 6.6 shows the result

6.2 COMPLEXITY AND LENGTH 74

of the previous template with the addition of preprocessor directives, which uses

10 entities and 5 directives. The equivalent HOT template uses the same type of

resources as the previous topology since there is no cable resource type available in

HOT, with a total of 41 resources declared. The number of lines used are 61, 38

and 351 lines respectively.

Listing 6.6: Description Language template for topology 2 with the use of prepro-

cessor directives.
1 ext_net N1;
2 ext_net N2;
3

4 network management cidr(192 .168.10.0/24);
5 host smc image(smc_image) interface(management);
6

7 #for i (1,2):
8 network "intra {i}" cidr(192 .168.20.0/24);
9 network "dmz {i}" cidr(192 .168.30.0/24);

10

11 #for j (1,2):
12 host "h{i}_{j}" interface("intra {i}");
13 #endfor
14

15 host "server {i}"
16 image(server_img)
17 interface("dmz {i}", 192 .168.30.2{i});
18

19 #for j (1,2):
20 firewall FW{i}_{j}
21 #if ({i} = 1):
22 interface("management", 192 .168.10.1{j})
23 #endif
24 interface("intra {i}", 192 .168.20.1{j})
25 interface("dmz {i}", 192 .168.30.1{j})
26 interface("N1")
27 interface("N2");
28 #endfor
29

30 cluster cluster{i}
31 firewall(FW{i}_1)
32 firewall(FW{i}_2)
33 #if ({i} = 1):
34 interface("management", gateway)
35 #endif
36 interface("intra {i}", gateway)
37 interface("dmz {i}", gateway);
38 #endfor

Topology 3 does not introduce new entity types but only increases the number of

them to 18. With this topology, the impact of the preprocessor directives to reduce

the length of the template is more visible, as shown in Listing 6.7 which contains

6.2 COMPLEXITY AND LENGTH 75

only 6 entities and 2 directives. Instead, the HOT template uses 31 resources.

Listing 6.7: Description Language template for topology 3 with the use of prepro-

cessor directives.
1 ext_net N1;
2

3 network management cidr(192 .168.100.0/24);
4 host smc image(smc_image) interface(management);
5

6 #for i (1,5):
7 network "intra {i}" cidr(192 .168.{i}0.0/24);
8 host "h{i}" interface("intra {i}");
9

10 firewall FW{i}
11 #if ({i} = 1):
12 interface("management", gateway)
13 #endif
14 interface("intra {i}", gateway)
15 interface("N1");
16 #endfor

For the last topology, the original Description Language template in Listing 6.4

uses the new entity type cluster and has a total of 19 statements. The version with

the preprocessor directives, reduces the number of entities to 11, plus 2 directives,

as shown in Listing 6.8. The HOT template, does not use additional resource types

and contains 36 resources.

6.3 FEATURES SUPPORTED 76

Listing 6.8: Description Language template for topology 4 with the use of prepro-

cessor directives.
1 ext_net N1;
2

3 network management cidr(192 .168.10.0/24);
4

5 host smc image(smc_image) interface(management);
6

7 #for i (1,2):
8 network "intra {i}" cidr(192 .168.20.0/24);
9 network "dmz {i}" cidr(192 .168.30.0/24);

10

11 host "h{i}" interface("intra {i}");
12 host "server {i}" image(server_img)
13 interface("dmz {i}", 192 .168.30.1{i});
14

15 cable ips{i}_ext connection(N1);
16

17 cable ips_fw_{i};
18

19 host "ips{i}"
20 image(ips_img)
21 interface(ips{i}_ext)
22 interface (ips_fw_{i});
23

24 firewall FW{i}
25 interface(ips_fw_{i})
26 #if ({i} = 1):
27 interface("management", gateway)
28 #endif
29 interface("intra {i}", gateway)
30 interface("dmz {i}", gateway);
31 #endfor

Table 6.1 provides a summary of the comparison between the three templates for

all four topologies. It is clear that the Description Language templates, both with

and without the use of the preprocessor, require much less lines of code and uses also

less entities, especially in the case of the templates that use also the preprocessor.

6.3 Features supported

The last evaluation that we propose for the Description Language templating sys-

tem is a feature comparison with HOT and also the existing systems presented in

Chapter 3.

In the previous section we shown that the Description Language can describe

6.3 FEATURES SUPPORTED 77

Topology
Description Language DL + preprocessor HOT

lines entities lines entities lines entities

1 42 16 31 9 + 4 dir 244 30

2 61 20 38 10 + 5 dir 351 41

3 39 18 16 6 + 2 dir 251 31

4 48 19 31 11 + 2 dir 268 36

Table 6.1: COMPLEXITY SUMMARY

topologies with a much less verbose template than HOT. This is possible because

many details are not required, for example it is not needed to create both network

and subnet entities. This reduces the flexibility of the Description Language and it

is not possible to configure and control certain aspects of the topology. However,

HOT was designed for a different use-case, the deployment of cloud infrastructure

within OpenStack that might require a set of configuration options that are not

needed when using a Cyber Range.

Moreover, the Description Language provides additional features that are not

present in HOT. The cable and cluster entities are not available with HOT and their

implementation require the configuration of multiple entities that make the resulting

template more complex and verbose. In addition, the preprocessor provides a more

elastic mechanism to extend the template than the one provided by HOT, which

can be used only within a single entity and is more verbose.

Overall, with the Description Language it is possible to write more compact

templates, with only the set of features that we defined as relevant for our Cyber

Range during the design phase, described in Chapter 4. On the other hand, HOT is a

more verbose language that can control and configure certain aspect of the topology

more in detail, but with limited effective usefulness in the context of Cyber Ranges.

In fact, in Chapter 3 we presented various existing Cyber Ranges that use OpenStack

as a base infrastructure and most of those decided to implement and use a different

6.3 FEATURES SUPPORTED 78

templating system than HOT.

We continue the evaluation of the Description Language with the comparison

with the templating solutions of the Cyber Ranges presented in Chapter 3. Table 6.2

shows a summarized comparison of the different systems, similar to Table 3.1 but

with the addition of HOT and our solution. As mentioned in Section 3.2, we decided

to compare the Description Language only with the Cyber Ranges that provide a

clear description of their templating system and that provide a more generic use-case,

which is not bound to very specific systems like the Autonomous vehicle shuttles [30]

Cyber Range.

CRACK templating system uses YAML syntax, resulting in an enchanted ver-

sion of HOT. Therefore, it supports all the features of HOT plus additional entities

and properties to configure software configurations and other aspects. This, com-

bined with the formal verification, allows to better and more explicitly describe

the configuration of the virtual machines than our solution, which is based on

cloud-init scripts. Being similar to HOT, the language derives also the same

complexity and verbosity issues. Lastly, it supports element types derivation more

generally than our solution that has only limited support.

Kypo uses YAML as well, but with a different structure and less details, which

makes templates more compact than those produced with HOT but still more ver-

bose than our Description Language. The topologies that can be described are more

limited than HOT and our solution, due to the limited elements available for the

topology. For the software configuration of hosts, it uses separate Ansible files com-

bined with a system to deploy them over SSH, which is an approach comparable to

cloud-init used in our solution.

Similarly to the previous solutions, Norway 1 uses a YAML based file but with

a different structure. It supports only two elements to define the topology, Nodes,

representing virtual machines, and Routers, which define the sub-networks to which

6.3 FEATURES SUPPORTED 79

they are connected. Moreover, all the Routers are connected to a common network,

causing a much more limited structure in the topology that can be defined than what

is possible to do with our Description Language. However, Norway 1 provides a

more explicit software configuration of the virtual machines by the use of Service,

Vulnerability and Challenge elements, that are then used to create Ansible files.

One feature in common with our solution is the use of both syntax and semantic

validation.

Norway 2 is the only solution that uses JSON templates with two elements

that can be used: Machine and Subnet. This is probably the system that has the

biggest limitations since a Machine can be connected to a single Subnet. Moreover,

it requires some manual interactions with OpenStack as it uses the ID of a network

that has to be already deployed. The authors also provide an example where a large

topology is deployed, which required to use multiple times the same template and

then some manual work to interconnect all the topologies created. This shows how

our preprocessor component can be very useful to automate the creation of large

topologies without having to deploying multiple times the same template. One

aspect where this solution provides a better value than others, is the possibility to

model attackers and defenders actions, including also a traffic generator, which is

something that was not yet developed in our solution.

VSDL uses a custom grammar for the templates and it is the only solution

that allows to use logical connectives to define the topology elements instead of

hard-coded values. Another unique feature is the use of time-base modifiers that

can modify the proprieties of the deployed topology during the execution of the

exercise. Also in this case, there is no support for easing the creation of topologies

with a high number of nodes and networks.

The Description Language we propose, also uses a custom grammar, which

was specifically designed to reduce the verbosity and complexity of the topology

6.3 FEATURES SUPPORTED 80

templates. It provides three base elements: Host, Network and Cable, and three

additional elements: Ext_Net, Cluster and Firewall. The additional elements help

by providing shorter definitions of certain specific topology elements or configura-

tions, as well as increased semantic clarity. With the Description Language it should

be possible to model various kinds of topology, without limitations. Moreover, the

Cable element is a feature unique to our language and it provides the ability to

describe topologies that are not possible to model with the other solutions, but it

also required a small modification of the OpenStack infrastructure. The validations

of the scenario that we provide are based on the syntax and semantic, similarly to

the Norway 1 solution. For the software configuration of the hosts, the language

supports only the use of scripts that will be executed by cloud-init, without the

possibility of modelling the software or vulnerabilities deployed directly in the lan-

guage and thus not performing semantic checks on this aspect. Another unique

feature of our solution is the use of a preprocessor to simplify the definition of sim-

ilar entities, which is especially useful in the case of large network with repeated

structures in the topology, as described before.

6.3 FEATURES SUPPORTED 81

Cyber Range
Language

format
Topology elements Verification Host configuration

CRACK YAML

Similar to HOT:

Host, Network,

Subnet, Port

Formal verification

with Datalog

Language elements

to model Software,

Vulnerabilities,

Users and more.

Kypo YAML

Host, Router, Net-

work and network,

router mappings

Not specified
Ansible YAML con-

figuration files

Norway 1 YAML

Node and Router.

Subnets are defined

by routers

Syntax validation

and semantic vali-

dation

Language elements

to model Software,

Vulnerability, Chal-

lenge, Teams and

more

Norway 2 JSON Subnet, Machine
Formal verification

with Datalog

Language elements

to model Services,

Vulnerabilities,

Challenge

VSDL
Custom

grammar
Network and Node

Formal verification

with CVC4

Software and vul-

nerabilities proper-

ties

HOT YAML

Network, Subnet,

Port, Server, and

more

Syntax and seman-

tic validation when

deployed

cloud-init scripts

Description

Language

Custom

grammar

with prepro-

cessor

Host, Network, Ca-

ble and additional

elements: Firewall,

External Network

and Cluster

Syntax and seman-

tic validation
cloud-init scripts

Table 6.2: COMPARISON SUMMARY

7 Conclusion and Future Work

7.1 Conclusion

Cyber Ranges are becoming a fundamental component for security trainings, exer-

cises and testing, with an increasing interest also due to the increasing request for

cyber security experts, that can be seen also in the growing number of research on

the topic. When a Cyber Range is used, the most time-consuming activity is the

development of the scenario, which requires to define the virtual topology that will

be deployed and the configurations of the various virtual machines that will be used.

Our work focuses on this aspect and aims to ease and simplify the process of

defining the scenario and in particular the virtual topology, by developing a Cyber

Ranges that makes use of a new templating system.

First we analyzed a selection of the currently available Cyber Ranges and in

particular the templating systems and languages available for the definition of sce-

narios.

Then, we started by defining the requirements of the Cyber Range and the

Description Language, which were used to define four base topologies that the system

should support. The four topologies were used to describe the practical features

required. For the Cyber Range infrastructure we identified OpenStack as a good

base platform, that can be extended and improved with a new Description Language.

From the requirements identified, we created the grammar of the new language, that

7.1 CONCLUSION 83

was presented with some examples.

The implementation chapter focused on the Description Language compiler and

its components, that were created using Rust and the NOM library. Moreover, we

presented also the other components that we created, a command line interface,

which can be used to deploy topologies on OpenStack from the template file, and the

patches for OpenStack that we require to enable certain features of the Description

Language, in particular the Cable entity.

The implementation, and in particular the language, was tested to demonstrate

that it can correctly describe the four topologies identified during the requirements

definition and that it is possible to correctly deploy them on OpenStack. Moreover,

we showed that the length and complexity of the template are reduced when us-

ing our solution instead of HOT. Lastly, we compared our proposed solution to the

existing languages that were presented before, showing that the Description Lan-

guage supports unique features that are not present in the other approaches, such

as the Cable entity for Layer 2 connections and the preprocessor that can be used

to simplify the creation of large topologies.

However, the Description Language does not provides a function to configure

the virtual machines deployed in the topology directly, but it makes use of start-up

scripts that are executed by cloud-init.

To conclude, the tests and the comparison presented in Chapter 6 show that our

solution can be used to correctly deploy topologies and the Description Language is

able to lower the complexity and length of the required template, which can reduce

the time required for the operators of the Cyber Range to setup scenarios. Moreover,

our work was also presented at the fourth workshop on Cyber Range Technologies and

Applications (CACOE’22) organized in conjunction with IEEE EuroS&P 2022 [40].

However, there are aspects that require improvements and additional work, which

are presented in the next section.

7.2 FUTURE WORK 84

7.2 Future work

There are different aspects of the Description Language that we plan to improve in

the future.

First, the extensibility of the language is still limited. It is possible to create cus-

tom types based on existing ones, but with different default values, like the firewall

type, but this still requires to change the code of the compiler. An improvement

would be to enable the creation of derived types in a configuration file, so that it

is not required to change the code. Moreover, the definition of new types is also

important. In Chapter 5 we described the use of Rust traits to automatically gen-

erate the parsing functions. This can be very useful when new types are required,

since it requires to only implement the validation and translation steps. The last

feature to increase the extensibility that we are planning, is the possibility to import

another file in a template. This would allow to divide the template in multiple files

and to provide common topology components that can be used without the need of

redefining it for each template.

One aspect that the comparison in Chapter 6 outlined, is the limited support for

configuring virtual machines in the Description Language. Currently, only cloud-init

scripts are supported, which can be limiting because cloud-init is not available for

Windows systems and also it is not possible to define and validate the configuration

options using elements of the language, which is a feature of some of the existing Cy-

ber Ranges, presented in Chapter 3. A first step that can improve this aspect, would

be the creation of a repository or database of initialization scripts, which would allow

users to use predefined configurations without the need to write cloud-init scripts

themselves for common operations. Alternatively, a different configuration system

could be used, but this option will require more research and modification of the

current implementation.

Another topic that we want to work on, is the automation of the collaboration

7.2 FUTURE WORK 85

process between different organizations, interconnecting the Cyber Ranges they use.

This feature is not present in the analyzed Cyber Ranges and would be useful for

multiple reasons. First, it enables to extend the virtualization capabilities when

a scenario requires too many resources, without the need of extending the Cyber

Range hardware. Secondly, for projects that involve multiple organizations it would

be very convenient to connect different Cyber Ranges instead of having to develop

the entire scenario using a single system. Moreover, when proprietary virtual ma-

chines are required in a scenario developed by multiple organizations, it would be

possible to provide the virtual machine to others by deploying on the organization

own Cyber Range, without the need to provide the machine image or source code.

One possible solution is to define virtual networks that span on multiple Cyber

Ranges using VPN connections to make this extension transparent to the virtual

environment. This feature will require some modifications to the Description Lan-

guage and also the implementation of additional components for the virtualization

infrastructure because OpenStack does not provide this capability explicitly. Open-

Stack supports the creation of IPsec connections with the VaaS component but it is

not sufficient since there would be the need also for a coordination mechanism that

could automatically create and manage connections with different Cyber Ranges.

To conclude, we are studying and planning various improvements for the De-

scription Language and the implementation is planned to be part of the modules

used and tested in a future pilot scenario of the Cyber-MAR H2020 [41] project,

that will validate the functionality and usefulness in a real word exercise.

References

[1] C. Nast, “They Told Their Therapists Everything. Hackers Leaked It All”,

WIRED, May 2021. [Online]. Available: https://www.wired.com/story/

vastaamo-psychotherapy-patients-hack-data-breach.

[2] S. Kumar, S. Gupta, and S. Arora, “Research trends in network-based intrusion

detection systems: A review”, IEEE Access, vol. 9, pp. 157 761–157 779, 2021.

doi: 10.1109/ACCESS.2021.3129775.

[3] R. Nakata and A. Otsuka, “CyExec*: A high-performance container-based

cyber range with scenario randomization”, IEEE Access, vol. 9, pp. 109 095–

109 114, 2021. doi: 10.1109/access.2021.3101245.

[4] M. M. Yamin, B. Katt, and V. Gkioulos, “Cyber ranges and security testbeds:

Scenarios, functions, tools and architecture”, Computers & Security, vol. 88,

p. 101 636, Jan. 2020. doi: 10.1016/j.cose.2019.101636.

[5] E. C. Chaskos, Cyber-security training: A comparative analysis of cyber-ranges

and emerging trends, Mar. 2019.

[6] K. B. Vekaria, P. Calyam, S. Wang, R. Payyavula, M. Rockey, and N. Ahmed,

“Cyber range for research-inspired learning of “attack defense by pretense”

principle and practice”, IEEE Transactions on Learning Technologies, vol. 14,

no. 3, pp. 322–337, Jun. 2021. doi: 10.1109/tlt.2021.3091904.

https://www.wired.com/story/vastaamo-psychotherapy-patients-hack-data-breach
https://www.wired.com/story/vastaamo-psychotherapy-patients-hack-data-breach
https://doi.org/10.1109/ACCESS.2021.3129775
https://doi.org/10.1109/access.2021.3101245
https://doi.org/10.1016/j.cose.2019.101636
https://doi.org/10.1109/tlt.2021.3091904

REFERENCES 87

[7] J. Vykopal, M. Vizvary, R. Oslejsek, P. Celeda, and D. Tovarnak, “Lessons

learned from complex hands-on defence exercises in a cyber range”, in 2017

IEEE Frontiers in Education Conference (FIE), IEEE, Oct. 2017. doi: 10.

1109/fie.2017.8190713.

[8] M. M. Yamin, B. Katt, and M. Nowostawski, “Serious games as a tool to

model attack and defense scenarios for cyber-security exercises”, Computers &

Security, vol. 110, p. 102 450, Nov. 2021. doi: 10.1016/j.cose.2021.102450.

[9] T. Gustafsson and J. Almroth, “Cyber range automation overview with a case

study of CRATE”, in Secure IT Systems, Springer International Publishing,

2021, pp. 192–209. doi: 10.1007/978-3-030-70852-8_12.

[10] Open Source Cloud Computing Infrastructure - OpenStack, [Online; accessed

29. Apr. 2022], Apr. 2022. [Online]. Available: https://www.openstack.org.

[11] Chapter 1. Components Red Hat OpenStack Platform 9 | Red Hat Customer

Portal, [Online; accessed 28. Apr. 2022], Apr. 2022. [Online]. Available: https:

/ / access . redhat . com / documentation / en - us / red _ hat _ openstack _

platform/9/html/architecture_guide/components.

[12] Messaging that just works — RabbitMQ, [Online; accessed 29. Apr. 2022], Apr.

2022. [Online]. Available: https://www.rabbitmq.com.

[13] OpenStack Docs: Yoga Services and Libraries, [Online; accessed 2. May 2022],

Apr. 2022. [Online]. Available: https://docs.openstack.org/yoga/projects.

html.

[14] Open vSwitch, [Online; accessed 4. May 2022], Apr. 2022. [Online]. Available:

https://www.openvswitch.org.

[15] F. Callegati, W. Cerroni, and C. Contoli, “Virtual networking performance in

OpenStack platform for network function virtualization”, Journal of Electrical

and Computer Engineering, vol. 2016, pp. 1–15, 2016, issn: 2090-0147. doi:

https://doi.org/10.1109/fie.2017.8190713
https://doi.org/10.1109/fie.2017.8190713
https://doi.org/10.1016/j.cose.2021.102450
https://doi.org/10.1007/978-3-030-70852-8_12
https://www.openstack.org
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/9/html/architecture_guide/components
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/9/html/architecture_guide/components
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/9/html/architecture_guide/components
https://www.rabbitmq.com
https://docs.openstack.org/yoga/projects.html
https://docs.openstack.org/yoga/projects.html
https://www.openvswitch.org

REFERENCES 88

10.1155/2016/5249421. [Online]. Available: https://doi.org/10.1155/

2016/5249421.

[16] T. W. Edgar and T. R. Rice, “Experiment as a service”, in 2017 IEEE In-

ternational Symposium on Technologies for Homeland Security (HST), IEEE,

Apr. 2017, pp. 1–6. doi: 10.1109/ths.2017.7943470.

[17] Haystack, version 00, Apr. 2017. [Online]. Available: https://www.osti.gov/

biblio/1349748.

[18] E. Russo, G. Costa, and A. Armando, “Building next generation cyber ranges

with CRACK”, Computers & Security, vol. 95, p. 101 837, Aug. 2020. doi:

10.1016/j.cose.2020.101837.

[19] OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)

TC | OASIS, [Online; accessed 10. Mar. 2022], Mar. 2022. [Online]. Available:

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=

tosca.

[20] G. Gottlob, S. Ceri, and L. Tanca, “What you always wanted to know about

datalog (and never dared to ask)”, IEEE Transactions on Knowledge & Data

Engineering, vol. 1, no. 01, pp. 146–166, Jan. 1989, issn: 1558-2191. doi:

10.1109/69.43410.

[21] J. Vykopal, P. Celeda, P. Seda, V. Svabensky, and D. Tovarnak, “Scalable

learning environments for teaching cybersecurity hands-on”, in 2021 IEEE

Frontiers in Education Conference (FIE), IEEE, Oct. 2021. doi: 10.1109/

fie49875.2021.9637180.

[22] M. M. Yamin and B. Katt, “Modeling and executing cyber security exercise

scenarios in cyber ranges”, Computers & Security, vol. 116, p. 102 635, May

2022. doi: 10.1016/j.cose.2022.102635.

https://doi.org/10.1155/2016/5249421
https://doi.org/10.1155/2016/5249421
https://doi.org/10.1155/2016/5249421
https://doi.org/10.1109/ths.2017.7943470
https://www.osti.gov/biblio/1349748
https://www.osti.gov/biblio/1349748
https://doi.org/10.1016/j.cose.2020.101837
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/fie49875.2021.9637180
https://doi.org/10.1109/fie49875.2021.9637180
https://doi.org/10.1016/j.cose.2022.102635

REFERENCES 89

[23] G. Costa, E. Russo, and A. Armando, “Automating the generation of cyber

range virtual scenarios with VSDL”, CoRR, vol. abs/2001.06681, 2020. arXiv:

2001.06681. [Online]. Available: https://arxiv.org/abs/2001.06681.

[24] C. Barrett, C. L. Conway, M. Deters, et al., “Cvc4”, in Computer Aided Veri-

fication, G. Gopalakrishnan and S. Qadeer, Eds., Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011, pp. 171–177, isbn: 978-3-642-22110-1.

[25] J. Almroth and T. Gustafsson, “CRATE exercise control – a cyber defense

exercise management and support tool”, in 2020 IEEE European Symposium

on Security and Privacy Workshops (EuroS&PW), IEEE, Sep. 2020. doi: 10.

1109/eurospw51379.2020.00014.

[26] R. Beuran, D. Tang, C. Pham, K.-i. Chinen, Y. Tan, and Y. Shinoda, “Inte-

grated framework for hands-on cybersecurity training: CyTrONE”, Computers

& Security, vol. 78, pp. 43–59, Sep. 2018. doi: 10.1016/j.cose.2018.06.001.

[27] R. Beuran, T. Inoue, Y. Tan, and Y. Shinoda, Realistic cybersecurity training

via scenario progression management, Jun. 2019. doi: 10.1109/eurospw.

2019.00014.

[28] R. Chadha, T. Bowen, C.-Y. J. Chiang, et al., “CyberVAN: A cyber security

virtual assured network testbed”, in MILCOM 2016 - 2016 IEEE Military

Communications Conference, IEEE, Nov. 2016. doi: 10.1109/milcom.2016.

7795481.

[29] N. Herold, M. Wachs, M. Dorfhuber, C. Rudolf, S. Liebald, and G. Carle,

Achieving Reproducible Network Environments with INSALATA, D. Tuncer,

R. Koch, R. Badonnel, and B. Stiller, Eds. Springer International Publishing,

2017, pp. 30–44. doi: 10.1007/978-3-319-60774-0_3.

[30] A. Roberts, O. Maennel, and N. Snetkov, “Cybersecurity test range for au-

tonomous vehicle shuttles”, in 2021 IEEE European Symposium on Security

https://arxiv.org/abs/2001.06681
https://arxiv.org/abs/2001.06681
https://doi.org/10.1109/eurospw51379.2020.00014
https://doi.org/10.1109/eurospw51379.2020.00014
https://doi.org/10.1016/j.cose.2018.06.001
https://doi.org/10.1109/eurospw.2019.00014
https://doi.org/10.1109/eurospw.2019.00014
https://doi.org/10.1109/milcom.2016.7795481
https://doi.org/10.1109/milcom.2016.7795481
https://doi.org/10.1007/978-3-319-60774-0_3

REFERENCES 90

and Privacy Workshops (EuroS&PW), IEEE, Sep. 2021. doi: 10.1109/eurospw54576.

2021.00031.

[31] Heat Orchestration Template (HOT) specification — openstack-heat 18.1.0.dev3

documentation, [Online; accessed 18. May 2022], Apr. 2022. [Online]. Available:

https://docs.openstack.org/heat/latest/template_guide/hot_spec.

html.

[32] Geal, nom, [Online; accessed 31. May 2022], May 2022. [Online]. Available:

https://github.com/Geal/nom.

[33] rust-lang-nursery, lazy-static.rs, [Online; accessed 31. May 2022], May 2022.

[Online]. Available: https : / / github . com / rust - lang - nursery / lazy -

static.rs.

[34] R. H. Ansible, Ansible is Simple IT Automation, [Online; accessed 14. Mar.

2023], Mar. 2023. [Online]. Available: https://www.ansible.com.

[35] Packstack — RDO, [Online; accessed 14. Mar. 2023], Jan. 2023. [Online]. Avail-

able: https://www.rdoproject.org/install/packstack.

[36] DevStack — DevStack documentation, [Online; accessed 14. Mar. 2023], Mar.

2023. [Online]. Available: https://docs.openstack.org/devstack/latest.

[37] RDO, [Online; accessed 3. Jun. 2022], Jan. 2022. [Online]. Available: https:

//www.rdoproject.org.

[38] Allow vms to use unaddressed ports (ic622f9a9), [Online; accessed 10. Mar.

2022], Mar. 2022. [Online]. Available: https://review.opendev.org/c/

openstack/nova/+/533249.

[39] dtantsur, rust-openstack, [Online; accessed 3. Jun. 2022], Jun. 2022. [Online].

Available: https://github.com/dtantsur/rust-openstack.

https://doi.org/10.1109/eurospw54576.2021.00031
https://doi.org/10.1109/eurospw54576.2021.00031
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html
https://docs.openstack.org/heat/latest/template_guide/hot_spec.html
https://github.com/Geal/nom
https://github.com/rust-lang-nursery/lazy-static.rs
https://github.com/rust-lang-nursery/lazy-static.rs
https://www.ansible.com
https://www.rdoproject.org/install/packstack
https://docs.openstack.org/devstack/latest
https://www.rdoproject.org
https://www.rdoproject.org
https://review.opendev.org/c/openstack/nova/+/533249
https://review.opendev.org/c/openstack/nova/+/533249
https://github.com/dtantsur/rust-openstack

REFERENCES 91

[40] A. Dalla Costa and J. Kuusijärvi, “Programmatic description language for

cyber range topology creation”, in 2022 IEEE European Symposium on Secu-

rity and Privacy Workshops (EuroS&PW), 2022, pp. 403–412. doi: 10.1109/

EuroSPW55150.2022.00048.

[41] O. Jacq, P. G. Salazar, K. Parasuraman, et al., “The Cyber-MAR project: First

results and perspectives on the use of hybrid cyber ranges for port cyber risk

assessment”, in 2021 IEEE International Conference on Cyber Security and

Resilience (CSR), 2021, pp. 409–414. doi: 10.1109/CSR51186.2021.9527968.

https://doi.org/10.1109/EuroSPW55150.2022.00048
https://doi.org/10.1109/EuroSPW55150.2022.00048
https://doi.org/10.1109/CSR51186.2021.9527968

	Introduction
	Background
	Cyber Ranges
	OpenStack
	OpenStack components
	Networking in OpenStack
	Limitations of OpenStack

	Existing solutions
	Existing Cyber Ranges
	Templating capabilities of existing Cyber Ranges
	HOT Language

	Specification and Design
	General specifications and requirements
	Topologies
	Topology 1
	Topology 2
	Topology 3
	Topology 4

	Cyber Range infrastructure
	Description Language
	Features required
	Grammar specification
	Grammar specification - Preprocessor

	Implementation
	Description Language compiler
	Preprocessor
	Parser
	Validator
	Translation
	Extensibility

	Cyber Range infrastructure
	Installation and deployment of OpenStack
	OpenStack modifications
	Cyber Range CLI

	Testing
	Correctness of translation
	Complexity and length
	Features supported

	Conclusion and Future Work
	Conclusion
	Future work

	References

