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Brain metastases remain fatal and challenging, and their early detection is imperative. 

With the advancement in non-invasive imaging techniques, positron emission 

tomography, as a functional imaging, has been widely employed in oncological studies, 

including pathophysiological mechanisms of the tumors. While manual analysis and 

integration of dynamic 4D PET images are challenging and inefficient. Therefore, 

automated segmentation is adopted to improve the efficiency and accuracy. In recent 

years, clustering-based image segmentation has been gaining popularity in detecting 

tumors. This thesis applies three clustering-based algorithms to automatically identify 

and segment metastatic brain tumors from dynamic 4D PET images of mice. The 

clustering algorithms used include K-means and Gaussian mixture model clustering in 

combination with pre-processing principal component analysis, independent component 

analysis and post-processing connected component analysis. The performances of three 

clustering algorithms in execution time and accuracy were evaluated by the Jaccard 

index and validated by time activity curve. The results indicate that K-means clustering 

is the best-performing among the three clustering methods when combined with 

independent component analysis, and the post-processing method connected 

component analysis has significantly improved the performance of K-means clustering. 

 

KEYWORDS: brain metastases, metastatic brain tumor detection, automated 

segmentation, clustering algorithms, PET imaging  
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1 INTRODUCTION 

More than 120 types of intracranial tumors that range from grade 1 to grade 4 were 

identified by the World Health Organization in 2021 (Louis et al., 2021), and they pose a 

significant threat to human life. Major brain tumors include gliomas, glioneuronal tumors, 

neuronal tumors, meningiomas and pineal tumors, and these types were then further 

divided into more than 120 subtypes or families (Louis et al., 2021). Among these brain 

tumors, metastatic brain tumors exhibit a higher incidence rate and mortality rate than 

benign gliomas. The incidence of metastatic brain tumors is four times more common 

than primary brain tumors based on American Association of Neurological Surgeons 

published in 2013. The survival time of patients diagnosed with metastatic brain tumors 

is less than 24 months (Achrol et al., 2019).  

1.1 Brain Metastases  

Unlike primary brain tumors originating from the brain, metastatic brain tumors, also 

known as brain metastases (BM), refer to intracranial tumors that metastasize to the 

central nervous system (CNS)  from other body parts (Achrol et al., 2019). Metastatic 

brain tumors are usually malignant, and patients diagnosed with metastatic brain tumors 

generally present with widespread systemic malignancy (Achrol et al., 2019). This means 

these metastatic brain tumors proliferate rapidly and invade surrounding tissues, 

resulting in altering the brain's structure and can significantly impair normal brain function 

and even the whole human body in worse cases. 

 

1.1.1 Sources of brain metastases  

BM can be caused by any cancer, but the incidence rate varies by the condition of the 

patient and the cancer type (Gavrilovic & Posner, 2005). Among these resources, lung 

cancer, breast cancer, renal cell carcinoma, and melanoma are leading causes of brain 
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metastases (Achrol et al., 2019). The study conducted by Berghoff et al. compared the 

incidence rate, diagnosis time, and survival times of different sources of brain 

metastases. The study demonstrates that lung cancer constitutes the largest proportion 

of BM with an incidence rate of 43.2% and followed by breast cancer, melanoma, and 

renal cell carcinoma with an incidence rate of 15.7%, 16.4%, and 9.1%, respectively 

(Barnholtz-Sloan et al., 2004). For patients diagnosed with stage IV breast cancer, more 

than 10% of them would develop brain metastases, whereas the actual incidence rate 

might exceed 10% as autopsy results indicate that 30% of these patients are detected 

BM (Lin et al., 2004). The incidence rate of BM in aggressive breast cancer subtypes is 

higher for than normal breast cancer, such as receptor 2-positive and triple-negative 

breast cancer (Witzel et al., 2016). 

1.1.2 Classification of brain metastases  

BM could occur in the brain as a single metastasis or multiple metastases, and their 

causes and treatment also differ. Berghoff et al.’s study demonstrates that a singular 

metastatic brain tumor is the most frequent, with an incidence rate of 48.7% out of 2149 

patients, and more than 3 metastatic brain tumors are least frequent, with an incidence 

rate 23.5% (Barnholtz-Sloan et al., 2004). Breast, colorectal, and renal cancer are major 

sources of a single metastasis, whereas lung cancer and melanoma are major 

contributors to multiple metastases (Achrol et al., 2019). A single metastasis is treated 

by operating surgeries or utilizing low-dose radiation, whereas these treatments have 

limited effectiveness in multiple metastases, thus more complicated systemic treatment, 

such as chemotherapy and immunotherapy are adopted in multiple metastases 

treatment (Linnert et al., 2012).  

 

BM can also be categorized based on their location within the brain. The location brain 

tumors are influence by factors such as the blood flow and the size of blood vessels. As 

a result, 80% of the BM is found in cerebral hemisphere, and 15% is found in the 

cerebellum, and the rest 5% in the brain stem (Eichler & Loeffler, 2007). 
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1.1.3 Symptoms of brain metastases  

BM typically manifest with various symptoms, and it is reported that more than two-thirds 

of patients with BM exhibit symptoms during the course of their illness (Patcheil, 1995). 

According to Johns Hopkins Medicine, metastatic brain tumors commonly present with 

a wide range of symptoms such as headaches, seizures, and sensory deficits. As the 

disease progresses, patients may also experience a deterioration of balance, memory, 

behavior, and personality. Additionally, sensory impairments, including visual and 

auditory disturbances, may arise in worse cases (Metastatic Brain Tumors, 2021).  

1.1.4 Treatment of brain metastases  

The treatment of BM is influenced by many factors, such as the size and location of 

tumors, primary tumor types, and general health condition of the patients. Generally, BM 

treatment involves multiple modalities, including surgical resection, radiation therapy, 

chemotherapy, targeted drug treatments, and immunotherapy. Surgical resection is an 

option for patients whose primary cancer is under control and metastatic brain tumors 

can be safely removed (Achrol et al., 2019). If metastatic brain tumors are in life-

threatening sites, surgical resection is not an ideal choice. Radiation therapy involves 

using high-energy radiation, such as X-rays or gamma rays, to destroy cancer cells and 

prevent their growth. Radiation therapy is a good substitute for surgery when tumors are 

smaller than 3 cm in diameter and is advantageous in treating multi-metastatic tumors 

(Achrol et al., 2019). Conventional chemotherapy has limited effectiveness in treating 

BM because chemotherapeutic agents are incapable of penetrating the blood brain 

barrier (BBB) in the CNS (Watase et al., 2021). Targeted therapy is a novel form of 

chemotherapy that selectively use chemotherapeutic agents that have ability to cross 

BBB, and now is widely used in the treatment of BM (Di Lorenzo & Ahluwalia, 2017). In 

recent years, immunotherapy has also gained significant attention in treating BM. 

Immunotherapy is a cancer treatment that utilizes substances to stimulate the patient's 

immune system to destroy cancer cells (Di Giacomo et al., 2023). Several studies have 
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demonstrated immunotherapy can effectively stimulate immune response of patients, 

particularly BM patients. BM patients benefit more from immunotherapy compared with 

patients with primary brain tumors (Di Giacomo et al., 2023).  

 

Undoubtedly, the introduction of novel therapies has greatly extended survival rate and 

enhanced the quality of treatment. However, it is essential to emphasize the importance 

of the early identification and diagnosis of BM in treatment by allowing healthcare 

professionals to implement treatment as early as possible and then improve the 

treatment outcomes. 

1.2 Diagnosis of Brain Metastases 

The identification and diagnosis of brain tumors depend heavily on noninvasive imaging 

techniques, such as magnetic resonance imaging (MRI), and computed tomography 

(CT), and their introduction has greatly improved the detection of BM, especially these 

small asymptomatic BM. MRI has been primarily used to locate the lesion and measure 

the tumor’s size. However, MRI, as an anatomic and functional imaging modality, is 

limited in differentiating malignant tumor tissue from the surrounding edema (Langen et 

al., 2017). CT provides high-quality 3D images of structural information about the body 

by utilizing the difference in tissues' ability to absorb X-rays (Prince & Links, 2006). CT 

enables researcher to have better visualization of internal organs, soft tissues, and bones. 

However, the absorption of X-rays (high-energy particles) in tissues also exposes 

patients to high-dose ionizing radiation, which might increase the risk of cancer to 

patients because ionizing radiation that might damage DNA. Based on the Imaging 

Procedures and Their Approximate Effective Radiation Doses published by Harvard 

Medical School in 2021, the average dose of a head CT scan is 2 mSv (3 times higher 

than Mammogram), and the range reported in the literature review is 0.9-4 mSv (Harvard 

Health, 2021). CT is primarily employed to detect hemorrhage, herniation, and 

hydrocephalus, but it can also potentially detect oligodendrogliomas or meningiomas 

(Mabray et al., 2015).  
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1.2.1 PET imaging 

In addition to high-resolution structural imaging mentioned above, functional imaging, 

such as Positron Emission Tomography (PET), has been actively incorporated with 

MRI/CT to detect tumors and grade their malignancies. PET is a nuclear medical imaging 

technique that involves the injection of radiotracers containing positron-emitting 

radionuclides into the body. These radiotracers produce gamma rays that can be 

detected by a PET scanner, which generates 4D images of the location and dynamics of 

physiological processes in the body. In the context of brain tumors, PET imaging can 

provide valuable insights into the pathophysiological mechanisms of the tumors over time. 

Another benefit of the injected radiotracers in PET imaging is that they do not disrupt 

BBB as contrast-enhanced MRI sequences do (Verger et al., 2022). PET images enables 

the differentiation of normal tissues and tumor tissues because of their distinct  

radioactivity accumulations that results from their different metabolic speed or targeting 

specificity. Tumor tissues have higher uptake of radiotracer than normal tissues because 

of tumor cells uptake, for example, a larger amount of amino acid to increase protein 

synthesis (K. Chen & Chen, 2011), and other biological mechanisms.  

1.2.2 Static and dynamic PET imaging 

Based on the acquisition, PET imaging can be categorized as dynamic or static imaging. 

Static PET imaging contains one image or a series of images at specific time points some 

time after the radiotracer injection (Turku PET Centre, 2021). In contrast, dynamic PET 

imaging involves the continuous acquisition of images over a period, typically ranging 

from a few minutes to several hours, immediately after the radiotracer injection (Turku 

PET Centre, 2021). Dynamic PET imaging provides a quantitative concentration of 

radioactivity from each voxel in the image as a function of time, and it is widely applied 

in the cardiovascular disease (Yoshinaga et al., 2018), neurological disorders, and 

oncology (Rahmim et al., 2019). The application of dynamic PET imaging in oncology 

enables the quantification of radiotracer uptake, thus improving the performance of tumor 
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characterization and treatment response by applying modeling to the PET images 

(Dunnwald et al., 2011).  

 

One advantage of dynamic PET imaging is that it provides the concentration of 

radioactivity as a function of the time for each voxel, also called the time-activity curve 

(TAC). Besides the TAC of a single voxel, it is also possible to obtain an average TAC 

of a particular region or tissue which is of interest by drawing the region of interest (ROI) 

on the PET image (Turku PET Centre, 2021). In the case of detecting brain tumors, 

obtaining regional average TACs could not only mitigate noise but also provide precise 

and detailed radioactivity and metabolic information on the manually segmented tumors 

(Turku PET Centre, 2021). 

1.2.3 Radiotracers of PET imaging 

Radionuclides are essential for PET imaging as they contain positron-emitting isotopes 

which influence radioactivity uptake, including fluorine-18, carbon-11, and gallium-68. 

Various radionuclides offer insight into different aspects of brain tumor physiology.  

 

1.2.3.1 [18F]FDG 

 

2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the dominant PET radiotracer in 

oncological studies, and it is widely utilized in cancer staging, treatment evaluation and 

prognosis assessment (K. Chen & Chen, 2011). Fluorine-18 has a physical half-life of 

approximately 110 minutes (Ashraf & Goyal, 2023). [18F]FDG is an analog of glucose, 

which makes it an ideal indicator of glucose metabolism by characterizing tumors with 

an increased glucose uptake (Ashraf & Goyal, 2023). This is because tissues that 

metabolize more glucose will accumulate more [18F]FDG, and the accumulation of 

[18F]FDG in tissues is directly proportional to their glucose metabolism rate. As a result, 

PET imaging with [18F]FDG enables differentiation between tumor and non-tumor tissues 

with different glucose consumption. Furthermore, this radiotracer also can distinguish 



 7 

malignant from benign tumor tissues based on the extent of glucose metabolism in many 

cases. 

 

However, [18F]FDG also has a limitation in differentiating whether increased metabolism 

is caused by cancer or infection/inflammation. [18F]FDG is not a target-specific tracer, so 

it cannot differentiate between cells with a high metabolic rate associated with neoplasia 

(K. Chen & Chen, 2011). In addition, its detection of specific brain tumors is limited 

because some malignant tumors may not present high metabolic rates (Almuhaideb et 

al., 2011). For example, low-grade gliomas cannot be detected by [18F]FDG (Verger et 

al., 2018).  

 

1.2.3.2 [11C]Methionine 

In contrast, amino acid radiotracer L-[methyl-11C]methionine ([11C]methionine) shows 

increased uptake in gliomas compared with non-tumor tissues (Singhal et al., 2012). The 

accumulation of [11C]methionine reflects the intracellular metabolism of amino acids, and 

it is useful in the cerebral tumor imaging (Cosentino et al., 2020). This is because brain 

tumors can also be easily identified by [11C]methionine due to an increased uptake of 

[11C]methionine in brain tumor tissues (Cosentino et al., 2020). Although the increased 

uptake of [11C]methionine in brain tumors has not been well defined yet, it is believed 

that passive diffusion through the damaged BBB and active tumor uptake in brain tumors 

might contribute to this (Cosentino et al., 2020).  

 

The application of [11C]Methionine is also extended to differentiate recurrent or 

progressive tumors from radiation necrosis (Terakawa et al., 2008). However, its use is 

limited by the short physical half-life (20 minutes) of carbon-11, and a cyclotron is needed 

to produce carbon-11 (Mabray et al., 2015).  

 

1.2.3.3 Gallium-68 labeled peptides 

68Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid ([68Ga]Ga-

DOTA)-conjugated peptides are another widely employed tracers with high sensitivity 
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and specificity in neuroendocrine tumors, such as prostate tumors (Raj & Reidy-Lagunes, 

2018) and meningiomas (Verger et al., 2022). It is commonly used in primary tumor 

detection but can also provide additional information of tumors that cannot be detected 

by [18F]FDG and [11C]methionine. The half-life of 68Ga is approximately 68 minutes 

(Martiniova et al., 2016.). 

 

The use of 68Ga-DOTA-conjugated peptides is also advantageous in shortening the 

imaging time and is more cost-effective than radiotracers a cyclotron generates. 68Ga-

Radionuclide can be conveniently obtained from a generator instead of a cyclotron, 

which facilitates its use for radiolabeling of tracers for PET application (Khan et al., 2009). 

1.3 Image Processing and Analysis 

Conventional image processing and analysis is skill-demanding and time-consuming as 

it relies heavily on experts’ manual operation of the image process software. Recently, 

computerized image analysis has been receiving increasing attention as its ability to 

improve the efficiency and accuracy of image analysis qualitatively and quantitively 

through image registration and image segmentation (W. Lu et al., 2015). Automated 

image processing, also known as computerized image analysis, typically consists of 

three stages: pre-processing, processing, and post-processing. 

1.3.1 Pre-processing  

Pre-processing is a key step for image processing because it prepares input images for 

the best output. Pre-processing is the process where adjustments will be made to the 

size and orientation of images. The purpose of pre-processing is to improve image 

quality and eliminate unnecessary information so that precedent processing can function 

effectively and generates desired output.  
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1.3.2 Processing  

Image processing depends on the desired output. This thesis aims to segment brain 

metastases from PET images, which means image segmentation will be the fundamental 

processing. Image segmentation is a typical image processing step to extract useful 

information from images by dividing an image into several homogeneous groups 

(Szeliski, 2022). In this thesis, image segmentation is to separate tumors from non-tumor 

tissues.  

 

Segmentation can be achieved by various methods, including thresholding, region-

based methods, deformable model methods, and clustering. Thresholding uses a fixed 

thresholding value of intensity to separate pixels and pixels above the thresholding value 

are the foreground, and below are the background (Kang et al., 2009). Region-based 

methods form regions by merging connected pixels with similar properties (Fasihi & 

Mikhael, 2016). Deformable model methods are used to handle challenging 3D image 

segmentation. Deformable model is a technique that iteratively defines curves based on 

the internal and external forces to best contour the boundaries of objects in the image 

(Fasihi & Mikhael, 2016). Grouping data into subsets with high similarity within the subset 

but the low similarity in inter groups is called clustering (Madhulatha, 2012). Clustering 

is viewed as unsupervised learning from the perspective of machine learning (Malathi & 

Kamal, 2015).  
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Figure 1. Clustering items into different groups based on their similarities and differences. 

 

Clustering has a wide application in image segmentation, such as drawing regions of 

interest (ROI), due to its distinct advantages. One distinct advantage of clustering is that 

predefined classes and training examples are not required when grouping the data 

because clustering is an unsupervised machine learning (Malathi & Kamal, 2015). 

Clustering-based algorithms are also advantageous in handling multidimensional data 

(Pham et al., 2000), such as 4D PET images in our study. The application of clustering 

in PET images is to partition voxels with similar TACs into the same subsets so that 

tumor tissues can be differentiated from non-tumor tissues based on their TACs.  

 

Clustering algorithms are categorized as hierarchical and partition algorithms based on 

their structure. Hierarchical algorithms separate the given data into subsets hierarchically, 

whereas partition algorithms divide the given data into multiple subsets in one step. 

Clustering can also be categorized into various algorithms based on characteristics, such 

as K-Means Clustering and Gaussian Mixture Model (GMM). This essay focuses on K-

Means Clustering and GMM, which will be discussed in detail in the Material and 

Methods section. 
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Figure 2. 2D visualization of an example 4D PET image. 

1.3.3 Post-processing  

Post-processing is used to reconstruct the image; such a procedure is important to 

enhance the raw result generated from clustering. Commonly used post-processing of 

medical images include smoothing and resizing. 

1.4 Evaluation and Validation of Clustering  

Certain criteria and metrics are adopted to evaluate the performance of automated image 

segmentation. These metrics will evaluate the segmentation from three aspects: 

accuracy, precision, and processing time. Commonly used metrics include Confusion 

Matrix, Log Loss, and Jaccard index. The confusion Matrix compares the actual value 

with the predicted value and divides the predicted value into four categories based on 

the comparison. Log loss indicates the probability of how close the predicted result is to 

the actual result. In contrast, the Jaccard index measures the similarities between the 

predicted and actual results. The higher is Jaccard index is, the more accurate the 

algorithm is. Another metric to validate the accuracy of automated segmentation is by 
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comparing manually segmented and automatically segmented tumors. The thesis uses 

the Jaccard index and comparison of TACs, and they will be discussed in a later section. 

2 THE MOST IMPORTANT LITERATURE 

Clustering has been widely applied in cancer diagnoses, such as brain cancer (M & P, 

2018) and breast cancer (C.-H. Chen, 2014) and neurological diseases like Alzheimer’s 

disease (Alashwal et al., 2019). An integrated clustering of K means and spatial Fuzzy 

C means (FCM) clustering was implemented on MRI images to segment human brain 

tumors and demonstrated a good segmentation performance with an 87% classification 

efficiency and an increased classification efficiency of 93.28% after post-processing with 

discrete wavelet transform (M & P, 2018). 

 

Various clustering-based algorithms are also applied in segmenting brain tumors in PET 

images, such as the Iterative FCM (Zhu & Jiang, 2003), Spatial FCM (Arumugam & Raja, 

2013), and K-Means Clustering (Abualhaj et al., 2017). Both normal FCM and iterative 

FCM can detect tumors and generate volume mesh from PET images; however, iterative 

FCM outperforms normal FCM when tumors differ from non-tumor tissue significantly 

(Zhu & Jiang, 2003).  

 

K-means clustering indicates promising results in segmenting different functional 

structures in the brain from dynamic PET images (Abualhaj et al., 2017). Spatial FCM 

clustering is effective in identifying affected portions of the brain from dynamic PET 

images of Alzheimer’s disease patients (Arumugam & Raja, 2013).   

 

The evaluation and comparison of multiple clustering-based algorithms in the MRI brain 

tumor images (Selvy et al., 2018.), and CT brain tumor images (Sharma & Aggarwal, 

2010) have been investigated. Although applications of single clustering algorithms K-

Means in PET brain images were also investigated, the evaluation and comparison of 

multiple clustering-based algorithms to detect metastatic brain tumors in mice PET 
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images have not yet been studied. This thesis tests the K-means clustering’ and 

Gaussian mixture model’s ability to detect metastatic brain tumors from PET images and 

evaluate their performances and fills this gap. 
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3 AIMS AND HYPOTHESES 

This thesis focuses on one hypothesis and two aims.  

 

This thesis hypothesizes that clustering can be used to identify the tumor tissue from 

PET images.  

 

The first aim (Aim 1) is to test the performance of the different clustering-based 

algorithms in detecting brain tissues from PET images in terms of processing time and 

accuracy. Furthermore, the other aim (Aim 2) is to identify the best-performing algorithm 

based on the result obtained from Aim 1. 
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4 MATERIALS AND METHODS 

4.1 Material  

4.1.1 PET images 

19 PET images of 19 mice intracranially injected (Injection site, Figure 3) with human 

breast cancer cells were analyzed. Among them, three radiotracers were respectively 

injected into each mouse [18F]FHC (n=11), [11C]methionine (n=4), and [68Ga]DOTA (n=4) 

to compare the efficacy of tracers.  

 

Figure 3. The injection site in the mouse brain from coronal and sagittal views. 

 

A PET image (Figure 4) has 4 dimensions, coronal, sagittal, and transaxial, and time. 

For images injected with [18F]FHC [11C]methionine, and [68Ga]DOTA, their total number 

of timeframes are respectively 21 (6 x 10s, 4 x 60s, 5 x 300s, 6 x 600s, 90 min), 21 (6 x 

10s, 8 x 30s, 5 x 60s, and 2 x 300s, 20 min), and 16 (6x10s, 4x60s, 5x300s, 1x600s, 40 

min).  



 16 

 

Figure 4. Screenshot of the 4D visualization of a PET image in Carimas from transaxial, coronal, 

and sagittal views over 21 time points as well as 3D rendering. 

 

PET images of mice were both segmented manually and automatically by the clustering 

pipeline. Manual segmentation was operated using Carimas 2.10 (Turku PET center, 

Turku, Finland), and automated segmentation was done with a clustering pipeline built 

in Python (version 3.11.1). Manual segmentation is considered as ground truth in this 

case, and the automated segmentation was compared with the ground truth to evaluate 

the accuracy and efficiency of each clustering algorithm.  

4.1.2 Data format 

All PET images used in this thesis are stored in two data formats: Digital Imaging and 

Communications in Medicine standard (DICOM) or in Neuroimaging Informatics 

Technology Initiative (NIfTI).  

 

DICOM is used to integrate imaging equipment that might be installed in multiple 

manufacturers, such as PET and CT images. DICOM is different from other image 

formats because it groups information into data sets (Varma, 2012). PET images in 

DICOM format are read in Carimas. 
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NIfTI is another data format that is used to store medical images, which is developed by 

Biomedical Imaging Resource (BIR) at Mayo Clinic. NIfTI contains metadata of voxels 

up to 7 dimensions and supports a variety of data types. And it also provides additional 

information about the coordinate system and how to interpret the data of the image (NIfTI 

(Neuroimaging Informatics Technology Initiative) Reader/Writer, n.d.). PET images in 

NIfTI are read in Python. 

4.2  Manual Segmentation 

Manual segmentation was performed in the PET image processing software Carimas 

with the anatomical reference from CT images. Manual segmentation involves four major 

steps. 

 

Step 1: Registration of PET and CT images. The PET and corresponding CT images 

were loaded to Carimas, where PET was the main image and CT was the background 

(Figure 5).  Next, the PET image and CT image were registered using Normalized Mutual 

Information (NMI). After registration, PET/CT image gives a good visualization of 

radioactivity with an anatomical reference (Figure 6). 

 

Figure 5. Screenshots of the automatic registration of PET and CT image in Carimas based on 

NMI. 
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Figure 6. Screenshots of the visualization of PET/CT image with both functional and anatomical 

information after registration. 

 

Step 2: Adjustment of the scaling bar. Maintaining objectivity in the adjustment of 

scaling parameters is challenging. To maintain consistency, most images were adjusted 

to the range of 105-106 Bq/ml to achieve better visualization where voxels with higher 

radioactivity in the skull can be identified and differentiated. 

 

Figure 7. Screenshots of the visualization of PET/CT images with different scaling ranges. The 

scaling range should be carefully chosen in order to differentiate tumors from surrounding non-

tumor tissues.  
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Step 3: Selection of timeframes (Figure 7). The selection of timeframes depends on 

the half-life time of the injected radiotracer. In this thesis, the initial and final time points 

were excluded, and only the selected time intervals were retained. Images injected with 

[18F]FHC, timeframe 6-15 or 10-15 were retained, and images injected with 

[11C]methionine timeframe 12-19 were retained. Selecting proper timeframes was done 

along with adjusting the scaling bar.   

 

Step 4: Draw a 3D region of interest (ROI) (Figure 8). ROIs were drawn with the 

Carimas plug-in tool called Found Region based on the anatomical reference provided 

by CT images and the injection site (Figure 4). The injection gave an insight into the 

possible location of the metastatic tumor. The brain area of each mouse was also drawn 

with a 3D Sphere tool. 

 

Figure 8. Screenshots of drawing ROIs in Carimas. 7(a),the drawing of brain metastases; 7(b), 

drawing of brain area. 
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Step 5: Exportation of ROIs. After drawing ROIs, and brain area was exported as 

separate NIfTI files for later use in automated segmentation. Quantitative analyses were 

performed on the defined ROIs to obtain time-activity curves in Results.  

 

Figure 9. Visualization of manual segmentation in PET/CT 

4.3 Automated Segmentation 

Automated segmentation was performed on each PET in addition to manual 

segmentation. This approach employed a pipeline that involved reading DICOM file, 

converting them into binary mask, performing clustering algorithms, and reconstruction 

of 3D image.  

 

Python is used as the main programming language. Python packages pydicom (2.3.1) 

(Mason, 2011), numpy (1.24.2), matplotlib (3.7.1) (McKinney et al., 2010), pandas (2.0.0), 

sklearn (0.0.post1) (Pedregosa et al., 2011), nibble (5.1.0), seaborn (0.12.3) (Mwaskom 

et al., 2017)  are used.  
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Figure 10. Schematic drawing of automated segmentation pipeline 

 

An automated segmentation pipeline consists of 4 steps in the, as suggested in Figure 

10. 

 

Step 1: Reading DICOM format as a 4D array. DICOM file is read as an array (192, 

384,384,21) by the Python function pydicom. dcmread, where the metadata stored in 

each array voxel was accessed, including the intensity of radioactivity, location, and 

orientation. 

 

Step 2: Converting into a binary mask. This step converts the 4D array into a 2D binary 

mask. Firstly, the quantile radioactivity of all voxels was calculated. Subsequently, the 

image was transformed into a binary mask based on the radioactivity of each voxel. 

Voxels with intensity greater than 95% quantile intensity were considered foreground, 

and those with intensity lower than 95% quantile intensity were considered background. 

Next, the background was eliminated from the image. Lastly, the coordination of voxels 

from the foreground was extracted and stored separately for later use.  

 

Step 3: Performing clustering algorithms. Each clustering algorithm consists of pre-

processing, clustering, and post-processing. In the pre-processing step, the images were 

denoised, and the important features were extracted by either PCA or ICA. Subsequently, 
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images were clustered by K-means clustering or GMM. Finally, post-processing CCA 

was performed to refine the segmentation results. 

 

Three clustering algorithms are:  

I. Clustering 1: pre-processing PCA, K-means clustering (with pre-defined 

clustering number 21), and post-processing CCA. 

II. Clustering 2: pre-processing ICA, K-means clustering (with pre-defined clustering 

number 22), and post-processing CCA. 

III. Clustering 3: no pre-processing, GMM clustering (with pre-defined clustering 

number 18), and post-processing. 

 

Clustering results from each clustering method were exported as NIfTI file in .nii format 

to extract TCAs.  

 

Step 4: Reconstruction of a 3D image from clustering results. After performing 

clustering, the obtained NIfTI file was read in combination with the coordinate extracted 

from step 2 to reconstruct a 3D image. 

4.3.1 Pre-processing  

Prior to clustering, PET images are pre-processed to remove the noise from the images 

that might affect the capacity of the segmentation algorithms. Pre-processing used in this 

thesis is principal component cnalysis (PCA) and independent component analysis (ICA). 

PCA is applied to extract meaningful features from confounding data and use these 

extracted second-order statistics to present the original data (Bugli & Lambert, 2007). 

The application of PCA maximizes data interpretability while minimizing information loss. 

Unlike classical pre-processing methods, ICA uses linearly combined independent and 

non-normal variables to present a multidimensional random dataset (Hyvärinen & Oja, 

2000). Its assumption of non-Gaussianity data allows it to identify its original, underlying 
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components, which cannot be done by classical methods (Hyvärinen, 2013). ICA is 

widely used to derive input functions from dynamic PET image (Lee et al., 2001).  

 

After being pre-processed by either PCA or ICA, the 4D array was converted into a 2D 

array. In this step, only important features of the original data were extracted and retained. 

This 2D array assigns a unique label to each extracted voxel and presents the time 

activity function of each voxel as a function of time. 

4.3.2 Clustering  

Clustering methods used in this thesis are K-means clustering and Gaussian mixture 

model (GMM). K-means clustering is the fundamental algorithm that assigns a centroid 

for each group and finds the minimum sum of distances between the data point and their 

corresponding cluster centroid by iterating the value of the centroids (Madhulatha, 2012). 

K-means clustering can handle massive data quickly and efficiently (Malathi & Kamal, 

2015). For PET images, K-means clustering categorizes voxels into regions with similar 

kinetic behavior time-activity curves (Abualhaj, 2017).  

 

In contract, Gaussian mixture model clustering groups voxels into a set of clusters based 

on their probability of being a mixture of several normal distributions with different mean 

and standard deviation, this is achieved by iterating expectation-maximization (EM) 

algorithm (Baselli et al., 2016). 

 

This thesis employed three different clustering methods, with 21, 22, and 18 predefined 

clusters, respectively. When clustering, voxels in ROIs were grouped into these 

predefined groups based on their similarities and differences in TACs.  

 

Once clustering is completed, the 2D array was reread in combination with the extracted 

coordinate of each voxel to reconstruct 3D image.   
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4.3.3 Post-processing  

While separating different objects in this binary image, connected components analysis 

(CCA) operation is advantageous in refining the clusters. Connected components 

analysis, also known as connected components labeling, clusters pixels or voxels into 

subgroups based on whether pixels are physically connected (He et al., 2017). Whether 

two pixels/voxels are connected is determined by if one pixel is located in the other pixel’s 

predefined neighborhood (4, 8, and 26 neighbors/ connectivity), as indicated in Figure 

11.  

 

After CCA, clusters obtained from clustering further divided into subclusters, and each 

subcluster was assign to a unique label. Furthermore, features of these the labeled 

subcluster can be calculated and accessed, such as shape, size, and location (He et al., 

2017). In this thesis, the operation of CCA enables us to find the cluster (or automatically 

segmented tumor) that has the best overlap with manual segmented tumors. 

 

 

Figure 11. Presentation of connected component analysis with 4-neighbor, 8-neighbor, and 26-

neighbor. 

 

Figure 12 gives us a good visualization of the effect of CCA. Prior to post-processing, 

voxels in clusters 1, 2, and 3 were considered as a single cluster because they exhibited 

similar TAC, even though they were not physically connected in the image. CCA 
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separated these three clusters based on their spatial connectivity and reassigned them 

with new labels. As a result, three distinct clusters were obtained after performing CCA. 

In this thesis, I tested CCA on K-means-based segmentations Clustering 1 and 

Clustering 2, as they worked on all images. 

 

Figure 12. Comparison of cluster labeling prior to CCA and after CCA.  

4.4 Evaluation 

To evaluate the performances of the three different clustering methods, the automated 

segmentation was compared to the ground truth (manual segmentation). Two metrics 

were used to assess their performance: processing time and accuracy. Aim 1 was 

evaluated by calculating the execution time of each clustering method and the Jaccard 

index between manual segmentation and automated segmentation from each clustering 

method. Furthermore, Aim 2 was evaluated based on the overall performance of the 

execution time and the Jaccard index, in conjunction with the validation of TACs. 

4.4.1 Execution Time 

The approximate time to manually segment 1 PET image in Carimas was documented 

manually. The time to execut each clustering method was documented automatically 

with the Python perf_counter function in seconds. The execution time of manual 

segmentation and different clustering methods were compared based on the p-value, 

which is obtained from the Mann-Whitney test after testing their normality. 



 26 

4.4.2 Jaccard Index  

The Jaccard index evaluates the accuracy of each clustering result. Jaccard index 

compares the similarities between automatically segmented tumors and manually 

segmented tumors. The jaccard index, also known as the Intersection over Union (I/U), 

quantifies the overlapping percentage between manual segmentation (considered the 

ground truth in our case) and automated segmentation (Figure 13). The intersection (A 

∩ B) consists of the voxels that exist in both the manual segmentation and clustering 

output. In contrast, the union (A ∪ B) consists of all voxels in the manual segmentation 

or clustering output. The higher the Jaccard index is, the higher overlapping there is, and 

the better the clustering method is. 

Figure 13. Visualization of Jaccard Index 

4.4.3 TACs of manual segmentation and automated segmentation 

Another metric to validate the accuracy of clustering is through the comparison of 

manually segmented tumors and automatically segmented tumors. To verify whether two 

TACs share similar kinetics, statistical tools, such as runs test, or maximum run length 

are usually applied to test their similarity (Turku PET Centre, 2021). However, due to the 
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limitation of time and technical issues, this thesis only compared the visual analysis of 

plotted TACs of manually segmented tumors and automatically segmented tumors to 

validate if tumors segmented from two methods share certain similarity.  

4.4.4 Statistical analysis  

Statistical methods to evaluate the differences between Jaccard indices and the running 

times of different clustering approaches included the Mann-Whitney and Wilcoxon rank-

sum tests. Clustering 1 and clustering 2 were tested with Wilcoxon rank-sum tests 

because they are paired. Whereas clustering 3 was tested against clustering 1/2 with the 

Mann-Whitney test because GMM used in clustering 3 did not work on all images. To 

define the statistically significant difference between the approaches, a conventional p-

value cutoff of 0.05 was used.  
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5 RESULTS  

5.1 Visualization Inspection of Clustering Results 

 

Figure 14. Visualization of PET images after automated segmentation.  

 

The performance of three different clustering methods has been visualized prior 

to CCA, as visualized in Figure 14. Based on the visualization, Clustering 1 

yielded the best results. A clear outline and easily discerned internal organs 

suggest that Clustering 1 has produced a highly accurate segmentation of the 

image. In contrast, the results of Clustering 3 appear to be the least satisfactory, 

as evidenced by the mouse's blurry outline and the difficulty distinguishing organs 

from surrounding tissues. Quantitative analysis will be presented later for a more 

comprehensive evaluation of the performance of each clustering method. 
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5.2 Execution Time 

5.2.1 Average execution time prior to CCA  

Prior to CCA, Clustering 1 is the most efficient among the three clustering methods. The 

average execution times of the three clustering methods are 39.1s, 53.8s, and 445.8s, 

respectively. The execution times of Clustering 1 and Clustering 2 are relatively similar, 

whereas the execution time of Clustering 3 is more than ten times higher than that of 

Clustering 1 (Figure 15).   

 

 

Figure 15. Execution time of different clustering methods. 

5.2.2 Average execution time after CCA 

After CCA, the execution times of all three clustering methods remained the same as 

those of prior to CCA. It appears that CCA has little impact on the execution times of 

Clustering 1 and Clustering 2 because the CCA of these two clustering methods took 

less than 1 second. 

 

However, it seems that CCA is not effective for Clustering 3 because CCA did not work 

on images segmented by Clustering 3 and no data is available for Clustering 3 after post-



 30 

processing. A potential reason might be that CCA is not compatible with GMM, and 

further studies are necessary to address the incapability issue between CCA and GMM.  

5.2.3 Statistical analysis of execution time of different clustering methods 

Table 1. Statistics Analysis of Execution Time of Different Clustering Methods. 

 

 

It has been observed that prior to performing CCA, Clustering 1 is significantly faster 

than Clustering 2 and Clustering 3, with a p-value of 0.03 and 0.01, respectively (Table 

1). Moreover, Clustering 2 is also significantly faster than Clustering 3, with a p-value of 

0.01, as determined by the Wilcoxon signed-rank test (Table 1). 

    

Method 1 Method 2 Test P-value

Clustering 1 Clustering 2 Mann Whitney test 0.03

Clustering 1 Clustering 3 Wilcoxon signed-rank 0.01

Clustering 2 Clustering 3 Wilcoxon signed-rank 0.01

Statistics Analysis of Execution Time of Different Clustering Methods
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5.3 Accuracy 

5.3.1 Jaccard Index 

Prior to CCA, the Jaccard indices of three clustering methods were fairly small, with the 

maximum Jaccard index of Clustering 1, Clustering 2, and Clustering 3 being 1.24E-05, 

7.11E-05, and 1.36E-05 respectively (Table 2). This suggests that the accuracies of the 

three clustering methods are relatively low.  

 

Table 2. Comparison of the Jaccard Indices of Different Clustering Methods Prior to and After 

CCA. 

 

 

 

Figure 16. Boxplots of Jaccard indices of different clustering methods prior to and after CCA. 
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Among the three clustering methods, Clustering 2 had the highest average Jaccard index 

prior to CCA (Table 2). However, the Jaccard Indices of Clustering 2 were not statistically 

significantly higher than those of Clustering 1 and Clustering 3, with a p-value of 0.12 

and a p-value of 0.29, respectively. This suggests that Clustering 2 is not significantly 

more accurate in detecting brain tumors than Clustering 1 and Clustering 3 prior to CCA 

(Table 3).  

 

Table 3. Statistical Analysis of the Jaccard Index of Different Clustering Methods (Prior to CCA) 

 

 

The accuracy of Clustering 1 and Clustering 2 has improved after post-processing, with 

maximum Jaccard Indices of 0.39 and 0.71, respectively (Table 2). In contrast, the 

performance of Clustering 3 does not improve after CCA. The Jaccard Indices of 

Clustering 2 have significantly improved, with a p-value of 0.0001, whereas Clustering 1 

has not significantly improved, with a p-value of 0.15 (Table 4).  

 

Table 4. Statistical Analysis of the Jaccard Index of Different Clustering Methods 

 

 

Furthermore, after post-processing, Clustering 2 is statistically significantly more 

accurate than Clustering 1 (Table 5), with a p-value of 0.045 determined by the Mann-

Whitney test (Table 5). This suggests that the post-processing CCA has a more 

significant positive impact on the accuracy of Clustering 2 than on Clustering 1. 

 

 

 

 

Method 1 Method 2 Test P-value

Clustering 1 Clustering 2 Mann Whitney test 0.12

Clustering 1 Clustering 3 Wilcoxon signed-rank 0.71

Clustering 2 Clustering 3 Wilcoxon signed-rank 0.29

Statistical Analysis of Jaccard Index of Different Clustering Methods (Prior to CCA)

Method 1 Method 2 Test P-value

Clustering 1 (prior to CCA) Clustering 1 (after CCA) Mann Whitney test 0.15

Clustering 2 (prior to CCA) Clustering 2 (after CCA) Mann Whitney test 0.0001

Statistical Analysis of Jaccard Index of Different Clustering Methods after CCA
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Table 5. Statistical Analysis of the Jaccard Index of Different Clustering Methods (After CCA) 

 

5.3.2 Visualization of manual segmentation and cluster with max Jaccard 

index 

Prior to CCA, the identification of brain tumors from automatically segmented images 

was challenging because of the presence of “noises” (presented as blue dots in (Figure 

17(a)(b)(c)). When calculating the Jaccard Index, numerous clusters were selected from 

the substantial clusters obtained after automated segmentation based on their similarity 

to manually segmented tumors. However, not all these clusters correspond to actual 

brain tumors because some of them locate far away from the injection site and even 

outside the skull. These clusters were regarded as noises, and the elimination of noises 

was crucial to identify brain tumors. A high level of noise also corresponds to previously 

observed low Jaccard indices prior to post-processing (Table 2).  

 

 

Figure 17. Visualization of manual segmentation and the automatically segmented cluster with 

the highest Jaccard Index prior to and after CCA in coronal, sagittal, and transaxial views. 

 

Method 1 Method 2 Test P-value

Clustering 1 Clustering 2 Mann Whitney test 0.045

Statistical Analysis of Jaccard Index of Different Clustering Methods (After CCA)

Prior to CCA

After CCA

Manual segmentation Automated segmentation

Coronal slice Saggital slice Transaxial slice

(a) (b) (c)

(d) (e) (f)
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Prior to CCA, low Jaccard indices (Table 2) and poor visualization results (Figure 

17(a)(b)(c)) indicate that there was a significant difference between manual 

segmentation and automated segmentation. However, after the application of CCA, an 

improvement in the accuracy of the automated segmentation results is witnessed in 

Figure 17(d)(e)(d). This is primarily achieved by effectively eliminating noises (those 

clusters share similar TAC but are physically unconnected to the cluster with the highest 

Jaccard index). Therefore, the performance of automated segmentation has significantly 

improved after the removal of these noises.  

5.4 Time Activity Curve 

5.4.1 TACs of manual segmentation and automated segmentation  

In this section, TACs were used to validate that the cluster exhibiting the highest Jaccard 

index shares identical TAC with the manually segmented tumors. The clusters with both 

the highest and lowest Jaccard Index of Clustering 1 and Clustering 2 were compared, 

and their TACs prior to and after CCA were compared. In addition, the cluster with the 

highest Jaccard index obtained from Clustering 3 was also plotted separately. For 

Clustering 1 and Clustering 2, each plot features four TACs: manual segmentation, 

cluster with the highest/lowest Jaccard index (cluster), and their corresponding clusters 

after post-processing (cluster_CCA), and brain area. TACs of Clustering consist of three: 

manual segmentation, cluster with the highest/lowest Jaccard index (cluster), and brain 

area. And each TAC demonstrated the concentration of radioactivity in the unit of Bq/mL 

as a function of time.  

 

5.4.1.1 TACs of the cluster with the highest Jaccard index prior to CCA 

 

Before applying CCA, the mouse injected with radiotracer [11C]methionine and 

processed with Clustering 1 presented the highest Jaccard index (Figure 18). For this 

mouse, the TAC of the cluster shares a similar tendency with its brain’s TAC in general, 

but with increased radioactivity since timepoint 7 and remaining at a higher radioactivity 
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level. In contrast, the TAC of manual segmentation exhibits a different trend 

characterized by fluctuating levels of radioactivity that rise and drop irregularly from the 

beginning to the end of the scanned time.  

 

After post-processing, the tendency of the cluster’s TAC changed totally, it resembled 

more like the TAC of manual segmentation instead of that of the brain area (Figure 18).  

 

 

Figure 18. TACs of manual segmentation, automated segmentation prior to CCA with the 

highest Jaccard Index, and brain area.  

 

5.4.1.2 TACs of the cluster with the lowest Jaccard index prior to CCA 

 

Before CCA, the mouse injected with [18F]FHC and processed PCA presented the lowest 

Jaccard index. The cluster of this mouse shared a similar trend with the brain but with 

higher radioactivity from the beginning, showing the most significant difference at time 

point 5. On the contrary, the manual segmentation showed an almost constant low level 

of radioactivity until timepoint 5, followed by a sharp increase in radioactivity at timepoint 

6 and a subsequent drop to almost 0 at time point 7. After post-processing, the tendency 

of TAC resembles more like manual segmentation (Figure 19).  

 

After CCA, little change was observed in the TAC of cluster_CCA, especially after 

timepoint 7. Cluster_CCA remains to share a similar trend with that of the brain area but 

with a higher concentration of radioactivity (Figure 19). 
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Figure 19. TACs of manual segmentation, automated segmentation prior to CCA with the lowest 

Jaccard Index, and brain area. 

 

5.4.1.3 TACs of the cluster with the highest Jaccard index after CCA 

 

Figure 20 presents the TACs of the mouse with the highest Jaccard index after post-

processing. This mouse was injected with [11C]methionine and was segmented by 

Clustering 2. Even though with a relatively high Jaccard Index of 0.5 (Table 2), the TAC 

of automated segmentation is not necessarily similar to the TAC of manual segmentation. 

Undoubtedly, the TAC of the cluster share certain similarity to manual segmentation, 

such as a gradual increase until timepoint 4, and then followed by a more drastic increase 

until timepoint 5 then drastically dropped to timepoint 7. However, the highest 

concentration of radioactivity of the cluster is much greater than that of manual 

segmentation.  

 

When we look back at the cluster_CCA prior to CCA, the TAC of the cluster share a 

similar tendency with cluster_CCA, but with even hugh difference with manual 

segmentation (Figure 20).  
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Figure 20. TACs of manual segmentation, automated segmentation with the highest Jaccard 

Index, and brain area after CCA. 

 

5.4.1.4 TACs of the cluster with the lowest Jaccard index after CCA 

 

 

Figure 21. TACs of manual segmentation, automated segmentation with the lowest Jaccard 

Index, and brain area after CCA. 

 

The mouse with the lowest Jaccard index was injected with [18F]FHC and segmented by 

Clustering 1. As shown in Figure 21, neither the cluster nor cluster_CCA exhibit a similar 

tendency as the manual segmentation or brain. 

 

5.4.1.5 TACs of the cluster with the highest Jaccard index processed by 

Clustering 3 
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Figure 22. TACs of manual segmentation, automated segmentation with the lowest Jaccard 

Index, and brain area prior to  CCA 

 

Figure 22 presents the TACs of the mouse with the highest Jaccard index processed 

with GMM. Generally, manual segmentation shares a similar tendency with the cluster 

and brain, even though some unstable fluctuations are witnessed in timepoint 5 and 

timepoint 9. Noticeably, there’s an unusual radioactivity decrease in the cluster from 

timepoint 0 to timepoint 1.  
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6 DISCUSSION 

The aims of this thesis were to: 

Aim 1: evaluate the performance of different clustering methods in identifying metastatic 

brain tumors from dynamic brain PET images.  

Aim 2: Identify the best-performing clustering method. 

 

The statistical analysis demonstrates that Clustering 2 performs better than Clustering 1, 

despite the visualized clustering results (Figure 14) showing that Clustering 1 segments 

organs and the body structure more clearly than Clustering 2. The distinction between 

the two clustering methods is the pre-processing approaches, where Clustering 1 utilizes 

Principal Component Analysis while Clustering 2 employs Independent Component 

Analysis to extract features and decompose signals. The superior performance of ICA 

suggests that the original data, in the context of mouse PET images with brain tumors, 

can be effectively represented by non-Gaussian distributions. This implies that normality-

based differentiation might be an effective means to distinguish normal and non-normal 

tissues. Moreover, the time activity curve of automatically segmented tumors in PET 

images extracted by ICA closely resembles that of actual tumors. 

 

Pre-processing methods ICA and PCA have been widely used in extracting features and 

removing noises. The satisfactory performance of ICA is consistent with previous studies 

that ICA can well represent PET data (Naganawa et al., 2005), and an accuracy of 86.78% 

in classifying Alzheimer’s Disease signals from PET images after pre-processed by ICA 

(Wenlu et al., 2011). Promising results of PCA in combination with K-means clustering 

can also be evidenced by Hagos et al.’s study in 2018 where PCA combined with K-

means clustering as an efficient and accurate method for brain tumor localization and 

segmentation from PET images can also (Hagos et al., 2018) However, the observation 

that ICA outperforms PCA in pre-processing PET images does not align with the findings 

of the study conducted by Razifar et al. in 2009 where PCA outperforms ICA in extracting 

features and reducing noises from stimulated dynamic PET images both qualitatively 
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and quantitatively (Razifar et al., 2009). This might be explained by Pedersen et al.'s 

study that suggests PCA might perform poorly in separating PET data with high noise 

(Pedersen et al., 1994).  

 

The time activity curve of the selected cluster closely resembles that of the manually 

segmented tumors. However, the TAC of the manually segmented tumors exhibits 

"spike-like" fluctuations, suggesting potential imprecision in the manual segmentation 

process where background noise might have been included. It is important to note that 

manual segmentation is subjective, operator-dependent, and its reliability is difficult to 

ascertain (Foster et al., 2014). However, the identification of automated tumors depends 

heavily on manual segmentation. Automatically segmented tumors would not be reliable 

if manual segmentation is not reliable. Further studies are needed to improve the 

precision of manual segmentation and enhance its reliability. 

 

However, the study had several limitations, including a small dataset, the small size of 

metastatic brain tumors, and the subjective nature of manual segmentation. The first 

limitation of this thesis is a small dataset (19 mice PET images). Further studies with 

expanded datasets are needed. Another limitation is the tiny size of metastatic brain 

tumors and low animal PET image resolution, which makes it difficult to identify tumors 

from both manual segmentation and automated segmentation qualitatively. Maybe with 

rats' images or human images, it is easier to identify metastatic brain tumors. The last 

limitation is the lack of objective criteria for manual segmentation and inevitable 

subjectivity in manual segmentation. In this thesis, the selection of automated 

segmentation is highly dependent on manual segmentation, it is essential to operate 

manual segmentation carefully and minimize potential errors. Lastly, the orientation of 

PET images is a technical challenge when aligning manual and automated segmentation 

with different formats.  
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7 CONCLUSION 

Clustering can be used to identify metastatic brain tumors from dynamic PET images of 

mice.  

 

Among the three clustering methods, Clustering 2, which is the combination of pre-

processing approach independent component analysis and K-means clustering, is the 

best performing with the highest accuracy and second shortest processing time.  

 

K-means clustering outperforms the Gaussian mixture model in segmenting metastatic 

brain tumors with higher accuracy and shorter processing time, especially when used in 

combination with the pre-processing independent component analysis approach.  

 

In addition to pre-processing, the study also found that proper post-processing can 

significantly improve the performance of K-means clustering methods. Specifically, 

connected component analysis significantly improved the accuracy of K-means 

clustering. Most importantly, the connected component analysis did not significantly 

increase the computational time.  

 

In conclusion, this study highlights the importance of pre-processing and post-processing 

in improving the performance of clustering methods in identifying metastatic brain tumors 

from dynamic brain PET images. Future studies with larger datasets and comparative 

analysis with more clustering methods could further enhance the accuracy and efficiency 

of segmentation or tumor detection from PET images. 
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11 APPENDIX 

 

I categorized coding into 3 parts: automated segmentation pipeline, calculation 

and visualization of Jaccard index, and acquisition of TACs. 

11.1 Automated segmentation pipeline 

import os 

import nibabel as nib 

from time import perf_counter 

import numpy as np 

from sklearn.cluster import KMeans 

from sklearn.mixture import GaussianMixture 

from sklearn.decomposition import PCA 

from sklearn.decomposition import FastICA 

import matplotlib.pyplot as plt 

import csv 

import cc3d 

import sklearn 

 

def prepare_TACs(directory, image_id, mouse_index): 

     

    start_time = perf_counter()  

    tac_array=[]  

    tac_array_inds=[]    

     

    pet_nifti = os.path.join(directory, image_id + "_nifti.img") 

    print(pet_nifti) 

    image = nib.load(pet_nifti) 

    image_data = image.get_fdata()  

     

    x_dim = image_data.shape[0] 

    y_dim = image_data.shape[1] 

    z_dim = image_data.shape[2] 

    frame_dim = image_data.shape[3] 

     

    # Split by masking one mouse with 0's 

    if mouse_index == 1: 

        image_data[0:round(x_dim/2),:,:,:] = 0 

    else: 

        image_data[round(x_dim/2):x_dim,:,:,:] = 0 
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    mean_per_voxel=np.mean(image_data,axis=3) 

    binary_mask_for_mean=mean_per_voxel > np.quantile(mean_per_voxel, 

0.95) 

 

    for x_ind in range(x_dim): 

        for y_ind in range(y_dim): 

            for z_ind in range(z_dim): 

                    if binary_mask_for_mean[x_ind,y_ind,z_ind]: 

                        tac_array.append(image_data[x_ind,y_ind,z_ind,:]) 

                        tac_array_inds.append((x_ind,y_ind,z_ind))  

     

    end_time = perf_counter() 

    print("Preparing the image took "+str(round(end_time-start_time,0))+ " 

seconds"+"\n") 

     

    return image_data, tac_array, tac_array_inds 

 

 

def clustering_TACs(image_id, 

image,perform_pca,perform_ica,perform_gmm,cluster_number): 

     

    label_list=[] # stores the label arrays from each clustering method 

    processing_time=[] # stores the processing times for each clustering 

     

    #PCA+KMeans clustering 

    if perform_pca: 

        print("PCA+KM") 

        PCA_start = perf_counter() # PCA_start and PCA_end record time spent 

on PCA and KMeans 

        PCA_clustering = 

PCA(n_components=cluster_number[0]).fit_transform(image) # Principal 

Component Analysis 

        PCA_labels = 

KMeans(n_clusters=cluster_number[0]).fit_predict(PCA_clustering) # KMeans 

clustering 

        PCA_end = perf_counter() 

        print(str(round(PCA_end-PCA_start,0))+" seconds"+"\n") 

        processing_time.append(round(PCA_end-PCA_start,0)) 

        label_list.append(PCA_labels) # save labels 

     

    #ICA+KMeans 

    if perform_ica: 

        print("ICA+KM") 

        ICA_start = perf_counter() # ICA_start and ICA_end record time spent on 

ICA and KMeans 
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ICA_clustering=FastICA(n_components=cluster_number[1]).fit_transform(image

) # Independent Component Analysis 

        

ICA_labels=KMeans(n_clusters=cluster_number[1]).fit_predict(ICA_clustering) 

# KMeans clustering 

        ICA_end = perf_counter() 

        print(str(round(ICA_end-ICA_start,0))+" seconds"+"\n") 

        processing_time.append(round(ICA_end-ICA_start,0)) 

        label_list.append(ICA_labels) # save labels 

 

    #Gaussian mixture model 

    if perform_gmm: 

        print("GMM") 

        GMM_start = perf_counter() # GMM_start and GMM_end record time 

spent on PCA and KMeans 

         

        # GMM might not converge if the cluster number is high. The clustering is 

done again until it succeeds 

        gmm_counter = 0 

        while gmm_counter < 10: 

            try: 

                

gmm_model=GaussianMixture(n_components=cluster_number[2]).fit(np.array(i

mage)) # Gaussian mixture model clustering 

                GMM_labels=gmm_model.predict(image) # extract labels from the 

model 

                GMM_end = perf_counter() 

                print(str(round(GMM_end-GMM_start,0))+" seconds"+"\n") 

                processing_time.append(round(GMM_end-GMM_start,0)) 

                label_list.append(GMM_labels) # save labels 

                gmm_counter = 10  

            except: 

                # if error occurs, try again 

                print('GMM was not successful') 

                gmm_counter = gmm_counter + 1 

     

    return label_list,processing_time 

 

def run_pipeline(mouse_index): 

    CCA_time = [] 

    image_data, tac_data, tac_data_inds = prepare_TACs(input_dir, image_id, 

mouse_index) 

     

    np.save("tac_data_inds_" + str(image_id) + "_" + str(mouse_index) + 

".npy",tac_data_inds) 
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    number_of_clusters=[21,22,18] 

    label_list,process_time = 

clustering_TACs(image_id,tac_data,True,True,False,number_of_clusters) 

    print(np.unique(label_list)) 

     

    # Make images 

    dimx=dimy=192 

    dimz=384 

         

    # Initialise images with zeros 

    # The zeros() function is used to get a new array of given shape and type, 

filled with zeros. 

    PCA_image=np.zeros((dimx,dimy,dimz)) 

    ICA_image=np.zeros((dimx,dimy,dimz)) 

    GMM_image=np.zeros((dimx,dimy,dimz)) 

 

    # Indices and dimensions 

    if len(label_list) > 2: 

        for k in range(len(tac_data_inds)): 

            

PCA_image[tac_data_inds[k][0],tac_data_inds[k][1],tac_data_inds[k][2]]=label_li

st[0][k] + 1 

            

ICA_image[tac_data_inds[k][0],tac_data_inds[k][1],tac_data_inds[k][2]]=label_li

st[1][k] + 1 

            

GMM_image[tac_data_inds[k][0],tac_data_inds[k][1],tac_data_inds[k][2]]=label_

list[2][k] + 1 

    else:     

        for k in range(len(tac_data_inds)):     

            

PCA_image[tac_data_inds[k][0],tac_data_inds[k][1],tac_data_inds[k][2]]=label_li

st[0][k] + 1 

            

ICA_image[tac_data_inds[k][0],tac_data_inds[k][1],tac_data_inds[k][2]]=label_li

st[1][k] + 1 

 

    # Save images, the eye() function is used to create a 2-D array with ones on 

the diagonal and zeros elsewhere. 

    # eye, identity matrix 

    # define the orientation of nifti format 

    PCA_CCA_start = perf_counter()  

    labels_in_PCA = np.asarray(PCA_image) 

    cca_PCA = cc3d.connected_components(labels_in_PCA, connectivity = 26) 

    PCA_image_nifti=nib.Nifti1Image(cca_PCA,np.eye(4)) 
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    PCA_CCA_end = perf_counter() 

    print(str(round(PCA_CCA_end-PCA_CCA_start,0))+" seconds"+"\n") 

    CCA_time.append(round(PCA_CCA_end-PCA_CCA_start,0)) 

 

     

    nib.save(PCA_image_nifti,os.path.join(output_dir, str(image_id) + "_mouse_" 

+ str(mouse_index) +'_pca.nii')) 

     

    ICA_CCA_start = perf_counter()  

    labels_in_ICA = np.asarray(ICA_image) 

    cca_ICA = cc3d.connected_components(labels_in_ICA, connectivity = 26) 

    ICA_image_nifti=nib.Nifti1Image(cca_ICA,np.eye(4)) 

    ICA_CCA_end = perf_counter() 

    print(str(round(ICA_CCA_end-ICA_CCA_start,0))+" seconds"+"\n") 

    CCA_time.append(round(ICA_CCA_end-ICA_CCA_start,0)) 

     

    nib.save(ICA_image_nifti,os.path.join(output_dir, str(image_id) + "_mouse_" 

+ str(mouse_index) +'_ica.nii')) 

     

    plt.imshow(PCA_image[130,:,:]) 

    plt.imshow(ICA_image[130,:,:]) 

 

     

    if np.max(GMM_image) > 1: 

        GMM_CCA_start = perf_counter()  

        labels_in_GMM = np.asarray(GMM_image) 

        cca_GMM = cc3d.connected_components(labels_in_GMM, connectivity = 

26) 

        GMM_image_nifti = nib.Nifti1Image(cca_GMM,np.eye(4)) 

        GMM_CCA_end = perf_counter() 

        print(str(round(GMM_CCA_end-GMM_CCA_start,0))+" seconds"+"\n") 

        CCA_time.append(round(GMM_CCA_end-GMM_CCA_start,0)) 

         

        nib.save(GMM_image_nifti,os.path.join(output_dir, str(image_id) + 

"_mouse_" + str(mouse_index) +'_gmm.nii')) 

         

        plt.imshow(GMM_image[130,:,:]) 

 

    return label_list,process_time,CCA_time 

                        

input_dir = 'Pipeline/PET nifti/'  

output_dir = 'Pipeline3\Clustering1' 

output_dir_tac = 'Pipeline3\tac_data_inds1' 

image_ids = ["P123173", "P123177", "P123179", "P123964", "P123966", 

"P124258", "P124260"] 

# image_ids = ["P123173"] 
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# save as cvs 

# fields = image_ids 

total_time = {} 

for i in range(len(image_ids)): 

    image_id = image_ids[i]  

    time = [] 

    for mouse_index in [0,1]: 

        print(f"We are now clustering {image_id}, mouse {mouse_index}.") 

        label_list, processing_time,CCA_time = run_pipeline(mouse_index) 

        print(CCA_time) 

        time.append(processing_time)  

    total_time.setdefault(image_id,[]).append(time) 

11.2 Calculation and visualization of Jaccard index 

import os 

import fnmatch 

import numpy as np 

import matplotlib.pyplot as plt 

import nibabel as nib 

import seaborn as sb 

import json 

 

def calculate_jaccard(clusters, manual_segmentation): 

 

    # Check that the manual segmentation and clustering results have the same 

dimensions 

    if clusters.shape != manual_segmentation.shape: 

        print("Dimensions of clustering results and manual segmentation do not 

match, please check!") 

 

    # This is just to make sure that the manual segmentation really includes only 

0 and 1 

    # np.where returns the indices of elements in an input array where the given 

condition is satisfied 

    manual_segmentation_index = np.where(manual_segmentation > 0.5) 

    mask_manual = np.zeros(clusters.shape, dtype=np.int32) 

    mask_manual[manual_segmentation_index] = np.int32(1) 

     

    # Check if manual segmentation and clustered voxels overlap 

    tumor_labels = clusters[np.where(manual_segmentation > 0.2)] 

    if np.any(tumor_labels > 0.5): 
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        # Detect cluster labels that overlap with manual segmentation 

        present_labels = clusters[manual_segmentation_index] 

        potential_labels = np.unique(present_labels) # Find the unique elements of 

an array 

 

        # Calculate Jaccards for all labels overlapping with the organ 

        max_jaccard = 0 

        max_label = 0 

        for j in potential_labels: 

 

            # Create a 3D array filled with 0, but 1 in voxels having cluster label j 

            label_index = np.where(clusters == j) 

            mask_label = np.zeros(clusters.shape, dtype=np.int32) 

            mask_label[label_index] = np.int32(1)  

 

            # Calculate Jaccard 

            mask_sum = mask_manual + mask_label 

            jaccard = len(np.where(mask_sum == np.int32(2))[0]) / 

len(np.where(mask_sum > 0.1)[0]) 

            print(len(np.where(mask_sum == np.int32(2))[0])) 

 

            # If this cluster has better Jaccard index, make it into the main candidate 

            if jaccard > max_jaccard: 

                max_jaccard = jaccard 

                max_label = j 

    else: 

        max_jaccard, max_label = np.nan, np.nan             

       

 

    return max_jaccard, max_label 

 

def plot_results(pet, clusters, manual, use_axis, use_cluster, path_output): 

 

    fig = plt.figure(figsize=(8, 5))  # Modify if needed 

     

    # Select the slice to plot 

    manual_sums = np.sum(manual, axis=tuple(np.setdiff1d((0, 1, 2), use_axis))) 

    use_slice = np.argmax(manual_sums) 

 

    # Plot the underlying PET image in gray scale 

    pet = np.sum(pet, axis=3) 

    if use_axis == 0: 

        pet = pet[use_slice, :, :] 

    elif use_axis == 1: 

        pet = pet[:, use_slice, :] 

    else: 
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        pet = pet[:, :, use_slice] 

    sb.heatmap(pet, cbar=False, xticklabels=False, yticklabels=False, 

cmap=sb.dark_palette("white", as_cmap=True)) 

     

    # Keep only the selected cluster and flatten to 2D 

    cluster = np.zeros(clusters.shape) 

    cluster[np.where(clusters == use_cluster)] = 1 

    if use_axis == 0: 

        cluster = cluster[use_slice, :, :] 

    elif use_axis == 1: 

        cluster = cluster[:, use_slice, :] 

    else: 

        cluster = cluster[:, :, use_slice] 

    cluster[np.where(cluster == 0)] = np.nan 

     

    # Add the selected cluster to the plot 

    sb.heatmap(cluster, cbar=False, xticklabels=False, yticklabels=False, 

cmap=sb.dark_palette('cyan', as_cmap=True), alpha=0.5) 

     

    # Flatten manual segmentation to 2D 

    manual_3d = np.zeros(manual.shape) 

    manual_3d[np.where(manual > 0.2)] = 1 

    if use_axis == 0: 

        manual_2d = manual_3d[use_slice, :, :] 

    elif use_axis == 1: 

        manual_2d = manual_3d[:, use_slice, :] 

    else: 

        manual_2d = manual_3d[:, :, use_slice] 

    manual_2d[np.where(manual_2d == 0)] = np.nan 

     

    # Add the manual segmentation to the plot 

    sb.heatmap(manual_2d, cbar=False, xticklabels=False, yticklabels=False, 

cmap=sb.dark_palette('red', as_cmap=True), alpha=0.5) 

     

    # Save image 

    plt.savefig(path_output) 

     

 

 

def jaccard_pipeline(work_dir, image_ids, clustering_list): 

     

    data = {} 

     

    for i in range(len(image_ids)): 

        image_id = image_ids[i] 

        mouse_data = [] 
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        for mouse_index in [0,1]: 

            clustering_methods= [] 

            jaccard_index = [] 

            labels = [] 

             

            print(f'Now, {image_id}, mouse {mouse_index} is being processed.') 

             

            nifti_pet = os.path.join(work_dir, 'PET nifti', image_id + '_nifti.img' ) 

            nifti_manual =  os.path.join(work_dir, 'Manual segmentation', image_id + 

' manual segmentation tumor.img' ) 

             

            img_pet = nib.load(nifti_pet) 

            pet = img_pet.get_fdata() 

            img_manual = nib.load(nifti_manual) 

            manual = img_manual.get_fdata() 

             

            x_dim = pet.shape[0] 

             

            if mouse_index == 1: 

                pet[0:round(x_dim/2),:,:,:] = 0 

                manual[0:round(x_dim/2),:,:] = 0 

            else: 

                pet[round(x_dim/2):x_dim,:,:,:] = 0 

                manual[round(x_dim/2):x_dim,:,:] = 0 

             

            manual[np.where(manual < 0.2)] = 0 

            manual[np.where(manual > 0.2)] = 1  

             

            # reading clustering files 

            for file in clustering_list: 

                if image_id in file: 

                    if 'mouse_' + str(mouse_index) in file: 

                        clustering_methods.append(file) 

            print(f'For {image_id}, mouse {mouse_index}, clustering methods are 

{clustering_methods}.') 

                         

            for val in range(len(clustering_methods)): 

                clustering_method = clustering_methods[val] 

                nifti_clustering = os.path.join(work_dir, 'Clustering', 

clustering_method) 

                 

                img_clustering = nib.load(nifti_clustering) 

                clustering = img_clustering.get_fdata() 

                max_jaccard, max_label = calculate_jaccard(clustering, manual) 
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                jaccard_index.append(max_jaccard) 

                labels.append(max_label) 

                 

                plot_results(pet, clustering, manual, 0, max_label, 

os.path.join(work_dir, 'test', image_id + "_mouse_" + str(mouse_index) + '_' + 

clustering_methods[val][16:20] + "_axis_0" + ".png")) 

                plot_results(pet, clustering, manual, 1, max_label, 

os.path.join(work_dir, 'test', image_id + "_mouse_" + str(mouse_index) + '_' + 

clustering_methods[val][16:20] + "_axis_1" + ".png")) 

                plot_results(pet, clustering, manual, 2, max_label, 

os.path.join(work_dir, 'test', image_id + "_mouse_" + str(mouse_index) + '_' + 

clustering_methods[val][16:20] + "_axis_2" + ".png")) 

               

            print(f'And their corresponding jaccard indexes are {jaccard_index}, and 

max labels are {labels}.')   

                 

            data_dict = { 

                "jaccard" : jaccard_index, 

                "labels" : labels 

                } 

             

            mouse_data.append(data_dict) 

             

             

            data.setdefault(image_id, []).append(data_dict) 

         

    return data 

 

work_dir2 = 'Pipeline2' 

image_ids = ["P123173", "P123177", "P123179", "P123964", "P123966", 

"P124258", "P124260"] 

clustering_list = fnmatch.filter(os.listdir(os.path.join(work_dir2, 'Clustering')), 

'*.nii') 

data = jaccard_pipeline(work_dir2, image_ids, clustering_list) 

11.3 Acquisition of TACs 

import numpy as np 

import nibabel as nib 

import matplotlib.pyplot as plt 

import pandas as pd 

import os 

import csv 
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# prior to CCA: highest: P123966 mouse 1, PCA; lowest: P123173 mouse0, 

PCA 

# After CCA: highest P123173, mouse 0, ICA; lowest: P1234260 mouse0, pca 

 

 

def TAC_linechart(pet, cluster, manual, brain, mouse_index, max_label): 

     

    # PET 

    image_pet = nib.load(pet) 

    image_pet_data = image_pet.get_fdata()  

     

    x_dim = 192 

 

    if mouse_index == 1: 

        image_pet_data[0:round(x_dim/2),:,:] = 0 

    else: 

        image_pet_data[round(x_dim/2):x_dim,:,:] = 0 

         

    # Manual 

    image_manual = nib.load(manual) 

    image_manual_data = image_manual.get_fdata() 

     

    if mouse_index == 1: 

        image_pet_data[0:round(x_dim/2),:] = 0 

    else: 

        image_pet_data[round(x_dim/2):x_dim,:] = 0 

     

    # Cluster 

    image_cluster = nib.load(cluster) 

    image_cluster_data = image_cluster.get_fdata()  

                

    # find the cluster with highest jaccard index 

    # label_index = np.where(image_cluster_data == max_label) 

    label_index = np.where((max_label - 0.5 < image_cluster_data) & 

(image_cluster_data < max_label + 0.5)) 

    mask_label = np.zeros(image_cluster_data.shape, dtype=np.int32) 

    mask_label[label_index] = 1#np.int32(1) 

     

    # find brain 

    image_brain = nib.load(brain) 

    image_brain_data = image_brain.get_fdata()  

    x_dim = int(image_brain_data.shape[1]) 

     

    if mouse_index == 1: 

        image_brain_data[0:round(x_dim/2),:,:] = 0 

    else: 
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        image_brain_data[round(x_dim/2):x_dim,:,:] = 0 

         

         

    tac_manual = [] 

    tac_cluster = [] 

    tac_brain = [] 

    for val in range(image_pet.shape[3]): 

        pet_time = image_pet_data[:, :, :, val] 

        tac_manual.append(np.mean(pet_time[np.where(image_manual_data > 

0.1)])) 

        tac_cluster.append(np.mean(pet_time[np.where(mask_label > 0.1)]))  

        tac_brain.append(np.mean(pet_time[np.where(image_brain_data > 0.1)]))  

         

    return tac_manual, tac_cluster, tac_brain 

      

def TAC_linechart_CCA(pet, cluster, cluster_CCA, manual, brain, 

mouse_index, max_label, max_label_CCA): 

     

    # PET 

    image_pet = nib.load(pet) 

    image_pet_data = image_pet.get_fdata()  

     

    x_dim = 192 

 

    if mouse_index == 1: 

        image_pet_data[0:round(x_dim/2),:,:] = 0 

    else: 

        image_pet_data[round(x_dim/2):x_dim,:,:] = 0 

         

    # Manual 

    image_manual = nib.load(manual) 

    image_manual_data = image_manual.get_fdata() 

     

    if mouse_index == 1: 

        image_pet_data[0:round(x_dim/2),:] = 0 

    else: 

        image_pet_data[round(x_dim/2):x_dim,:] = 0 

     

    # Cluster 

    image_cluster = nib.load(cluster) 

    image_cluster_data = image_cluster.get_fdata()  

                

    # find the cluster with highest jaccard index 

    # label_index = np.where(image_cluster_data == max_label) 

    label_index = np.where((max_label - 0.5 < image_cluster_data) & 

(image_cluster_data < max_label + 0.5)) 
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    mask_label = np.zeros(image_cluster_data.shape, dtype=np.int32) 

    mask_label[label_index] = 1#np.int32(1) 

     

    # Cluster after CCA 

    image_cluster_CCA = nib.load(cluster_CCA) 

    image_cluster_CCA_data = image_cluster_CCA.get_fdata()  

                

    # find the cluster with highest jaccard index 

    # label_index = np.where(image_cluster_data == max_label) 

    label_index_CCA = np.where((max_label_CCA - 0.5 < 

image_cluster_CCA_data) & (image_cluster_CCA_data < max_label_CCA + 

0.5)) 

    mask_label_CCA = np.zeros(image_cluster_CCA_data.shape, 

dtype=np.int32) 

    mask_label_CCA[label_index_CCA] = 1#np.int32(1) 

     

    # find brain 

    image_brain = nib.load(brain) 

    image_brain_data = image_brain.get_fdata()  

    x_dim = int(image_brain_data.shape[1]) 

     

    if mouse_index == 1: 

        image_brain_data[0:round(x_dim/2),:,:] = 0 

    else: 

        image_brain_data[round(x_dim/2):x_dim,:,:] = 0 

         

         

    tac_manual = [] 

    tac_cluster = [] 

    tac_cluster_CCA = [] 

    tac_brain = [] 

    for val in range(image_pet.shape[3]): 

        pet_time = image_pet_data[:, :, :, val] 

        tac_manual.append(np.mean(pet_time[np.where(image_manual_data > 

0.1)])) 

        tac_cluster.append(np.mean(pet_time[np.where(mask_label > 0.1)]))  

        tac_brain.append(np.mean(pet_time[np.where(image_brain_data > 0.1)]))  

        tac_cluster_CCA.append(np.mean(pet_time[np.where(mask_label_CCA > 

0.1)]))  

         

    return tac_manual, tac_cluster, tac_cluster_CCA, tac_brain 

 

tac_manual1, tac_cluster1, tac_cluster1_CCA, tac_brain1 = 

TAC_linechart_CCA(pet1, cluster1, cluster1_CCA, manual1, brain1, 

mouse_index1, max_label1, max_label1_CCA) 
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dict1 = {'Manual' : tac_manual1,  

         'Cluster': tac_cluster1, 

         'Cluster_CCA': tac_cluster1_CCA, 

         'Brain': tac_brain1} 

 

df = pd.DataFrame(dict1)  

# saving the dataframe  

df.to_csv('data1.csv') 
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