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Corrosion quantitative detection of plate or plate-like structures is a critical and 

challenging topic in industrial Non-Destructive Testing (NDT) research which 

determines the remaining life of material. Compared with other methods (X-ray, 

magnetic powder, eddy current), ultrasonic guided wave tomography has the 

advantages of non-invasiveness, high efficiency, high precision and low cost. Among 

various ultrasonic guided wave tomography algorithms, travel time or diffraction 

algorithms can be used to reconstruct defect or corrosion model, but the accuracy is low 

and heavily influenced by the noise. Full Waveform Inversion (FWI) can build accurate 

reconstructions of physical properties in plate structures, however, it requires a 

relatively accurate initial model, and there is still room for improvement in the 

convergence speed, imaging resolution and robustness. 

 This thesis starting with the physical principle of ultrasonic guided waves, the 

dispersion characteristic curve of the guided wave propagating in the plate structure 

converts the change of the remaining thickness of the plate structure material into the 

wave velocity variation when the ultrasonic guided wave propagates in it, and provides 

a physical principle for obtaining the thickness distribution map from the velocity 

reconstruction. Secondly, a guided wave tomography method based on Recurrent 

Neural Network Full Waveform Inversion (RNN-FWI) is proposed. Finally, the 

efficiency of the above method is verified through practical experiments. The main 

work of the thesis includes: 

 The feasibility of conventional full waveform inversion for guided wave 

tomography is introduced and verified. 

 An FWI algorithm based on RNN is proposed. In the framework of RNN-FWI, the 

effects of different optimization algorithms on imaging performance and the effects 

of different sensor numbers and positions on imaging performance are analyzed. 

 The quadratic Wasserstein distance is used as the objective equation to further 

reduce the dependence on the initial model. The depth image prior (DIP) based on 

convolutional neural network (CNN) is used as the regularization method to further 

improve the conventional FWI algorithm, and the effectiveness of the improved 

algorithm is verified by simulation and actual experiments. 

Keywords: Full waveform inversion (FWI); guided wave tomography; 

Recurrent Neural Network
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Chapter 1  Introduction 

 Research background and significance 

Plates or plate-like components are widely utilized in the aircraft, car, shipbuilding, 

and petroleum industries, as well as pressure and chemical containers. However, defects 

like corrosion, cavitation, and wear introduced during manufacturing and operation 

would jeopardize the system's overall safety [1]. Simultaneously, due to the effect of 

mechanic and chemistry on the plates, an expansion of small defect inside the plate may 

trigger the fatigue failure, resulting in production safety accident. Two examples of 

corrosion on storage tanks are presented in Figure 1.1 [2]. In 2006, a leak incident from 

corroded pipe spilled more than 200,000 gallons of oil in Alaska [3], causing serious 

contamination to the environment and leading to a $20 million fine to the company 

involved. Therefore, the damage detection of the plate and the quantitation of the 

remaining life of materials are very critical. In reality, most of the thin plates work in 

environments that are difficult to access by ordinary detection instruments, and some 

conventional detection methods have low detection efficiency, intrusive transducers, 

and poor precision. These shortcomings are not tolerated by the modern industry; 

therefore, non-destructive testing of such plate-shaped components is highly required. 

As one of the five conventional non-destructive testing technologies, ultrasonic non-

destructive testing technology is often used to detect defects inside of material. Due to 

its strong detection ability, it can even penetrate deep into the metal several meters depth. 

Moreover, the ultrasonic intensity acting on the material is sufficiently low, and the 

maximum excitation stress is far lower than the elastic limit of the material. In addition, 

the equipment requirement is simple, and do no harm or pollution to the workpiece and 

the surrounding environment [4]. 
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(a)                                 (b) 

Figure 1.1 (a) Corrosion on the bottom of a crude oil storage tank, (b) corrosion on the gas oil 

aboveground storage tank. 

Ultrasonic testing is to make ultrasonic waves enter the test piece, and study the 

reflected, transmitted and scattered waves through the interaction between the 

ultrasonic wave and the test piece, so as to carry out macroscopic defect detection on 

the test piece. Ultrasonic nondestructive testing is commonly used for longitudinal 

wave (compression wave) and transverse wave (shear wave) detection, but for thin 

plates, it is difficult to detect transverse waves or longitudinal waves. In fact, whether 

the transverse wave is obliquely incident or the longitudinal wave is vertically incident 

into the thin plate, when the ultrasonic wave propagates for a certain distance, the 

ultrasonic wave at this time is no longer an ordinary transverse wave or longitudinal 

wave due to the continuous reflection of the upper and lower surfaces of the thin plate, 

but a new type of ultrasonic wave, that is, a lamb wave [5]. This new non-destructive 

method analyzes lamb waveform signals variations when passing through defects in the 

test piece, such as reflection, transmission, and scattering, and utilizes lamb wave 

dispersion characteristics to translate the speed map into the remaining thickness for 

the corrosion quantitatively. Lamb wave is the most common form of guided wave in 

ultrasonic nondestructive testing. Unlike conventional ultrasonic point-by-point 

scanning, Lamb wave testing scans one line at a time, and the transceiver probe can be 

placed on the same side of the specimen. It is convenient in different situations, so Lamb 

wave detection has the characteristics of fast and efficient incomparable with 

longitudinal wave and transverse wave for non-destructive testing of thin plates, and it 

is very suitable for large-area non-destructive testing of plate-shaped structures [6]. 
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Although the non-destructive testing of metal sheets is the earliest application area 

of Lamb wave technology. However, due to the complexity of the Lamb wave theory 

and detection mechanism, this technology has not yet achieved a major breakthrough, 

and there are still many inconsistent views and unsolved problems, such as the 

scattering mechanism of Lamb waves by delamination, and how to choose the best 

detection parameters, how to overcome the sometimes-possible layered missed 

inspection, how to perform qualitative and quantitative analysis of defects and selection 

of artificial defects [7], all of which greatly limit its application in industrial production. 

The American Society for Testing and Materials (ASTM) and the Aerospace Materials 

Specification (AMS) both propose that Lamb waves can be used for flaw detection of 

metal sheets, but the specific implementation methods are not involved [8]. Due to the 

complexity of the Lamb wave propagation and reflection mechanism, foreign countries 

have not yet formulated relevant standards for Lamb wave nondestructive testing. 

Although two national standards and one professional standard have been formulated 

in China [9-11], but this does not mean that these issues have been properly resolved, 

there are still many controversial and even wrong places in these standards. The 

research on Lamb wave non-destructive testing technology in sheet metal is the 

foundation, which is of great significance for the further application of Lamb wave. 

 Progress in research at home and abroad 

1.2.1 Lamb wave non-destructive testing technology for plate metal 

Lamb waves were discovered in 1917. At that time, the British mechanician H. 

Lamb solved the wave formula according to the free boundary conditions of the plate, 

and obtained a special wave solution [12]. Later researchers named this wave lamb 

wave in honor of its discoverer. Ultrasonic lamb wave is a special form of stress wave 

synthesized by longitudinal and transverse waves in an acoustic waveguide whose 

thickness is the same order of magnitude as the excitation acoustic wave wavelength 

(such as a metal sheet) [13]. It produces different propagation modes under different 

thicknesses and different excitation frequencies. There are two types of lamb waves: 
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symmetric lamb and anti-symmetric lamb, and there are many modes corresponding to 

each type. It is a guided wave in a plate, also commonly referred to as a "plate wave". 

Plate wave is a general term. When the upper and lower interfaces of the plate are 

mechanically free, this special wave is called lamb wave [14]. Early researches on non-

destructive testing and non-destructive evaluation of lamb waves mainly focused on 

homogeneous and isotropic media [15].  

In the late 1940s, American F. Firestone (who is also the inventor of ultrasonic 

flaw detection) first applied lamb waves to thin plate flaw detection. Later, D.C. 

Worlton [16], an engineer from the General Electric Company of the United States, first 

pointed out that the mode characteristics of the dispersion curves of aluminum and 

zirconium can be applied to non-destructive testing of materials. However, the 

imperfection of lamb wave propagation theory greatly limits its application. Many 

researchers have done a lot of work on this. H. Lamb and J. Rayleigh[17] derived the 

Rayleigh-Lamb transcendental formula in the isotropic plate in free state, and 

theoretically analyzed the propagation characteristics of Lamb waves. A. Love[18] and 

J. Rayleigh studied the propagation mode and characteristics of Lamb waves based on 

the classical plate and shell theory. R. Cooper and L. Mirsky et al. [19] focused on the 

propagation theory of Lamb waves, and further revised and improved the frequency 

characteristic formula of Lamb waves. In the 1970s, Sachse et al. applied the Fourier 

transform method to study the dispersion characteristics of Lamb waves, and used the 

time-frequency analysis method to measure the wave numbers and phase velocities of 

Lamb waves at different frequencies [20]. The group velocity dispersion curve of the 

Lamb wave low-frequency mode (A0, S0) is calculated by PS/PR technology [21]. P. 

Cawly et al. [22] used finite element analysis to analyze the dispersion curve of the 

Lamb wave in low-order mode, and applied the two-dimensional Fourier transform 

method to experimentally measure the phase velocity dispersion curve of the Lamb 

wave with different frequencies and thicknesses of the steel plate, and then the time-

frequency analysis method is also used, focusing on the analysis of the low-order modes 

A0, S0 [23].  

In recent years, Lamb waves have been widely used in the mechanical safety 
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testing of isotropic and anisotropic materials [24]. In 2008, A. Rohde et al. obtained 

information such as thickness, density and Young's modulus of the plate by performing 

diffraction tomography on the plate under the Born hypothesis [25]. From 2008 to 2010, 

P. Belanger and P. Cawley et al. studied the thickness measurement of the corrosion 

region based on Lamb wave tomography [26]. 

In China, domestic research on Lamb wave tomography is gradually increasing. 

Lan et al of the Wuhan Institute of Physics, Chinese Academy of Sciences studied the 

principle of ultrasonic tomography, developed a set of ultrasonic reflection tomography 

experimental equipment [27]. C. F. Ying et al of the Institute of Acoustics of the 

Chinese Academy of Sciences used the photo-elastic method to directly observe the 

stress distribution of Lamb waves, which is the first time in the world to directly observe 

the stress distribution of Lamb waves [14]. Z. Q. Liu et al from the Institute of Acoustics 

of Tongji University used two-dimensional Fourier transform to study the Lamb wave 

mode identification and phase velocity detection, and identified the propagating Lamb 

wave mode to a certain extent [28]. Z. Q. Huang et al from Tsinghua University used 

electromagnetic ultrasound to excite A0 mode Lamb waves, and used cross-hole 

scanning to image defects with a diameter of 30mm and a depth of 2mm on a 3mm 

aluminum plate. However, the final imaging effect has obvious artifacts and needs to 

be further improved [29]. 

At the moment, guided wave tomography approaches include travel-time 

tomography, which is based on the straight or bent ray, diffraction tomography, and 

hybrid algorithms combining the first two, such as Mindlin plate theory, HARBUT and 

full waveform inversion. 

Travel time tomography estimates the velocity map of a straight ray model-based 

structure by inverting the travel time of an ultrasonic guided wave [30]. However, 

straight ray propagation-based algorithms neglect bent ray and diffraction, only low-

contrast and large defects can be detected [31], which limited by the first Fresnel zone 

width L  , where L  is the ray path length from source to receiver and λ is the lamb 

center frequency wavelength. Bent rays and diffraction must be considered to increase 
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the resolution [32]. Although diffraction tomography reaches the resolution of half 

wavelength, it is still constrained by the born approximation's weakness, which only 

low contrast defects and high SNR signals are suitable for the case. 

However, algorithms solely based on straight, bent ray or diffraction has certain 

limits, thus the research community has proposed numerous hybrid techniques to 

improve resolution. For example, P. Huthwaite et al. [33-35] introduced the HARBUT 

algorithm, which considered straight, bent ray, and diffraction, and used corrected born 

approximation, to ensure diffraction tomography accuracy and to no longer be limited 

by defect contrast. However, HARBUT, on the other hand, did not take higher-order 

scatterings into account.  

The Mindlin plate theory [51] can capture the scattering of guided waves, which 

provided an approximation model of A0 mode guided wave with dispersive properties 

by neglecting thickness of plate-like materials and transformed the three-dimensional 

(3-D) problem in a simplified two dimensional (2-D) equivalent model. But in this way, 

only small thickness loss could be detected because it also based on Born approximation. 

1.2.2 Research status of full waveform inversion method 

The Full Waveform Inversion (FWI), which is based on solving the acoustic or 

elastic wave formula, is a feasible high-resolution algorithm. The FWI method is a 

geophysical technique that is commonly utilized in geological exploration and seismic 

research. FWI is an iterative algorithm that consists of two parts, forward modeling and 

inversion, where forward modeling generates simulated waveforms, and inversion 

updates model parameters by minimizing the difference between the actual waveform 

and the forward modeling waveform. FWI considers higher-order diffraction and 

scattering in the numerical solution, so it can capture more of the guided wave scattering 

physics, allowing it to capture more of the physics of guided wave scattering, and FWI 

can provide inversion results as precise as HARBUT [36].  

Geophysicists first applied FWI to the fields of seismic exploration, oil and gas 

exploration, and geological structure exploration. Similar to geophysical exploration, 

non-destructive testing also estimates the internal structure and parameter distribution 
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of the measured tissue by observing the pressure field of the measured tissue and other 

information, and these two applications from different fields are based on the theory of 

wave mechanics. Therefore, the FWI method is expected to be applied in the field of 

guided wave tomography. The research in this paper is based on the FWI method. 

As early as the 1980s, A. Tarantola [37-39] established a theoretical framework 

for time-domain FWI (both forward and inversion processes are implemented in the 

time domain), which is achieved by fitting actual measured data and estimated data to 

invert parameters. O. Gauthier et al. (1986) [40] and P. Mora et al. (1987) [41] realized 

the application of 2D FWI to real data. This study verified the ability of FWI to invert 

fine detail of structure, However, a serious shortcoming of the FWI method was also 

found, that is, the FWI method relies heavily on the initial model. In 1995, C. Bunks 

[42] first proposed the time-domain multi-scale FWI method, which effectively solved 

the strong nonlinearity of FWI by referring to the conventional idea of sub-step and 

sub-scale. In the 1990s, R.G. Pratt proposed the frequency domain FWI method [43] 

(both forward and inversion processes are implemented in the frequency domain), 

which uses several discrete frequencies to reconstruct high-precision images to save a 

lot of memory space. In 2004, L. Sirgue proposed a hybrid domain inversion method 

[44] (forward in the time domain and inversion in the frequency domain). The Laplacian 

domain FWI method proposed by C. Shin et al. [45] in 2008, Y. Cho et al. studied the 

Laplacian domain-frequency domain FWI method [46]; since 2011, E. Bozdağ, [47] 

studied the envelope-based FWI method.  

An FWI-based ultrasonic guided wave tomography algorithm was first developed 

by J. Rao et al. [48] using A0 mode for corrosion mapping. Compared to linear 

scattering-based tomography methods, this method achieves higher reconstruction 

resolution by capturing higher order diffraction and scattering. This method, however, 

uses a lot of time and memory due to the vast quantity of calculation of the Jacobian 

matrix and the Hessian matrix. The low-frequency to high-frequency inversion 

approach is used to avoid the phenomenon of cycle skipping and local minima, which 

also takes time. There are also some prerequisites for a precise initial speed model as 

initial model. 
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The data-driven algorithm approach, which differs from the previous algorithms, 

utilizes deep learning or machine learning to learn the descent direction of an object 

function. For example, the Fast Inversion Tomography (FIT) algorithm created by M. 

Lin et al. [49] In this algorithm the Supervised Descent Method adopted to pre-learned 

the descent direction which avoided the massive calculation of Jacobian and Hessian 

matrices, and the global optimization algorithm of deep learning also avoided the 

danger of falling into a local minimum due to the cycle jump effect to a certain extent. 

However, the pre-training-based solutions also have certain limitations, such as the 

huge size of descent direction matrices, and the existing datasets are basically generated 

by simulation software, so it is never possible to find a real collected dataset that 

includes all kinds of defects and all material properties, there is still a certain gap 

between the simulated dataset and the actual acquisition waveform as well. 

 Main content of the thesis  

This thesis is mainly divided into three parts. Conventional FWI, RNN-FWI, and 

experiment and result analysis. 

In this study, we propose an ultrasonic guided wave tomography algorithm called 

RNN-FWI for corrosion inspection of plate using A0 mode. The recurrent neural 

network incorporates as basic framework in FWI. RNN-FWI consists of two stages: 

forward modeling and inversion, which is familiar with the conventional FWI. The 

forward modeling is computed sequentially by solving an acoustic wave equation with 

PML in the cyclic calculation unit of RNN. And the inversion is iteratively minimized 

a waveform misfit objective function of quadratic Wasserstein distance between 

forward modeling data and measured data. The gradient of objective function and 

model parameters are processed by automatic differentiation and the Adam algorithm, 

respectively. The velocity model generated in each iteration is regularized and 

parameterized by the U-Net DIP. Compared with the conventional FWI, the proposed 

method is not only superior to the traditional algorithm in calculation speed, efficiency 

and convergence speed, but also has good robustness and higher accuracy in the 

presence of noise. Moreover, the requirements for the initial model are lower than 
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formal one does, which breaks through the limitation of the classical FWI half-

wavelength criterion and effectively alleviates the cycle skipping problem.  

Finally, we design experiments to demonstrate the equivalence of RNN-FWI and 

conventional FWI, and demonstrate that gradient computation using automatic 

differentiation reduces systematic errors. Through experiments with different number 

of sensors, different optimization algorithms and different regularization methods, it is 

proved that RNN-FWI using Adam optimization algorithm, depth image prior 

regularization tool, and automatic differential gradient calculation tool has obvious 

improvement over conventional FWI. 

 Chapter arrangement of the thesis 

This thesis studies the process from conventional FWI to RNN-FWI. This thesis 

consists of five chapters, and contents are arranged as follows. 

In the first chapter, the background and significance of the research are introduced. 

Ultrasound as a nondestructive testing method, some methods of guided wave 

tomography and the development process of full waveform inversion are studied 

The second chapter begins with the basic theory of Lamb wave, calculated the 

dispersion curve, provides a theoretical basis for subsequent full waveform inversion. 

Theory of conventional FWI including the forward modeling as well as the inversion 

method are studied, significant disadvantages and advantages are also presented at the 

same time, at last, the validation experiment and performance experiment of FWI 

algorithm are proposed. 

In the third chapter, conventional FWI elaborate the theoretical implementation of 

RNN-FWI. The structure of RNN, some optimization algorithms of deep learning, the 

quadratic Wasserstein distance，  two regularization methods based on CNN, and 

formula derivation of automatic differentiation are also introduced. At the same time, 

the validation experiment and performance experiment of RNN-FWI algorithm are 

finally proposed, which proves that RNN-FWI performance is better than conventional 

FWI to a certain extent. 



Chapter 1 Introduction 

 10 

 

In the fourth chapter, actual experiment setup and data processing are presented. 

This chapter mainly introduces the experiment performance of RNN-FWI in the actual 

experiment. Comparative experiments with different experimental variables (different 

parts relative to the conventional algorithm) demonstrate that the deep learning-based 

optimization method improves the overall performance of FWI. 

In the fifth chapter, the summary and prospect of this thesis. The discussion of the 

advantages and limitations of RNN-FWI is followed in this chapter. 
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Chapter 2  Lamb Wave Principle and Conventional 

FWI 

 Introduction  

When Lamb waves propagate in a plate-like structure, they are quite sensitive to 

the change of the plate in the thickness direction. Therefore, it is widely used in non-

destructive testing. The attenuation of Lamb waves along the propagation direction is 

small and the propagation distance is long. Therefore, understanding the basic 

principles and propagation characteristics of lamb waves is the premise of effectively 

applying lamb wave nondestructive testing technology, and designing a specific lamb 

wave imaging detection scheme according to the imaging algorithm.  

FWI is an iterative optimization method that produces high-resolution defect 

models, which is the estimation of model parameters by fitting modeled data to 

observed data. Modeling data is computed by solving the acoustic wave equation. 

Therefore, the application of FWI to lamb wave tomography can be very good for 

corrosion imaging of plate materials. Finally, this chapter conducts a series of 

simulation experiments on conventional FWI.  

 Principle of ultrasonic transmission in plate material 

A wave is the propagation of vibrations in a medium. When the vibration direction 

of the medium particle is parallel to the advancing direction of the medium vibration 

wave, it is a longitudinal wave, when the medium particle vibration direction is 

perpendicular to the advancing direction of the medium vibration wave, it is a 

transverse wave, the waves generated by the mutual interference of longitudinal waves 

and transverse waves are surface waves. Compared with longitudinal waves and 

transverse waves, surface waves have the characteristics of slow attenuation and long-

distance propagation. Surface waves can be divided into Rayleigh waves and Love 

waves.  
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Lamb wave is a new type of wave generated by the mutual reflection and coupling 

of the upper and lower surfaces of the plate during the propagation of transverse and 

longitudinal waves. It is a type of Rayleigh wave, when the thickness of the plate is in 

the same order of magnitude as the wavelength, not only the surface particles vibrate 

but the entire thin plate vibrates. During the propagation of lamb wave, the vibration 

displacement of medium particles can be decomposed into two directions along the 

direction of wave propagation and perpendicular to the direction of wave propagation, 

so the vibration of particles can be decomposed into horizontal and vertical components. 

According to the type of particle vibration, lamb waves can be divided into symmetric 

mode (S) and anti-symmetric mode (A) [1], as shown in Figure 2.1. The propagation 

speed of different modes in the plate is different, which is related to the thickness of the 

thin plate, the center frequency of the ultrasonic wave, and the properties of the material. 

 

 

Figure 2.1 Symmetric and antisymmetric modes of lamb wave propagation 

It is precisely because of the many advantages of lamb wave detection that lamb 

wave detection technology is expected to be widely used in the rapid and large-area 

detection of plate-like structures. However, due to the complexity of lamb waves in 

excitation mode, propagation characteristics, mode selection and defect wave signal 

processing, its wide application in industrial production is limited. These are all due to 

the multi-mode and dispersion characteristics of lamb wave propagation. 
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 Dispersion characteristic curve of lamb 

In infinitely large thin isotropic plates, the plate thickness is 2h, and h is close to 

the order of magnitude of the ultrasonic wavelength. It is assumed that the upper and 

lower interfaces of the board are free. There are two guided wave modes: symmetric 

and antisymmetric. The Rayleigh-Lamb frequency formula can be expressed as 

Symmetric Mode: 
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Formula 2.1 and 2.2 are for the symmetric and anti-symmetric modes, respectively, 

k is the wave number, pc is the phase velocity of the Lamb wave, Lc  is the longitudinal 

wave velocity, Tc  is the shear wave velocity, and d is the thickness of the plate. The 

group velocity gc  and wavenumber k are related to the phase velocity pc as follows: 
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Finally, the graphical method [50] is used to acquire the numerical solution of 

dispersion formula of lamb wave, and the relationship between gc  and fh  can be 

obtained, which is the dispersion characteristic curve of lamb and abbreviate as function 

 gc fh  . The specific dispersion characteristic curve solving method is not the 

focus of this paper. The figure below shows the dispersion characteristic curve of the 

experimental aluminum plate. The specific parameters of the material will be 

introduced later. 
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Figure 2.2 Velocity dispersion curves for an aluminum plate 

According to this curve, the velocity map obtained by the tomography algorithm 

can be converted into a thickness map. 

 Lamb wave detection principle 

Generally, ultrasonic transducers are coupled to the surface of the plate to act as 

drivers and sensors. The electrical excitation signal is generated by the signal generator, 

and then the electrical excitation signal is converted into an ultrasonic signal through 

the inverse piezoelectric effect of the piezoelectric wafer at the bottom of the transducer, 

and then enters the measured thin plate through the couplant, due to the constraint of 

the free boundary of the thin plate, the Lamb wave is already existed in the plate after 

propagating some length. Finally, the ultrasonic signal is converted into an electrical 

signal by receiving the positive piezoelectric effect of the piezoelectric chip at the 

bottom of the transducer for further analysis. When the Lamb wave propagates in the 

plate, if it encounters a significant distortion in the plate structure, such as delamination, 

holes and other defects, reflection and scattering phenomena will occur, which will 

make the wave packet amplitude and frequency components of the received response 

signal. and patterns may change. At this time, the defect information in the matrix tissue 

will be included in the response signal. By collecting the response signal, analyzing and 

extracting the defect information contained in it, the existence, shape and position of 

the defect can be discriminated. Finally, the non-destructive testing of materials and the 

evaluation of remaining life are realized. 
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 Conventional full waveform inversion 

2.5.1 Full waveform inversion as tomography 

FWI avoids the ray assumptions used in TT (Travel Time), and higher order 

diffraction and scattering are automatically considered in FWI to improve resolution 

compared to DT (Diffraction Tomography) limited by linear scattering. In the FWI 

method, the forward model can be performed in the time or frequency domain. Time-

domain FWI can be used to reduce the amount of computation.The remaining thickness 

and speed map can be easily evaluated with the dispersion curves from the previous 

subsection without adding extra cost to the formula. 

It's worth noting that our studies were conducted on a flat isotropic plate with a 

center defect surrounding by a ring-shaped transducers array, in which every single 

transducer generate ultrasonic waves in sequence and in the meanwhile all the other 

transducers receive waveforms. The following figure is a schematic diagram of the 

experimental setup. Forward modeling of FWI is the process of numerically 

propagating a wave source in the model and recording the wave field at the receive 

transductor location. The FWI can be performed in time or frequency domain, in 

contrast to frequency domain, time domain covering the whole frequency spectrum, 

provides a precise solution, and it’s easy to window the wanted signals. The specific 

algorithm process will be described in detail next subsection. 

Corrosion

Source

Transducer array

Plate

 

Figure 2.3 Experimental setup of lamb tomography 

2.5.2 FWI algorithm detail 

The 2D acoustic wave formula in constant density medium can be expressed as 

[48]: 
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 
   

2
2

2 2

1
, ,p r t s r t

v r t

 
    

              (2.4)  

  t tp s                          (2.5) 

where  ,p r t   is the pressure wavefield,  ,s r t   being the source,  r   being 

the 2-D or 3-D space vector, t  being the time variable,  v r  being the guided wave 

speed, 2   being the spatial Laplacian operator, and    represents the forward 

operator.  A common method for solving differential formulas is to first discretize the 

space-time coordinates of the problem and complete the solution in the form of 

numerical integration. Formula 2.4 can be calculated and discretized using the finite 

difference method, and the wave field can be calculated at the finite difference grid 

points. It should be noted that forward modeling in FWI generally employs the finite 

difference and finite element methods, but the finite difference method outperforms the 

finite element method in terms of calculation speed and memory consumption. 

Calculating the realistic physical model in three-dimensional is not suitable for iteration 

algorithm because of inefficiency and complexity. 

According to the Mindlin plate theory [51], which provided an approximation 

model of A0 mode guided wave with dispersive properties by neglecting thickness of 

plate-like materials. In this way, complexity of calculating was greatly reduced, speeds 

up computing speed, and enables various optimization algorithms to run efficiently 

within a reasonable loss range. The second-order finite difference defined as 

 
     

2

2 2

, 1
, 1 2 , , 1

p r t
p r t p r t p r t

t t


       

           (2.6) 

 where t  is time step. Bring formula 2.4 into formula 2.6, and after calculation, 

the following can be obtained 

         2 2 2, ( ) , 1 , 1 2 , 1 , 2p r t v r t p r t s r t p r t p r t                (2.7) 

The above is the forward formula of FWI. In this way, the value of the wave field 

at all times can be obtained by explicitly calculating formula 2.7, the waveform 

transductors responsible for receiving can be obtained as well. The Perfectly Matched 

Layer (PML) [52] is an accurate and reliable solution for decreasing reflections.  
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The objective function or cost function of the conventional Full Waveform 

Inversion is the sum of the 2L  distance between the simulated wave field value and 

the observed wave on all receiving transductors, described like 

   
2

, ,
2

1 1

1
arg min

2

S RN N

sim obs

i j i j
i j

C m p m p
 

              (2.8) 

where m  is 
21/ ( )v r  , S RN N   are number of transmitting and receiving 

transductors, simp  and obsp  is  simulated wave and observed wave.  

The inversion step of Full Waveform Inversion often relies on a conventional 

solution of ordinary differential formula derivation called the adjoint state method, this 

calculation method is similar to reverse time migration. Reverse time migration uses 

the zero-delay cross-correlation calculation of the forward wave field and the reverse 

wave field, and the source of the reverse wave field is the waveform of the forward 

wave field. If the source of the backpropagating wave field is changed to the difference 

between the observation record and the simulated record, that is, the residual record, 

this process becomes the gradient calculation process by the adjoint state method. The 

result is as follows [53-54]: 

 
2

11

3 2
1

2
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tN
sim obst

t

p
C m p p

v t
 




   


             (2.9) 

Using the adjoint state method can avoid a lot of unnecessary trouble caused by 

directly calculating the gradient [55], for example, if the Gauss-Newton method [56] is 

used to compute the gradient directly, the objective function is approximated by a 

second-order Taylor expansion 

   
   

 
2
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T
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 
        

 
   (2.10) 

where m  represents the model parameter perturbation，  3O m  is higher order 

error term which seems as zero usually, the derivative of the objective function with 

respect to the model parameter m as 

     2

0 0

2

C m C m C m
m

m m m

  
  

  
           (2.11) 
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To minimize the objective function in the neighborhood of 0m  , the value of 

formula 2.9 must be zero. The gradient can be computed directly by taking the 

derivative of formula 2.12: 

 
 

  †

, , ,

1 1

S RN N
sim obs

i j i j i j

i j

C m
g C m J p m p

m  


   


        (2.12) 

where †

,i jJ   is adjoint of Jacobian or Fréchet derivative matrix which write as  

 simp m

m




 represents the partial derivatives of the forward modeling data at the 

receiving point to the model parameters at each grid point of the entire model, g

represents the gradient descent direction 

Then use the second-order optimization algorithm such as the L-BFGS-B method 

[57] to update the parameters of the model, iteration step size calculation involves 

Hessian matrix or approximation Hessian matrix. The model parameter is updated 

iteratively according to 

       1k k k k
m m a g

                         (2.13) 

Where a   is step length, and k  is step number of iterations, g   is the gradient 

with regularization which provide calculation stability, in order to provide stable and 

reliable results, we apply some regularization to the gradient, total-variation (TV) [58] 

or Tikhonov is one of the most popular regularization techniques in FWI algorithm, TV 

is a non-quadratic regularization method that imposes sharp edges without over-

smoothing the reconstructed the model.  

 
= TV TVg g g 

 (2.14) 

 

22

arg minTV TV

m m
g

x y


   
    

    
 (2.15) 

Where the regularization coefficient TV  implies the confidence level between 

the terms involved in the functional, TV  is a smoothing parameter. 
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In formula 2.13, a  is speed map update step length, which is calculated by the 

optimizer algorithm. The commonly used optimization algorithms are conjugate 

gradient method, Newton method, quasi-Newton method and so on. Compared with 

ordinary Newton's method, L-BFGS-B inherits the advantages of fast convergence 

speed and saves calculation. However, when L-BFGS-B calculates the gradient, it needs 

to use all the data for calculation. The principle of L-BFGS-B algorithm is shown in 

Table 2.1. 

Table 2.1 Principle of L-BFGS-B algorithm: 

     1k k k
p x x


   ,        1k k k

q f x f x


   

Quasi-Newtonian condition:    
1

k k

kp H q   where 1kH    is approximate 

matrix of the inverse of the Hessian matrix 

BFGS formula: 
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L-BFGS-B formula: 
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Where 1/ , (1 )T

k k k k k k kp q v q p     

L-BFGS-B iteration formula: 

      1

1

k k k

kx x H f x


    

 

 

The calculation is completed when the objective function is lower than the 

predetermined threshold 
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Figure 2.4 Structure of the conventional FWI algorithm. 

Figure 2.4 depicts the steps of conventional FWI.  

Although FWI is one of the most accurate reconstruction approaches, it has 

numerous disadvantages. To begin with, computation of Jacobian and Hessian matrices 

for gradient calculation and local optimization techniques (such as L-BFGS-B) in 

conventional FWI is time-consuming. Furthermore, the whole waveform data is 

involved in Newton algorithms for calculation, so the memory requirements are 

likewise very large. In reality, the objective function is the least square difference L2 

between the simulated and real data, when the initial velocity model is inaccurate or the 

defect is too deep, the half-wavelength criterion will not be satisfied, that is, the 



Chapter 2 Lamb Wave Principle and Conventional FWI  

 21 

 

waveform difference exceeds half a wavelength distance, a cycle jump phenomenon 

will occur. For the TV regularization term of conventional FWI, the effect of 

regularization depends on the hyperparameters, which inefficiently consumes a lot of 

trial-and-error experiments to determine. TV regularization has the effect of 

maintaining the sharp edges of the model while Tikhonov regularization is prone to 

over-smoothing, however, the shape of real corrosion defects is generally complex, 

traditional regularization methods have certain limitations, which limit the accuracy of 

reconstruction. Moreover, most integrators in the adjoint state method cannot guarantee 

strict time-reversal symmetry [60], so the adjoint state method often has systematic 

errors related to the integration step size. 

 Experiment with conventional FWI 

2.6.1 Numerical simulation setup  

This section is about the numerical simulation experiment of full waveform 

inversion. The experimental material is a 1000*1000*10mm aluminum material with 

the label of 6061, which is consistent with our subsequent real experiments. A 100mm 

PML layer is used to absorb boundary echoes. The density of the material is 2.9g/cm3, 

the Young's modulus is E=71Gpa, the Poisson's ratio is 0.33, and the size of the finite 

difference mesh is 2mm, guaranteed to be four times less than the Lamb wave 

wavelength (λ≈30mm), and the time step is 75.0*10 s . we use a 60-point circular array 

with a diameter of 700mm records and emits lamb waves, and the corrosion defects 

consist of depressions of different shapes in the very center of the plate, with a 

maximum depth of half the thickness. As shown in Figure 2.5, in the experiment, we 

applied the excitation of displacement perpendicular to the plate surface at one of the 

transductor positions in sequence (red dot is excitation place, while green dots are 

receiver places). The excitation function is a Hanning windowed five-period sine wave 

toneburst signal, the center frequency is 50KHz, and the 15db bandwidth is 35- 65KHz, 

is shown in Figure 2.6 below 
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Figure 2.5 Simulation experiment setup. 

 

Figure 2.6 Excitation function is a five-period sine wave of Hanning window. 

Applying a normal force perpendicular to the plate surface at 50KHz can ensure 

the excitation of pure 0A  mode Lamb waves, although the 0S  mode exists, it is very 

weak and negligible relative to 0A  mode. It can be seen from Figure 2.2 that within  

0.5Mhz mm the dispersion curve is sensitive to thickness variation without interference 

from other guided wave modes.  

2.6.2 Numerical simulation results 

(1) Absolute wavefield map 

Figure 2.7 shows the absolute value of the difference between the wavefields 

received by all receivers without defects and with defects, gradient information is 



Chapter 2 Lamb Wave Principle and Conventional FWI  

 23 

 

contained in it, so that optimizer can use this map to calculate gradient. 

  

Figure 2.7 Absolute map of wave field. 

(2) 1D reconstruction result by FWI 

 

Figure 2.8 Position of profile. 

We extracted 1-dimensional corrosion model information for inversion from the 

dotted line position in Figure 2.8 as a cross section. Among them, there are 9 sensors, 

evenly distributed on the surface of the 1D model. They can both transmit and receive. 

During the experiment, the sensors transmit in turn, and other sensors receive. The 

experiment simulated the scene of one side not corroded and the other side corroded. 
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Figure 2.9 Reconstruction of 1D model using FWI. 

The experimental results are shown in the figure above. The inversion basically 

matches the shape of the defect, and the corrosion is reconstructed in good condition 

both from slope and edge. However, it is worth mentioning that such a dense sensor is 

not desirable in real industrial applications. This experiment only proves the high 

precision performance and feasibility of FWI in the reconstruction of speed model. 

(3) 2D reconstruction result by FWI 

    Next, we will use the same corrosion model as in the section of experimental 

setting. In order to visually show the difference between the inversion result and the 

real damage, we extract the velocity map profile at the position of the black line in the 

figure 2.8. All data will be performed with 8 epochs, and the optimizer uses L-BFGS-

B algorithm.  

 

 

Figure 2.10 The inversion results. 



Chapter 2 Lamb Wave Principle and Conventional FWI  

 25 

 

  

Figure 2.11 Position of profile. 

 

Figure 2.12 Loss functions of FWI. 

It can be found that the conventional FWI has performed a good inversion of the 

contour and depth of corrosion, and no obvious artifacts appear in the numerical 

simulation experiment without noise and waveform deformation. The slope near the 

contour is very similar to the actual corrosion. For depth inversion, the depth of the 

deep pit is not good. In terms of calculation time, the convergence curve (loss curve) is 

shown in the figure, and the loss stabilizes after 300 iterations, proving that 5 epochs is 

sufficient for this model. FWI took about 15 minutes to complete convergence 

Next, we set up a ladder descending corrosion model. It is worth noting that this 

model is not as complex as the previous model and the corrosion trend is relatively 

simple. The rest of the experimental setup is the same as the first one. The location of 

the profile of the velocity diagram is shown in below (Dotted line). 
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Figure 2.13 Corrosion model of ladder descent and profile location. 

 

Figure 2.14 The inversion results. 

 

Figure 2.15 Position of profile 
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Figure 2.16 Loss functions of FWI. 

For the defect with relatively single trend, FWI reconstruction reflects the slope 

well, and the inversion of depth is also considerable. Convergence can be achieved after 

4 epochs. The inversion also took 15 minutes. 

 Conclusion 

To apply lamb wave for imaging detection, it is necessary to master the basic 

principles and characteristics of lamb waves. This chapter firstly introduces the 

ultrasonic wave in plate material and the basic theory and propagation characteristics 

of lamb wave propagation are also introduced. Based on the equation of lamb wave, its 

multi-mode characteristics and dispersion characteristics during propagation are 

analyzed. The dispersion curve is the basis of the imaging detection method in the 

following text, the imaging detection method based on lamb wave is introduced 

Finally, a high-precision lamb tomography algorithm for defect inversion, also 

known as FWI, is introduced. After introducing the structure and advantages and 

disadvantages of the algorithm, we use this new but conventional algorithm for 

numerical simulation and draw conclusions. 
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Chapter 3  RNN-FWI for Guided Wave Tomography 

 Introduction 

FWI consists of the forward propagation of the wave field and the back 

propagation of the residual, this process is very similar to the Back Propagation (BP) 

algorithm in the artificial neural network, BP is also fed forward first, and then the error 

is back propagated. Both algorithms are calculating gradients and updating parameters 

iteratively. Therefore, FWI and deep learning neural networks are very similar, we can 

try to introduce FWI into deep learning, so that the various optimization techniques and 

advantages of deep learning can further improve the performance of conventional FWI.  

In this section we introduce the theoretical fundamentals RNN-FWI, which the 

conventional Full Waveform Inversion is the fundamental of RNN-FWI. 

 RNN-FWI 

3.2.1 Recurrent neural networks as architecture of FWI 

Recurrent Neural Networks are a class of artificial neural networks in which layers 

are connected by a sequence of directed graphs. RNNs use their internal state (memory) 

to process input sequences, which makes them suitable for time sequence signal 

processing tasks such as handwriting recognition and speech recognition. Re-observing 

the formula 2.7, due to the time directionality of wave propagation, that is, the wave 

field at the current time is only affected by the wave field in the past two time periods 

and not by its future state, so the directed acyclic graph RNN is suitable for wave 

simulation [59]. 
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Figure 3.1 Workflow of the RNN-FWI algorithm. 

We propose an FWI algorithm based on RNN. The structure of RNN-FWI is 

basically the same as the traditional one：the basic structure is shown in Figure 3.1, the 

sequence computation of the convolutional neural network is used to realize the time 

series forward modeling of the acoustic wave formula based on the finite difference 

method, the Adam algorithm and automatic differentiation method minimize the W2 

distance between the simulated waveform and the observed waveform and update the 

speed map and the weight of DIP then generate the initial speed map for the next 

iteration. 

The wave field at the current time is only determined by the wave field in the past 

two time periods, and does not depend on its future state. So, the directed acyclic graph 

RNN is suitable for realizing acoustic wave equation. This inspires the formulation of 
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the forward modeling problem in terms of a recurrent neural network, with each cell 

representing the wavefield at a single step in time. 
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modeling
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Receiver
waveform
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Source 
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Figure 3.2 Structure of the unrolled RNN-FWI algorithm. 

To build an RNN architecture supportive of acoustic wave modeling, forward 

modeling is achieved by repeatedly applying a series of arithmetic operations 

corresponding to one-time step of the finite difference acoustic wave equation in every 

cell. The data consists of state vectors and external inputs that are passed from one unit 

to the next and represent the current state of the system. In this case, the trainable 

variables are velocity model in acoustic wave equation, inputs are source waveform and 

each cell outputs the receiver waveform. Figure 3.2 is the schematic diagram of 

compact and unrolled form RNN. Blue arrows indicate the forward modeling and red 

arrows represent the inversion, which is consistent with convention FWI.  

Figure 3.3 depicts the detailed cell architecture of an RNN capable of simulating 

guided wave propagation. Where the inputs wavefields and are two previous time steps, 

the source term at the current time step, is the auxiliary wavefield of the PML. The 

outputs and at and are waveforms at receiver locations and the wavefield at the current 

time and last cell memory, respectively. In Figure 3.3, all the arithmetical operations 

are corresponded to formula 2.7 including the PML calculation. Trainable parameters 

are included in the RNN graph to set up the network to accommodate velocity inversion, 
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as shown in the red box in Figure. Observed waveform data being the labeled data of 

the training set consists of the part of objective function. 
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Figure 3.3 The single cell architecture of the RNN-FWI with PML. 

The parameter update relies on the gradient calculation of the objective formula, 

and the automatic differentiation uses the accumulative chain rule to calculate the 

gradient of the loss function with respect to the wavefield at each time step and the 



Chapter 3 RNN-FWI for Guided Wave Tomography 

 32 

 

gradient of the wavefield with respect to the velocity speed model. The gradient of the 

loss function to the wavefield tp  for a time step is calculated as follows: 
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The gradient of the wave field to the velocity graph is calculated using the chain rule: 
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Take the partial derivative of first term of equation 3.1: 
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Calculate each term of equation 3.1 by taking the partial derivative of each term of 

equation 2.7: 
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The gradient of the objective formula of the full waveform inversion calculated by 

automatic differentiation can be obtained by simplifying the above formulas, which is 

consistent with formula 2.9, the result of the adjoint state method. 
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In the iterative calculation, the adaptive moment (Adam) algorithm is used to 

optimize the parameter update. Compared with the conventional FWI using the Newton 

method or the quasi-Newton method, the Adam algorithm adopts the idea of small batch 

data processing, which not only has a fast convergence speed, but also does not require 

all data to participate. For calculation, the memory required is small, and the precision 

is high, which is a better convergence algorithm. Adam is a first-order optimization 

algorithm that can replace the conventional stochastic gradient descent process, which 
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iteratively updates neural network weights based on training data. The specific process 

is shown in Table 3.1. 

Table 3.1 Principle of ADAM algorithm: 

Parameter 1: Learning rate (step size)   

Parameter 2: Exponential decay rate of moment estimates 1  and 2  

Parameter 3: Small constant for numerical stabilization   

Parameter 4: Maximum number of iterations T  

Parameter 5: Initial Parameters   

Initialize first and second moment variables 0 00, 0s r   

Initialize time step 0t   

When t T : 

Calculate gradient: tg   

1t t   

Update the biased first moment estimate:  1 1 11t t ts s g     

Update the biased second moment estimate:  2 1 21t t t tr r g g      

Correcting the deviation of the first moment:  1
ˆ / 1 t

t ts s    

Correcting the deviation of the second moment:  2
ˆ / 1 t

t tr r    

Calculate update:  ˆ ˆ/t t ts r        

Apply update: t     

In addition, the conjugate gradient method is a method between the steepest 

descent method and the Newton method. It only needs to use the first-order derivative 

information, but it overcomes the shortcoming of the slowest convergence of the 

steepest descent method, and avoids the need for storage and calculation of the Newton 

method. The disadvantage of the Hesse matrix and its inversion, the conjugate gradient 

method is not only one of the most useful methods for solving large linear formulas, 

but also one of the most efficient algorithms for solving large nonlinear optimization. 
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Therefore, we will horizontally compare the performance of RNN-FWI under L-BFGS-

B, ADAM and conjugate gradient optimization in subsequent chapters.  

In addition, ultrasonic waves can travel to "infinite" distances in all directions in 

the simulation, however, this is not feasible to solve the wave formula in a discrete 

infinite domain. To compensate, an auxiliary wavefield t  needs to be used to achieve 

Perfect Matching Layers (PML) to model infinite domains [61], which allow 

approximation of infinite size by damping and absorbing waves at the limit border of 

the domain to avoid reflections. This will make some corrections to the wave's 

propagation formula in each unit.  

In addition, because of the optimization of convolution operations in the deep 

learning framework (TensorFlow), we can use convolution operations with finite 

difference kernels to speed up the computation of spatial derivatives in wave formula 

solutions while saving memory resources [63]. 

3.2.2 Quadratic Wasserstein distance as objective function  

FWI is a nonlinear inversion algorithm, the highly nonlinear relationship will lead 

to local minimum in the Objective functional, which makes the inversion unable to 

converge to the correct result. The classic full waveform inversion method uses the least 

squares difference between the simulated data and the real data as a misfit function. 

When the initial model is inaccurate or the defect is too deep, the waveform difference 

between the simulated data and the real observation data exceeds half a wavelength. 

There will be a cycle jump phenomenon, which increases the probability that the model 

solution mismatch with the global optimal solution. 

Wasserstein distance is a mathematical tool inspired by optimal transport theory 

that measures the difference between two distributions by the optimal cost of 

rearranging one distribution to another, the basic idea is to treat the comparison of two 

distributions as an optimal mapping problem. This solves an optimization problem to 

calculate the distance between two distributions. In the study presented by Engquist and 

Froese (2014) [65], the measurement of distance is not based on pure differences in 

oscillating signals, but on all the mappings that can move and distort the original signal 
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to map the target signal. Therefore, this distance can capture the information of the 

travel time offset and amplitude change of the signal. 

Here we give the definition of the W2 distance. First, the waveform data is linearly 

transformed to a non-negative space: ( )S p p c   , normalizing the waveform 

distribution:
0

0

( )( )
( )

( )( )
T

S p t
p t

S p t dt



 , and then find its empirical distribution:

0

0
( ) ( )

T

P t p d   , the least squares distance of the inverse of the empirical distribution 

is the W2 distance: 

 
1 2

2

2
0

, ( ( )) ( )
T

sim obs obs sim sim
p pW t P P t p t dt



              (17) 

   
21 1 1

0
sim obss s dsP P

 
              (18) 

So, the objective function of full waveform inversion is rewritten as

   2

2 , ,

1 1

1
arg min ( ),

2

S RN N
sim obs

i j i j

i j

C m W p m p
 

   . The quadratic Wasserstein metric 

inversion has less dependent on the initial model [66]. In the case where the initial guess 

is quite different from the real model, W2 avoids cycle skipping issues by both 

measuring waveform differences and global phase shifts, so the objective function has 

better convexity and is an effective means to reduce cycle skipping [67]. 

In addition, since the gradient of the target equation is calculated by automatic 

differentiation, there is no need to consider redefining the explicit differential equation, 

which brings certain convenience to the development. 

3.2.3 Regularization method based on deep image priors 

However, since the inverse problem is usually ill-conditioned and strongly 

nonlinear, which may trap the inversion into local minima, artifacts from the local 

minima can interfere with the imaging results, and the conventional solution is to use a 

mismatch function with a regularization term, such as objective formula with a user-

defined regularization weight damping term or Tikhonov method and total variation 

regularization method. Ulyanov et al. (2018) [62] working on depth image priors 

showed that CNN architectures without pretraining can be used as priors which shows 
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significant effect in denoising and super-resolution, for neural networks with 

convolutional layers, local convolution kernels applied across the domain have self-

similarity and spatial correlation. Therefore, reparametrizing the velocity speed model 

parameter with a convolutional neural network naturally introduces regularization to 

the FWI. We can represent the velocity model with a generative neural network, which 

can naturally introduce spatial correlation as a regularization into the generative 

velocity model, thereby suppressing noise in gradients and mitigating local minima, 

and significantly improving inversion in the presence of noise. Furthermore, not all 

image priors have to be learned from the data, instead, a large amount of image statistics 

is captured by the structure of the generator ConvNets, so no additional training data 

and optimization training loops are required for the deep image prior [64]. 

CNN-based deep image priors can functionally illustrate the regularization of FWI 

by deep convolutional networks, and in this way, we can use some more advanced deep 

network architectures to better extract the priori information in speed model at each 

iteration.  

UNet+Resnet including skip connection layer was originally applied to medical 

image segmentation, and its structure is simple and can obtain features of different 

scales to a certain extent. According to the structure of UNet, it can combine low-level 

and high-level information, and the low-resolution information after multiple down-

sampling can provide contextual information of defects message in the entire image, 

which can be understood as a feature that reflects the relationship between the corrosion 

priori information and speed map. After the concatenate operation, the high-resolution 

information is directly transmitted from the encoder to the decoder of the same height. 

The skip connections play the role of supplementary information, and the image details 

are supplemented at the high level to ensure that the features are more refined. UNet 

combines low-resolution information and high-resolution information, which not only 

works well in medical image segmentation, but also excels in many Image to Image 

tasks, and is perfectly suitable for deep image priors. 

Therefore, we designed a DIP-UNet that uses UNet to achieve FWI regularization. 

The structure diagram is shown in Figure 3.4, and the parameter details of UNet are 
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detailed in Table 3.2. We directly combine the output of the neural network with the 

speed model updated by the RNN as the speed map parameter update for the next FWI 

loop, so a neural network is trained to predict updates to the speed model. Update to 

neural networks in NNFWI directly use gradients computed by automatic 

differentiation. The gradients are directly back-propagated from the loss through the 

partial differential equations and neural network layers to the weights of the neural 

network.  

After calculating the final slowness map in the FWI, we can convert a velocity 

map to a thickness map by using the material's dispersion curve, which is the group 

velocity-frequency thickness curve. 

1

Deep Image Prior with UNet
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Figure 3.4 Structure of the unrolled RNN-FWI with DIP-UNet. 

 

 

 

 

 

 

 

 

 

 



Chapter 3 RNN-FWI for Guided Wave Tomography 

 38 

 

Table 3.2 RNN-FWI with DIP-UNet Architecture: 

NN Layer Architecture 

Input Random latent matrix (250×250) 

Down Layer 1 {3×3 Convolutional layer (16) + LeakyReLU (0.1)} 

×2 + Max pool (2×2) + BatchNorms 

Down Layer 2 {3×3 Convolutional layer (32) + LeakyReLU (0.1)} 

×2 + Max pool (2×2) + BatchNorms 

Middle Layer 3 {3×3 Convolutional layer (64) + LeakyReLU (0.1)} 

×2+ + BatchNorms 

Up Layer 4 Up-Conv (2×2) + Copy and crop (Down Layer 2) + 

{3×3 Convolutional layer (32) + LeakyReLU (0.1)} ×2 + 

BatchNorms 

Up Layer 5 Up-Conv (2×2) +Copy and crop (Down Layer 1) + 

{3×3 Convolutional layer (16) + LeakyReLU (0.1)} ×2 + 

BatchNorms 

Output 3×3 Convolutional layer (1) + Sigmoid 

 

 Numerical simulation experiment 

3.3.1 Comparison of automatic differentiation and adjoint state method 

In this section, the primary task is to prove whether convolutional neural networks 

and automatic differentiation tools can be successfully integrated into the FWI 

architecture.  

A one-dimensional velocity model is extracted from the cross section of Figure 2.8 

dotted line place to compute the objective function gradient of the FWI or RNN-FWI. 

The setup of the experiment is the same as the first experiment in Chapter 2. Note that 

the experiment in this section is only to verify the equivalence of the two algorithms, 

so both algorithms use epochs of sufficient size to achieve complete convergence. 
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In Figure 3.5, the gradients at first iteration at each point in the 1D model computed 

using both automatic differentiation and adjoint state methods are compared, with the 

finite difference method being the true reference. As expected, the results were similar. 

The adjoint state method slightly overestimates the gradient, and the automatic 

differentiation method is consistent with the true gradient.  

 

Figure 3.5 The first gradient map of the cost function with three approaches. 

Next, we attempt to reconstruct the one-dimensional model using RNN-FWI of 

automatic differential method and FWI of adjoint state method. 

 

Figure 3.6 The inversion results with two approaches. 

It can be seen that the two algorithms have obtained similar results, both in terms 

of boundary fitting and slope, which are quite consistent with the actual results. 
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Although gradient calculation shows that the adjoint state method overestimates the 

gradient, the optimization algorithm can effectively compensate for this defect, but it 

often requires additional calculation cycles to achieve it. 

3.3.2 Imaging results based on different algorithms 

In this section, we use the numerical simulation model in Chapter 2 and keep the 

same experimental settings. The conventional FWI of Adjoint state method + L-BFGS-

B and RNN-FWI with ADAM, RNN-FWI with L-BFGS-B and Stochastic Gradient 

Descent are used to invert the model of Figure 2.5. The experimental Settings remained 

consistent, that is, 60 sensors were responsible for receiving and transmitting, and the 

EPOCH is 5. The profile of the reconstruction model is located in the dot lines of 

original model in Figure 3.7. It is worth noting that the purpose of this experiment is to 

compare the inversion accuracy of different algorithms, and no noise is added to the 

experimental data, so regularization factors are not added. 
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Figure 3.7 The inversion results with four algorithms. 

 

(a)           (b)            (c)           (d)              (e) 

Figure 3.8 Enlarged view of central defect. (a)True model (b)Convention FWI (c)Adam (d)L-

BFGS-B with RNN-FWI (e)SGD 
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Figure 3.9 Results cross-sectional comparison diagram 

 

Figure 3.10 The loss functions with four approaches. 

As can be seen from several figures, Adam has the fastest convergence, also has 

perfect results for corrosion edge and slope, and the calculation speed is better than 

other algorithms. It can be concluded from the convergence diagram that Adam+RNN-

FWI has the fastest convergence speed, which is in line with the previous hypothesis. 

The optimization algorithm with the characteristics of self-adaptive momentum 

gradient step update and small batch data set can greatly accelerate convergence, and it 
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only needs about 2 epochs to achieve convergence, which is quite amazing. SGD has 

the slowest convergence, which can also be seen in Figure 3.8. SGD is also the most 

ambiguous reconstruction map. RNN-FWI or FWI with L-BFGS-B has similar 

convergence effects, and the results in Figure 3.8 and 3.9 are also consistent, proving 

that although RNN-FWI is a brand-new architecture, performance improvement still 

depends on some deep learning techniques. Although the final loss value Adam was 

close to L-BFGS-B on the convergence diagram, it can be seen from Figure 3.9 that the 

FWI depth reconstruction of L-BFGS-B algorithm was insufficient. In Figure 3.11, it 

converges to a certain threshold, the final reconstruction appears to be the same in all 

four algorithms, but the RNN-FWI (Adam) still shows a little bit better than others, but 

the convergence time of our proposed algorithm is better than other methods 

 

Figure 3.11 Results cross section comparison diagram (final convergence) 

With the addition of GPU, the calculation speed has also been improved. It can be 

seen that the algorithm of L-BFGS-B has the slowest convergence, which is not difficult 

to explain, because this algorithm requires all data sets to participate in each calculation. 

Table 3.3 shows the calculation time of the four algorithms. 

Table 3.3 Computation time table for different algorithm 

Algorithm Computation time 

Conventional FWI 7min27s 

RNN-FWI (Adam) 3min03s 

RNN-FWI (SGD) 5min07s 

RNN-FWI (L-BFGS-B) 6min51s 
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3.3.3 The effect of noise 

This section investigates the robustness of the algorithm to noise. In order to 

facilitate the control of variables, we use the simulated value without adding noise for 

the original observation value here, and add gaussian noise to the synthetic data, 

according to the empirical value, the SNR of noisy waveform is -5 dB 0dB, 5dB. 

Usually the noise intensity is not greater than 0dB, but to test the robustness, -5dB noise 

is considered. In this experiment, we use two different algorithms to conduct 

comparative experiments, RNN-FWI (Adam+UNet) and conventional FWI (L-BFGS-

B+TV). Fig. 17 is the waveform map which is added the noise.  The corrosion model 

is consistent with previous experiment, the experimental setup is still responsible for 

receiving all sensors, in turn, launch the rest of the sensor, the initial velocity model is 

without damage uniform thickness of aluminum plate model. In this experiment, in 

order to compare the stability of different regularization algorithms for noise. we use 

two algorithms to conduct comparative experiments, Adam+ RNN-FWI +UNET 

regularization and L-BFGS-B +FWI+TV regularization tools.  

 

Figure 3.11 Received waves map (-5db SNR). 

 

                (a)                             (b)               

Figure 3.12 Different methods results comparison (5dB) (a) RNN-FWI (Adam+UNet) (b) 

conventional FWI (L-BFGS-B+TV)  
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Figure 3.13 Results cross section comparison diagram (5dB) 

 

(a)                                (b)               

Figure 3.14 Different methods results comparison (0dB) (a) RNN-FWI (Adam+UNet) (b) 

conventional FWI (L-BFGS-B+TV)  

 

Figure 3.15 Results cross section comparison diagram (0dB) 

 

(a)                              (b)               

Figure 3.16 Different methods results comparison (-5dB) (a) RNN-FWI (Adam+UNet) (b) 

conventional FWI (L-BFGS-B+TV)  
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Figure 3.17 Results cross section comparison diagram (-5dB) 

The reconstruction results of these four algorithms are shown in the figure above. 

The deep image prior regularization tools based on different CNN structures has played 

a good role. It can be seen from the figure that the inversion results of UNet are slightly 

better than that of conventional FWI. The artifacts caused by noise in the Figure 3.13 

are more average, the corrosion profile is close to the real, and the UNet inversion result 

on the right side of the defect estimates the depth too lightly, but the two are generally 

better than the conventional FWI of the TV regularization tool, as shown in the Figure 

3.14. It is intuitively found that the conventional algorithm does not reconstruct the real 

corrosion contour within the specified number of calculations, which may be caused by 

the 'reserved margin' feature of TV regularization. Under natural circumstances, the 

corrosion contour gradient should not change very drastically, so the conventional 

method is not as good as the above methods in the scope of application. As can be seen 

from Figure 3.15, Conventional FWI only inverts the approximate contour correctly, 

which is the worst among all imaging results. In contrast, RNN-FWI results showed 

much less deterioration. We further analyzed the inversion quality through three 

indicators in Table 3.4: PSNR (peak signal-to-noise ratio) and SSIM (structural 

similarity indicator measure).  

Table 3.4 Inversion quality at different evaluation index (with -5dB noise) 

Algorithm SSIM PSNR 

RNN-FWI (Adam+UNet) 0.981 48.6 

Conventional FWI (L-BFGS-B+TV) 0.920 44.3 

Compared with conventional FWI, the improved inversion results of RNN-FWI 
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for noise data are verified. This comparison proves the regularization effect of 

generative neural network with depth image prior. In the presence of noise, the 

inversion results of RNN-FWI are smoother and more robust than those of conventional 

FWI.  

 Conclusion 

In this chapter, by observing the algorithm structure of conventional FWI in last 

chapter, discovering the similar characteristics of RNN and FWI, we introduce RNN 

into FWI, and form a new algorithm. RNN-FWI brings many new technologies and 

techniques of deep learning into conventional FWI, including automatic differentiation 

instead of adjoint state method, and depth image prior instead of TV regularization, and 

the Adam algorithm instead of the quasi-Newton method, which bring the possibility 

of comprehensively improving the algorithm. This chapter provides a theoretical basis 

for later experiments. The first experiment verified the consistency of automatic 

differentiation and the adjoint state method for calculating gradients. Then the 

performance of different algorithms for the same defect and the robustness of different 

regularized tools for noise are compared.  
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Chapter 4  Actual Experiment 

 Introduction 

In the algorithm research of the previous chapters, we concluded that Adam+RNN-

FWI+Unet algorithm has better performance than any other algorithm. In this section, 

we will introduce the preparation and details of the actual experiment in turn, and then 

process the data obtained from the actual experiment, and input the experimental data 

into different algorithms for comparison. 

 Actual experiments setup 

 

Figure 4.1 Actual experimental equipment setup. 

The experimental device is shown in Figure 4.1. It is carried out on a 

1000*1000*10mm 6061(Aluminum material label) aluminum plate, the plate is 

supported by a rotating platform for easy operation and measurement. The corrosion on 

the plate consist of a series of 1mm, 0.5mm ,0.25mm depth irregular defects, the deepest 

defect is half of the plate thickness, the defect wall and the plate surface form a 30° 
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angle to avoid the A0 mode to S0 mode conversion, the corrosion was designed by 

CAD software and sculptured by CNC, ensuring a high degree of agreement with the 

numerically simulated model. There is a circle like transductor array with a diameter of 

700mm on the metal plate surface around corrosion, and 60 PZT-5 transductors with a 

central frequency of about 50khz are evenly glued to the aluminum plate with epoxy 

resin to form the circle array, all the PZT transductors can transmit and receive 

supersonic wave. The Lamb wave transmission signal is generated by an Agilent 

33220A arbitrary waveform generator, amplified by the RF power amplifier of AG 

Series Amplifier 1011(T&C Power Conversion, Inc.), and the PZT signal is collected 

by an Agilent MSO6052A mixed signal oscilloscope. The calculation of FWI was done 

by a computer with CPU as i7 9700k, memory as 16G DDR4, and GPU as Nvidia 

GTX1080ti 11GB. 

Each PZT transductor collects 0.5ms waveform information, which is divided into 

1000 points for storage. After the data collection is completed, the comparison between 

the actual raw acquisition waveform and the numerical simulation is shown in Figure 

4.2, it can be seen that in the direct wave area, the phase difference between the two is 

basically barely existed. It is necessary to limit the bandwidth of the collected signal to 

remove clutter with frequencies other than 45 to 65 Khz  , we use a third order 

Butterworth bandpass filter to filter the signal. Then the first arriving A0 wave packet 

and defect scattered wave are gated to block boundary echo and other clutter 

interference, we use a flat-topped Hamming window to achieve gating, which can 

effectively prevent spectrum leakage. We only need to add different delays to such 

window and multiply the processed signal for signal processing. Figure 4.3 is the 

comparison between the signal processed and the simulated signal. It can be seen that 

the actual experiment and the simulated experiment highly overlap, which can verify 

the success of the forward algorithm from one side. The velocity map of the aluminum 

plate is the same as the model used in the numerical simulation in Chapter 2   
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Figure 4.2 Actual experimental waveform and simulation waveform. 

 

Figure 4.3 Filtered and windowed waveform and simulation waveform. 

 Actual experiment data in different algorithms 

In the experimental configuration of the previous chapter, the experiment is carried 

out. After the data is collected, the filtering process is performed, and the RNN-FWI is 

used to reconstruct the velocity model. The initial model is a non-damaged aluminum 

plate model with uniform thickness. The comparison diagram in Figure 4.4 and 4.5 

below is the result of RNN-FWI using Adam and UNet, and the conventional FWI with 

TV and L-BFGS-B respectively. 

Direct wave 

Reflection 
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(a)                            (b) 

Figure 4.4 Actual experiment imaging result. (a) RNN-FWI with Adam+UNet (b) Conventional 

FWI with TV 

 

Figure 4.5 Cross section comparison results  

The algorithm we present in this paper is inputted actual experiment data as 

observed data, although the filter window filtered out the echo signal, our RNN - FWI 

is still relatively real portray the shape of the corrosion. At some thin defect position, 

inversion depth is not so reliable to the real depth value, but compared with the 

traditional algorithm, the improvement in accuracy and robustness is significant. 

 The effect of different number of transductors 

The number of transductors in a ring array to extract enough signals from a 

wavefield can be expressed as： 

 
4 r

N



  (4.1) 

where r is the radius. At out experiment setup, almost 135 transducers would be 

needed to correctly reconstruct the image. However, it is obviously not realistic that the 

experiment requires so many transductors, so the experimental setup is completed by 

60 transductors. The installation of so many transductors limits the performance of real-
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time non-destructive testing in industrial pipelines production, so in this subsection we 

study on impact of imaging with different numbers of transductors. We can derive the 

number from the trade-off between the number of PZT and the number of transductors. 

In Figure 4.6 4.7 4.8 4.9 are the inversion results of 60, 30, 20 and 15 PZTs, respectively. 

In this experiment, Adam+RNN-FWI was used for imaging. 

It is worth noting that in this section we use simulated data as our data in order to 

avoid some unexpected situations 

 

Figure 4.6 60 transducers 

 

Figure 4.7 30 transducers 
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Figure 4.8 20 transducers 

 

Figure 4.9 15 transducers 

It can be observed that both 60 and 30 sensors involved in the experiment can carry 

out accurate imaging of corrosion, while less than 30 sensors not only inversion 

produces artifacts, but also failed to reconstruct the real corrosion. 

We also investigate the ability of semicircular receiver arrays to reconstruct 

corrosion models. Experimental background is in the actual experiments, many 

researchers have found that the actual experiment of direct extraction of signal energy 

is greater than that of defect echo energy, a lot of useful reflection submerged by noise 

and boundary of the echo signal, eventually forced removed by the signal process 

procedure, so, the experiment is set up to have 19, 29 and 45 receiving sensors in a 

semicircle opposite to the transmitting sensor. 
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Figure 4.10 45 transducers in half circle transducer array 

 

Figure 4.11 29 transducers in half circle transducer array 

 

Figure 4.12 19 transducers in half circle transducer array 
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Figure 4.13 15 transducers in half circle transducer array 

The experimental results can show that the semi-circular sensor array does not 

have much degrade effect on the accurate inversion model. We reduce from 45 sensors 

to 15 sensors, and the experimental results do not change drastically, relying on the 

computational accuracy of 45 receiving sensors is almost the same as that of 60 sensors, 

the experimental accuracy of 15 sensors does not drop much. 

Experiments have shown that we can reduce the number of acquired waveforms 

and reduce the computational complexity without losing too much precision. This has 

practical significance for the improvement of experimental calculation speed. Observe 

the difference between the experimental observation value and the simulated value 

under the setting of Figure 4.6 (right), as shown in 4.14, the gradient update is calculated 

from this figure, and the obvious waveform in the figure appears in the center, that is to 

say, the gradient update It mainly relies on straight-line propagation, and the length of 

the yellow frame accounts for one-fifth of the total length, which means that only one-

fifth of the sensors can be used to achieve the results obtained by the data collected by 

all the sensors without losing too much accuracy. 

 

Figure 4.14 The difference between simulated and observed values 
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 Studies of different initial models 

When the difference between the initial velocity model and the real velocity model 

is too large, the conventional FWI with an objective function of L2 distance occurs the 

problem of cycle jumping. When the phase difference between the predicted data and 

the real data is greater than half a cycle, resulting in failure to converge. As the objective 

function, W2 can effectively overcome the above situation. 

Two values far away from the true thickness are selected as the thickness of the 

initial model, and the velocity without defects is 2866m/s, the velocity model with 

uniform velocity of 2600m/s and 3000m/s is set as the initial model for iteration, where 

the phase difference is much greater than half cycle. Here we choose the simulated 

value as the observed value for iterative calculation. 

 
(a)                           (b) 

Figure 4.17 Imaging result maps (2600m/s initial model) (a) actual experiment(b) simulation 

experiment (2600m/s) 

 

Figure 4.18 Results cross section comparison diagram in actual experiment 
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(a)                        (b) 

Figure 4.19 The loss functions with two approaches in noises 

 

Figure 4.20 The loss functions with two approaches in noises 

By observing all the above results, it can be shown that FWI with W2 distance as 

objective function can normally converge to relatively accurate results within a certain 

initial velocity range. However, neither of the conventional methods (blue line) can be 

used to reconstruct the model in these two initial velocity models. 

 Conclusion 

In this chapter, we introduce the details of the preparation process of the actual 

experiment. The preparation of materials, the setting of the sensor, the model of the 

experimental instrument, the preparation process of the experiment, and finally the 

signal preprocessing of the actual experiment is also introduced at the same time. 

Finally, we conducted a series of experiments using the data collected in the experiment, 

and the experimental results of the experimental data proved the practical significance 

of our proposed algorithm. Finally, we also studied some problems with actual 

experimental background, including the influence of the number of sensors and position 

on the inversion image.



Chapter 5 Conclusion and Prospect 

 58 

 

Chapter 5   Conclusion and Prospect 

This paper proposes a new guided wave tomography technology based on the 

framework of deep learning, analyzed the similarities, advantages and disadvantages of 

deep learning neural network and FWI, and successfully combines neural network with 

full waveform inversion, using the powerful nonlinear inverse ability of neural network 

algorithm to optimize conventional FWI. The structure of RNN-FWI is roughly the 

same as that of conventional FWI, the difference is that the forward modeling unit of 

single step is represented by the RNN operation unit, in the meanwhile, realized the 

idea of automatic differentiation instead of adjoint state method to calculate gradient, 

and a CNN-based network acted as the regularization of the objective function. The W2 

distance utilizes the waveform phase difference and the amplitude difference as the 

updated parameters, which alleviates the effects of artifacts and non-convergence 

caused by the cycle jump to a certain extent. 

In the actual experiment, the performance of RNN-FWI with several optimization 

algorithms such as Adam and conventional FWI was compared and analyzed, and the 

conclusion was drawn from the numerical simulation and actual experiment that RNN-

FWI greatly avoided the probability of inversion falling into local minima and enhanced 

robustness because of deep neural network and regularization tools, and also got rid of 

the highly dependence on the initial speed model, the automatic differentiation reduced 

the system error caused by conventional  algorithms, the BP algorithm reduces the 

complexity of explicitly solving the gradient, the Adam optimization algorithm 

accelerated the convergence speed and reduced the memory usage, the convolution 

kernel reduce the forward modeling computational complexity. More details of the 

improvement in combining deep learning with full waveform inversion will be 

investigated in future work. 

Full waveform inversion based on recurrent neural network introduces many 

optimizations and advantages of deep learning into conventional full waveform 

inversion, and it is proved by practical experiments that RNN-FWI has many 
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advantages over conventional FWI, including: the inversion accuracy is improved, 

decreases the demand of the accurate initial model provided by algorithms such as 

traveltime tomography, and the imaging is not easily affected by local minima, besides 

that, the deep learning framework (TensorFlow) will make it more convenient to 

perform calculations on GPUs and even distributed computer clusters. 

The advantage of using small batch data global optimization of ADAM is that it 

does not require conventional frequency domain FWI low-frequency to high-frequency 

iterative calculation to prevent falling into local minimum and cycle skipping effect. 

ADAM is first-order optimization method which means it does not calculate the 

Hessian matrix, does not require all data to participate in once calculation, this greatly 

reduced memory consumption and speed up the calculation. At the same time, the 

automatic differentiation used in deep learning solving gradient is equivalent to the 

adjoint state method which demonstrated in formula before. Due to the absence of 

systematic errors caused by adjoint state method, the inversion accuracy is also 

improved, the convolution kernel optimized by the deep learning framework 

(TensorFlow) replaces the manual spatial derivation to reduce the forward modeling 

computational complexity. 

Regularization tools (deep image prior) can naturally introduce spatial correlation 

as regularization into the generated velocity model, thereby suppressing noise in 

gradients calculating and mitigating local minima phenomenon, and significantly 

improving inversion in the presence of noise, strengthening the robustness to noise 

polluted signal. And there is no need for additional training data and iteration 

computation in regularization, thus enhance the utility of the entire algorithm and 

without adding computational complexity to the entire algorithm. Compared with 

conventional regularization algorithms, such as TV, the regularization tool based on 

deep image prior does not need smoothing parameters and weight parameters set based 

on human experience values, which makes the whole algorithm more automatic and 

avoids some human errors. Therefore, the overall regularization effect is better than the 

conventional algorithm. In addition, regular tools based on deep image prior provide a 

development direction based on deep learning. Subsequent studies can add dropout 
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layers to existing networks, making RNN-FWI a more effective method to estimate 

uncertainties in the high-dimensional model space of velocity estimation. 

Compared with algorithms that need to be trained in advance, such as algorithms 

that use CNN or SDM to learn the hidden mathematical parameters or direction of 

gradient descent, RNN-FWI does not need to prepare large batch of dataset, because 

the forward operator contains physical prior information (acoustic wave formula), 

training is not required, and the accuracy is very high naturally. Similarly, as for the 

datasets of the pre-training algorithm, it is difficult to generate or collect datasets with 

all types of shapes and depths of defects or corrosions, which is the primary difficulty 

of the pre-training algorithm. Moreover, the parameter models generated by existing 

pre-training algorithms are very large (because of the huge number of datasets), which 

is still a challenge for offline hardware applications. 

Using automatic differentiation and BP algorithm to compute the gradient of the 

cost function has several advantages. Foremost among them is that it greatly reduces 

development time, as it avoids the need to manually implement and validate adjoint 

state methods, and more easily incorporate some deep learning optimization and 

computational tricks. However, the main disadvantage is that it is memory-intensive, 

as it stores all wavefield time slices in memory. In FWI, the wavefield at the final time 

step will definitely be affected by the wavefield and the model at the initial time step, 

so backpropagation must occur throughout the whole sequence of time steps, which is 

very memory-intensive, so instead of storing them, we resort to regenerating the 

wavefields during backpropagation, which is a memory vs. computation time trade-off. 

Although RNN-FWI has many of the above advantages, it only slightly improves 

the resolution, that is, only improves the accuracy and resolution in terms of reducing 

system errors. It does not improve the accuracy theoretically from physics mechanism. 

Therefore there is still improve subsequent research can be developed that excitation 

supersonic wave can be replaced with higher frequency one, the currently available 

option is the SH mode PZT transductors with different polarization directions and 

shorter wavelength to improve the resolution of FWI, and at the same time, the 

introduction of the SH0 mode which without dispersion is more conducive to the 
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detection of cracks or crack-like damage, the joint algorithm of the two should have 

wider versatility and practicality. Another research direction that can improve the 

resolution is to combine beamforming and full waveform inversion. Beamforming 

takes advantage of the high precision brought by the reverse-time scanning of the 

transductor array and can be combined with FWI to further improve resolution. On the 

other hand, ring shape like transductors array may be limited by size in practical 

applications, so it is also very meaningful to develop a single-side transceiver or contra-

side transceiver transductor array for beamforming full waveform inversion. 
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