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Göteborg, Sweden 2023



Image-based numerical modelling of heterogeneous materials
ROBERT MICHAEL AUENHAMMER
Department of Industrial and Materials Science
Division of Material and Computational Mechanics
Chalmers University of Technology

Abstract

In science there has always been a desire to visualise the invisible. Since the discovery of
X-rays in 1895, imaging research has made remarkable progress. Nowadays, state-of-the-
art technology allows to visualise the micro-structure of objects in three dimensions.

However, merely visualising the structure is often insufficient. The quantitative informa-
tion regarding morphology and structure is of great interest. Therefore, in addition to
significant advancements in X-ray image acquisition and three-dimensional reconstruction,
image analysis has become an active research field in recent years. Modern image analysis
methods enable to extract even invisible information from image data.

The heterogeneous micro-structure of composites imposes advanced material characterisa-
tion as even for the largest composite structures, such as wind turbine blades or airplane
wings, the material properties are dictated on the micro-scale. Image-based modelling
offers exceptional capabilities in analysing the micro-structure at the fibre level and
numerically predicting material behaviour even at larger scales. However, image-based
modelling is a complex process and all work-steps must be in line with the final modelling
goal. Therefore, X-ray computed tomography aided engineering has been introduced to
emphasise the importance of a holistic point of view on the image-based modelling process.

The developed X-ray computed tomography aided engineering methodology has been
developed based on micro X-ray computed tomography scans for non-crimp fabric glass-
fibre reinforced composites. It is demonstrated that local fibre orientations and fibre
volume fractions can be accurately imaged and transferred onto a finite element model.
Thereby, the tensile modulus of the scanned samples can be accurately predicted and
possible stress concentration regions detected.

However, conventional micro X-ray computed tomography presents a major drawback.
Achieving the required high resolutions to visualise carbon or glass fibres, typically ranging
between 5 to 20 µm, limits the scanning field of view, which remains in the millimetre
range. This drawback is overcome with new approaches in image-based modelling involving
advances in imaging and image analysis. Therefore, targeted approaches for accurate
image-based modelling are presented which increase the possible scanning field-of-view of
fibrous composites by up to three to six orders of magnitude.

Keywords: Composites, X-ray computed tomography, image analysis, image-based mod-
elling
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Preface

This project has been carried out from June 2019 until September 2023. The first three
years of this project have been set up within the Intensive Training Network Mummering
(MUltiscale, Multimodal and Multidimensional imaging for EngineeRING) project (Grant
number 765604), as part of the Marie Sk lodowska-Curie Actions HORIZON programme
funded by European Commission. In the project the fifteen participating PhD students
were trained in all aspects of tomography. At the same time a large European/International
network with many research and industrial collaborations has been created. The remaining
part of this work has been financed by Fordonsstrategiska Forskning och Innovation
(Grant number 2021-05062), where the progress made in image-based modelling during
the Mummering project phase could be seamlessly employed to effectively characterise
intricate natural fibre composites intended for industrial applications.
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CHAPTER 1

Introduction

This chapter provides a background of the studied materials in this project and the
approaches necessary to investigate those materials. From this basis the objectives for this
research project are defined.

We are consuming too many resources on this planet. This includes water, agricultural
land, phosphor, sand, fossil hydrocarbons, to name some of the most important. Every
building we build, every product we buy, every meal we eat comes from resources on this
planet and creates therefore an impact on the environment. Given the still growing world
population and the problems arising with climate change, an efficient use of resources
and materials is indispensable. Intelligently designed fibre reinforced composites can be
of great benefit for a more sustainable material production, use and end-of-life.

1.1 Fibre reinforced composites

For fibre reinforced composites the fibre scale is dominating. Even for 100 m long wind
turbine blades, stiffness, strength and fatigue properties are defined on the fibre level [1].
There are numerous parameters that affect those mechanical properties, e.g. fibre-matrix
bonding [2], composite curing profile [3], void content [4], fibre volume fraction [5]. Central,
however, is the fibre orientation [6]. One reason for the stiffness/weight advantage of
fibre reinforced composites lies in the anisotropy of the material. The composite is less
compliant along the fibre direction. Therefore, composites are usually designed with fibres
oriented along known loading directions. If during manufacture a deviation from the
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designed fibre orientation occurs, the composite is significantly weakened. In case the
composite needs to bear multi-axial loading directions three-dimensional, woven fibre
composites are a popular choice given the flexibility to tailor the mechanical properties [7,
8].

In the first part of this research project mainly non-crimp fabric reinforced glass
fibre composites have been studied. The methods developed on non-crimp fabric rein-
forced composites have then been applied on pultruded, injection-moulded, and prepreg
composites with different fibre types, e.g. natural, glass or carbon fibres.

Non-crimp fabric reinforced composites have been originally developed for large struc-
tural parts in marine and aeronautical applications [9] and are nowadays also used in
automotive and wind industrial applications [10]. They are usually manufactured with
resin transfer moulding [11] or vacuum infusion [12]. Non-crimp fabric reinforced compos-
ites are characterised by high in-plane and poor out-of-plane stiffness properties, compared
to other fabric composites, e.g., woven composites. The high in-plane stiffness originates
from practically straight fibre bundles with a high local fibre volume fraction, which are
embedded in a polymer matrix. This layup yields resin-rich areas with no fibres present.
Often the unidirectional bundles are kept together by stitching treads and backing bundles,
which are oriented in the transverse direction. Both features have shown to introduce
stress concentrations [13] which are disadvantageous during fatigue loading [14, 15].

In addition to non-crimp fabric reinforced composites with continuous fibres, short
glass and carbon fibre reinforced polymers are also studied. Possible manufacture methods
are extrusion and injection moulding. During those processes the fibres in the mould are
shortened, which has a significant influence on the composite strength [16]. Injection-
moulded composites are especially popular in mass production, e.g., in the automotive
industry, due to injection moulded part’s unparalleled cost-effectiveness for a high stiffness
to weight ratio [17]. During the injection moulding process the fibres are predominantly
aligned along the mould flow direction [18] resulting in a globally non-uniform but locally
uniform fibre orientation distribution [19].

Another group of fibres with increasing popularity is natural fibres. This is the
umbrella term for a large variety of fibre types, e.g., kenaf, flax, jute, hemp, silk, cotton.
They offer superior sustainability properties, since they require less energy for production
than for example carbon fibres [20], and they are biodegradable [21]. Further, their
stiffness-to-weight ratio can be higher than for glass fibres [22] and they excel in noise
absorption properties [23]. However, natural fibres also have some downsides. They
are neither uniform in shape [24] nor easy to align uniformly [25]. Additionally, they
are characterised by anisotropic stiffness properties [26], a greater variability in their
properties [27, 28], and a tendency of hygroscopic swelling, which leads in turn to radial
stresses at the interface between fibre and matrix [29].

1.2 X-ray imaging

X-rays have a short wavelength in the order of 10 nm and the application resolutions
range between 50 nm to 10 mm. The development of X-ray imaging started with the
discovery of X-rays by Willhelm Röngten 1896, with the basic principle that an X-ray
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(a) Absorption-based X-ray imaging

(b) Scattering-based X-ray imaging

(c) Refraction-based X-ray imaging

(d) Phase-shift-based X-ray imaging

Figure 1.1: Schematic drawing of different popular X-ray imaging technologies. Here, the
character of light being both particle and wave is exploited.

beam is attenuated on its propagation through matter due to absorption and scattering
[30]. Since then the options for X-ray imaging have become manifold. Nowadays, the
morphology of an object can be studied with micro computed tomography, while the
structure can be also analysed by X-ray scattering or refraction. Although, the most
common approach is still absorption-based micro computed tomography [31, 32] (Figure
1.1a), small [33, 34, 35] and wide [36, 37] angle X-ray scattering (Figure 1.1b), refraction
[38, 39] (Figure 1.1c) or phase-contrast [40, 41] (Figure 1.1d) imaging have become
increasingly popular during the last years. However, imaging continues to face certain
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(a) 2 projections (b) 4 projections (c) 8 projections (d) 16 projections

Figure 1.2: Reconstruction of a point with the method Filtered Backprojection with 2, 4, 8
and 16 projections with the ASTRA Tomography Toolbox [44]. More projections further
increase the quality of the reconstruction.

limitations. The desired level of resolution frequently constrains the possible field of view,
while achieving high-resolution scans results in long acquisition times and generates large
data-sets. Additionally, obtaining satisfactory contrasts between various phases within a
sample can be a challenging task. However, active research and growing popularity of
imaging indicate that the benefits often outweigh the challenges [42].

1.2.1 Micro X-ray computed tomography

X-ray tomography scanners consist of an X-ray source, usually a rotating sample and
a stationary two-dimensional detector. The X-ray source for lab-based systems emits
a cone beam with a wide energy spectrum, synchrotron sources on the other hand are
characterised by parallel beams and a defined small energy spectrum. From its original
application field in medical imaging in the 1960s active research in computed tomography
has covered the demand for three-dimensional imaging in various fields in recent decades.
Improved and affordable computed tomography scanners together with the progress in
the consecutive processes has made the technology broadly applicable for medical as well
as industrial and academic utilisation across several fields [43].

The X-rays passing through the sample to be scanned are attenuated due to the
photoelectric effect. The photons that passed through are measured on a two-dimensional
detector. The X-ray attenuation follows the Beer-Lambert’s law (Equation 1.1) where I

represents the recorded x-ray intensity, I0 the initial x-ray intensity, x the path length of
propagated X-rays and µ the linear attenuation coefficient of the material [45].

I = I0e
−µx (1.1)

The linear attenuation coefficient µ (Equation 1.2) itself depends on the density of the
material ρ, the atomic number Z, the initial energy of the X-ray photons E and a constant
K.

µ = Kρ
Z

E
(1.2)

For different materials different grey-scale values (typically expressed in 16 bits between 0
and 65,536) in the two-dimensional projections will be seen on the detector. The detector
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is divided into a finite amount of pixels that transfer the photon signal into an electric
signal. By rotating either the object or the source and detector an information about
the size and position in three dimensions can be added. Therefore, the two-dimensional
projections need to be transformed back to a three-dimensional image; the so-called
reconstruction (Figure 1.2). Generally applies, the higher the amount of projections the
better the original object, a circular dot in this figure, is reconstructed. The inverse
mathematical problem of reconstruction can be either solved analytically or iteratively
[46]. Also machine learning approaches have become a common choice and have enabled
many new applications [47, 48, 49].

1.2.2 Small angle X-ray scattering

Decoded local small-angle X-ray scattering (SAXS) signals allow the non-destructive
analysis of micro-structure orders of magnitude smaller than the voxel size [50]. This
method uses a regular X-ray beam as conventional micro computed tomography [51], but
the detector is placed further away to enable an angle enlargement of the small angle
scattered X-rays. At modern synchrotron beamlines, sample to detector distances can
easily reach 10 m [52]. Scattering signals can be acquired in vacuum [53] or free air [54]
depending on the set-up.

With the use of phase modulator X-ray optics, consisting of circular grating arrays,
placed between sample and detector, circular fringes are formed at the detector [55].
The difference in the circular fringes with and without the sample in the beam path
allows to extract an omidirectional two-dimensional scattering signal [56]. To obtain
three-dimensional information the measurement is repeated at different angular poses. A
scattering tensor representing the three-dimensional scattering information is then voxel-
wise tomographically reconstructed [57]. The circular gratings induced omidirectional
scattering signal significantly shortens the acquisition time compared to other small-
angle X-ray scattering methods [58]. This allows to time-efficiently scan and analyse the
micro-structure of samples on the centimetre scale.

1.3 Image analysis

Image analysis is often described as bottleneck in the workflow from acquisition to
modelling [59, 60]. With enough experience it is nowadays fairly easy to obtain a three-
dimensional image data-set of acceptable quality. However, it is often difficult to extract
quantitative information from the image data-set for accurate modelling. One issue is
large data sizes. Data sizes in the range between 10 to 100 GB can be easily produced.
The processing time, depending on the method, can reach several hours for a 10 GB
data-set [61].

Naturally, it is often tried to create an image analysis algorithm that mimics the
human eye. In fact the capabilities of the human eye, although being subjective and bias,
are hard to mimic. In other words the human eye excels in segmenting objects which pose
a difficult task for a segmentation algorithm. In the image analysis of scanned patients
the trend goes to deep neural networks that are trained by the best radiologists in the
field [62, 63]. The outcome will never be better than the capabilities of the radiologists
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that have trained the network, but the likeliness of a misdiagnosis is reduced. However,
there are new image analysis codes that go beyond the capabilities of the human eye. The
structure tensor code by Jeppesen et al. [64] for example is able to estimate dominant
fibre orientations for voxel-sizes up to three times the fibre diameter. This is not possible
for the human eye.

With the large popularity of X-ray computed tomography also many commercial
and academical segmentation solutions have been introduced. One of the most common
commercial products for materials is Avizo [65] from Thermo Fisher, but there are also
products like Simpleware [66] from Synopsys or Retomo [67] from Beta CAE. Also Matlab
has image analysis tools incorporated. However, there is also freeware available. Among
the most known ones is Fiji-ImageJ [68] developed at the National Institutes of Health
and the Laboratory for Optical and Computational Instrumentation with popular add-ons
like Trackmate [69] or Weka [70]. At the European Synchrotron Radiation Facility (ESRF)
and the Grenoble Alps University, the Python package Spam [71] has been developed
to analyse three-dimensional data-sets with a focus on mechanical analysis. Especially
this holistic point of view, creating an image analysis in a way that further analyses, e.g.,
mechanical numerical simulations, can easily be performed, is central for high quality
studies.

For fibre reinforced composites the morphologies of interest are often voids or fibre
volume fraction. Mortensen et al. [72] for example investigated the influence of the fibre
volume fraction on the fatigue performance of non-crimp fabric reinforced composites.
However, in most cases the structure of the composite, the fibre orientations, are in the
focus of image analysis of fibre reinforced composites. There are two main approaches
available. One is a single fibre tracking analysis, the other estimates the fibre orientations
based on the gradients of the grey-scale values. Fibre tracking algorithms are included in
some of the above mentioned commercial software as Avizo or Retomo, but can also be
carried out with the Fiji-ImageJ add-on Weka or the supervised image analysis method
Insegt [73, 74], equipped with a Matlab-based graphical user interface. The fibre tracking
methods differ in the approaches they take and in the amount of parameters that need
to be set. All of them, however, have in common that they require high-resolution
images characterised by little noise to function accurately. The other option is so-called
structure tensor methods [64, 75, 76, 77]. As these do not track single fibres but compute
a dominant material orientation they are not restricted to fibre analysis. Further, they
are less prone to noise and can even handle lower resolutions than fibre tracking methods.
The code of Jeppesen et al. [64] is open access and available as Python package [78]. With
∇V = [V,x V,y V,z]T as gradient of the voxel grey-scale values V the structure tensor S is
computed as

S =
∑

∇V (∇V )T . (1.3)

The summation in Equation 1.3 is defined in a certain domain around the regarded
point. The equation can be modified by applying a Gaussian window for the integration.
With an additional Gaussian derivative for the gradient computation, Equation 1.4 is
obtained. Since voxels have only one grey-scale value, computing a gradient of discrete
values is not straight-forward. The gradient needs to be approximated. Due to noise in
the image data it is beneficial to apply a filter, as noise is enhanced in differentiation.
Smoothing (Gaussian filter) and gradient computation (Central difference scheme) are
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combined to a Gaussian derivative which is computationally more efficient. The so-called
noise scale parameter σ indicates a domain size that is filtered for the gradient computation
∇Vσ. The so-called integration scale parameter ρ, on the other hand, characterises the
standard deviation of the Gaussian kernel Kρ. In other words, ρ defines the dimension in
which the material orientation is analysed.

S = Kρ(∇Vσ(∇Vσ)T ) (1.4)

An eigendecomposition of S delivers the predominant material orientations. With its
properties as symmetric and positive semi-definite tensor, three orthogonal eigenvectors
accompanied by three positive eigenvalues are obtained. The smallest eigenvalue with its
corresponding eigenvector indicates the fibre direction.

1.4 Image-based modelling

For the preponderant part of acquired image data-sets the analysis is stopped at the
image analysis stage, even though image-based modelling adds significant value to imaging.
There are two main reasons for this. Firstly, image-based modelling does not simplify
the modelling process but adds complexity. One needs to target the modelling towards
the image data and understand the issues and uncertainties that come with imaging [79].
Secondly, different research fields need to work together and find a common scientific
language, which is, in many cases, challenging. Nevertheless, remarkable studies have
been published in recent years.

Wilhelmsson et al. [80] used X-ray computed tomography data to numerically predict
compressive failure in unidirectional carbon fibre reinforced composites with off-axis angles
up to 20◦. In another study a multi-scale modelling approach is taken to predict the
damage and fracture behaviour of carbon fibre reinforced composites based on X-ray
computed tomography scans [81]. Therefore, micro-scale models with single fibres are
created based on high-resolution scans. These are then used to simulate the material
response on a ply-level for a tensile test to failure.

When modelling fibre fabric composites there are two options available. One is a
direct voxel-based meshing approach. This is usually very easy to implement and can
be automated [82, 83]. It raises, however, the research question how to handle voxels
which cover two phases, e.g., fibre bundles and resin-rich areas [84]. In addition, the
jagged bundle surface introduces unrealistic stress concentrations [85]. The other method
is a geometrical representation of the fibre bundles [86]. This process is significantly
more complex and time-consuming. Ewert et al. [87] compared the mechanical stiffness
response for a three-dimensional woven composite for the voxel-based and geometrical
representation methods. Even though the given issues with the voxel-based approach,
mesh type and size, accurate local fibre volume fraction, and orientation show a greater
influence than the chosen bundle segmentation approach.

Usually, image-based numerical models use the finite element approach, but Fast-
Fourier-Transform solutions offer advantages [88]. Those methods are cheap regarding
required memory, which is in particular suitable for large three-dimensional image data
with several hundred million or even billion voxels. In Kabel et al. [89] an approach is
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presented on how to use Fast-Fourier-Transform solvers and more specifically Lippmann-
Schwinger solvers on a voxel-based mesh. Here, voxels which contain two phases, e.g.,
fibre and matrix, are homogenised following mixing rules.

Image-based modelling can be helpful to create models for all fibrous composites, but
especially for natural fibre composites. The above mentioned drawbacks of natural fibre
composites require for further characterisation during development [90]. Straumit et
al. [91] have presented a finite element method to calculate the modulus of flax fibres
based on quasi unidirectional flax fibre composite. Here, the fibre misalignments are
incorporated via the analysis of three-dimensional X-ray images.

1.5 Research objectives

Within the time frame of this research project, great progress in all different fields
of tomography has been accomplished. This active research indicates the enormous
possibilities tomography offers and the important role it will play in the future. However,
often focus is only on one specific domain of tomography, as the full image-based modelling
process from acquisition, reconstruction, segmentation and modelling requires research
input from different fields. It can be difficult to organise a research team and find a
common scientific language. Albeit the described challenges, the main goal of this research
project has been to define a clear process for X-ray computed tomography-based modelling
that includes all steps. As for all chains, it also applies for image-based modelling; the
weakest link defines the strength of the analysis. The second goal has been to show
in different studies the progress in material modelling of fibrous composites that can
be achieved if special attention is paid to the importance of a holistic point of view on
image-based modelling.
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CHAPTER 2

X-ray computed tomography aided engineering - XAE

In this chapter the X-ray computed tomography aided engineering process, initially pro-
posed in Paper A, that defines the framework for image-based modelling, is presented.
This process is designed to facilitate and optimise modelling based on X-ray computed
tomography imaging.

Despite the progress in image analysis, the analysis of X-ray computed tomography data
remains incomplete without image-based modelling. By utilising image-based modelling,
the material behaviour of an actual part can be numerically predicted. However, image-
based modelling is a complex and time-consuming process, and requires new approaches
to extract the maximum information from the image data. The right imaging technology
must be chosen, the best scanning settings be found, a suitable reconstruction algorithm
be applied, a tailored image analysis be implemented, and a smart way of meshing and
homogenising be set up. All with the single purpose to be in line with the modelling and
discretisation approach for the material behaviour to be predicted. In other words, the
modelling goal must be defined first and the other work steps must be chosen accordingly.
In addition, these decisions must be taken with respect to the material properties of the
sample to be scanned.

However, only by taking a holistic perspective and targeting all the steps involved in
an X-ray computed tomography analysis towards the final modelling goal, the maximum
benefit from image-based modelling can be derived. Therefore, the term ‘X-ray computed
tomography aided engineering’ (Figure 2.1) has been coined to emphasise the importance
of this comprehensive approach. The naming XAE is deliberately close to Computer-aided
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engineering (CAE), but it has neither the intention nor the chance to replace it. It can
be rather seen as a tool that allows for a more accurate material behaviour reflection.

Figure 2.1: The originally proposed X-ray computed tomography aided engineering (XAE)
process with a holistic perspective [61]. All work steps must be in line with the final
modelling goal.

2.1 Imaging

The original focus has been on micro computed tomography, but also the potentials
of small angle X-ray scattering tensor tomography have been studied for image-based
modelling. Small angle X-ray scattering tensor tomography offers the advantage that it
can directly output a material orientation. As it is often the fibre orientation in fibre
reinforced composites that is of interest in image-based modelling , the image analysis can
be circumvented and the process simplified. In Table 2.1 the applied imaging technologies
for the studied material systems are compared for each study.

Table 2.1: Overview of the scanned material systems and the applied imaging technologies.

Paper A & B Paper C Paper D Paper E

Imaging type
µX-ray µX-ray Helical µX-ray Small angle X-ray

computed computed computed scattering tensor
tomography tomography tomography tomography

Material type
Non-crimp fabric Non-crimp fabric Injection moulded Extruded short

glass fibre glass fibre short glass fibre carbon fibre
reinforced polymer reinforced polymer reinforced polymer reinforced polymer

2.1.1 Micro X-ray computed tomography

The scans for Paper A–C have been acquired on a standard micro X-ray computed
tomography system at the Technical University of Denmark (DTU) in Denmark. Here,
conventional voxel-sizes of 5 µm - 11 µm for resolving glass fibres with a diameter of
approximately 20 µm have been used. Those comparatively high resolutions lead at the
same time to long acquisition times and large data sizes, which pose a more challenging
image analysis. In Paper D on the other hand the low resolution with a voxel-size of
60 µm has been used, resulting in a much larger field of view and shorter scan times as
well as a smaller data size. This scan has been acquired on a helical scanning set-up at
the Henry Moseley X-ray Imaging Facility, UK, which is ideal for slender samples as the
vertical stitching of several scans is omitted. In Table 2.2 some of the imaging parameters
are listed.
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Table 2.2: Overview of different scanning parameters in Paper A–D.

Paper A & B Paper C Paper D

Scanner
Zeiss Xradia Zeiss Xradia Thermo Fisher Scientific
Versa 520 Versa 520 Heliscan Mk2

Voxel-size [µm]
5.47

8 60
10.9

No. projections 3601 - 5801 3601 1860
Scan times [h] 21 - 72 72 0.5
Data sizes [GB] 1.7 - 13.5 9.7 3.5
Field of view [mm3] 4.2× 11× 23 4.7× 15× 34 29× 67× 204

2.1.2 Small angle X-ray scattering tensor tomography

The Small angle X-ray scattering tensor tomography scans have been acquired at the Swiss
Light Source X-ray beamline Tomcat at the Paul Scherer Institut (PSI) in Switzerland.
Between the sample and the detector, a circular grating with a fine period g = 1.46 µm
and a coarse period P = 49.5 µm was placed. The sample was mounted on a 2-axis stage.
Additionally to the rotation the sample can thereby be tilted by ±45◦ as well. In total,
1000 projections with an exposure time of 10 ms per image tile have been acquired. The
1000 projections assemble of 100 rotation angles [0◦, 3.6◦, . . . , 356.4◦] at 10 tilt angles
[0◦, 5◦, . . . , 45◦]. For 21 single image tiles, the effective scanning time was approximately
210 s, which is added to the 210 s required for the sample stage movements. For the
voxel-size of 100 µm, the stitched field of view is 38.2 × 38.2 × 28.6 mm3.

The reconstruction of the projection images does not yield a unique grey-scale value
for each voxel but a unique second-order scattering tensor per voxel. The eigenvector
with the smallest eigenvalue can be interpreted as the dominant material orientation. In
case all three eigenvalues of the second order scattering tensor are equally large, a random
fibre orientation is evident within the respective voxel. In the case where one eigenvalue
is approaching zero, perfect fibre alignment within this voxel can be assumed.

2.2 Image analysis

In Paper A–C non-crimp fabric reinforced glass fibre composites have been analysed.
The defined bundle structure of the fabrics allowed the image analysis to be divided
into in two different parts. One is a surface segmentation, where the surface of fibre
bundles has been segmented against resin-rich areas. This has been achieved both by
thresholding the different grey-scale values of fibre bundles and resin-rich areas, and single
bundle detection. The single fibre bundle detection presented in Paper C is capable of
segmenting fibre bundles individually, even though these are in contact with each other
over larger areas. For this purpose the image intensities are radially sampled along a
centre line. The segmentation task is then regarded as a binary optimisation following
Li et al. [92], extended by a penetration check [93]. An interface between fibre bundles
and resin-rich areas, included in the finite element model, is advantageous to unveil
stress concentrations compared to a regular voxel-based mesh. However, the surface
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Figure 2.2: Down-scaling of image data richness to a finite element mesh from Paper

C. Here, a down-scaling factor of three orders of magnitudes is not uncommon. This
down-scaling process naturally comes with issues and compromises must be made.

segmentation of fibre bundles is much more complex. The reason for this complexity lies
in the scale difference between voxel-size and element size. In Paper C, for example, the
image data consisted of 596 × 1922 × 4228 = 5, 019, 616, 896 voxels. To handle 5 billion
elements is unrealistic and indeed not necessary. The final finite element model comprises,
depending on the mesh size and type, between 0.5 and 2.9 million elements (Figure 2.2).
To reach these more realistic numbers the very detailed segmented surface, based on
element lengths close to the voxel-size, must be smoothed. This smoothing process is
particularly time consuming for a thresholding-based surface mesh. It can last up to a
full working day to generate the final mesh for image data-sets of the type presented in
Paper A–C. Therefore, the above-mentioned single bundle segmentation method should
be chosen, but more research is necessary to fully automate the process.

The subsequent phase of the image analysis focused on analysing the orientation of the
fibres. In Paper A and Paper B a fibre tracing method in Avizo has been applied. Here,
single fibres are detected and then traced through the volume. This is computationally
heavy and can take up to six hours depending on the available computational power and
the chosen tracking parameters. In contrast, the structure tensor method, used in Paper

C, does not track individual fibres but computes a predominant material orientation, which
is computationally more efficient in terms of required hardware, software, and computation
time. By implementing the open-source structure tensor method, the computation can be
performed on a standard 32 Gigabyte central processing unit in approximately 20 minutes.
This presents a significant advantage compared to fibre tracking using commercial software
packages and the associated workstation requirements as in Paper A and Paper B

(Central processing unit 256 Gigabyte and graphic processing unit 12 Gigabyte).

For Paper D the same structure tensor code as in Paper C has been used to analyse
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Figure 2.3: Visualisation of a typical mapping process for fibrous composite models. Often
fibre orientation and fibre volume fraction are mapped either element-wise or integration
point-wise. Also here, a drastic down-scaling of data richness is involved. The voxel and
integration point numbers are taken as an example from Paper C.

an injection moulded glass fibre reinforced polymer. The strength of the structure tensor
method to estimate fibre orientations with voxel-sizes significantly larger than the fibre
diameter has been exploited in this study. For high-resolution scans the two parameters
that need to be defined for the structure tensor code show a low sensitivity to changes.
However, for the chosen low resolution of a voxel-size 60 µm, corresponding to three times
the fibre diameter, the parameters must be chosen carefully as low-resolution scans tend
to incorporate higher noise levels.

As the reconstruction of the image data in Paper E directly computes a fibre
orientation, no image analysis has been required in this study.

2.3 Mapping

The mapping process is a key element in the whole XAE process. It may not require
the most computation or development time, but it represents the intersection where the
imaging and modelling parts need to meet. Given the large voxel numbers of regular
image data-sets, a direct transfer of image data to the numerical model is not feasible.
Thus, the image data need to be compressed during its mapping onto the numerical
model (Figure 2.3). The challenge here is to decide how to compress or to homogenise
the image data and which data to neglect. There is no general solution to this problem
but in each process it must be decided individually on how to approach this challenge.
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Table 2.3: Overview of different mapping schemes that have been developed for Paper

A–E.

Paper A & B Paper C Paper D Paper E

Element types
Irregular Irregular Irregular Regular

tetrahedrons tetrahedrons & shells hexahedrons
hexahedrons

Target
Elements Elements & Integration Points Integration Points

Integration points

Mapped entity
Fibre Material Material Rotated

orientations orientations orientations stiffness matrix

Homogenisation - - x -

The importance of this research question is stressed with Paper F.

Applied to fibre reinforced composites, the amount of voxels which carry a material
orientation or even tracked fibres is regularly much higher than the amount of mapping
targets, e.g., elements or integration points. In Paper E for example, the amount of
voxels is 64 times higher than the amount of integration points, in Paper D this factor is
even 4,200. The question therefore is how to condense the rich image information into the
finite element model. One natural homogenisation approach would be to calculate the
mean orientation of all voxels represented by one integration point. However, calculating
a mean will inevitably lead to smeared orientations. Fibre orientation outliers, e.g.,
large misalignments, will never be implemented in the finite element model. Such fibre
misalignments have proven to be critical for strength analyses [94].

These considerations underline the significance of the holistic perspective in XAE.
Also, the mapping algorithm need to be in line with the modelling goal. Thus, different
mapping schemes have been developed (Table 2.3) for the different studies. The target
element types are various: Regular and irregular, first and second order, two-dimensional
and three-dimensional elements. Both element-wise and integration point-wise mapping
schemes have been presented. In Paper A and Paper B the fibre orientations from the
tracked fibres are mapped element-wise. For the mapping scheme in Paper C, described
in Paper F, an external file with the integration point coordinates must be read in.
This detour has been removed in Paper D and Paper E, where the integration points
are directly computed in the code based on the node/element formulation. Figure 2.4
visualises the computed integration points for an irregular shell mesh. With the used
structure tensor method in Paper C and Paper D no individual fibres but a dominant
material orientation is mapped. In Paper E a special modelling approach (described
in the next section) has been developed which is necessary due to the large voxel-size
of 100 µm compared to the carbon fibre diameter of approximately 7 µm. Therefore, the
order Mapping - Modelling is changed and the stiffness tensor is computed first and then
mapped integration point-wise.
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Figure 2.4: Computed integration points (grey crosses), which represent the mapping
target in Paper D, for the two-dimensional shell mesh. Quadrilateral elements have four
integration points per element, while triangular elements have only one. In total, there
are five integration point layers per element.

2.4 Modelling

Since image-based modelling of fibrous composites is a new research field, focus has been
on accurate prediction of the most important material parameter, the elastic tensile
modulus. As the fibre orientation is strongly linked to the elastic modulus, the fibre
orientation analysis is an important part of the studies. Thereby, a good match between
experimentally and numerically determined elastic moduli is an indicator for an accurate
fibre orientation analysis. For Paper A–C a linear orthotrophic material model has been
assigned for the fibre bundles. In Paper A and Paper B the required nine independent
material parameters have been calculated based on homogenisation with the periodic
boundary model EasyPBC [95]. The fibre and matrix stiffness as well as the Poisson´s
ratios must be given as input. Additionally, the fibre volume fraction is included via
the fibre radius in this single fibre representative volume model. In Paper C these nine
material parameters have been calculated by the micro-mechanics model of Chamis [96].
The differences in the results between EasyPBC and Chamis are small in the studied case.

In Paper D material modelling has not been part of the study, while in Paper E a
more advanced material model is presented. Here, the low-resolution imaging requires
a novel way to create the material’s constitutive law. This has been set up within a
framework to account for a composite with anisotropic short fibres. For this framework
the model by Mori-Tanaka [97] has been implemented. Therefore, a strain localisation
tensor must be calculated. It is defined according to Benveniste et al. [98, 99], based on
the Eshelby tensor [100]. The Eshelby tensor is formulated on the theory that the strain
for an ellipsoidal and homogeneous inclusion within an infinite matrix is constant. It is
expressed as

AMT =
[

I + P :
(

(Cm)
−1

: Cf
− I

)]

−1

(2.1)

and incorporates the identity tensor I, the matrix Cm and fibre Cf stiffness tensors,
and Eshelby’s tensor P , which solely depends on the inclusion geometry and the matrix
Poisson’s ratio.
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Finally, the fourth order Mori-Tanaka stiffness tensor CMT depends on I, Cm, Cf

as well as the scalar value of the fibre volume fraction Vf .

CMT = Cm + Vf

(

Cf
−Cm

)

: AMT
[

(1 − Vf )I + VfA
MT

]

−1
(2.2)

To account for different fibre orientation vectors p the stiffness tensor must be rotated
accordingly. The fibre orientations are obtained from the second order scattering tensor.
Here, the eigenvector with the smallest eigenvalue defines the dominant material orienta-
tion. For the chosen voxel size of 100 µm and a fibre diameter of approximately 7 µm it
must be assumed that there are several fibres present within one voxel. Therefore, extra
care must be taken in setting up the material model, as explained with the following
imaginary case.

(a) (b)

Figure 2.5: Visualisation from Paper E of the influence of the non-linear relation between
fibre orientation and mechanical stiffness properties. (a) In case there are three different
fibre orientation regimes with 15◦, 45◦ and 75◦ within one voxel with a size of 100µm the
mean fibre orientation is 45◦, indicated by the black dot. (b) The mean of the stiffness
matrix components C11, indicated by the black triangle, however, does not coincide with the
mean orientation due to the non-linear correlation between fibre orientation and stiffness
property.

With three fibres each, oriented at 15◦, 45◦ and 75◦ within one voxel, the mean
orientation is 45◦ (Figure 2.5a). If on the other hand, the mean of the stiffness matrix
components, C11 in this case, is considered (Figure 2.5b), it differs from the mean of the
fibre orientations due to the non-linear relation between fibre orientation and stiffness
matrix components. Therefore, the chosen voxel-size is too large for accurate modelling.
The fibres should be resolved individually and then homogenised.

However, the scattering tensor does not only deliver the dominant fibre orientation in
form of the eigenvector with the lowest eigenvalue, it also delivers two other eigenvalues.
The remaining two eigenvalues of the scattering tensor represent the fibre orientation
distribution, or in other words, how well the fibres are aligned within one voxel. The
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new term, Directional Anisotropy, has been introduced to account for this sub-voxel fibre
orientation spread. It is given in xy and xz-plane in Equations 2.3 and 2.4, where λi

represents the eigenvalues.

DAxy =
λ3

λ1

(2.3)

DAxz =
λ3

λ2

(2.4)

Figure 2.6: Visualisation from Paper E of three voxels with different sub-voxel fibre
orientation distribution and fibre volume fraction. All voxels show the same dominant fibre
orientation, but yield different ellipsoid shapes representing the X-ray scattering tensor.
These different shapes are used to construct different stiffness matrices Cij (Equation
2.6). Consequently, the stiffness matrix depends on the dominant fibre orientation pi, the
Directional Anisotropy (DA) (Equation 2.3, 2.4) and the Mean Scattering (MS) used in
Equation 2.5.

A ratio of 1 signifies a fully random orientation, while a ratio of 0 represents perfect
alignment. This ratio is set in a linear relation to the sub-voxel fibre orientation spread.
With this sub-voxel fibre orientation spread, an update for each stiffness matrix component
is computed. Additionally, the scattering tensor information is used to include a local
fibre volume fraction, linearly depending on the local mean scattering MSlocal of each
voxel. It is expressed as

V local
f = −

V mean
f

MSc −MSm

MSm +
V mean
f

MSc −MSm

MSlocal, (2.5)

where MSm represents the mean scattering of the pure matirx, while the mean scattering
of all voxels MSc corresponds to the mean fibre volume fraction V mean

f . Thereby, for
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each integration point a separate stiffness matrix, including the sub-voxel fibre orientation
spread and the local fibre volume fraction, is computed (Figure 2.5c) and mapped.

On the basis of the Mori-Tanaka framework the stiffness tensor can then be expressed
in Voigt form as a function of the fibre orientation pi, the Mean Scattering (MS) and the
Directional Anisotropy (DA) as following,

Cij = Cij (pi, DA,MS) . (2.6)

The new way to set up the stiffness matrix is visualised in Figure 2.6. The voxels in the
figure all show the same mean fibre orientation. However, voxel A and B have a different
distribution and hence, a different Directional Anisotropy (DA). Voxel A and C on the
other hand exhibit the same distribution but Voxel C has a higher fibre volume fraction
and hence, they are characterised by a different Mean Scattering (MS).
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CHAPTER 3

Results

This chapter presents the main achievements of the research projects reported in this thesis.
In particular, the results of low-resolution scans as well as different load cases for different
materials and imaging technologies are discussed.

Paper A laid the groundwork for all following papers, where we proposed the holistic
image-based modelling concept XAE, which has been key for all studies. It is showcased
for a non-crimp fabric glass fibre reinforced composite, where the bundle structure was
geometrically segmented from resin-rich areas. Additionally, a fibre tracking analysis
scheme has been used to map fibre orientations element-wise. This allows to accurately
predict the tensile modulus of the scanned samples (Table 3.1).

Paper B is directly based on Paper A and presents a more detailed analysis of
stress concentrations in the studied composite for different image analysis methods. In
tension-tension fatigue investigations of composites with similar layups and mechanical
properties, it has been shown that intersections of unidirectional bundles and off-axis
backing bundles are one of the main drivers of fibre failure [14, 15]. Those intersections
are the same areas that showed the highest stresses in the image-based model in Paper

B. It is worth noting that the scan has been taken in an unloaded state and the model
simulated a static tensile loading. One of the presented image analysis methods allows to
remove the backing bundles from the model. Even in this case the stress concentrations
in the unidirectional bundles remain. This is a clear indicator that at least partly the
fibre failure under fatigue loading is caused by the waviness of the unidirectional bundles.
Further evidence of the stress states causing fibre failure remains for future research.
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Table 3.1: Results of the tensile modulus results, measured along the dominant fibre
orientation, in Paper A comparing the physical tests and the finite element model
predictions. The results are normalised with the glass fibre stiffness due to confidentiality
reasons. In total eight samples were manufactured; Sample-A, E, G were randomly chosen
among them to be scanned.

Sample-A Sample-E Sample-G

Physical test 0.51 0.54 0.52

XAE result 0.51 0.51 0.50

Difference 0.3 % −4.8 % −3.2 %

In Paper C the image-based modelling of non-crimp fabric glass fibre reinforced
composites has been enhanced by the above described structure tensor method and a
semi-automated single bundle segmentation procedure. Additionally, the research goal for
a field of view enlargement has been defined. It is demonstrated that the implemented
structure tensor method is very robust to low-resolution scans. A bisection of the resolution
results in a scanning volume increase by a factor of eight. In other words the data size
scales cubed with the voxel size change.

3.1 Low-resolution scans

The finite element analysis results developed in Paper C are depicted in Figure 3.1 for
the four different voxel-sizes. The original data-set with a voxel-size of 8 µm has been
computationally binned to a voxel-size of 64 µm, corresponding to a data-size of 9459 MB
and 18 MB, respectively. Even though thereby 99.8 % of the data have been removed, the
stress concentrations are still visible. However, the stress distribution appears smeared.
This visual impression can be quantified with the stress histograms (Figure 3.1 middle
row). The mean value is only reduced by 2.9 % from 112 MPa to 109 MPa. At the same
time the numerically predicted tensile modulus is decreased by 4.7 %. The reason for this
can be found in the larger voxels which represent more fibres. Such a homogenisation of
fibre orientations will always lead from a distinct fibre orientation distribution towards a
smeared mean fibre orientation distribution. In the theoretical case of only one voxel for
the entire scanned volume, this voxel would represent the mean orientation of all fibres.
The obtained small deviations in elastic modulus and mean stress value between high
and low-resolution scans can be acceptable in many applications, provided awareness of
their existence and severity. In reverse conclusion, it can be dangerous to only rely on
low-resolution scans for an unknown material.

Therefore, in Paper D the low-resolution X-ray computed tomography of fibrous
composites has been further studied and validated by high-resolution scans. This study
exploits the low-resolution robustness of the structure tensor method. Additionally, this
study illuminates the influence of homogenisation in image analysis and the subsequent
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(a) 8 µm (b) 16 µm (c) 32 µm (d) 64 µm

Figure 3.1: Visualisation from Paper C of the three-dimensional image resolution
influence on the predicted stress distribution in a y-z cross-section at the interface between
backing bundles and unidirectional bundles (top row) and the stress distribution in the
unidirectional bundles depicted in a histogram (middle row). Examples for the image
resolution are shown in the bottom row. [79]
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(a) 20 µm (b) 60 µm

(c) 20 µm (d) 60 µm

(e) 20 µm (f) 60 µm

Figure 3.2: Comparison from Paper D of the zenith or z-off axis angle θ mapped onto
the original grey-scale images for different cross-sectional slices for the two voxel-sizes
20 µm and 60 µm.

mapping process. An industrially injection moulded short glass fibre reinforced ther-
moplastic component with a length of approximately 20 cm has been scanned with a
voxel size of 60 µm. In addition, two regions within this component have been scanned
with a voxel-size of 20 µm. In Figure 3.2 the zenith angle θ, colour mapped onto the
original grey-scale images for three different cross-sectional slices through the image data,
is visualised. In general, it can be stated that there is a good match for the two resolutions.
The low-resolution scan accurately captures the dominant fibre orientation along the
mould flow direction, which approximately coincides with the z-axis. Additionally, the
off-axis middle layer, visible in Slice 4 and 5, is detected by the structure tensor analysis
in the 60 µm data-set. However, there is always some noise present in an X-ray scan, even
more pronounced in a low-resolution scan. This noise is enhanced by the structure tensor
method resulting in small regions with off-axis orientation.

This noise enhancement can be reduced by the two available parameters for the
structure tensor method. The parameter influence is shown for the integration scale
parameter ρST in Figure 3.3, as an example. For small values of ρST random orientation
is estimated. With larger values of the integration scale parameter the noise, which leads
to off-axis orientations, is more and more suppressed. Therefore, it is recommended to
choose a larger ρST . However, for the structure tensor method there is no difference
between noise and real fibre misalignments. Therefore, large ρST values also suppress
local fibre misalignments. In case there are some obstacles in the mould flow which lead
to locally different fibre orientations, these would be suppressed as well. Thus, either a
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(b) σST = 0.5; ρST = 1.0
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(c) σST = 0.5; ρST = 1.75
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(d) σST = 0.5; ρST = 2.25
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(e) σST = 0.5; ρST = 3.0

Figure 3.3: Comparison from Paper D of the zenith or z-off axis angle θ mapped onto
the original grey-scale images (left) and histograms (right) for the same cross-sectional
slice for a voxel-size of 60 µm for different values of the structure tensor parameter ρST .
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compromise for the structure tensor parameters must be found or the parameters must
be locally adjusted based on, e.g., fibre orientation change gradients. The latter remains
for further research.

The mapping work-step becomes more important the lower the chosen resolution. In
case the orientation of each individual fibre is mapped, the mapping process is straightfor-
ward. However, for the case presented in Paper D with 43,180 target integration points
for 207,660,459 source voxels, each with a dominant fibre orientation, the situation is
less straightforward. Therefore, a choice must be made on how to transfer orientation
information into the target model. There are three possible solutions. One is to compute
the mean orientation of all voxels which are associated to each integration point. In the
presented case there are approximately 4,200 voxels per integration point. The result is a
globally very smooth fibre orientation distribution, local misalignments are just smeared
out. Option number two omits any homogenisation during mapping. Thereby, only the
fibre orientation of the voxel containing the integration point is mapped. This has proven
to give the best representation of the original fibre orientation distribution (see Figure
3.4 and also Paper E). However, this approach is prone to induce local noise. The third
possibility is an approach somewhere in between option number one and two. In the
histograms in Figure 3.5 the results for different homogenisation areas are compared with
no homogenisation for the three orientation tensor components aii (orientation tensors
have been first introduced by Advani and Tucker [101]). Here, the mean orientation of 27,
125, 729, and 3375 voxels, respectively, around the target integration point is computed.
Especially for the a33 component of the second-order orientation tensor (Figure 3.5 right)
which represents an orientation along the z-axis, a smearing of the distribution becomes
evident for larger homogenisation areas.
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Figure 3.4: Histograms from Paper D of the actually mapped and originally computed
three aii components of the second-order orientation tensor based on the three-dimensional
image (voxel-size 60 µm). Both counts are normalised for better comparison. No mapping
homogenisation is applied. Only the orientation information of the voxel, the target
integration point lies in, is mapped. There are 43,180 target integration points and
207,660,459 source voxels available for mapping.

The adequate choice of the mapping scheme will always be of high significance and
must be adapted from case to case, also with respect to the modelling goal. In particular it
must be seen as two-way homogenisation as already the structure tensor method represents
a homogenisation. A change in the structure tensor parameters must consequently lead
to a change of the mapping homogenisation area.
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Figure 3.5: Histograms from Paper D of the three aii components of the mapped second-
order orientation tensor for five different homogenisation areas. The fibre orientations are
mapped onto 43,180 target integration points. The results for ’1 voxel’ (yellow curves) does
not apply any homogenisation and only uses the the orientation information of the voxel,
the target integration point lies in. (a) Three different homogenisation areas where two
(orange and red curve) homogenise fibre orientations of 27 and 125 voxels, respectively,
around the target integration points. (b) Three different homogenisation areas where two
(orange and red curve) homogenise fibre orientations of 729 and 3375 voxels, respectively,
around the target integration points.

3.2 X-ray scattering tensor tomography

Beside the implementation of large-field-of-view X-ray computed tomography scans for
industrial applications, also more fundamental imaging research has been performed
in Paper E. In collaboration with the Swiss Light Source, Paul Scherrer Institute in
Switzerland, a novel kind of image-based modelling is presented. The tensor tomography
method developed at the synchrotron X-ray beamline TOMCAT is integrated in a holistic
XAE approach. The investigated sample is a short carbon fibre reinforced polyether ether
ketone composite cylindrical rod with a diameter of 19 mm and a height of 14 mm. As
the resolution of the acquired data-set with a voxel-size of 100 µm is very low compared
to standard imaging of carbon fibre reinforced composites with voxel-sizes up to 7 µm,
special focus has been on how to compensate for low-resolution imaging. The above
described modelling approach incorporating the sub-voxel fibre orientation spread and
the local fibre volume fraction, both based on the scattering tensor information, enable
an accurate prediction of the tensile modulus (Table 3.2). Compared to performing only
a standard fibre orientation mapping (Simulation A), the implementation of the sub-voxel
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Table 3.2: Comparison from Paper E of the experimentally measured tensile modulus and
the numerically predicted tensile modulus of the three simulation variants. Simulation A
uses the dominant fibre orientation and a global fibre volume fraction of 19.9 %. Simulation
B incorporates sub-voxel fibre orientation information from the scattering tensor and a
global fibre volume fraction of 19.9 %. In Simulation C, additionally to the sub-voxel fibre
orientation information, a sub-voxel fibre volume fraction is assigned.

Simulation A Simulation B Simulation C Experiment

Sub-voxel fibre orientation - x x

Sub-voxel fibre volume fraction - - x

Tensile Modulus [GPa] 8.2 8.6 9.1 9.22± 0.044

Deviation from Experiment −11.6% −6.5% −1.6%

fibre orientation information (Simulation B) and additionally of the local fibre volume
fraction (Simulation C) lead to a significant improvement. The tensile modulus is only
underestimated by −1.6 % in Simulation C in contrast to −11.6 % for Simulation A. Thus,
it has been shown that even such low resolutions with voxel-sizes approximately fifteen
times the fibre diameter allow for accurate tensile modulus prediction given an advanced
imaging technology and targeted modelling approach is used. With the approach presented
in Paper E volumetric scanning field of views for carbon fibre reinforced composites can
be increased by three to six orders of magnitude. These results mark a tremendous step
forward towards large field of view analyses of fibre reinforced composites.

In addition to the tensile modulus, also the axial stress distribution inside the sample
and the axial stress histogram are studied (Figure 3.6). The influence of the sub-voxel fibre
orientation information is not very distinct (Figure 3.6a and b). Stress concentrations in
Simulation A appear more smeared in Simulation B, as with the orientation update fibre
orientations are smeared and hence high stresses reduced. In Figure 3.6c the influence of
the local fibre volume fraction update becomes apparent. The mean scattering signal has
been particularly high in the core of the sample and in the extreme periphery. A high
scattering signal signifies a high fibre content in the reconstructed voxel. Consequently,
also high stress is predicted in the numerical model. The differences in the stress histogram
(Figure 3.6d) are more difficult to capture. An important effect to mention is that the
peak of the stresses for Simulation C is lower but shifted to higher values at the same
time. For Simulation A and B there is a maximal possible stress value which is reached
when the fibres are aligned in axial direction. For Simulation C in addition the local fibre
volume fraction must be high in these integration points.
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Figure 3.6: Comparison from Paper E of stresses in axial direction for all three simulation
variants. Simulation A uses the dominant fibre orientation and a global fibre volume
fraction of 19.9 %. Simulation B incorporates sub-voxel fibre orientation information
from the scattering tensor and a global fibre volume fraction of 19.9 %. In Simulation
C, additionally to the sub-voxel fibre orientation information, a sub-voxel fibre volume
fraction is assigned.
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CHAPTER 4

Future research

Future research options are vast. The progress in imaging research is fast, much faster
than in image-based modelling. Phase-contrast scanning and small angle X-ray scattering
tensor tomography used to be limited to synchrotron facilities, but they are becoming
available on lab-based systems and have been tested within this project. Both imaging
technologies show promising capabilities to address two major issues in X-ray computed
tomography; low contrast between fibres and matrix for organic fibre reinforced composites,
and limited fields of view.

Further, with the new MAX IV synchrotron of fourth generation, in Lund, Sweden,
exciting new possibilities are arising, especially for Swedish and Danish material research
teams. Many beamlines at this facility allow for multi-modal imaging, facilitating a
swift change between, e.g., small angle X-ray scattering to micro computed tomography.
Consequently, the material’s structure and morphology can easily be studied during one
beamtime.

Reconstruction and image analysis are classical mathematics dominated research areas,
which have recently seen high popularity. Constantly new methods are introduced. Lately,
machine learning combined with classical approaches in the respected fields has become
popular. But this can change swiftly with the advent of new methods and increased
computational power.

Even though reconstruction is the very basis for tomography, no special focus has
been on investigating the influence of different reconstruction schemes and parameters
within this project. More research is needed to align reconstruction algorithms with the
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modelling goal to optimise the quality of the entire image-based modelling process.
However, with manifold options for acquisition, reconstruction and image analysis it

can become challenging from a material modelling perspective to keep up with all advances
and choose the right approach for a certain material analysis goal. More exchange between
the imaging and modelling research areas is necessary to advance in quality and not only
in quantity of produced scans and image-based models.

Strength of heterogeneous, brittle, materials is controlled by the largest defect, e.g.,
fibre misalignment. The methods presented here have so far only been validated with
respect to elastic modulus, which, in contrast, to strength is controlled by the average
fibre orientation and not by the maximum misalignment angle. Consequently, it remains
to assess the proposed XAE method for its ability to predict strength, and to make
potentially required adaptions to the model for identification and analyses of critical
defects.
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CHAPTER 5

Concluding remarks

Image-based material modelling from nanometre to metre scale will become a standard in
numerical modelling

X-ray computed tomography three-dimensional image-based modelling is a rather
young research field. First studies were published around ten years ago and it has since
seen enormous progress. The performance of the underlying image analysis is constantly
improving, which allows for new modelling approaches. On the other hand there are
plenty of sophisticated methods in composite mechanics available that can greatly benefit
from image-based modelling. The main contribution of this thesis work has been to bridge
this gap between imaging and complex modelling. However, it is unlikely that there will
be a ‘one-for-all-solution’ for image-based modelling. On the contrary, X-ray computed
tomography is a complex technology with many work-steps and aspects. A ‘one-for-
all-solution’ would often limit the quality of the results. We have therefore introduced
the term XAE which proposes a holistic view on X-ray three-dimensional imaged-based
modelling and acts as a framework for different tailored solutions.

Approaches within this project have been developed for non-crimp fabric reinforced,
short fibre injection moulded, pultruded, and prepreg composites for glass, carbon as well
as natural fibres. The applied load cases range from tension, compression, and fatigue to
crash applications.

Image-based modelling is not, and will not become, the universal solution for material
analysis and modelling. In some cases classical numerical modelling or modelling based
on machine learning or deep neural networks might deliver more accurate, cheaper and
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faster solutions. Further, it requires smart choices of method and parameters for image
acquisition and reconstruction as well as tailored solutions for image analysis and modelling.
However, the possible benefits are promising; failure mechanisms can be studied and
implemented in models, in-situ strain fields can be used to validate models, or model-based
scans of manufactured parts can assure safe operation.

I am therefore convinced that X-ray computed tomography three-dimensional image-
based modelling will trigger enormous improvements in research, industrial development
and production.
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CHAPTER 6

Summary of appended papers

Summary Paper A

This study is one of the first that systematically transfers micro X-ray computed tomog-
raphy data of fibre reinforced composites into a finite element models. This non-trivial
process requires a holistic approach where all work-steps in imaging are aligned towards the
modelling goal. Therefore, the expression X-ray computed tomography aided engineering
(XAE) process has been coined. This process has been demonstrated on a non-crimp
fabric glass fibre reinforced composite which is extensively used as material system for
wind turbine blades. With the image-based models on the fibre and fibre bundle level
the large scales properties of the wind turbine blades can be better understood and
consequently lead to improved material systems. In particular, the blade stiffness and
fatigue behaviour is of importance. With the presented automated image analysis schemes
the tensile modulus of the scanned samples is accurately numerically predicted. Further,
detailed stress analyses of critical regions in the bundle layup are conducted.

Summary Paper B

Paper B bases on the in Paper A developed image analysis, meshing and mapping
strategies for non-crimp fabric glass fibre reinforced composites. Often, image analysis
presents the bottleneck in the entire workflow from image acquisition to numerical model
results. Designing an advanced algorithm for fibrous composites which is easy-applicable,
accurate and fast is a challenging and time-consuming task. Depending on the modelling
goal different image analysis methods are required. Here, two image analysis methodologies
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are assessed based on their influence on the stress distributions in the fibre bundle structure.
The methods differ in their representation of the boundary between fibre bundles. Both
methods numerically predict stress concentrations in the overlapping area of off-axis
backing and unidirectional bundles. The validation of accuracy of the stress levels remains
for further research.

Summary Paper C

In Paper C new segmentation, mapping and modelling methods designed for non-crimp
fabric glass fibre reinforced composites have been presented. The introduced structure
tensor method for a fibre orientation analysis in combination with an advanced mapping
scheme allows for accurate and fast modelling. Instead of several hours it has become a
matter of minutes to equip a model with fibre orientations based on an X-ray computed
tomography data-set. However, the methodology from Paper A has not only been
refined but a new research field has been opened. This presented scheme has proven
its robustness to low-resolution image data. Even though 99.8 % of the original data
size has been removed the predicted numerical tensile modulus is only 4.7 % lower than
compared to the model based on the high-resolution data. Thus, it can be stated that the
model can accurately predict fibre orientations for a voxel-size of 64 µm, corresponding to
approximately three times the fibre diameter.

Summary Paper D

The research direction opened in Paper C has been consequently pursued in this study.
It exploits therefore the progress in imaging and image analysis to introduce for the
first time an accurate, automated and fast fibre orientation image-based model of a full
component in an industrial application. The studied sample is an injection moulded glass
fibre reinforced polymer. With the applied robust structure tensor method for a low
resolution of 60 µm in voxel-size fibre orientations can still be captured accurately and
with the novel mapping method transferred into an automotive crash model. The image
analysis and mapping process thereby creates a model based on approximately 210 million
voxels for 43 thousand integration points. The entire process for the studied sample with
a length of 20 cm takes approximately 10 minutes. Therefore, it is now possible to set-up
an accurate X-ray computed tomography-based model of a full scale fibrous composite
part in an industrial serial development in a matter of hours, including image acquisition,
image analysis, and mapping.

Summary Paper E

Paper E emphasises the possibilities of novel X-ray imaging technologies. An ultra-
fast small angle X-ray scattering tensor tomography procedure for synchrotron imaging
has been successfully demonstrated as basis for image-based numerical modelling. A
short carbon fibre reinforced polyether ether ketone composite cylindrical sample with a
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diameter of 19 mm and a height of 14 mm has been investigated. Regular image-based
models of carbon fibre reinforced composites require high-resolution image data with
voxel-sizes up to 5 µm. The presented approach relies on a voxel-size of only 100 µm,
approximately fifteen times the fibre diameter. This extreme low resolution created the
demand for a novel modelling approach in order to accurately predict the tensile modulus.
It goes therefore beyond classical fibre orientation mapping and computes an updated
stiffness matrix based on sub-voxel fibre orientation distribution in combination with a
local fibre volume fraction. Both parameters are calculated based on the reconstructed
scattering tensor data. With the progress presented in this study the possible field of
view for carbon fibre orientation image-based modelling is enlarged by three to six orders
of magnitude compared to state of the art approaches.

Summary Paper F

Usually image data is much richer in information content than the final numerical model.
Even though image analysis often represents the most time-consuming task in an X-
ray computed tomography aided engineering analysis, it is the mapping process that
decides how much of the original image information is transferred to the finite element
model. With Paper F the importance of this process is underlined. Here, an open
access algorithm in form of a Jupyter notebook is described which combines accurate
and fast fibre orientation analysis with a mapping scheme. The fibre orientation analysis
uses a structure tensor approach which computes a dominant fibre orientation per voxel
in the image data. These fibre orientations are then mapped either element-wise or
integration point-wise onto the target numerical model. This algorithm has been used in
Paper C and demonstrated its excellence in terms of speed, accuracy and robustness to
low-resolution image data.
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