
Search-Based Test Generation Targeting Non-Functional Quality
Attributes of Android Apps

Downloaded from: https://research.chalmers.se, 2023-09-08 04:45 UTC

Citation for the original published paper (version of record):
Gereziher, T., Gebrekrstos, S., Gay, G. (2023). Search-Based Test Generation Targeting
Non-Functional Quality Attributes of Android Apps. GECCO '23: Proceedings of the Genetic and
Evolutionary Computation Conference. http://dx.doi.org/10.1145/3583131.3590449

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Search-Based Test Generation Targeting Non-FunctionalQuality
Attributes of Android Apps

Teklit Berihu Gereziher
Chalmers | University of Gothenburg

Gothenburg, Sweden
teklit@student.chalmers.se

Selam Welu Gebrekrstos
Chalmers | University of Gothenburg

Gothenburg, Sweden
welu@student.chalmers.se

Gregory Gay
Chalmers | University of Gothenburg

Gothenburg, Sweden
greg@greggay.com

ABSTRACT
Mobile apps form a major proportion of the software marketplace
and it is crucial to ensure that they meet both functional and non-
functional quality thresholds. Automated test input generation can
reduce the cost of the testing process. However, existing Android
test generation approaches are focused on code coverage and cannot
be customized to a tester’s diverse goals—in particular, quality
attributes such as resource use.

We propose a flexible multi-objective search-based test gener-
ation framework for interface testing of Android apps—STGFA-
SMOG. This framework allows testers to target a variety of fitness
functions, corresponding to different software quality attributes,
code coverage, and other test case properties. We find that STGFA-
SMOG outperforms random test generation in exposing potential
quality issues and triggering crashes. Our study also offers insights
on how different combinations of fitness functions can affect test
generation for Android apps.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software performance; Software verification and
validation.

KEYWORDS
Automated Test Generation, Search-Based Test Generation, Search-
Based Software Engineering, Software Quality, Quality Attributes

ACM Reference Format:
Teklit Berihu Gereziher, Selam Welu Gebrekrstos, and Gregory Gay. 2023.
Search-Based Test Generation Targeting Non-Functional Quality Attributes
of Android Apps. In GECCO ’23, The Genetic and Evolutionary Computation
Conference, July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3583131.3590449

1 INTRODUCTION
Mobile “apps” now form a major proportion of the software being
developed, with almost three million apps on the Android Google
Play store [1]. As in all other software domains, it is critical to ensure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590449

that these apps are reliable and meet their functional and non-
functional requirements. This is primarily done through testing,
the application of input—in this case, often through a touchscreen-
based graphical user interface (GUI)—and the comparison of the
resulting output to a set of expectations.

However, software testing is expensive in terms of both effort and
time [5]. This is especially true when testing is conducted through a
user interface, as a human often performs the test input. Automation
has a critical role to play in reducing such costs, through means
such as automating the selection and execution of test input [5].

One particularly promising form of automation is search-based
test generation, where metaheuristic optimization algorithms are
applied to identify test cases that best maximize or minimize one or
more fitness functions—numeric functions representing properties
of interest, e.g., code coverage [25]. Many testing goals can be
translated into fitness functions, enabling metaheuristic search to
efficiently identify highly effective test input [32].

Automated test generation for Android apps is a growing field of
research (e.g., [6, 7, 21, 22, 24, 28]). Several generation approaches
have been proposed, including search-based techniques [22, 24].
Search-based test generation for Android has even been deployed in
an industrial setting [4]. However, existing approaches are inflexible
and narrowly-focused. They target a single objective or a small range
of objectives, and those objectives are largely focused on source
code or interface coverage [33].

In particular, search-based test generation has not been used to
assess whether Android apps meet quality goals. Quality attributes
offer the means to assess how the software performs tasks, exam-
ining performance, resource usage, availability, and other aspects
of software behavior. If an app produces the correct output, but
in an unacceptably slow manner, then users may still be dissatis-
fied. Meeting quality goals is often part of the release criteria for
software, and testing is generally used to perform such assessment.

In this study, we propose a multi-objective search-based test gen-
eration framework for GUI-based testing of Android apps—STGFA-
SMOG1. In particular, this framework blends fitness functions based
on general test case properties (e.g., crashes discovered), source
code (e.g., line coverage), and software qualities (e.g., CPU usage).
STGFA-SMOG enables a tester to flexibly choose the subset of fit-
ness functions needed to generate tests for their own testing and
quality goals. This framework can also be expanded in the future
with additional fitness functions.

We perform an empirical assessment of STGFA-SMOG, compar-
ing its performance over a variety of apps with a common baseline—
random test generation—in exposing potential quality issues as

1Search-based Test Generation Framework for Android Apps with Support for Multi-
objective Generation

https://orcid.org/0009-0002-1699-4719
https://orcid.org/0009-0009-1842-9626
https://orcid.org/0000-0001-6794-9585
https://doi.org/10.1145/3583131.3590449
https://doi.org/10.1145/3583131.3590449

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lyu, Gay, and Sakamoto

well as crashes. With regard to generating tests targeting quality
attributes (and code coverage), we observed:

• With a 10 generation search budget, STGFA-SMOG outper-
forms random generation at maximizing CPU, memory, and
network usage—as well as line coverage—in all apps, often
with large effect sizes. It outperforms random generation in a
subset of apps for method coverage and battery usage. With
a 15 generation search budget, STGFA-SMOG outperforms
random generation in all configurations.

• STGFA-SMOG shows improved performancewhen the search
budget is increased for CPU, memory, and battery usage, as
well as method coverage. Improvements are smaller or more
inconsistent for line coverage and network usage.

With regard to triggering crashes:
• STGFA-SMOG is able to trigger more crashes—and trigger
the same crashes at a higher frequency—than random genera-
tion. More unique crashes were triggered, and the frequency
increased, at a higher search budget.

• One crash is only triggered targeting memory or network us-
age, one when targeting CPU usage, and one when targeting
battery usage. However, no fitness function configuration is
more effective for triggering crashes across all apps. Instead,
the best configuration is app-dependent.

• Tests targeting battery usage benefited more than other fit-
ness configurations from a larger search budget.

Our study offers insights on how different combinations of fitness
functions can expose quality issues and crashes in Android apps.
We make STGFA-SMOG available (see Section 5) for developers to
use on their own apps, and for researchers interested in advancing
the capabilities and effectiveness of test generation.

2 BACKGROUND
Android Testing: Android is an open-source operating system for
mobile devices, built on the Linux kernel. Apps can be developed in
multiple languages, with many written in Java. The Android SDK
provides tools and APIs for app development [13].

Android apps can be tested at typical levels of granularity, e.g.,
unit, integration, and system levels. However, there are particular
contextual elements that must be considered [17]. First, the primary
means of interaction with apps is through a touchscreen-based
GUI. Such interactions can include, e.g., typing, long and short
taps, swiping, and pinching. Second, system-level testing requires
executing an app on the Android operating system. This execution
can be done on either an actual device or through emulation.

In addition, Android applications are often architected using four
component types [20]. These include activities (distinct user-facing
“screens”), broadcast receivers (event handlers), content providers
(interfacing to share structured data between apps), and services
(background task execution). As we are focused on GUI-based test
generation, we primarily target activities in this research (although
activities can trigger execution of other components).
Search-Based Test Generation:Manual creation of test cases is
tedious, expensive, and error–prone [19]. Automation of aspects
such as test input selection can reduce the cost of this process by
reducing and focusing manual effort [5].

Table 1: Examples of Android test generation tools, con-
trasted by type, whether they generate UI events, whether
they generate system events, and the properties targeted.
Tools Type UI System Targets
Monkey [28] Random Yes Yes None
Dynodroid [21] Random Yes Yes Relevancy to App State
GUIRipper [7] Model-Based Yes No Model Coverage
Q-Testing [27] Model-Based Yes Yes Model Coverage, Curiosity
SwiftHand [6] Model-Based Yes No Model Coverage
EvoDroid [22] Search-Based Yes No Code Coverage
Sapienz [24] Search-Based Yes Yes Crashes, Length, Code Cov.
STGFA-SMOG Search-Based Yes Yes Crashes, Length, Code Cov., Qualities

Search-based test generation frames input selection as a search
problem, where metaheuristic optimization algorithms attempt to
identify test input that best embody properties that testers seek
in their test cases [5, 25]. These properties are assessed using one
or more fitness functions—numeric scoring functions. The meta-
heuristic embeds a strategy for sampling solutions from the space of
possible inputs, often based on a natural process [14]. In test gener-
ation, a “solution” is often either a single test case or a test suite—a
collection of test cases. The metaheuristic uses the fitness functions
to assess solution quality, offering feedback to guide the selection
and improvement of solutions over a series of generations. Search-
based test generation has proven to be a flexible [3], scalable [23],
and competitive [32] method of automated test generation.

The most common metaheuristic for search-based test genera-
tion is a genetic algorithm [11]. Genetic algorithms are modeled
after the natural evolution of a population [14]. In short, a “typical”
test generation approach often resembles the following process:

• An initial population of test cases is randomly generated.
Each test case contains initialization and a random number of
interactions with the interface of the app-under-test (AUT).

• Each generation, the fitness scores of each solution are cal-
culated and a new population is created. This population is
formed through four sources of solutions:
– One of the best solutions may be carried over to the new
population intact (reproduction).

– At a certain probability, two good solutions will be chosen
to create two “children” by combining elements of each
solution (crossover). For example, the children may blend
test cases from the parents.

– At a certain probability, a good solution can bemutated—
e.g., a test case may be modified, added, or deleted.

– At a certain probability, a new randomly generated solu-
tion will be added to the population to maintain diversity.

• When the search budget—typically a limit on the number of
generations—expires, the final population is returned (as well
as the best solution to date, if it is not in the final population).

3 RELATEDWORK
Several approaches to automated test generation for Android apps
have been proposed (e.g., [6, 7, 21, 22, 24, 28]). We briefly summarize
such approaches here, focusing on the examples in Table 1.

Most approaches can be split into three families. First are random
approaches, of which the prototypical is Monkey—a tool included
in the Android SDK [28] that is often effective due to its speed [28].
However, test cases are not saved for reuse. Dynodroid observes the
current state of the AUT and randomly selects relevant events [21].

Search-Based Test Generation Targeting Non-Functional Quality Attributes of Android Apps GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 1: Architecture of STGFA-SMOG.

Model-based approaches (e.g., GUIRipper [7], Q-Testing [27], and
Swifthand [6]) extract a model of the AUT GUI and generate input
intended to cover transitions through the model. Recent approaches
are often based on Reinforcement Learning [27] or other Machine
Learning techniques [15]. Other search-based approaches also exist,
including EvoDroid [22] and Sapienz [24]. EvoDroid targets code
coverage. Sapienz maximizes code coverage and number of crashes
while minimizing test case length.

Our approach differs by targeting a greater variety of goals,
including crashes, test length, multiple forms of code coverage,
and—in particular—multiple aspects of quality (focusing on resource
usage). This offers flexibility to assess different testing goals absent
from relatedwork. STGFA-SMOG also generates both UI and system
events as input, and test cases are saved in a re-executable form.

4 APPROACH
STGFA-SMOG is a multi-objective search-based test generation
framework that generates re-executable UI-based tests for Android
apps. Its core algorithm follows the process outlined in Section 2.
Its architecture is illustrated in Figure 1. In this section, we will
discuss important aspects of how it functions.

Solution Representation: In STGFA-SMOG, each solution repre-
sents a test case. A test case contains a sequence of atomic input
events (considered the “genes” for crossover and mutation). Each
input event consists of the action performed and any parameters
for that action. Seven types of events can be applied as test input:

• System Events: System-wide operations including press-
ing the home or back button, increasing/decreasing/muting
volume, or starting or ending a phone call.

• Navigation Events: Used to navigate the GUI of the AUT,
includes scrolling up, down, left, and right.

• Major Navigation Events: Pressing a menu button, putting
the device to sleep, pressing the button in the center of a
d-pad. As in Monkey, these events are rarely used [2].

• Input Text: A random string is provided as input.
• Tap: A click or long-press is performed at random coordi-
nates (based on the screen size of the device or emulation).

• Swipe: A horizontal or vertical swipe is performed (with
start and end coordinates determined at random).

• Drag and Drop: An item is moved from one location to
another (with random start and end coordinates).

The generated test cases are output in a structured text format that
STGFA-SMOG can re-execute.
Fitness Functions: STGFA-SMOG supports simultaneous opti-
mization of 1–3 fitness functions2. The fitness functions that STGFA-
SMOG currently supports include:

• General Test Properties: Number of Triggered Crashes
(maximized), Test Length (minimized)

• Code Coverage: Line, Method Coverage (both maximized)
• Software Qualities: CPU Usage, Memory Usage, Network
Usage, Battery Usage (all maximized)

In particular, we are interested in the third category in this re-
search. Previous generation frameworks do not allow the generation
of tests to check whether software meets quality goals. We have
focused, at this time, on fitness functions related to various forms
of resource usage. Test cases are evolved to maximize resource
use—potentially leading to detection of quality issues.

The factory method design pattern was used to implement fit-
ness functions to support the addition of more functions in the
future [12]. Fitness functions are user-selectable, and independent
of each other. All fitness functions can be either maximized or min-
imized. However, we have noted above the intended use of each.
Genetic Algorithm: STGFA-SMOG performs multi-objective opti-
mization based on the NSGA-II algorithm [9, 19, 24, 33]. NSGA-II
ranks solution quality by finding solutions that balance optimiza-
tion of the selected fitness functions (i.e., are Pareto-optimal) [9].
The solutions are sorted into levels, where each contains individu-
als that are dominated by the same number of other solutions and
that do not dominate each other. Those in the top level represent
cases where the fitness of one function cannot be improved without
decreasing fitness of another function. Solutions in this level are
sorted based on their “crowding distance”—their similarity to other
solutions at this level. Solutions from a less-dense space on the
Pareto frontier are given higher priority during the formation of a
new generation.

To maintain solution quality, NSGA-II combines the parent pop-
ulation and the new offspring population and performs a fast non-
dominated sorting on the combined population. This prevents the
loss of high-quality solutions from the previous population.

As shown in Figure 1, the event generator generates atomic events.
The test case module represents solutions. The fitness evaluator ex-
ecutes tests using the test runner, which sends the events to the
AUT using Android Debug Bridge (ADB). Before each test execu-
tion, the app is initialized to a fixed state. After fitness evaluation,
NSGA-II selects the best candidate solutions. The variation operator
module performs crossover, mutation, reproduction, and introduces
randomly generated new solutions to maintain diversity. After the
search budget expires, the final population is output as a test suite.

Crossover is performed using uniform crossover. For each atomic
event from the first parent solution, a “coin flip” determines which
child gets that event and which gets the event at the same index
from the second parent. During mutation, the order of events in
2The algorithm employed, NSGA-II, has been found to struggle when applied to more
than three fitness functions [10, 16, 18]. However, as quality goals often conflict [34],
we recommend not targeting many quality-related functions simultaneously.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lyu, Gay, and Sakamoto

a solution can be randomized, or the parameters of one or more
events can be randomly changed.
User-Adjustable Parameters: The following can be configured:

• Minimum and maximum test case size
• Population size andmake-up (proportion created using crossover,
mutation, reproduction, and random generation)

• Search budget (number of generations)
• How many test cases to output from the final population

5 METHODOLOGY
We are interested in comparing the capabilities of STGFA-SMOG
to the standard baseline for Android test generation—random test
generation. We are also interested in performing an exploration
of the relationship between fitness functions and fault detection.
Therefore, we focus on the following research questions:
RQ1: Are test cases generated by STGFA-SMOG more effective

than those generated randomly at meeting tester goals?
RQ2: Are test cases generated by STGFA-SMOG more effective

than those generated randomly at triggering crashes?
RQ3: Is a particular combinations of fitness functions more effec-

tive than others at causing the assessed apps to crash?
RQ4: Does an increased search budget improve the effectiveness

of the resulting test cases?
To implement and evaluate STGFA-SMOG, we followed a design

science research methodology [30], an iterative process:
• We developed a random test generation tool (Section 5.1).
• We extended this tool with a genetic algorithm to create
STGFA-SMOG (Section 5.1).

• Over a multiple iterations, we added additional fitness func-
tions to STGFA-SMOG (Section 5.1).

• After adding each function, we performed an intermediate
evaluation where we gathered fitness values. These fitness
values are used to address RQ1 and RQ4 (Section 5.2).

• We performed a final evaluation to assess crash detection.
This evaluation addresses RQ2–4 (Section 5.3).

STGFA-SMOG is available at:
https://github.com/TeklitB/STGFA-SMOG
Our random generation tool is available at:
https://github.com/TeklitB/Random-Test-Generation
A replication package containing our experiment data is
available at: https://doi.org/10.5281/zenodo.6387568

5.1 Design Science Iterations
Design science is an iterative research methodology intended to
produce an artifact [30]. The methodology consisting of cycles
of problem identification, implementation, and evaluation. In this
study, we implemented a random test generation tool and STGFA-
SMOG over three iterations. After each iteration, we performed
either an informal or a formal evaluation, and used the results to
improve the artifacts.
Iteration 1 (Random Generation): In the first iteration, we de-
signed a random generation tool. Existing random generation tools,

Table 2: Apps used for intermediate evaluation.
App Name Version Size Domain Description
Paris Traffic 2021.04 3.4 MB Navigation Simple, responsive map for your trek
Blokish 3.2 2.2MB Game Board game
Specie 1.36 0.5MB Currency Simple currency conversion
RPNcalc 1.0.3 18MB Science A simple, modern calculator
E numbers 1.4.1 0.1MB Health Food additives reference

like Monkey, do not generate tests in the same format that we
selected for STGFA-SMOG, and the resulting fitness of test cases
could not be calculated in the same manner. Therefore, we decided
to implement our own tool.

The random generation tool generates a population containing
a user-set number of test cases. Each test case contains a random
number of input events—up to a user-set maximum.

As part of this phase, we implemented two fitness functions—
the number of crashes triggered and the test length—as a basis for
making comparisons in later stages.
Iteration 2 (Genetic Algorithm): In the second iteration, we
created an initial version of STGFA-SMOG by extending the random
generation tool with the NSGA-II genetic algorithm. We used the
DEAP framework [8] to implement NSGA-II. At this stage, we used
the two fitness functions implemented in the first iteration as the
optimization targets for the genetic algorithm.
Iteration 3 (Additional Fitness Functions): In the final phase,
we iteratively added additional fitness functions to STGFA-SMOG,
performing an intermediate evaluation after adding each. Specif-
ically, we added fitness functions based on CPU usage, memory
usage, battery usage, network usage, method coverage, and line
coverage. The code coverage fitness functions were implemented
using ACVTool3.

5.2 Intermediate Evaluation
The aim of the intermediate evaluation was to see if STGFA-SMOG
was functioning as intended after adding each fitness function. As
we focused on examining fitness scores during this evaluation, we
use the gathered data to address RQ1 and to partially address RQ4.
Test Subjects: A set of five apps (Table 2) were randomly chosen
from the F-Droid store4. These apps have been used in past research
studies [24, 26, 29]. Apps that require authentication are not sup-
ported by STGFA-SMOG in its current form, and were ignored. We
also discarded apps that could not be instrumented by the code
coverage tool.
Experiment Configurations: Test cases are generated according
to the following general fitness function configuration: (maximize
number of crashes) + (minimize test case length) + (maximize fitness
function related to testing goal).

During this evaluation, the third fitness function was one of
the following: CPU usage, memory usage, network usage, battery
usage, line coverage, and method coverage.

In the experiment, we applied two search budgets—10 and 15
generations. The population size was set to 10 individuals. Both
settings were chosen after informal experimentation, largely based
on the cost of fitness evaluation. The percentage of the population
created through crossover, mutation, reproduction, and addition
of random new solutions were set to 30.00%, 30.00%, 15.00%, and

3https://github.com/pilgun/acvtool
4https://f-droid.org/

https://github.com/TeklitB/STGFA-SMOG
https://github.com/TeklitB/Random-Test-Generation
https://doi.org/10.5281/zenodo.6387568
https://github.com/pilgun/acvtool
https://f-droid.org/

Search-Based Test Generation Targeting Non-Functional Quality Attributes of Android Apps GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 3: Apps used for final evaluation
App Name Version Size Domain Description
Blokish 3.4 2.6MB Game Multiplayer board game
SolitaireCG 3.4.1 0.5MB Game Solitaire Card Games
PalmCalc 3.0.4 2.9MB Scientific Retro scientific calculator
Dib2Calc 0.12.62 3.4MB Science The crazy calculator
Mouse Pounce 1.2.1 20MB Game Egyptian Rat Screw
xskat 1.6 0.5MB Game Play German card game Skat
bmicalculator 4.0.2 2MB Health Body Mass Index calculator
Simple Accounting 1.6.1 3.4MB Money Simple money tracking
Currencies 1.5.1 3.9MB Money A currency converter
Inflation Calc 2.9 (18) 2.2MB Money Inflation calculator

25.00% respectively. The minimum and maximum lengths of test
cases were set to 20 and 50. The same population and test length
settings were applied for random generation as well.

Additional informal experimentation with other search budgets
and population sizes was also carried out to identify settings for
the final evaluation.
Data Collection: For each app, search budget, and fitness function
configuration, five trials were performed. We also performed a
paired trial of random generation for each configuration. In this case,
we generated 300 test suites with STGFA-SMOG (5 apps, 2 search
budgets, 6 fitness configurations, 5 trials) and 300 with random
generation. During each trial, we collected the number of crashes
triggered as well as the final fitness values for each test case.

The evaluation was conducted on a PC with a five-core 1.60GHz
CPU and 8GB RAM running Ubuntu 20.04. A Google Pixel 4 XL
emulator with Android API 28 was used to execute the apps.

We perform statistical analysis to assess our observations by
comparing each configuration of STGFA-SMOG and random test
generation using the following hypotheses:

• 𝐻 : Test cases generated using configuration A will have a
different distribution of fitness values than cases generated
using configuration B.

• 𝐻0: Observations of fitness values for both configurations
are drawn from the same distribution.

Where a configuration of STGFA-SMOG represents a particular
search budget and fitness function combination. We also use ran-
dom test generation as a “configuration” in these comparisons.

Our observations are drawn from an unknown distribution. To
evaluate the null hypotheses without any assumptions on distribu-
tion, we use a one-sided (strictly greater) Mann-Whitney-Wilcoxon
rank-sum test [37], a non-parametric test for determining if one set
of observations is drawn from a different distribution that another
set. We apply the test for each pairing of STGFA-SMOG configura-
tion and random test generation with 𝛼 = 0.05.

In cases of significance, we have also used the Vargha-Delaney A
measure to assess effect size [35]. A small effect (𝐴12) is 0.56 ≤ 𝐴12
< 0.64, medium is 0.64 ≤ 𝐴12 < 0.71, and large is 𝐴12 ≥ 0.71 [36].

5.3 Final Evaluation
After implementing all fitness functions, we performed a final eval-
uation focused on the ability of generated tests to trigger crashes.
The basic evaluation structure was the same, but with an increased
number of apps and some changes to STGFA-SMOG settings.
Test Subjects: An expanded set of 10 apps were selected randomly
from the F-Droid store (Table 3). We attempted to ensure that apps
with varying complexity (e.g., different types and ranges of func-
tionality) and from different product domains were selected.

Experiment Configurations: In this evaluation, we used the same
fitness function formulation as in the intermediate evaluation. How-
ever, to control experiment costs and to focus on the relationship
between quality attributes and crashes, we omitted code coverage-
based functions and applied the following fitness functions: CPU
usage, memory usage, network usage, and battery usage.

Two search budgets of 10 and 30 generations were used. The
population size was set to 20 individuals. The percentage of the
population created through crossover, mutation, reproduction, and
addition of random new solutions were set to 30.00%, 30.00%, 15.00%,
and 25.00% respectively. The minimum and maximum test case
lengths were set to 20 and 50. Again, the same population and test
length settings were applied for random generation.

Data Collection: For each app, search budget, and fitness function
configuration, five trials were performed. We also performed a
paired trial of random generation for each configuration. In this
case, we generated 400 test suites with STGFA-SMOG (10 apps,
2 search budgets, 4 fitness configurations, 5 trials) and 400 with
random generation. During each trial, we collected the number of
crashes and fitness values for each test case.

While a single test case could trigger more than one crash—the
app is reloaded—we found that the majority of test cases triggered
only one crash at most. Therefore, in making comparisons, we
instead use the number of crashes across the full test suite (the final
population). We apply the Mann-Whitney-Wilcoxon rank-sum test
with 𝛼 = 0.05 to the following hypotheses:

• 𝐻 : Test suites generated using configuration A will have a
different distribution of number of triggered crashes than
suites generated using configuration B.

• 𝐻0: Observations of number of triggered crashes for both
configurations are drawn from the same distribution.

Again, a configuration can refer to either an execution of STGFA-
SMOG with a particular search budget and fitness function com-
bination or to an execution of random test generation. In cases of
significance, we again applied the Vargha-Delaney A measure to
assess effect size.

6 RESULTS AND DISCUSSION
For brevity, we use the following abbreviated names for particular
fitness function combinations: CLB (crashes, test length, battery
usage), CLC (crashes, test length, CPU usage), CLM (crashes, test
length, memory usage), CLN (crashes, test length, network usage),
CLLC (crashes, test length, line coverage), and CLMC (crashes,
test length, method coverage).

We also omit Mann-Whitney-Wilcoxon results due to space con-
straints. If an effect size is not reported, it can be assumed that we
could not refute the null hypothesis for Mann-Whitney-Wilcoxon
(i.e., results could be drawn from the same distribution).

6.1 Exposing Potential Quality Issues (RQ1,4)
We first assess whether STGFA-SMOG can generate test cases more
effective at maximizing fitness functions related to software quality
attributes (and code coverage) than random test generation. We
also examine the effect of increasing the number of generations
allocated to STGFA-SMOG.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lyu, Gay, and Sakamoto

Table 4: Median fitness values of final test cases from STGFA-SMOG (10 generation search budget, “Search”) and random
generation for each app. Cases in bold are where random generation yielded higher median results.

CLC CLM CLB CLN CLLC CLMC
Search Random Search Random Search Random Search Random Search Random Search Random

Blokish 26.00 11.50 42610.50 25790.00 6.83e-07 0.00 - - 7.76 6.57 8.53 7.00
Specie 24.00 14.00 46204.50 25398.50 0.00 4.40e-07 481614.00 37255.00 4.59 4.00 1.41 1.80
Paris Traffic 27.00 18.00 38872.00 28098.00 6.71e-07 0.00 2350519.00 124255.40 20.40 18.32 26.26 24.63
RPNcalc 68.00 26.50 136372.50 117998.50 4.66e-07 0.00 - - 22.51 20.30 31.80 29.13
E numbers 29.00 15.00 39955.00 25085.50 4.59e-07 0.00 - - 2.19 2.02 2.17 1.96

Table 5: Median fitness values of final test cases from STGFA-SMOG (15 generation search budget, “Search”) and random
generation for each app.

CLC CLM CLB CLN CLLC CLMC
Search Random Search Random Search Random Search Random Search Random Search Random

Blokish 48.50 10.00 41755.50 24722.50 3.31e-06 1.00e-06 - - 7.70 6.42 8.16 7.05
Specie 35.50 23.50 45898.00 25511.50 1.70e-05 8.60e-07 1235955.00 37471.66 4.52 4.03 2.05 1.90
Paris Traffic 29.00 13.50 50705.50 29242.50 0.00 0.00 1512818.00 135683.00 20.43 18.46 26.81 23.88
RPNcalc 94.50 52.50 134803.50 120060.50 5.08e-05 0.00 - - 22.51 20.30 32.39 29.13
E numbers 42.00 21.50 48234.00 25441.00 1.33e-06 3.10e-07 - - 2.22 2.01 2.17 1.96

Table 6: Effect size results for the fitness values of STGFA-
SMOG (10 generation) versus randomgeneration. Large effect
sizes are bolded, effect size is only measured when signifi-
cance is found with Mann-Whitney Wilcoxon test.

CLC CLM CLB CLN CLLC CLMC
Blokish 0.70 1.00 0.68 - 0.75 0.89
Specie 0.76 1.00 - 1.00 0.83 -
Paris Traffic 0.62 0.94 0.71 1.00 0.77 0.78
RPNcalc 0.86 0.89 - - 0.86 0.90
E numbers 0.82 0.97 0.68 - 0.91 0.89

Table 7: Effect size results for the fitness values of STGFA-
SMOG (15 generation) versus random generation.

CLC CLM CLB CLN CLLC CLMC
Blokish 0.87 0.94 0.64 - 0.89 0.80
Specie 0.62 0.97 0.70 1.00 0.83 0.84
Paris Traffic 0.83 0.98 0.87 1.00 0.95 0.99
RPNcalc 0.90 0.83 0.74 - 0.92 0.87
E numbers 0.65 0.99 0.69 - 0.92 0.92

Table 8: Effect size results for the fitness values of STGFA-
SMOG, 15 generation versus 10 generation search budgets.

CLC CLM CLB CLN CLLC CLMC
Blokish 0.79 - - - - 0.63
Specie 0.86 0.98 0.72 0.88 - 0.90
Paris Traffic - 0.63 0.63 0.21 - 0.66
RPNcalc 0.94 - 0.68 - 0.62 0.69
E numbers 0.83 0.62 - - - -

Tables 4–5 show median fitness values of the final test cases gen-
erated by STGFA-SMOG (for 10 and 15 generation search budgets)
and random test generation. In each case, we report the fitness val-
ues for the quality or code coverage-related function. For example,
for the CLC combination, we report the CPU usage fitness—not the
test length or crashes. Three apps do not have online functionality,
making fitness above 0.00 impossible for network usage.

In almost all cases, STGFA-SMOG yields a higher median fit-
ness than random generation, indicating that the average test is
more effective at exposing potential quality issues. There are two
exceptions—battery usage and method coverage for the Specie app
at a 10 generation budget. One reason for this could be that the app
is that the majority of valid input events require text input, and
purely random input may not be in the expected format or ranges.
In the future, STGFA-SMOG’s string generation could be improved,
e.g., by seeding values extracted from code or documentation [31].

However, at 15 generations, STGFA-SMOG always has a higher
median fitness. This indicates clear improvement with a larger

search budget. We also use statistical analysis to compare the dis-
tributions of fitness values.

Tables 6–7 show the effect size when STGFA-SMOG yielded a
different distribution of fitness results than random generation. An
effect size larger than 0.5 indicates that STGFA-SMOG outperforms
random generation. Large effect sizes (≥ 0.71) are in bold.

With a 10 generation budget, STGFA-SMOGoutperforms random
generation with a large effect size for almost all fitness functions, in
almost all apps. There are only three cases where we cannot refute
the null hypothesis—for battery usage for Specie and RPNcalc and
method coverage for Specie. However, with a 15 generation search
budget, we can refute the null hypothesis in all cases.

Exposing Quality Issues (RQ1): With a 10 generation
search budget, STGFA-SMOG outperforms random gener-
ation for the CPU, memory, network, and line coverage
fitness functions in all apps, often with large effect sizes.
It outperforms random generation in a subset of apps for
the method coverage and battery fitness functions. With a
15 generation search budget, STGFA-SMOG outperforms
random generation for all apps and fitness functions.

This shows the potential of search-based test generation to
expose quality issues in Android apps. There is still room for
improvement—e.g., cases where the effect size is not large. However,
those could be potentially addressed with a higher search budget.

In Table 8, we compare STGFA-SMOG at 15 and 10 generations.
In many cases, there is a significant improvement from increasing
the budget—particularly for CPU usage, followed by method cover-
age, memory, and battery usage. Only a small improvement was
seen for one app for line coverage. For network coverage, large im-
provements were observed for Specie with a longer search budget.
However, performance actually decreased for trafficparis.

Search Budget (RQ4): STGFA-SMOG shows improved
performance when the search budget is increased from
10 to 15 generations for CPU, memory, and battery usage,
as well as method coverage. Improvements are smaller or
more inconsistent for line coverage and network usage.

Search-Based Test Generation Targeting Non-Functional Quality Attributes of Android Apps GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 9: Median number of times each unique crash is trig-
gered by a test suite generated by STGFA-SMOG targeting
a particular fitness function configuration (30 generation
budget). “-” means that the crash type was not triggered.

App Exception CLB CLC CLM CLN
Blokish ActivityNotFoundException 6.20 4.00 8.20 2.40
Dib2Calc IndexOutOfBoundsException 6.80 0.60 1.80 3.60
Dib2Calc ArrayIndexOutOfBoundsException 2.80 4.20 2.00 3.40
Dib2Calc NullPointerException - - 0.20 0.20
PalmCalc NullPointerException - 0.60 - -
SolitaireCG ClassCastException 2.40 - - -

Table 10: Median number of times each unique crash is trig-
gered by STGFA-SMOG (10 generation budget).

App Exception CLB CLC CLM CLN
Blokish ActivityNotFoundException 0.80 0.40 1.80 1.00
Dib2Calc IndexOutOfBoundsException 0.60 - 1.60 0.40
Dib2Calc ArrayIndexOutOfBoundsException - 3.00 - 0.60
Dib2Calc NullPointerException - - - -
PalmCalc NullPointerException - - - -
SolitaireCG ClassCastException - - - -

Table 11: Median number of times each unique crash is trig-
gered by random generation. “Random-𝑁 ” refers to trials
paired to STGFA-SMOG (𝑁 generation search budget).

App Exception Random-10 Random-30
Blokish ActivityNotFoundException - -
Dib2Calc IndexOutOfBoundsException 0.05 0.05
Dib2Calc ArrayIndexOutOfBoundsException 0.05 -
Dib2Calc NullPointerException - -
PalmCalc NullPointerException - -
SolitaireCG ClassCastException - -

In future work, we will further examine an enlarged pool of apps
and search budgets to make clearer recommendations on how to
set the search budget.

6.2 Triggering Crashes (RQ2–4)
Beyond assessing whether software meets its quality requirements,
the core goal of the testing process is to identify faults in the AUT.
This is often accomplished by making the software crash. Therefore,
in our experiments, we are also interested in (a) assessing whether
STGFA-SMOG is better able to trigger crashes than random gener-
ation, and (b), whether targeting particular quality-related fitness
functions tends to lead to the discovery of more crashes.

Tables 9–11 indicate that six unique crashes (based on the ex-
ception and stack trace) were discovered across four of the apps.
The tables show the median number of times that each crash was
triggered by a test suite generated by STGFA-SMOG (targeting four
fitness function combinations) under the two search budgets and
by random generation.

All crashes triggered by random generation are also triggered—
more often—by STGFA-SMOG under any search budget. In turn, all
crashes triggered under a 10 generation search budget are triggered
more often under a 30 generation search budget.

Triggering Crashes (RQ2): STGFA-SMOG is able to trig-
ger more crashes—and trigger the same crashes at a higher
frequency—than random generation.

Search Budget (RQ4): More unique crashes were trig-
gered, and frequency increased, at a higher search budget.

Table 12: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (10 generation bud-
get) and random generation for Blokish.

CLB CLC CLM CLN Random
CLB - - - - 0.52
CLC - - 0.46 - -
CLM - 0.54 - - 0.55
CLN - - - - 0.53
Random 0.48 - 0.45 0.47 -

Table 13: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (10 generation bud-
get) and random generation for Dib2Calc.

CLB CLC CLM CLN Random
CLB - 0.43 - - -
CLC 0.57 - - 0.56 0.58
CLM - - - - -
CLN - 0.44 - - 0.53
Random - 0.42 - 0.47 -

Table 14: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (30 generation bud-
get) and random generation for Blokish.

CLB CLC CLM CLN Random
CLB - - - 0.60 0.66
CLC - - 0.39 - 0.60
CLM - 0.61 - 0.64 0.71
CLN 0.40 - 0.36 - 0.56
Random 0.34 0.40 0.29 0.44 -

Three of the six crashes can be triggered for any fitness function
combination, indicating that the fault is not related specifically to
a particular resource being consumed. However, the other three
crashes were only triggered under a subset of 1–2 configurations. It
is not clear whether the crashes were triggered because a function
consumed more of a resource than other functions, but—at the
least—focusing on that portion of the code enabled the detection of
a functional issue.

Qualities andCrashes (RQ3):One crash is only triggered
targeting memory or network usage, one when targeting
CPU usage, and one when targeting battery usage.

We performed statistical analysis to compare the configurations
of STGFA-SMOG to each other (and to random generation). For
RQ1, we compared test cases. Becausemost test cases only triggered
a single crash (at most), we instead compare full test suites—the
final population.

Tables 12–13 show effect size results comparing multiple STGFA-
SMOG configurations generated under a 10 generation budget and
random generation for relevant apps. These should be read as the
configuration on the row compared to the column. Overall, we
primarily see minor differences. Some configurations are better
than others at triggering crashes, but all with small effect size.
For example, for Blokish, CLM slightly outperforms CLC, and for
Dib2Calc, CLC slightly outperforms CLB and CLN. In many cases,
there is no statistical difference in the distribution of number of
triggered crashes.

Tables 14–16 show the same for a 30 generation search budget.
Again, we see cases where there is no statistical difference in crash
triggering. We do see larger differences between some configura-
tions than with a 10 generation budget. For Blokish, CLM out-
performs CLC and CLN and CLB outperforms CLN. For Dib2Calc,

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lyu, Gay, and Sakamoto

Table 15: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (30 generation bud-
get) and random generation for Dib2Calc.

CLB CLC CLM CLN Random
CLB - 0.62 0.64 - 0.74
CLC 0.38 - - - 0.62
CLM 0.36 - - 0.42 0.60
CLN - - 0.58 - 0.68
Random 0.26 0.38 0.40 0.32 -

Table 16: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (30 generation bud-
get) and random generation for SolitaireCG.

CLB CLC CLM CLN Random
CLB - 0.56 0.56 0.56 0.56
CLC 0.44 - - - -
CLM 0.44 - - - -
CLN 0.44 - - - -
Random 0.44 - - - -

Table 17: Effect size results for number of triggered crashes
between configurations of STGFA-SMOG (30 versus 10 gener-
ation budget).

CLB CLC CLM CLN
Blokish 0.64 0.59 0.66 -
Dib2Calc 0.72 - 0.56 0.66
PalmCalc - - - -
SolitaireCG 0.56 - - -

CLB outperforms CLC and CLM, and CLN outperforms CLM. For
SolitaireCG, CLB outperforms CLC, CLM, and CLN. However, in
all of these cases, the effect size is either small or medium.

From these results, it is difficult to see concrete patterns in
whether targeting certain software qualities for test generation
leads to the discovery of more crashes than when targeting other
qualities. Instead, the results are dependent on the particular AUT.
The relationship between crashes and software qualities is complex,
and in future work, we will widen the scope of apps and search
budgets examined to gather more evidence for the software quality
factors that influence crash detection.

Qualities and Crashes (RQ3): No fitness function con-
figuration is more effective for triggering crashes across
all apps. Instead, the best configuration is app-dependent.
In many cases, there are only minor differences in terms
of the number of triggered crashes.

Table 17 assesses whether a larger search budget improves results
for each fitness configuration. We see that the number of triggered
crashes often improves as the search budget increases for individual
configurations. In particular—when targeting battery usage—the
number of triggered crashes increased for three of the four relevant
apps. For Dib2Calc, the number of triggered crashes increased with
large effect size. In the other cases, the improvements were more
mild. CPU and network usage only discovered more crashes for a
single app when the search budget increased.

Search Budget (RQ4): Tests targeting battery usage ben-
efited more than other fitness configurations from a larger
search budget, in terms of the number of triggered crashes.

7 THREATS TO VALIDITY
Internal Validity: To control experiment cost, we have only gen-
erated five test suites (populations) for each combination of app,
budget, and fitness function configuration. Further, we did not vary
the parameter settings, e.g., population size, instead using values
arrived at following informal experimentation. It is possible that
larger sample sizes or different parameter settings may yield dif-
ferent results. However, we believe we have yielded a sufficient
sample to draw initial observations. Future work will expand the
scope of experiments conducted.

We performed test generation in an emulator. It is possible that
quality issues cannot be replicated on real hardware. In future work,
we will assess replicability of the discovered issues.
External Validity: Our study has focused on a limited number
of apps to control experiment costs. Nevertheless, we believe that
such apps are representative of, at minimum, small to medium-
sized Android apps. We have randomly selected apps from multiple
domains to ensure an unbiased comparison.

We only compare with random test case generation. However, no
tool from related work offers comparable fitness functions, making
comparisons in terms of quality issues difficult. Moreover, many
generation tools are either unavailable or outdated, and random
generation has been found to be competitive in past studies [28].
We developed our own random generation tool to ensure that com-
parisons were made in a fair and equivalent manner (i.e., using the
same fitness calculations), and to ensure that generated tests can
be re-executed.
Conclusion Validity: When using statistical analyses, we have
attempted to ensure all base assumptions are met. We favored non-
parametric methods, as distribution characteristics are not generally
known a priori, and normality cannot be assumed.

8 CONCLUSIONS
In this study, we have proposed a flexible multi-objective search-
based test generation framework for interface testing of Android
apps—STGFA-SMOG. This framework allows testers to target a
variety of fitness functions, corresponding to different software
quality attributes, code coverage, and other test case properties.
We find that STGFA-SMOG outperforms random test generation
in exposing potential quality issues and triggering crashes. Our
study also offers insights on how different combinations of fitness
functions can affect test generation for Android apps.

We make STGFA-SMOG available for others to use and improve.
In future work, we plan to expand the range of available fitness
functions. We observed that fitness evaluation often takes signifi-
cant time, due to the need to initialize and communicate with an
Android device or emulator. Therefore, we will also explore the
use of local search (e.g., hill climbing) to generate test cases, as
only a single solution would need to be evolved instead of a full
population. We will also perform expanded experiments with more
apps, fitness combinations, and search budgets to further study the
relationship between quality attributes and app crashes.
Acknowledgements: This research was supported by Vetenskap-
srådet grant 2019-05275.

Search-Based Test Generation Targeting Non-Functional Quality Attributes of Android Apps GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] [n. d.]. Number of Android applications on the Google Play store. https:

//www.appbrain.com/stats/number-of-android-apps
[2] [n. d.]. UI/Application Exerciser Monkey. https://developer.android.com/studio/

test/monkey
[3] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder K Panesar-Walawege.

2010. A systematic review of the application and empirical investigation of search-
based test case generation. Software Engineering, IEEE Transactions on 36, 6 (2010),
742–762.

[4] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook. In Search-Based Software Engineering, Thelma Elita
Colanzi and Phil McMinn (Eds.). Springer International Publishing, Cham, 3–45.

[5] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, and
Antonia Bertolino. 2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of Systems and Software 86, 8 (2013),
1978–2001. Publisher: Elsevier.

[6] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of
android apps with minimal restart and approximate learning. Acm Sigplan
Notices 48, 10 (2013), 623–640. Publisher: ACM New York, NY, USA.

[7] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated test input generation for android: Are we there yet?(e). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 429–440.

[8] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. Deap: A python framework for evolutionary
algorithms. In Proceedings of the 14th annual conference companion on Genetic
and evolutionary computation. 85–92.

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197. Publisher: IEEE.

[10] Maha Elarbi, Slim Bechikh, Abhishek Gupta, Lamjed Ben Said, and Yew-Soon Ong.
2017. A new decomposition-based NSGA-II for many-objective optimization.
IEEE transactions on systems, man, and cybernetics: systems 48, 7 (2017), 1191–1210.
Publisher: IEEE.

[11] Robert Feldt and Simon Poulding. 2015. Broadening the Search in Search-Based
Software Testing: It Need Not Be Evolutionary. In Search-Based Software Testing
(SBST), 2015 IEEE/ACM 8th International Workshop on. 1–7. https://doi.org/10.
1109/SBST.2015.8

[12] Eric Freeman and Elisabeth Robson. 2020. Head First Design Patterns. O’Reilly
Media.

[13] Suhas Holla and Mahima M. Katti. 2012. Android based mobile application
development and its security. International Journal of Computer Trends and
Technology 3, 3 (2012), 486–490. Publisher: Citeseer.

[14] John Henry Holland. 1992. Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial intelligence.
MIT press.

[15] Zubair Khaliq, Sheikh Umar Farooq, and Dawood Ashraf Khan. 2022. A deep
learning-based automated framework for functional User Interface testing. In-
formation and Software Technology 150 (2022), 106969. https://doi.org/10.1016/j.
infsof.2022.106969

[16] Vineet Khare, Xin Yao, and Kalyanmoy Deb. 2003. Performance scaling of multi-
objective evolutionary algorithms. In International conference on evolutionary
multi-criterion optimization. Springer, 376–390.

[17] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein.
2018. Automated testing of android apps: A systematic literature review. IEEE
Transactions on Reliability 68, 1 (2018), 45–66. Publisher: IEEE.

[18] Mario Köppen and Kaori Yoshida. 2007. Substitute distance assignments in
NSGA-II for handling many-objective optimization problems. In International
Conference on Evolutionary Multi-Criterion Optimization. Springer, 727–741.

[19] Kiran Lakhotia, Mark Harman, and Phil McMinn. 2007. A multi-objective ap-
proach to search-based test data generation. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation. 1098–1105.

[20] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280–291.

[21] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. 224–234.

[22] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 599–609.

[23] Jan Malburg and Gordon Fraser. 2011. Combining Search-based and Constraint-
based Testing. In Proceedings of the 2011 26th IEEE/ACM International Conference

on Automated Software Engineering (ASE ’11). IEEE Computer Society, Washing-
ton, DC, USA, 436–439. https://doi.org/10.1109/ASE.2011.6100092

[24] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis. 94–105.

[25] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156. Publisher: Wiley Online
Library.

[26] Iván Arcuschin Moreno. 2020. Search-based test generation for Android apps. In
2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). IEEE, 230–233.

[27] Minxue Pan, An Huang, GuoxinWang, Tian Zhang, and Xuandong Li. 2020. Rein-
forcement Learning Based Curiosity-Driven Testing of Android Applications. In
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual
Event, USA) (ISSTA). Association for Computing Machinery, New York, NY, USA,
153–164. https://doi.org/10.1145/3395363.3397354

[28] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. 2018. On the
effectiveness of random testing for Android: or how i learned to stopworrying and
love the monkey. In Proceedings of the 13th International Workshop on Automation
of Software Test. 34–37.

[29] Samad Paydar. 2020. An Empirical Study on the Effectiveness of Monkey Testing
for Android Applications. Iranian Journal of Science and Technology, Transactions
of Electrical Engineering 44, 2 (2020), 1013–1029. Publisher: Springer.

[30] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee.
2007. A design science research methodology for information systems research.
Journal of management information systems 24, 3 (2007), 45–77. Publisher: Taylor
& Francis.

[31] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2016. Seeding strategies in
search-based unit test generation. Software Testing, Verification and Reliability
26, 5 (2016), 366–401. https://doi.org/10.1002/stvr.1601 stvr.1601.

[32] Alireza Salahirad, Hussein Almulla, and Gregory Gay. 2019. Choosing the fitness
function for the job: Automated generation of test suites that detect real faults.
Software Testing, Verification and Reliability 29, 4-5 (2019), e1701. Publisher:
Wiley Online Library.

[33] Leon Sell, Michael Auer, Christoph Frädrich, Michael Gruber, Philemon Werli,
and Gordon Fraser. 2019. An empirical evaluation of search algorithms for app
testing. In IFIP International Conference on Testing Software and Systems. Springer,
123–139.

[34] Raed Shatnawi. 2017. Synergies and conflicts among software quality attributes
and bug fixes. International Journal of Information Systems and Change
Management 9, 1 (2017), 3–21. https://doi.org/10.1504/IJISCM.2017.086209
arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/IJISCM.2017.086209

[35] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of
the CL Common Language Effect Size Statistics of McGraw and Wong. Journal
of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https://doi.org/10.
3102/10769986025002101 arXiv:https://doi.org/10.3102/10769986025002101

[36] András Vargha and Harold D. Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal
of Educational and Behavioral Statistics 25, 2 (2000), 101–132. Publisher: Sage
Publications Sage CA: Los Angeles, CA.

[37] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), pp. 80–83. http://www.jstor.org/stable/3001968

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://doi.org/10.1109/SBST.2015.8
https://doi.org/10.1109/SBST.2015.8
https://doi.org/10.1016/j.infsof.2022.106969
https://doi.org/10.1016/j.infsof.2022.106969
https://doi.org/10.1109/ASE.2011.6100092
https://doi.org/10.1145/3395363.3397354
https://doi.org/10.1002/stvr.1601
https://doi.org/10.1504/IJISCM.2017.086209
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJISCM.2017.086209
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101
https://arxiv.org/abs/https://doi.org/10.3102/10769986025002101
http://www.jstor.org/stable/3001968

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Approach
	5 Methodology
	5.1 Design Science Iterations
	5.2 Intermediate Evaluation
	5.3 Final Evaluation

	6 Results and Discussion
	6.1 Exposing Potential Quality Issues (RQ1,4)
	6.2 Triggering Crashes (RQ2�4)

	7 Threats to Validity
	8 Conclusions
	References

