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Abstract 

Background:  Segmenting the whole-body somatostatin receptor-expressing tumour 
volume (SRETVwb) on positron emission tomography/computed tomography (PET/
CT) images is highly time-consuming but has shown value as an independent prog-
nostic factor for survival. An automatic method to measure SRETVwb could improve 
disease status assessment and provide a tool for prognostication. This study aimed 
to develop an artificial intelligence (AI)-based method to detect and quantify SRETVwb 
and total lesion somatostatin receptor expression (TLSREwb) from [68Ga]Ga-DOTA-TOC/
TATE PET/CT images.

Methods:  A UNet3D convolutional neural network (CNN) was used to train an AI 
model with [68Ga]Ga-DOTA-TOC/TATE PET/CT images, where all tumours were manu-
ally segmented with a semi-automatic method. The training set consisted of 148 
patients, of which 108 had PET-positive tumours. The test group consisted of 30 
patients, of which 25 had PET-positive tumours. Two physicians segmented tumours 
in the test group for comparison with the AI model.

Results:  There were good correlations between the segmented SRETVwb 
and TLSREwb by the AI model and the physicians, with Spearman rank correlation 
coefficients of r = 0.78 and r = 0.73, respectively, for SRETVwb and r = 0.83 and r = 0.81, 
respectively, for TLSREwb. The sensitivity on a lesion detection level was 80% and 79%, 
and the positive predictive value was 83% and 84% when comparing the AI model 
with the two physicians.

Conclusion:  It was possible to develop an AI model to segment SRETVwb 
and TLSREwb with high performance. A fully automated method makes quantifica-
tion of tumour burden achievable and has the potential to be more widely used 
when assessing PET/CT images.

Keywords:  AI, Somatostatin receptor-expressing tumour volume, [68Ga]Ga-DOTA-
TATE, [68Ga]Ga-DOTA-TOC, PET/CT

Background
Neuroendocrine neoplasms (NENs) can be divided into often more indolent neuroen-
docrine tumours (NETs) and more aggressive neuroendocrine carcinomas (NECs) 
depending on morphology and proliferation rate (WHO 2019). Well-differentiated NETs 
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typically overexpress somatostatin receptors (SSTR), which can be targeted in imaging 
and treatment (Bozkurt et al. 2017; Kaderli et al. 2019). An important imaging method 
for visualizing SSTR-expressing tumours is positron-emitting 68Ga-labelled somatostatin 
analogues such as [68Ga]Ga-DOTA-TOC, [68Ga]Ga-DOTA-TATE or [68Ga]Ga-DOTA-
NOC during hybrid imaging with positron emission tomography and computed tomog-
raphy (PET/CT) (Bozkurt et al. 2017).

Clinical interpretation of PET/CT images is a visually subjective assessment, some-
times with manual measurements of maximum standardized uptake value (SUVmax) 
in PET images and manual measurements of the largest tumour diameter in the CT 
images. Although the interpretation of SSTR PET/CT has shown good inter-observer 
agreement, differences between readers still exist and can be clinically significant, par-
ticularly when selecting patients for peptide receptor radionuclide therapy (PRRT) 
(Fendler et  al. 2017). High tumour uptake correlates with well-differentiated tumours, 
longer progression-free survival (PFS), and improved response to PRRT (Campana et al. 
2010; Kratochwil et al. 2015). However, SUVmax has several disadvantages, including its 
representation of only one voxel within the volume of interest (VOI), which means that 
the whole tumour burden is not represented, and its sensitivity to noise (Foster et  al. 
2014). Manual or semi-automatic drawing of volumetric measurements has numerous 
weaknesses, particularly time constraints and inter- and intra-observer variance (Foster 
et al. 2014). In the clinical setting, the evaluation of PET/CT images by nuclear medi-
cine specialists and radiologists is challenging because of the time-intensive nature of 
the manual analysis, lack of quantification, and limitations in reproducibility regarding 
evaluation and quantification.

A method for measuring somatostatin receptor-expressing tumour volume (SRETV) 
and total lesion somatostatin receptor expression (TLSRE) on [68Ga]Ga-DOTA-TATE 
PET/CT has previously been suggested (Abdulrezzak et al. 2016). SRETV was measured 
as the tumour volume measuring more than 50% of SUVmax in a VOI, while TLSRE is 
calculated as the product of SRETV and SUVmean of each lesion (Abdulrezzak et  al. 
2016). Toriihara et al. evaluated the sum of whole-body SRETV (SRETVwb) and the sum 
of whole-body TLSRE (TLSREwb) concerning PFS. A larger tumour burden, measured 
as SRETVwb, showed significantly shorter PFS and may therefore have prognostic value 
(Toriihara et al. 2019). Similarly, other methods for measuring SRETVwb and TLSREwb 
have shown that higher tumour volume independently correlates with shorter PFS in 
both prospective and retrospective studies (Tirosh et al. 2017; Thuillier et al. 2022; Chen 
et al. 2023).

Deep learning is a subfield of machine learning, and artificial intelligence (AI) is a 
broader term. In the speciality of image analysis, the primary deep learning method cho-
sen is convolutional neural networks (CNN) (Goodfellow and Courville 2016). CNNs 
are provided with large amounts of data, and the learning procedure imitates how infor-
mation is processed through the brain, with some information processed through con-
volutions in numerous layers that activate different “neurons,” and in the end, there is 
an output, often as a set of classifiers, such as tumour lesion; yes or no (Alzubaidi et al. 
2021).

A method to detect hepatic lesions on [68Ga]Ga-DOTA-TATE PET/CT with AI has 
been developed by Wehrend et al. (2021), and more recently, Carlsen et al. developed 
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and implemented a CNN-based method to segment total tumour burden on [64Cu]
Cu-DOTA-TATE PET/CT (Carlsen et al. 2022).

An objective automated method to detect and quantify SSTR-expressing tumour bur-
den could improve the assessment of disease status and response evaluation, provide a 
tool for prognostication and potential prediction of treatment response, and improve 
the evaluation of response. Therefore, this study aimed to develop a method to detect 
and quantify SRETVwb and TLSREwb from [68Ga]Ga-DOTA-TOC and -TATE PET/CT 
images using CNNs.

Methods
Adults (≥ 18 years) with a clinical indication for [68Ga]Ga-DOTA-TOC or -TATE PET/
CT between August 2017 and December 2021, who were included in our larger study for 
validation of PET/CT, were eligible for this retrospective image analysis. Among these 
848 patients, a subset of 200 patients were arbitrary selected for further analysis. The 
selection was made in a random manner without taking clinical or imaging data into 
account. Due to the time-intensive nature of segmenting tumours, including all patients 
was impossible. Exclusion criteria for further analysis in this study were inclusion in a 
future study planned to validate this method, incomplete examination, or larger extrava-
sation of radiotracer outside the patient, such as urine. The study was carried out fol-
lowing the Declaration of Helsinki and was approved by the Swedish Ethical Review 
Authority (EPN LU 2016/417, 2018/753, and 2021-05734-02). All patients provided 
written informed consent. Data on age, sex, medical referral, and type of radiophar-
maceutical were available for all patients. Clinical data on histopathological diagnosis, 
Ki-67, type of earlier or ongoing treatment, and TNM stage were verified by reviewing 
the patient’s digital medical record in the test group.

PET/CT protocols

The PET/CT scans were performed at Skåne University Hospital in Lund using a Discov-
ery MI or Discovery D690 (GE Healthcare, Milwaukee, USA) PET/CT system. In 2019, 
there was a shift in production from [68Ga]Ga-DOTA-TATE to [68Ga]Ga-DOTA-TOC, 
which is why both radiotracers were included in this study. The radiotracers were pre-
pared according to established techniques (Bozkurt et al. 2017; Zhernosekov et al. 2007; 
Mueller et  al. 2012). The patient received an intravenous injection of 2.0–2.5  MBq/kg 
activity (minimum administered activity 100 MBq and maximum 300 MBq), followed by 
a PET/CT scan approximately 60 min later. The scan covered from the base of the skull 
to mid-thigh. The PET acquisition time was 3.0–3 min 15 s per bed position, depend-
ing on the radiotracer and PET/CT system. Both systems used time-of-flight and point-
spread function correction, and either a low-dose CT scan or a diagnostic CT with 
intravenous contrast (if there were no contraindications) was performed for attenuation 
correction and anatomic correlation.

Manual image analyses

The images had previously been analysed by an experienced nuclear medicine physi-
cian and a radiologist in a clinical setting. For the current study, retrospective segmen-
tation of tumours was performed in consensus by a PhD student in nuclear medicine/
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senior radiology resident (AG) and an experienced nuclear medicine physician (ET) 
using Hermes software (Hermes Medical Solutions, Stockholm, Sweden) and correlated 
with the clinical report. Uptake of [68Ga]Ga-DOTA-TOC and -TATE was considered 
significant for tumour segmentation if it did not correspond to physiological uptake. 
The PET/CT examination clinical report was used as a reference for segmentation. No 
predefined threshold for SUVmax was used. A semi-automatic method was used to 
delineate the tumours on the PET/CT images, where SRETV was defined as the tumour 
volume with uptake higher than 50% of SUVmax within a VOI, and TLSRE was defined 
as the product of SRETV and mean SUV (SUVmean) of the tumour volume (Abdulrez-
zak et al. 2016). Due to relatively high normal background uptake in the liver, manually 
drawn VOIs were often needed to avoid physiological uptake, as previously described 
(Toriihara et al. 2019). Overlap between tumour volumes was avoided. When a conflu-
ent uptake from closely related lesions was present, manually drawn VOIs around each 
lesion guided by the CT were needed to separate the lesions and avoid uptake from adja-
cent lesions. Inside the VOI, an irregular tumour volume with voxels higher than 50% of 
SUVmax was automatically obtained.

Whole-body tumour burden was defined as the sum of all SRETV and was described 
as SRETVwb. Whole-body somatostatin receptor expression was defined as the sum of 
all TLSRE and was described as TLSREwb. The semi-automatic tumour segmentations 
in the test group were separately performed by two physicians for comparison: Reader A 
(AG, ground truth) and Reader B (KV). Reader B was blinded to clinical parameters in 
correlation with the AI model.

Training the AI model

At the core of our AI model was a UNet3D CNN that takes four types of input: a CT 
patch, a SUV patch, an organ mask patch (Trägårdh et al. 2020), and a SUV ratio patch 
with the ratio of the pixel SUV to the closest local maximum. The last patch was intended 
to enable thresholding at 50% of the lesion SUVmax (as used for the annotations). Mey-
er’s flooding algorithm on the SUV image determined the closest local maximum.

Before feeding them to the network, all inputs were resampled to 2.5 × 2.5 × 2.5 mm. 
CT patches were resampled using trilinear interpolation, but the nearest neighbour was 
used for SUV data and manual target segmentations, as the desired segmentation might 
depend on the exact relationship between SUV pixel values. The neural network output 
has the same voxel size, and to avoid introducing artefacts, this voxel size is maintained 
during post-processing and statistical analysis. The latter is first resampled to the CNN 
resolution for pixel-wise comparison to manual segmentations. Resampling the input 
patches also creates a consistent receptive field size for the network, regardless of the 
native image resolution. A UNet3D has a receptive field size of roughly 100 pixels (in any 
dimension), corresponding to around 25 cm in PET/CT images.

Before training of the AI model, the PET/CT examinations were divided into groups 
for training, validation, and testing. Random sampling was used for splitting the data-
set into these groups. The number of patients in each group was set to 17% for testing 
and 17% for validation and the rest for training, according to the recommended ratio of 
dividing the training set in approximately 80% for training and 20% for validation (Cour-
ville IJGaYBaA. 2016). Usually the same number of data is used in the test group as in 
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the validation group (Hastie et al. 2001). Training a neural network involves providing 
the network with a sequence of annotated image patches, and the way patches are cho-
sen can affect the resulting network’s performance. Throughout the training, efforts are 
made to sample all images equally and preserve the balance between cancer and non-
cancer images. Starting from uniform sampling within each class, the sampling of back-
ground voxels was updated in the same way as previously described in Trägårdh et al., 
while uniform sampling was maintained for the foreground (Trägårdh et al. 2022).

For the actual optimization, the Adam optimizer with Nesterov momentum was used. 
The learning rate was initialized to 10–4 and reduced by a factor of 0.95 for every 20,000 
samples until it reaches 10–7. To reduce overfitting, L2 regularization with a weight of 
2 × 10–4 and a single dropout layer with a probability of 0.1 was used. The UNet3D archi-
tecture is illustrated in Fig. 1.

Connected components in the lesion mask were referred to as lesions. Post-process-
ing was performed with the automatic removal of any lesions with a volume less than 
0.05 ml, as it was found on the validation set that these were often false positives.

Statistical analysis

A lesion having partial or full overlap with the reference segmentation was defined as 
a true positive lesion. A segmented lesion with no overlap with the reference segmen-
tation was defined as a false positive lesion. Lastly, a lesion in the reference segmenta-
tion not segmented by the compared segmentation was defined as a false negative lesion. 
True negative lesions were excluded as it is impossible to define true negative lesions 
that were not detected. Sensitivity was calculated on a lesion detection level as the per-
centage of detected lesions compared to the reference segmentation. Positive predictive 
value (PPV) was calculated as the percentage of true positive lesions divided by the sum 
of true positive and false positive lesions, compared to the reference. Specificity could 
not be calculated since the AI model did not detect true negative lesions.

Calculations for true positives, false positives, false negatives, sensitivity, and PPV 
were made by comparing the AI model segmentations with both Reader A and Reader B, 
and Reader B with the ground truth Reader A.

The AI model’s measurements and the Readers’ measurements of SRETVwb and 
TLSREwb were calculated and compared. The correlation between the AI model’s meas-
urements and the Readers’ measurements of SRETVwb and TLSREwb was assessed 
using Spearman rank correlation with a 2-tailed test, and it was considered statistically 

Fig. 1  Illustration of the UNet3D architecture
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significant with a p-value < 0.05. The correlation was considered very strong for Spear-
man’s coefficient r > 0.8, moderately strong for values between 0.6 and 0.8, fair for values 
between 0.3 and 0.5, and poor for values below 0.3 (Chan 2003). Bland–Altman analysis 
was used to visually assess the level of agreement between the AI model and the manual 
SRETVwb and TLSREwb measurements. IBM SPSS Statistics version 28 was used for all 
statistical analyses.

Results
Study population

The study involved 200 PET/CT scans from 200 patients who underwent a clini-
cally necessary [68Ga]Ga-DOTA-TOC or -TATE PET/CT at Skåne University Hospital 
between August 2017 and December 2021. Of these, 22 patients were excluded based on 
the exclusion criteria. The CONSORT diagram (Consolidated Standards of Reporting 
Trials) (Fig. 2) provides additional information. Ultimately, 178 patients were included 
and evaluated for SSTR-expressing tumour burden. The training and validation set com-
prised PET/CT scans from 148 patients, of whom 108 patients had suspected tumour 
lesions segmented, and 40 patients had no SSTR-expressing tumours. The radiotracer 
used in the training and validation set was [68Ga]Ga-DOTA-TATE in 44 examinations 
and [68Ga]Ga-DOTA-TOC in 104 examinations.

Test group

The test group comprised 30 patients whose characteristics are presented in Table  1. 
Sixteen patients were female, and the mean age at the time of PET/CT was 66.4 years. 

Assessed for eligibility (n = 200)

Excluded (n = 22)
• Included in the planned validation

study (n = 12)
• Extensive radiotracer extravasation 

or urine outside patient (n = 4)
• Incomplete examinations (n = 6)

Training of AI-model (n = 148)
• Training group (n = 138)
• Validation group (n = 30)

Patients included (n = 178)

Test group (n = 30)

Fig. 2 CONSORT diagram of the retrospective study

Fig. 2  CONSORT diagram of the retrospective study
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Table 1  Patient characteristics in test group

Characteristic Value (n = 30)

Sex

Female 16

Mean age at PET/CT (y) 66.4 (SD 12.8)

PET with

DOTA-TATE 9

DOTA-TOC 21

Low-dose CT 7

Diagnostic CT with iv. contrast 21

Diagnostic CT without iv. contrast 2

Reason for PET/CT

First examination 7

Follow-up after treatment 13

Follow-up after surgery 1

Suspected progressive disease 5

Evaluation before decision about PRRT​ 4

Primary tumour

No verified NET and no SSTR-expressing lesion 3

Small bowel 18

Pancreas 3

Medullary thyroid cancer 2

Stomach 1

MEN 1 1

Atypical carcinoid 1

Small cell neuroendocrine carcinoma 1

Ki-67 (%)

< 3 17

3 to ≤ 20 7

> 20 2

Unknown 1

Earlier treatment before PET/CT

Surgery 22

PRRT​ 2

Chemotherapy 2

Somatostatin analog 1

Ongoing treatment with somatostatin analog 13

TNM stage at PET/CT

Only primary tumour 5

Loco-regional disease 2

Metastatic 18

NET verified pathological diagnose but no remaining tumour on PET/CT 2

No NET 3

Distribution of somatostatin receptor-expressing lesions*

Pathological uptake 25

Liver 7

Lung 3

Bone 9

Abdomen (except liver) 9

Lymph nodes 10

Other locations 4

No pathological uptake 5
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Before the PET/CT, 23 patients had an established NEN diagnosis, and the mean age 
since diagnosis was 5.6 years (standard deviation, SD 4.0). Four patients were diagnosed 
after the PET/CT, bringing the total number of confirmed NEN diagnoses to 27. Of 
these, 15 patients had grade 1, five had grade 2 and one had grade 3. In six patients, the 
grade was unknown or not applicable.

Performance of the AI model

Out of the 27 patients diagnosed with NEN, 25 had SSTR-expressing tumour lesions, 
and the AI model classified 24 of these patients as positive and 3 out of 5 patients as neg-
ative. When Reader A was used as a reference, Reader B classified 24 out of 25 patients 
as true positive and 5 as true negative. Details on image classification at the patient level 
are summarized in Table 2. Reader A (ground truth) segmented 267 lesions on a lesion 
detection level, with a median of 3 lesions per patient and a range of 0–58 lesions. The 
median segmented tumour volume SRETVwb was 6.8 ml for Reader A, 4.7 ml for the 
AI model, and 6.5 ml for Reader B. Additional details on segmented lesions and tumour 
volume are displayed in Table 3. The sensitivity on a lesion detection level was 80% for 
the AI model versus Reader A and 79% versus Reader B. When comparing Reader B 
versus Reader A, the sensitivity was 92%. Details on sensitivity and PPV are presented in 
Table 4.

There was a moderately strong correlation (r = 0.78, p < 0.001) between SRETVwb 
for the AI model versus Reader A (Fig.  3a) and a very strong correlation (r = 0.83, 

Table 1  (continued)
*The total number of the distribution of somatostatin receptor-expressing lesions is more than 25 as patients could have 
uptake on several locations

Table 2  Classification of images on patient level

True positive, true negative, false positive and false negative classification of images on patient level when using manual 
segmentation or reference doctor as comparison. The results are presented for the entire test group (n = 30)

AI model versus Reader A AI model versus Reader B Reader 
B versus 
Reader A

Correct classification of PET-CT 
image

27 26 29

True positive patient 24 23 24

True negative patient 3 3 5

False positive patient 2 3 0

False negative patient 1 1 1

Table 3  Segmented lesions in the test group

Total number of segmented lesions in the test group (n = 30) presented for Reader A, the AI model and reference Reader B. 
Numbers are total number of lesions, median number of lesions per patient, whole-body somatostatin receptor-expressing 
tumour volume (SRETVwb) in ml and whole-body total lesion somatostatin receptor expression TLSREwb, with interquartile 
range (IQR)

Reader A AI model Reader B

Total number of segmented lesions 267 265 269

Number of lesions per patient (IQR) 3.0 (1.0–14.8) 3.5 (1.75–14.8) 2.5 (1.0–16.3)

SRETVwb (IQR) 6.8 (1.0–35.8) 4.7 (0.5–28.8) 6.5 (0.5–42.8)

TLSREwb (IQR) 61.9 (7.6–583.4) 40.7 (3.4–562.1) 65.1 (2.1–605.0)
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p < 0.001) for TLSREwb (Fig.  3b). The values were similar for the AI model versus 
Reader B for both SRETVwb (Fig. 3c) and TLSREwb (Fig. 3d). The correlation between 
Reader B versus Reader A was even higher, with r = 0.96 (p < 0.001) for SRETVwb 

Table 4  Classification of segmented lesions

Number of lesions which are true positive, false positive and false negative for the AI model versus Reader A, the AI model 
versus Reader B and Reader B versus Reader A. Values are total number of lesions, median number of lesions per patient, 
median volume (ml) and median TLSREwb with interquartile range (IQR). Sensitivity and positive predictive value (PPV) are 
also presented for each comparison

AI model versus Reader A AI model versus Reader B Reader 
B versus 
Reader A

True positive lesions

Total 214 210 246

Per patient (IQR) 2 (0.0–12.0) 1 (0.0–12.0) 2.5 (1.0–14.5)

False positive lesions

Total 45 41 25

Per patient (IQR) 1 (0.0–2.3) 1 (0.0–2.0) 0.0 (0.0–1.3)

False negative lesions

Total 53 59 21

Per patient (IQR) 1 (0.0–2.0) 1 (0.0–3.3) 0.0 (0.0–1.0)

Sensitivity (%) 80 79 92

PPV (%) 83 84 91

Fig. 3  Scatter plots illustrating the correlation between the AI model and Reader A for SRETVwb, (r = 0.78, 
p < 0.001) (a), respectively, TLSREwb (r = 0.83, p < 0.001) (b) and between the AI model and Reader B for 
SRETVwb (r = 0.73, p < 0.001) (c), respectively, TLSREwb (r = 0.81, p < 0.001) (d)
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and r = 0.99 (p < 0.001) for TLSREwb. To demonstrate the agreement between the AI 
model versus Reader A and the AI model versus Reader B, Bland–Altman plots were 
created (Fig. 4).

The AI model was less accurate in two patients, in which it segmented larger vol-
umes of healthy organs, including part of the kidney in one patient and part of the 
bladder in the other. The likely reason for these mistakes was the presence of large 
benign cysts in the kidney of one patient, resulting in an unusual organ shape. In 
the other patient, a unilateral hip prosthesis caused metal artefacts over the blad-
der, making it difficult to distinguish on the CT images. An example of the error in 
the segmented bladder is illustrated in Fig.  5. Additionally, the AI model had diffi-
culty segmenting mediastinal tumours, which are rarer than abdominal tumours and, 
therefore, less frequent in the training data. Similarly, tumours with very low uptake 
were challenging for the AI model to segment. One patient classified as negative by 
Reader A and B and positive by the AI model had only a tumour volume of 0.09 ml 
segmented by the AI model. These pixels were located in the spleen, but the CT 
images had significant breathing artefacts, which might have affected this segmenta-
tion. Overall, the segmentations by the AI model were consistent with those of Reader 
A and B, with some of the best examples of tumour segmentations demonstrated in 
Fig. 6.

Fig. 4  Bland–Altman plots illustrating the agreement of SRETVwb between the AI model and Reader A (a) 
and Reader B (c), respectively, as well as the agreement of TLSREwb between the AI model and Reader A (b) 
and Reader B (d). Dotted lines specify the 95% upper and lower limits of agreement
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Discussion
Segmenting the whole-body tumour burden is time-consuming but has shown value 
in predicting PFS (Toriihara et al. 2019; Thuillier et al. 2022). It could be an impor-
tant predictive factor when selecting patients for PRRT, individualizing PRRT, for 
prognostication and during follow-up (Ebbers et  al. 2021). This is the first study to 
develop a completely automatic AI model to measure the whole-body somatostatin 
receptor-expressing tumour volume and whole-body total lesion somatostatin recep-
tor expression (SRETVwb and TLSREwb) on [68Ga]Ga-DOTA-TOC and -TATE PET/
CT images. Carlsen et al. recently developed a similar method for [64Cu]Cu-DOTA-
TATE PET/CT, showing a similar lesion-wise sensitivity of 84.4% compared to 80% 
in our model. However, they excluded negative control patients from the test group, 
which makes the results not entirely comparable (Carlsen et al. 2022).

Our AI model’s measurements of SRETVwb and TLSREwb in the test group cor-
related strongly to very strongly with the segmentations made by Reader A and B. 
The AI model made a few obvious errors, but in those cases, reasonable explanations 
could be found, such as metal artefacts, large breathing artefacts, multiple cysts mak-
ing the anatomy very different, or very low uptake in tumours. A large amount of 
training data is crucial, and a larger training set might improve these errors. Still, as 
this disease is quite rare (Dasari et  al. 2017), it is also a limiting factor for training 
the AI model. As all patients are individuals, there could always be specific factors 
that an AI model has not encountered before, and therefore, it seems unlikely that AI 
tools will be able to stand alone in the near future. Approval of the segmentations by 
a physician is needed when implementing an AI model, as described by Carlsen et al. 
(2022). Additionally, post-processing using a higher cut-off volume than 0.05 ml for 
removal of larger lesions, such as 0.1 ml, as compared by Carlsen et al. (2022), might 

15

0

Reader A AI modelReader B AI model

Fig. 5  MIP-images with tumour segmentation for Reader A, Reader B and the AI model, respectively. To the 
right axial images over bladder with the AI model segmentations. A part of the bladder was included as 
tumour volume by the AI model. A unilateral hip prosthesis caused metal artefacts over the pelvic area, which 
might have contributed to this error. SRETVwb was 88.2 ml for Reader A, 92.5 ml for Reader B and 117.2 ml for 
the AI model
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be of interest, which could have made the number of false positives lower. However, 
there is always a risk of leaving out too much information.

The majority of neuroendocrine tumours overexpresses the SSTR subtype 2 most, 
but the subtype receptor expression is associated with the type of tumour and dif-
ferentiation (Reubi 2003). Both [68Ga]Ga-DOTA-TOC and -TATE share the same 
imaging characteristics (Velikyan et  al. 2014) although their binding affinity for the 
subtypes of SSTR is slightly different (Reubi et  al. 2000). When comparing the two 
tracers, the differences have been found to be small (Poeppel et al. 2011). Including 
both tracers might comprise a larger imaging diversity when training the AI model 
and we believe it is more of a strength than a weakness that both radiopharmaceuti-
cals were included.

Random sampling was used for randomisation of the patients into training, validation 
and test groups. This method was used to minimize the risk of introducing bias to the 
model. A potential weakness is that the clinical parameters in the different groups may 
not have been evenly distributed.

Reader A

AI model

Reader B

15

0

Patient 1 Patient 2 Patient 3 Patient 4

199.4 ml 138.5 ml 5.8 ml 26.0 ml

193.2 ml 140.1 ml 5.6 ml 29.3 ml

198.5 ml 140.9 ml 5.8 ml 28.3 ml

Patient 1

Patient 1

Patient 2

Patient 2

Patient 3

Patient 3

Patient 4

Patient 4

Fig. 6  Demonstration of 4 patients were the AI model segmented tumours similar as Reader A and Reader B. 
SRETVwb are presented for each example
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Another limiting factor of this study is that manual segmentation is very time-
consuming, and a semi-automatic method was used for segmenting all tumours. This 
method is imperfect, and like all segmentation methods, it has weaknesses (Foster 
et al. 2014; Im et al. 2018). We used this semi-automatic method of delineating 50% 
of SUVmax because it was previously described and showed value in predicting PFS 
(Abdulrezzak et  al. 2016; Toriihara et  al. 2019). It was also a method that could be 
implemented in our software and was feasible compared to complete manual segmen-
tations, especially considering the high number of metastases that occurred in some 
of the patients.

Detectability of tumour lesions in the liver is complicated by a high normal back-
ground uptake. Normal hepatic uptake is also influenced by other factors, such as treat-
ment with long-acting somatostatin analogues (Gålne et al. 2019) and the tumour “sink 
effect” (Beauregard et al. 2012), which likely affect the detection rate of liver metastases, 
both for manual detection and with AI models. One difference in our study compared 
to other studies exploring tumour burden is that we have segmented suspected tumour 
lesions outside the liver with lower uptake than the liver (Thuillier et al. 2022; Wehrend 
et al. 2021; Carlsen et al. 2022). We included these lesions in the model because tumour 
burden with an uptake lower than the liver could be important in the clinical setting. 
Lesions with the lowest SUVmean have shown increased prognostic value compared 
to the highest SUVmax in [64Cu]Cu-DOTA-TATE PET/CT (Carlsen et al. 2021). These 
lesions could be of a more aggressive nature with potential uptake of 2-[18F]fluoro-2-de-
oxy-D-glucose (2-[18F]FDG) if dual-imaging was performed (Chan et al. 2017) or could 
include necrosis after treatment with PRRT, thus showing treatment response. Segmen-
tation of only lesions with higher uptake than the liver might provide a biased AI model, 
which would likely segment fewer false positive lesions, giving a higher PPV, potentially 
resulting in a model that would miss lesions of importance.

Inter-observer variability for SSTR PET/CT has shown consistent and good agree-
ment, but still, both false positive and false negative interpretations of the overall scan 
result occur, as indicated in our results (Fendler et al. 2017). Some inter-observer var-
iability is also expected because there is a difference in background information given 
to Reader A relative to the AI model and Reader B, who did not have access to the 
referral text or written clinical report.

A weakness of this study is the lack of external validation, as recently noted by Pan-
telis et  al. in a review of AI and GEP-NEN (Pantelis et  al. 2022). Although external 
validation was not in the scope of this study, it would have been a significant strength. 
For clinical validation of the method, we have planned another study to explore the 
value of the AI model measurements of SRETVwb and TLSREwb on [68Ga]Ga-DOTA-
TOC and -TATE PET/CT images concerning PFS and OS after treatment with PRRT.

We do not believe that AI will make radiologists or nuclear medicine specialists 
obsolete in the near future, but rather increase the value of PET/CT examinations by 
providing validated imaging biomarkers, such as tumour volume. A future AI method 
will still require the physician to visually inspect the segmented tumour volume and 
correct obviously inaccurate lesions. We believe that automated AI models, such as in 
the field of imaging, could help to improve patient care with better prognostication, 
prediction of treatment response and for evaluation of follow-up examinations.
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Conclusion
To the best of our knowledge, this is the first fully automatic AI model to segment the 
whole-body somatostatin-expressing tumour volume, SRETVwb, and total lesion soma-
tostatin receptor expression, TLSREwb, on [68Ga]Ga-DOTA-TOC and -TATE PET/
CT images. Our AI model showed a good correlation with ground truth with few false 
positive and false negative lesions per patient. Since segmenting the tumour burden is a 
time-intensive task, it is not feasible in clinical practice. A clinically validated AI model 
segmenting neuroendocrine tumour lesions could be of prognostic, as well as predictive 
value when selecting patients for treatment.
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