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Abstract
The increasing demand for higher data rates is driving the adoption of high-spectral-
efficiency (SE) transmission in communication systems. The well-known 1.53 dB gap
between Shannon’s capacity and the mutual information (MI) of uniform quadrature
amplitude modulation (QAM) formats indicates the importance of power efficiency, par-
ticularly in high-SE transmission scenarios, such as fiber-optic communication systems
and wireless backhaul links. Shaping techniques are the only way to close this gap, by
adapting the uniform input distribution to the capacity-achieving distribution. The two
categories of shaping are probabilistic shaping (PS) and geometric shaping (GS). Various
methods have been proposed for performing PS and GS, each with distinct implemen-
tation complexity and performance characteristics. In general, the complexity of these
methods grows dramatically with the SE and number of dimensions.

Among different methods, multidimensional Voronoi constellations (VCs) provide a
good trade-off between high shaping gains and low-complexity encoding/decoding algo-
rithms due to their nice geometric structures. However, VCs with high shaping gains are
usually very large and the huge cardinality makes system analysis and design cumber-
some, which motives this thesis.

In this thesis, we develop a set of methods to make VCs applicable to communication
systems with a low complexity. The encoding and decoding, labeling, and coded mod-
ulation schemes of VCs are investigated. Various system performance metrics including
uncoded/coded bit error rate, MI, and generalized mutual information (GMI) are studied
and compared with QAM formats for both the additive white Gaussian noise channel
and nonlinear fiber channels. We show that the proposed methods preserve high shap-
ing gains of VCs, enabling significant improvements on system performance for high-SE
transmission in both the additive white Gaussian noise channel and nonlinear fiber chan-
nel. In addition, we propose general algorithms for estimating the MI and GMI, and
approximating the log-likelihood ratios in soft-decision forward error correction codes for
very large constellations.

Keywords: Achievable information rates, coded modulation, coherent fiber-optic com-
munications, constellation shaping, forward error correction coding, geometric shaping,
lattices, multidimensional modulation formats, Voronoi constellations.
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CHAPTER 1

Introduction

Driven by emerging technologies such as the Internet of Things, cloud computing, virtual
meetings, video conferencing, etc., the demand for higher data rates and spectral effi-
ciencies (SEs) in wireless and wired communication systems continues to increase. For
example, in the past two decades, the data rate of coherent optical systems has evolved
from 40/100 Gbps [1–3] to 200 Gbps [4], then to 400 Gbps [5] and 800 Gbps [6] per
wavelength recently.

The high demand for SE implies a trend towards high-order modulation formats,
such as the commonly deployed 64-ary and 256-ary quadrature amplitude modulation
(QAM) formats in the fifth generation wireless communication networks [7,8] and high-
throughput fiber-optic experiments [9–11]. Together with higher-order modulation for-
mats, larger baud rates, powerful soft-decision (SD) forward error correction (FEC)
codes, and high-performance digital signal processing (DSP) are the key enablers of
high throughput data links.

In general, power efficiency becomes important for high-SE modulation formats, as
the gap between Shannon’s capacity and the achievable information rates (AIRs) with
equally probable QAM1 formats increases with the SE (will be explained in section 3.3).
An important technique, called signal shaping, aiming at adapting the input distribution
to the capacity-achieving distribution to close this gap, has been intensively studied in
both the wireless [12–14] and optical communities [11, 15–21], and deployed in today’s
commercial products [6, 22,23].

There are two categories of constellation shaping: probabilistic shaping (PS) [15–19,24]
1Throughout this thesis, “QAM” refers to two-dimensional (2D) square and cross QAM if not otherwise

specified.
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and geometric shaping (GS) [11,20,21,25–29], where the former changes the probabilities
of symbols in a QAM constellation and the latter changes the position of equally probable
symbols in a constellation. PS uses a distribution matcher [30] to map information bits
to transmitted symbols with a desired distribution, e.g., a Maxwell–Boltzmann distribu-
tion. A popular way of performing GS at high SEs is using gradient descent algorithms
to optimize the mutual information (MI) or generalized mutual information (GMI), usu-
ally resulting in irregular constellations that require look-up tables (LUTs) to encode
and decode. Comparing the complexity of these two methods is cumbersome, as their
implementation ways are very different. One sure thing is that the complexity of both
the distribution matcher in PS and the LUT in GS increases dramatically at high SEs.
There have been results showing that one-dimensional (1D) and 2D geometrically shaped
constellations with a small cardinality are suboptimal compared with PS [31]. However,
better performance is expected for GS in multidimensional (MD) cases with large constel-
lation cardinalities. All of these motivate the need for designing low-complexity regular
geometrically shaped constellations, to achieve comparable shaping gains with a lower
complexity than current PS and GS methods, and be able to work at high SEs when
other methods break down due to complexity constraints.

Voronoi constellations (VCs), proposed by Conway and Sloane in 1983 [32] and then
generalized by Forney in 1989 [33] are a structured GS method with high shaping gains
and a good potential to solve the aforementioned issues. As their encoding and decoding
do not need LUTs, the complexity does not increase with the SE [32, 34]. In particular,
a set of methods called “shaping for lattice codes” [35–37], in which lattice codes are
used as FEC codes, jointly designs shaping and FEC and has the potential of achieving
Shannon’s capacity [38,39]. The symbol error rate (SER) and bit error rate (BER) have
been studied for the additive white Gaussian noise (AWGN) channel [13,40–43]. In this
thesis, we propose our VCs in a different manner, where shaping and FEC coding are
separated, which allows for independent study of the MI, GMI, and labeling of VCs, and
independent use of arbitrary FEC codes. The designed VCs show good gains over QAM
in terms of uncoded BER, MI, and GMI for both the linear Gaussian channel (papers
A and B) and nonlinear fiber channels (paper C). High coded BER gains over QAM are
found for the Gaussian channel in paper D. We conjecture the effectiveness of using the
designed VCs for shaping for other channels as well, such as wireless fading channels, etc.

1.1 Thesis organization
This thesis consists of two parts, where the goal of Part I is to provide necessary back-
ground knowledge to help understand the appended papers in Part II. The published or
submitted papers in Part II focus on designing a set of methods to apply VCs for both
the linear AWGN channel and nonlinear fiber-optic channels. Thus, the rest of Part I
is organized as follows. Chapter 2 introduces the system models, including the AWGN
channel and fiber-optic communication systems. In Chapter 3, the definition and the

2



Chapter 1

parameters used for designing and comparing modulation formats are described. The
motivation behind performing GS is explained, and several typical coded modulation
(CM) schemes in fiber-optic communication systems are introduced. Chapter 4 discusses
the design of the proposed VCs, including parameters selection, encoding/decoding algo-
rithms, labeling algorithms, CM schemes, and the estimation of AIRs for VCs. Chapter
5 summarizes the contributions of the appended papers, providing an overview of the
flow and relationship among these papers.

1.2 Notation
Bold lowercase symbols denote row vectors and bold uppercase symbols denote random
vectors or matrices. The elements of a vector u are denoted by ui, the rows of a matrix P

are denoted by pi, and the element at row i, column j of a matrix P are denoted by Pij .
The sets of integer, real, and natural numbers are denoted by Z, R, and N, respectively.
Other sets are denoted by calligraphic symbols. Rounding a vector to its nearest integer
vector is denoted by ⌊· ⌉, in which ties are broken arbitrarily. The largest integer not
greater than a given real number is denoted by ⌊· ⌋. The cardinality of a set or the
order of a lattice partition is denoted by |· |.

3
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CHAPTER 2

System Model

In this chapter, we introduce the system model considered in this thesis and describe the
two considered channels: the AWGN channel and the fiber-optic channel.

2.1 Block diagram
Fig. 2.1 depicts a simplified communication system. The overall goal is to reliably trans-
mit information bits from one end to the other. The FEC encoder adds redundancy to
protect these information bits, at the cost of a loss in information rate. The encoded
bit stream is parallelized and then every block of bits b is mapped to an MD symbol
x according to a modulation format X , also known as constellation. The symbols are

Figure 2.1: Block diagram of a simplified communication system.
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Figure 2.2: A fiber link with Nsp spans.

imposed onto an analog eletrical or optical signal and transmitted by the transmitter
over the channel. After receiving the distorted signal, DSP techniques in the receiver
compensate channel impairments and the receiver outputs a noisy version of the trans-
mitted symbol y. The input to the MD symbol demapper is considered memoryless.
Then, log-likelihood ratios (LLRs) l are calculated or b̂ are mapped back according to
a detecting rule by the MD symbol demapper, depending on SD or hard-decision (HD)
decoding. Finally, the FEC decoder recovers the information bits back.

Let X and Y denote the nD random vectors representing the transmitted and received
symbols (after the symbol mapper and before the symbol demapper), respectively. An
important channel model is the AWGN model,

Y = X + σZ, (2.1)

where the random vector Z ∼ N (0, In) with 0 being the all-zero vector and In being
the n× n identity matrix.

The AWGN channel is reliable to model many satellite and deep space communication
links. It is also accurate for modeling the back-to-back (B2B) case in optical communica-
tions. Except for the white Gaussian noise, this model does not consider other phenomena
occurring in wireless or wired channels, such as fading, dispersion, nonlinearity, channel
memory, etc. However, analyzing system performance for these scenarios assuming the
AWGN channel still provides insights for system design. Moreover, its simplicity and
traceability allow for deriving theoretical performance limits. For example, the SER and
BER can be exactly calculated or well approximated under some conditions.

2.2 Fiber-optic channels
This section first introduces the signal propagation along the optical channel, then in-
troduces three commonly used channel models when designing algorithms for fiber-optic
communication systems.

2.2.1 Signal Propagation in the Fiber-Optic Channel
Fig. 2.2 illustrates a fiber link that is divided into N spans of single-mode fiber, which
belongs to the “Channel” block in Fig. 2.1. Each span has a typical length L ranging

6



Chapter 2

from 50 to 120 km, depending on the application. The purpose of dividing the link into
spans is to periodically add an optical amplifier to boost the signal power in each span.

The signal evolution in a single polarization along the fiber is generally governed by
the scalar nonlinear Schrödinger equation

∂E(t, z)
∂z

= − α

2 E(t, z)︸ ︷︷ ︸
Attenuation

− j
β2

2
∂2E(t, z)

∂t2︸ ︷︷ ︸
Dispersion

+ jγ |E(t, z)|2 E(t, z)︸ ︷︷ ︸
Nonlinearity

, (2.2)

where E(t, z) is the electrical field in complex baseband propagation along the fiber at
time t and distance z, α is the attenuation factor, β2 is the group velocity dispersion
parameter, and γ is the nonlinear parameter. Optical light has two orthogonal polariza-
tions, the x and y polarization. Let E(t, z) = [Ex(t, z) Ey(t, z)]T be the electrical field of
the two polarizations. Then the dual-polarization signal propagation in an unamplified
fiber span (before the optical amplifier) can be modeled by the Manakov equation [44]

∂E(t, z)
∂z

= −α

2 E(t, z)︸ ︷︷ ︸
Attenuation

− j
β2

2
∂2E(t, z)

∂t2 |︸ ︷︷ ︸
Dispersion

+ j
8
9γ ∥E(t, z)∥2

E(t, z)︸ ︷︷ ︸
Nonlinearity

, (2.3)

where the coefficient 8/9 is the result of averaging over the rapidly changing polarization
states.

The nonlinear Schrödinger equation and Manakov equation describe the three main
impairments along the fiber: the fiber loss, chromatic dispersion (CD), and nonlinear
Kerr effects. However, it is a time-dependent nonlinear differential partial equation
which cannot be solved analytically. In the following, we will explain the effect of each
impairment separately by neglecting other terms in (2.3).

Fiber loss and amplifier noise

If we only consider the attenuation and neglect the dispersion and nonlinearity, a closed-
form solution is found

E(t, z) = E(t, 0) exp (−αz/2). (2.4)

As can be seen, the electrical field degrades with the distance z as exp(−αz/2). The
signal power P (z) at distance z attenuates as

P (z) = P (0) exp (−αz). (2.5)

The attenuation factor α determines the power loss and is typically expressed in decibels
per km, i.e.,

αdB = −10
z

log10

(
P (z)
P (0)

)
[dB/km]

= (10 log10 e)α. (2.6)
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This power loss is usually compensated by an optical amplifier (except for unamplified
links). Most systems insert an erbium-doped fiber amplifier at the end of each span.
The power gain of the amplifier is G = exp(αL), which fully compensates the loss in
the span. However, the amplifier also introduces amplified spontaneous emission (ASE)
noise, which can be modeled as a Gaussian-distributed random noise, with a power of

PASE = 1
2Fnhν(G− 1)Rs (2.7)

for a single polarization, where Fn is the amplifier noise figure, h is the Planck constant,
and ν is the carrier frequency. The signal-to-noise ratio (SNR) after N amplifiers is
defined as

SNR = Pch

NPASE
, (2.8)

where Pch is the transmitted signal power of a single polarization. The accumulation of
the ASE noise power leads to a degradation in SNR after each fiber span.

Chromatic dispersion

Setting α = γ = 0 in (2.3) gives the closed-form solution

E(ω, z) = E(ω, 0) exp(jω2β2z/2), (2.9)

where E(ω, z) represents the electrical field in the frequency domain at angular frequency
ω and distance z. The spectrum of the transmitted signal is distorted by an all-pass
filter H(ω) = exp(jω2β2z/2), and different frequency components experience different
distortions. The phenomenon is called CD, due to that different frequency components
of a light travel in the fiber at different speeds. The frequency-dependent phase shift
caused by H(ω) results in pulse broadening in the time domain. The extent of the
time-domain broadening ∆T after transmission over a single-mode fiber for a distance z

is

∆T = β2z∆ω, (2.10)

where β2 has the unit of [ps2/km]. Usually another quantity, called the dispersion pa-
rameter

D = −2πc

λ2 β2 [ps/km · nm] (2.11)

is used to describe CD, where c is the speed of light and λ is the wavelength of the light.
For a standard single-mode fiber, D ≈ 17 ps/(km · nm) at λ = 1550 nm.

CD can be compensated in the optical domain by concatenating a dispersion-compensation
fiber with D < 0, or it can be equalized in the electrical domain by time-domain
or frequency-domain digital finite impulse response or infinite impulse response filters
[45,46]. The compensation idea is based on the inverse frequency response

H−1(ω) = exp(−jω2β2z/2). (2.12)
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Nonlinear Kerr effect

The refractive index of the fiber increases with the intensity of optical light, a phenomenon
known as the nonlinear Kerr effect. Since the nonlinearity is dependent on the signal
power, we consider only the attenuation term and neglect the dispersion in (2.3). This
simplification leads to a closed-form solution

E(t, z) = E(t, 0) exp(−αz/2) exp
(

j
8
9γ∥E(t, 0)∥2Leff(z)

)
, (2.13)

where

Leff(z) =
∫ z

0
e−αxdx = 1− e−αz

α
(2.14)

is called the effective length. From (2.13), we can observe that the Kerr effect in the
absence of dispersion only causes a power-dependent phase shift in the time domain,
which results in spectral broadening in the frequency domain.

2.2.2 Channel models
Without a closed-form solution, numerical and analytical models exist to capture full
or partial characteristics of the Manakov equation. This section introduces two com-
monly used channel models for fiber-optic communication systems, the SSFM and the
GN model. Furthermore, we explain the reason why the linear AWGN model is also
widely used in the fiber-optic community.

Split-step Fourier method

The split-step Fourier method (SSFM) is an accurate numerical way of simulating the
Manakov equation, and usually served as a reference model for simulation and validation.
The idea is to discretize the signal propagation along each span of fiber into K small
spatial steps, such that the nonlinearity and dispersion can be separated and expressed
analytically in each step.

Let ∆z = L/K be the step size, N̂ = exp(j 8
9 γ∆z∥E∥2) be the nonlinearity operator

that depends on the power of its input signal E, D̂ = exp(jω2β2∆z/2) be the dispersion
operator, and L̂ = exp(−α∆z/2) be the loss operator. Fig. 2.3 illustrates the structure of
the SSFM for a single fiber span. In each small step, the nonlinearity, dispersion, and the
loss operator are performed successively. The transforms of the electrical field between
the time domain and frequency domain are performed using the fast Fourier transform
(FFT) and inverse fast Fourier transform (IFFT). After K steps, the signal is amplified
and the ASE noise is added.

The accuracy of SSFM has been widely studied in the literature. In general, the
step size ∆z needs to be sufficiently small for the output of the SSFM to converge.
Moreover, high oversampling rates are required to capture the spectral broadening of
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Figure 2.3: The SSFM structure of signal transmitted in one fiber span with K steps.

signal propagation [47, 48]. These indicate a trade-off between the simulation accuracy
and complexity. Various refinements have been proposed for SSFM, including optimizing
the selection and updating rules of the step size [49–53], using low-pass filters to filter
the linear steps [54], implementing the dispersion operator in the time domain [55], etc.

The SSFM can also be used as an effective technique for compensating the linear
and nonlinear impairments in fiber transmission. This is achieved by solving (2.3) with
opposite signs of all terms, a method known as digital backpropagation (DBP). DBP
can be implemented at the transmitter side before signal transmission [56, 57], at the
receiver side [3, 58], or at both sides [59]. Due to complexity limitations, DBP uses a
much larger step size and a lower oversampling rate compared to the forward SSFM used
for simulating signal propagation. Various methods have been proposed to reduce the
complexity of DBP [58,60–62]. Note that DBP cannot perfectly recover the transmitted
signal even with an exact reverse of the forward SSFM, due to the interaction between
signal and noise. To address this, stochastic DBP [63] has been introduced, which takes
into account the statistics of the amplifier noise, thereby improving the performance of
standard DBP.

The Gaussian noise model

Although the SSFM is sufficiently accurate, such numerical methods generally have a high
computation complexity and are not analytically friendly. Therefore, it is important
to have simpler models that can capture the main characteristics of the fiber channel
while being more computationally efficient. The Gaussian noise (GN) model is one such
simpler model that can predict system performance much faster than the SSFM, and
sufficiently reliable under some conditions. The motivation behind the GN model is that
in a dispersed link, the nonlinear interference (NLI) is relatively small and can be treated
as additive Gaussian noise.

The GN model with transmitted 2D (complex) symbols X and received complex sym-
bols Y is expressed as

Y = X +
√

PASE + PNLIZ, (2.15)
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where Z ∼ N (0, I2) with 0 being the all-zero vector and I2 being the 2 × 2 identity
matrix, PNLI is the NLI noise power, and

PASE = Fnhν(G− 1)Rs (2.16)

is the ASE noise power with Rs being the symbol rate. The expression of PNLI depends
on a variety of system parameters, which is well studied and derived in the literature [64].
For example, suppose the following assumptions:

• Dual-polarization transmission.

• Every span contains the same fiber type with the same length.

• Lumped amplification.

• The loss of each fiber span is fully compensated by the amplifier.

• All wavelength-division multiplexing (WDM) channels are identical, i.e, they have
the same channel spacing ∆f , symbol rate, launch power per channel Pch, and
transmit the same modulation format.

• The number of WDM channels Nch is odd.

• The power spectral density of the NLI noise is flat over Rs.

Under these conditions, the NLI power of the center channel is approximated as [64, Eq.
(16), (26), (39)]

PNLI = N1+ϵ 8γ2L2
eff(L)P 3

chα

27π|β2|R2
s

arcsinh
(

π2|β2|R2
s N

2Rs/∆f
ch

2α

)
, (2.17)

where arcsinh is the inverse hyperbolic sine function and

ϵ ≈ 3
10 loge

1 + 6

Lα arcsinh
(

π2|β2|R2
s N

2Rs/∆f

ch
2α

)
 . (2.18)

The GN model serves as a conservative (as it overestimates the NLI power) and conve-
nient tool for predicting system performance. Its prediction accuracy depends on system
parameters and has been extensively validated through both SSFM simulation and ex-
periments [64–66]. Actually, the NLI noise is not additive Gaussian but depends on
the transmitted modulation format [67]. Thus, the enhanced GN model [68] was pro-
posed which takes into account the dependency of the NLI power on different modulation
formats.
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The additive white Gaussian noise model

An even simpler model than the GN model is the AWGN model introduced in section
2.1. The AWGN model is equivalent to the widely used B2B scenario in fiber-optic com-
munication systems, where no fiber is present but only the optical amplifier is considered.
In the B2B case, the commonly used metric is the optical signal-to-noise ratio (OSNR),
measured as

OSNR = SNR · Rs

Bn
(2.19)

where Bn is typically set to 12.5 GHz, corresponding to the 0.1 nm resolution bandwidth
of an optical signal analyzer.

Apart from the B2B scenario, the AWGN model is also reliable when the amplifier noise
is dominant over other impairments or when other impairments are well compensated
by DSP. Comparing the performance of different modulation formats or DSP algorithms
under the same AWGN channel is fair and fast, and the performance gain implies better
tolerance to amplifier noise, which can increase the system’s reach. Thus, the AWGN
channel is a very popular model when designing algorithms for fiber-optic communication
systems.
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CHAPTER 3

Coded Modulation

In Fig. 2.1, the joint design of the symbol mapper/demapper (including the modulation
format X and labeling function g) and FEC encoder/decoder is called a CM scheme.
This chapter first introduces the definition and important figures of merit of a modulation
format, then discusses GS and introduces some typical CM schemes.

3.1 Modulation formats
A modulation format, or a constellation, represents a codebook that specifies how bits
are modulated onto carriers. Modulation formats is a key aspect that directly affects the
data rate in communication systems.

An n-dimensional (nD) constellation is an alphabet X = {x1, x2, . . . , xM}, containing
M nD real vectors with a probability mass function pX(x). The average symbol energy
is

Es =
∑
x∈X

pX(x)∥x∥2. (3.1)

The MD symbol is usually assigned to the following orthogonal physical dimensions:
the in-phase and quadrature (I/Q) pairs, polarizations, time slots, frequencies/wave-
lengths, and spatial dimensions, such as multiple antennas in wireless communications
and multicore/multimode fibers in optical communications. For example, Fig. 3.1 illus-
trates the dimension realization of coherent optical communication systems. Different
physical dimension realizations might result in different system performance, and involve
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Figure 3.1: Physical dimension realization of MD constellations in fiber-optic communication
systems. Each three-dimensional cube on the left represents a four-dimensional
(4D) symbol on the right, containing two I/Q pairs in two orthogonal polarizations
x and y.

different transmitter/receiver setup and DSP algorithms, thereby introducing different
complexity.

Each MD symbol x carries m = log2(M) bits b = (b1, . . . , bm). The bit-to-symbol
mapping function g from b to x carried out in the MD symbol mapper in Fig. 2.1 is
called constellation labeling

g : {0, 1}m → X . (3.2)

Let the random vector (B1, . . . , Bm) represent the labels of the transmitted random
symbol X.

3.2 Performance metrics
This section introduces useful performance metrics to evaluate different modulation for-
mats.

3.2.1 Spectral efficiency
The (uncoded) spectral efficiency [29, 69, 70] is usually normalized per two dimensions,
i.e., per I/Q pair, defined as

β = 2m

n
[bits/2D-symbol]. (3.3)

The granularity of β is also important as it influences the flexibility of selecting data rates
according to requirements. For the most commonly used 2D square or cross M -QAM
formats where M is a power of 2, the granularity is 1 bit/2D-symbol.
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Another commonly used definition of the SE of a data link is defined as

βlink = Rb

B
[bits/s/Hz], (3.4)

where Rb is the bit rate and B is the occupied frequency bandwidth. This quantity
considers the physical implementation including the added guard band, pilot overhead,
FEC overhead, and other overheads. When no such overheads are considered and Nyquist
pulse shaping is used, βlink = β.

3.2.2 Uncoded symbol and bit error rate
The block diagram of an uncoded system is shown inside the dashed border in Fig. 2.1.
The memoryless MD symbol demapper first estimates the transmitted symbol x̂ accord-
ing to a detection rule, and then maps x̂ to its bit labels b̂ = (b̂1, . . . , b̂m).

Upon receiving a symbol y ∈ Rn, which is a noisy version of x, the optimal detection
rule that minimizes the probability of detection error is the maximum a posteriori (MAP)
detection rule

x̂MAP(y) = arg max
x∈X

fY |X(x|y). (3.5)

For equally probable transmitted symbols with pX(x) = 1/M , the MAP rule is equivalent
to the maximum likelihood (ML) rule

x̂ML(y) = arg max
x∈X

fY |X(y|x), (3.6)

where fY |X(y|x) is the channel transition probability density function.
For the AWGN channel,

fY |X(y|x) = 1
(2πσ2/n)n/2 exp

(
−∥y − x∥2

2σ2/n

)
, (3.7)

where σ2 is the total noise power for n real dimensions. Then the ML decoding rule is

x̂ML,AWGN(y) = arg max
x∈X

1
(2πσ2/n)n/2 exp

(
−∥y − x∥2

2σ2/n

)
= arg min

x∈X
∥y − x∥2 (3.8)

For the nonlinear fiber channel, y represents the memoryless symbol after DSP and
fY |X(y|x) is not known analytically. Thus, mismatched decoding is performed, where
f(y|x) is selected to be a Gaussian distribution. The decoding rule remains the same as
in (3.8).
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Transmitting a constellation X , the uncoded SER measures the average probability of
the decoder making an error, defined as

Ps =
∑
x∈X

pX(x)Pr(x̂ ̸= x|x). (3.9)

Let dE(u, v) denote the Euclidean distance between two vectors u and v, dmin denote
the minimum Euclidean distance (MED) of the constellation, and Amin(x) denote the
number of nearest neighbors of x at Euclidean distance dmin in a constellation X , i.e.,

Amin(x) = |{x̃ ∈ X : dE(x, x̃) = dmin}|. (3.10)

For a constellation with equally likely symbols transmitted over the AWGN channel,
the uncoded SER in (3.9) can be approximated by the nearest neighbor approximation
(NNA)

Ps ≈
1

M

∑
x∈X

Amin(x)︸ ︷︷ ︸
Āmin

· 1
2 erfc

√d2
min

4N0

 , (3.11)

where Āmin is the average number of nearest neighbors of the constellation, N0 is the
total noise variance, and erfc( · ) is the complementary error function. The NNA is
asymptotically exact for high Es/N0.

The uncoded BER is defined as the average error probability over all bit positions, i.e.,

Pb = 1
m

m∑
k=1

∑
x∈X

pX(x)Pr(b̂k ̸= bk|x), (3.12)

where b̂k is the kth bit of x̂.
For a constellation with equally likely symbols transmitted over the AWGN channel,

the NNA of the uncoded BER is

Pb ≈
1
m

m∑
k=1

1
M

∑
x∈X

Ak
min(x)Pr(dE(x̂, x) = dmin|x)

= 1
m

· 1
M

∑
x∈X

m∑
k=1

Ak
min(x)︸ ︷︷ ︸

Gp

· 1
2 erfc

√d2
min

4N0

 (3.13)

where

Ak
min(x) = |{x̃ ∈ X : dE(x̃, x) = dmin, b̃k ̸= bk}|, (3.14)
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and the bit labels of x̃ are represented by b̃ = (b̃1, . . . , b̃m). The expression Gp refers to
the average number of different bits per pair of adjacent symbols, which is known as the
Gray penalty and will be discussed further in section 3.2.4.

Fiber-optic communication systems require the BER after FEC decoding, called the
“post-FEC BER” (as shown in Fig. 2.1), to be lower than 10−15. In practice, due to
complexity limitations, a “pre-FEC” BER is often simulated before applying an HD
FEC code. This pre-FEC BER is either the uncoded BER or the BER after decoding of
the inner SD FEC codes if concatenated CM is used. The design criterion is usually to
aim for a pre-FEC BER between 10−4 and 10−2, and then the HD FEC code can further
suppress the residual error down to 10−15.

3.2.3 Asymptotic power efficiency

From (3.11), we can observe that the SER is related to the argument
√

d2
min

4N0
inside the

complementary error function. To measure how power-efficient a constellation at a given
dmin, a parameter γ is defined satisfying

γ
Eb

N0
= d2

min
4N0

⇒ γ = d2
min

4Eb
, (3.15)

where Eb = Es/m. The γ is called the asymptotic power efficiency (APE) [71, Eq. (5.8)],
[29] of a constellation (with equally probable symbols). At high Es/N0, if two constella-
tions have the same Āmin, a constellation with a greater γ requires a smaller Eb/N0 for
a certain Ps, thus considered more power-efficient.

Pulse amplitude modulation (PAM) format (with M = 2β levels equally spaced sym-
metrically around the origin) has an APE of

γPAM = 3β

2(2β − 1) (3.16)

at SE β. An nD cubic constellation constructed by the Cartesian product of n equal 1D
PAM constellations (such as square QAM constellations) has the same APE as PAM.
The APE of PAM γPAM is usually chosen as a benchmark [69,70], with respect to which
the APE gain of a constellation is defined as

g ≜ 10 log10
γ

γPAM
[dB]

= gc + gs. (3.17)

The APE gain can be separated into an asymptotic coding gain gc and an asymptotic
shaping gain gs [29]. The coding gain comes from better position arrangement of con-
stellation points over the cubic packing. The shaping gain is obtained by using a more
spherical boundary than a hypercubic boundary.
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Algorithm 1 Gray penalty calculation
Input: The constellation X = {x1, . . . , xM}. Output: Gray penalty Gp.
Preprocessing: Let g−1 denote the function that maps a symbol to its bit label.

1: counter1 = 0
2: counter2 = 0
3: for i = 1, 2, . . . , M do
4: Find H = {h ∈ X : ∥xi − h∥ = dmin}
5: counter1 ← counter1 + |H|
6: c← g−1(xi)
7: B ← {g−1(h) : h ∈ H}
8: counter2 ← counter2 +

∑
b∈B dH(c, b)

9: end for
10: Gp = counter1/counter2

3.2.4 Gray penalty
To evaluate the labeling rule of a constellation with equally likely points, the Gray
penalty Gp is defined as the average number of different bits per pair of symbols at
distance dmin [72,73], which can be found in (3.13). The Gray penalty predicts the ratio
of the BER Pb to SER Ps at high Es/N0 for the AWGN channel:

Gp ≈
mPb

Ps
. (3.18)

Gray-labeled square QAM has the minimum Gp of 1. A pseudocode for calculating the
Gray penalty of a constellation is given in Algorithm 1, where dH denotes the Hamming
distance between two binary vectors.

3.2.5 Achievable information rates
The amount of information per symbol that a certain channel can transmit reliably, using
a certain modulation format and an encoder/decoder pair, is known as the AIRs [74].
The maximum AIRs including the MI and GMI which serve as fundamental limits of a
CM scheme, will be introduced in section 3.4.

Mutual information

The MI between nD random transmitted and received symbols X and Y in Fig. 2.1 is
defined as

I(X; Y ) ≜
∑
x∈X

pX(x)
∫
Rn

fY |X(y|x) log
fY |X(y|x)

fY (y) dy. (3.19)
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By applying Monte Carlo integration, the MI can be approximated as

I(X; Y ) ≈ 1
Ns

Ns∑
i=1

∫
Rn

fY |X(y|x(i)) log
fY |X(y|x(i))

fY (y) dy

≈ 1
Ns

Ns∑
i=1

log
fY |X(y(i)|x(i))

fY (y(i))

= 1
Ns

Ns∑
i=1

log
fY |X(y(i)|x(i))

1
M

∑
x∈X fY |X(y(i)|x)

(3.20)

where x(i) for i = 1, 2, . . . , Ns are Ns symbols drawn from pX(x(i)), and given a certain
x(i), y(i) is drawn from the conditional distribution of the channel fY |X(y(i)|x(i)).

Generalized mutual information

If constellation labeling is considered, the MI between X and Y can also be written as

I(Y ; X) = I(Y ; B1, . . . , Bm)
= I(Y ; B1) + I(Y ; B2|B1) + · · ·+ I(Y ; Bm|B1, . . . , Bm−1) (3.21)

according to the chain rule. Neglecting the conditions of all terms in (3.21) results in a
lower bound on it, i.e.,

IBICM ≜
m∑

k=1
I(Y ; Bk) ≤ I(Y ; X). (3.22)

This quantity is called the bit-interleaved coded modulation (BICM) capacity [75, 76].
With the assumption that all bits B1, . . . , Bm are independent, which is true for equally
likely transmitted symbols, (3.22) is called the GMI [74, Eq. (14)]. Eq. (3.22) can be
written as [74, Eq. (16)]

GMI = 1
M

m∑
k=1

∑
b∈{0,1}

∑
x∈X b

k

∫
Rn

fY |X(y|x) log2

1
M

∑
x∈X b

k
fY |X(y|x)

1
2 fY (y)

dy, (3.23)

where X b
k ⊂ X is the set of constellation points with a bit b at position k in their m-bit

binary label.
The GMI in (3.23) can be approximated by Monte Carlo simulation using Ns channel

realization pairs (x(i), y(i)), where x(i) is uniformly and independently drawn from X
at time index i and y(i) is the channel output of x(i) for i = 1, . . . , Ns. Let the set Zb

k

denote all indices i of input symbols x(i) that have a bit b at position k. Then (3.23) is
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approximated as

GMI ≈ 1
Ns

m∑
k=1

∑
b∈{0,1}

∑
i∈Zb

k

log2

1
M

∑
x∈X b

k
fY |X(y(i)|x)

1
2 fY (y(i))

= 1
Ns

m∑
k=1

∑
b∈{0,1}

∑
i∈Zb

k

log2

∑
x∈X b

k
fY |X(y(i)|x)

1
2
∑

x∈X fY |X(y(i)|x)
. (3.24)

For a certain channel, the MI only depends on the constellation points, whereas the
GMI also depends on the constellation labeling. For the nonlinear fiber channel, an
auxiliary Gaussian distribution is typically used to replace the fY |X(y|x) in (3.20) and
(3.24) [77]. The resulting MI and GMI are lower bounds of the true AIRs for the nonlinear
fiber channel.

The MI and GMI can be used to compare different modulation formats and DSP algo-
rithms, and predict data rates and system reach for fiber-optic communication systems.
The MI is the a suitable predictor for multilevel coded modulation (MLCM) or nonbinary
CM, whereas the GMI is for BICM [74,78–80].

3.3 Geometric shaping
Shannon’s channel capacity is defined as the supremum of the MI under an average power
constraint P over all possible input distributions pX(x), i.e.,

C ≜ sup
pX (x):Es≤P

I(X; Y ). (3.25)

For a memoryless AWGN channel, the optimal distribution that maximizes this MI is
the Gaussian distribution, whereas the commonly used distribution is a uniform distribu-
tion, corresponding to a QAM constellation with equally probable symbols. The asymp-
totic gap between the uniform distribution and Gaussian distribution is the asymptotic
shaping gain gs in (3.17), which is 1.53 dB1 [81], as shown in Fig. 3.2. This gap can only
be closed by adapting pX(x) to the Gaussian distribution, which is called constellation
shaping (or signal shaping) in the literature.

GS can be dated back to the 1950’s, from two dimensions [25–27] to higher dimen-
sions [69, 82] for the AWGN channel. It aroused intensive interest in the fiber-optic
communication community since 2016. MD GS has been performed at low and medium
SEs (smaller than approximately 6 bits/2D-symbol) with small constellation cardinali-
ties, relying on different methods, such as machine learning [83–87], and lattices [88–93].
Usually LUTs are needed for encoding and decoding, which is fine with small sizes, but

1A strictly uniform input distribution corresponds to square QAM formats with equally likely symbols.
Cross QAM formats with equally likely symbols are close to a uniform distribution and I believe their
asymptotic gap to the Gaussian distribution is slightly lower than 1.53 dB.
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Figure 3.2: The gap between channel capacity and the MI of uniform square QAM constella-
tions for the AWGN channel.

the complexity of the LUT grows exponentially when further increasing the SE. In [94],
MD GS was performed at SEs of up to 13 bits/2D-symbol, through machine learning
methods utilizing gradient descent algorithms to optimize the GMI, and achieves near-
capacity performance.

An alternative GS method is lattice-based VCs. VCs do not need LUTs for encoding
and decoding, and the complexity does not increase rapidly with the SE. MD VCs were
studied for fiber communications in [95–98] and paper C. In papers A, B, and D, the
performance of VCs is investigated for the AWGN channel, but the proposed algorithms
are also applicable to nonlinear fiber channels. In [99], VCs are compared with some ge-
ometrically shaped constellations through machine learning methods. We will introduce
VCs in detail in chapter 4.

For nonlinear fiber channels, shaping might induce a modulation-dependent NLI noise,
which is related to the 4th and 6th order moments of the shaped constellations [100,101].
In [100], the impact of shaping on the induced NLI noise is studied for nonlinear fiber
channels, and the performance gain found for nonlinear fiber channels is smaller than in
the B2B case due to the NLI penalty. However, some shaped constellations are shown to
reduce the nonlinear effects [102].

Although shaping techniques can harvest shaping gains, some of them might increase
the peak-to-average power ratio (PAPR) over QAM [103–106], which results in perfor-
mance penalties due to impairments in the optical transmitter, such as the Mach-Zehnder
modulator and digital-to-analog converter. Clipping is usually implemented to reduce
the PAPR, which might degrade the performance, and can be optimized for systems
transmitting shaped constellations [105].
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3.4 Coded modulation
FEC coding is a basic component of many wireless and wired communication links, and
is a necessity especially when re-transmission is not possible or causes large delay, such
as fiber-optic communications, satellite communications, and some use cases in the fifth
generation mobile network. Concatenated codes [107, 108], proposed by Forney, where
usually an HD outer code and one or several SD inner codes (depending on the CM
scheme) are concatenated, are widely used in many communication standards, such as
the DVB-S2 [109], 400ZR [5], and 800G standards [92]. The powerful inner codes bring
the uncoded BER down to a certain target BER of the outer code (e.g., between 10−2

and 10−3). Then, the low-complexity outer code can further eliminate the error floor
and achieve a very low post-FEC BER (e.g., 10−15 for fiber-optic communications).
Competitive inner SD codes can be low-density parity check (LDPC) codes [110], Ham-
ming codes [5, Sec. 10.5], etc. The HD outer codes that have been implemented or are
being investigated include Reed–Solomon codes [111], Bose–Chaudhuri–Hocquenghem
codes [112], staircase codes [113], turbo product codes [114], zipper codes [115], etc.

Below, some typical CM schemes are introduced. In [80], a nice overview on CM for
optical communications is provided.

3.4.1 Multilevel coded modulation
Ungerboeck proposed an MLCM scheme, together with his well-known binary set par-
titioning (SP) in 1976 [116, 117]. The scheme divides the bit labels into two categories:
the least significant bits protected by a convolutional code and the most significant bits
being uncoded. Based on the trellis diagram of a convolutional code, the binary SP
labeling maps binary labels to 1D or 2D constellation points by successively partitioning
the signal set at every bit level such that the intra-set MED is maximized. The Viterbi
algorithm [118] is used to decode information bits. This scheme is called trellis-coded
modulation [119,120].

Independently of Ungerboeck’s work, Imai et al. proposed an MLCM scheme with
multistage decoding (MSD) in 1977 [121]. The idea is to protect different bit levels
using different binary codes. At the receiver, decoding is performed successively, start-
ing from the least important bit, given the information of all previous bit levels. In
Imai’s MLCM scheme, any binary FEC code can be used, which is more flexible than
trellis-coded modulation. Different partitioning/labeling methods and practical rules of
selecting code rates at different levels for this scheme were comprehensively investigated
in [122]. Fig. 3.3 illustrates an example of set-partitioning the 16-QAM constellation for
all 4 bit levels.

MLCM with MSD is optimal from information theory’s perspective, as the underlying
criterion is the chain rule. Thus, the MI serves as the upper bound of the AIR of such a
CM scheme. However, MLCM has a high complexity due to multiple component codes
being used, and MSD induces delay and error propagation when decoding.
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Figure 3.3: An example of set-partitioning the 16-QAM constellation.
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3.4.2 Bit-interleaved coded modulation
Proposed by Caire et al. in 1998, BICM only uses one component code to protect all
bit levels [75]. An interleaver is needed in BICM to avoid burst errors and make all bit
levels independent of others. BICM has the advantage of flexibility and low complexity.
However, since all bit levels are decoded independently, there is an information loss
as explained in (3.22). It has been shown that this loss is small with Gray-labeled
constellations [75, 76, 123]. The corresponding upper bound of the AIR with BICM is
the GMI. Fig. 3.4 shows the block diagrams of BICM and MLCM with MSD, which are
the two CM schemes we consider for VCs in this thesis. SD decoding is assumed and
upon receiving a noisy symbol y, decoding is based on the LLRs l = (l1, . . . , lm) shown
in Fig. 2.1. The LLR value for decoding the k-th bit of y is defined as

lk ≜ log Pr(bk = 0|y)
Pr(bk = 1|y)

= log
∑

x∈X 0
k

fY |X(y|x)∑
x∈X 1

k
fY |X(y|x) , (3.26)

where fY |X(y|x) is the channel law. The exact LLR in (3.26) is accurate but computa-
tionally complex. A commonly used approximation is the “max-log” approximation [124],
where only the most likely constellation point with bk = 0 (or bk = 1) is considered, i.e.,

lk ≈ log
maxx∈X 0

k
fY |X(y|x)

maxx∈X 1
k

fY |X(y|x) . (3.27)

For the AWGN channel, (3.27) becomes

lk ≈ −
1

2σ2/n

(
min

x∈X 0
k

(∥y − x∥2)− min
x∈X 1

k

(∥y − x∥2)
)

, (3.28)

which also applies for the nonlinear optical channel with mismatched decoding.
Even with the max-log approximation, LLR calculation is prohibitively complex for

very large constellations due to the need of full search in X . To address this issue, we
propose a general LLR approximation method for very large constellations with BICM
in paper B, based on the concept of importance sampling, where X in (3.27) is replaced
by a much smaller “importance set”. In paper D, we propose low-complexity LLR ap-
proximation expressions for very large VCs with MLCM, based on lattice partitions.
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(a) MLCM with MSD

(b) BICM

Figure 3.4: Block diagrams of BICM and MLCM with MSD.
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Voronoi Constellations

VCs are lattice-based constellations. In this chapter, we first introduce the basics of
lattices and then summarize the design rules, encoding/decoding, labeling methods, and
important metrics of VCs.

4.1 Lattices
An nD lattice Λ is a discrete subset of the nD space Rn, generated by its n×n generator
matrix GΛ. All linear combinations of the rows of GΛ with all integer coefficients form
the lattice

Λ ≜ {uGΛ : u ∈ Zn}. (4.1)

The closest lattice point quantizer (CLPQ) of a lattice Λ, denoted as QΛ( · ), maps an
arbitrary point x ∈ Rn to its closest lattice point in Λ, i.e.,

QΛ(x) = arg min
λ∈Λ

∥x− λ∥2. (4.2)

The fundamental Voronoi region of a lattice Λ is the set of vectors in Euclidean space
having the all-zero vector as its closest lattice point, i.e.,

Ω(Λ) ≜ {x ∈ Rn : QΛ(x) = 0}. (4.3)

In the following, we introduce the considered lattices in papers A-D and discuss their
CLPQ algorithms.
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Cubic lattice Zn

An nD cubic lattice Zn is spanned by the n-dimensional identity generator matrix GZn =
In. Finding the closest lattice point in Zn of an arbitrary point x ∈ Rn is simply rounding
every element of x to its nearest integer.

Checkerboard lattice Dn

An nD checkerboard lattice Dn can be obtained from removing half of the points in the
cubic lattice Zn by performing a parity check, retaining all points in Zn with an even
sum of the n coordinates, i.e.,

Dn =
{

x ∈ Zn :
n∑

i=1
xi ≡ 0 (mod 2)

}
, (4.4)

where xi for i = 1, . . . , n represents the ith element of a vector x. A generator matrix of
Dn is

GDn
=



2 0 · · · · · · 0
1 1 0 · · · 0

1 0 1
. . .

...
...

...
. . . . . . 0

1 0 · · · 0 1

 . (4.5)

A fast algorithm for QDn
( · ) is given in [34, Sec. IV].

The cubic lattice can be written as

Zn = Dn ∪ (Dn + c), (4.6)

where c is an n-tuple with any one entry being 1 and all other entries being 0.

Gosset lattice E8

The Gosset lattice is the densest 8D lattice. It is the union of all points in D8 and their
shifted version, i.e.,

E8 = D8 ∪
(

D8 +
1
2

)
, (4.7)
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where 1
2 is an 8-tuple with all entries being 1

2 . A generator matrix of E8 is

GE8 =



2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2


. (4.8)

A fast CLPQ algorithm is given in [34, Sec. VI]. For an arbitrary point x ∈ Rn, the
algorithm QE8(x) calculates QD8(x) and QD8(x− 1

2 ) + 1
2 , then returns the one that is

closer to x.

Barnes–Wall lattice Λ16

The 16-dimensional Barnes–Wall lattice Λ16 can be constructed by Construction B [125,
Chapter 5] applied to the (16, 5, 8) first-order Reed–Muller code. A detailed description
of Λ16 can be found in [126]. Its generator matrix is given in [127, Fig. 4]. The lattice
Λ16 can be written as

Λ16 =
⋃
c∈C

(2D16 + c), (4.9)

where C is the set of codewords of the (16, 5, 8) first-order Reed–Muller code and |C| = 32.
Thus, similar to QE8(x), a fast algorithm of finding the closest point in Λ16 performs
Q2D16( · ) 32 times and returns the vector that is closest to x, i.e.,

QΛ16(x) = arg min
s∈S(x)

∥s− x∥2, (4.10)

where

S(x) = {s = Q2D16(x− c) + c : c ∈ C}. (4.11)

Leech lattice Λ24

A generator matrix of the 24-dimensional Leech lattice Λ24 is given in [128, Fig. 5]. The
lattice Λ24 can be written as

Λ24 =
⋃

c∈C,v∈V
(4D24 + 2c + v), (4.12)

where C is the set of codewords of the (24, 12, 8) Golay code [128] with |C| = 4096
and V = {0, (−3, 1, 1, . . . , 1)}. Thus, QΛ24( · ) performs Q4D24( · ) 8192 times, which is
much slower than QΛ16( · ).
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32-dimensional lattice L32

Similar to Λ16, a 32-dimensional lattice can be constructed by applying Construction B,
resulting in

L32 =
⋃
c∈C

(2D32 + c), (4.13)

where C is the set of codewords of the (32, 6, 16) first order Reed–Muller code with
|C| = 64. Thus, the CLPQ QΛ32( · ) performs Q2D32( · ) only 64 times, which is much
faster than QΛ24( · ).

4.2 Design of VCs

4.2.1 Definition
Given an nD lattice Λ and its sublattice Λs, the general definition of VC based on the
lattice partition Λ/Λs is defined by Forney in [33] as

Γ ≜ (Λ− a) ∩ Ω(Λs), (4.14)

where a ∈ Rn is the offset vector avoiding VC points falling on the boundary of Ω(Λs).
The lattice Λ is called the coding lattice, which determines the packing structure of VC
points, and Λs is called the shaping lattice, which determines the boundary of the VC.
The number of points in the VC is

M ≜ |Γ| = V (Ω(Λs))
V (Ω(Λ)) = |det Gs|

|det G|
, (4.15)

where V (Ω(Λ)) =
∫

Ω(Λ) dx is the volume of the Voronoi region of a lattice Λ, det is the
determinant of a matrix, and Gs and G is the generator matrix of Λs and Λ, respectively.

When Λs = kΛ for some positive integers k, i.e., the shaping lattice is a scaled version
of the coding lattice, we call such kind of VC the “scaled VCs” in this thesis, which was
first proposed in 1983 by Conway and Sloane in [32]. The performance of scaled VCs
was studied for fiber communications in [95–98], showing significant uncoded BER gains
over QAM.

Example 1: We consider a 2D VC for which the generator matrices of Λs and Λ are

Gs =
(

6 0
4 4

)
, G =

(
1 0
0 1

)
, (4.16)

and the offset vector a = (−1/2, 0). Fig. 4.1 illustrates the shifted VC Γ + a for conve-
nience.
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Figure 4.1: A 2D VC in Example 1.

4.2.2 VC parameters
For VCs, the coding gain in (3.17) is obtained by a better coding lattice than the cubic
coding lattice and the shaping gain is provided by the shaping lattice. This section
discusses the design of the considered VCs in papers A-D.

Shaping lattice Λs

The shaping lattice Λs should have a high shaping gain. To measure how spherical
the shaping lattice is, the normalized second moment of the Voronoi region is a related
quantity. Generally, the normalized second moment of an arbitrary region R is defined
as

G(R) =
∫

R ∥x∥
2dx

nV (R)1+2/n
. (4.17)

The normalized second moment of the Voronoi region of the shaping lattice G(Ω(Λs)) is
invariant to scaling and rotation. The cubic lattice has G(Ω(Zn)) = 1/12. The smaller
the G(Ω(Λs)), the more spherical the Ω(Λs) is, and G(Ω(Λs)) is lower-bounded by

G(Ω(Λs)) ≥ G(Vn) n→∞−−−−→ 1
2πe
≈ 0.0585, (4.18)
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Table I: Asymptotic shaping gains and normalized second moments of Voronoi regions of some
lattices.

Λs Zn D4 E8 Λ16 Λ24 L32

G(Ω(Λs)) 1/12 0.0766 0.0717 0.0683 0.0658 0.0671

gs(Λs) [dB] 0 0.366 0.653 0.864 1.026 0.935

where Vn is the nD sphere. The asymptotic shaping gain introduced in (3.17) of the
shaping lattice Λs is defined with the reference of the cubic lattice i.e.,

gs(Λs) = 10 log10
G(Ω(Zn))
G(Ω(Λs))

= 10 log10
1

12G(Ω(Λs))
≤ 1.53 dB. (4.19)

The shaping gain of some MD lattices is summarized in Table I. The Leech lattice Λ24
has the highest asymptotic shaping gain in this table. However, it has the most com-
plex CLPQ algorithm, which dominates the complexity of the encoding and decoding
algorithms of VCs. (The encoding and decoding algorithms of VCs will be introduced
in Section 4.3.) The 32D lattice L32 is a good trade-off between the shaping gain and
complexity. In order to achieve high shaping gains, both the number of dimensions and
the SE of VCs should be high. VCs tend to be very large under such conditions.

Coding lattice Zn

In papers A-D, we focus on the cubic coding lattice Zn, due to the following reasons.

• The CLPQ algorithm of the cubic lattice is much simpler than for other lattices.
The complexity of the decoding algorithm of VCs is dominated by the CLPQ
algorithm of the coding lattice, which will be discussed in section 4.3.

• The cubic coding lattice has no coding gain. The lack of coding gain can be
compensated by FEC codes.

• The small kissing number (the number of the nearest neighbors of a lattice point)
of the cubic coding lattices leads to a smaller Gray penalty enabling a more efficient
labeling scheme than other coding lattices.

• The simple geometric structure of the cubic coding lattice makes the analysis of
important metrics such as the MI, GMI, and LLR feasible for very large VCs, which
will be explained in section 4.5.

• The cubic coding lattice doubles the granularity of the SE of VCs compared to
scaled VCs, shown as in Eq. (17) in paper B.
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Offset vector a

A non-zero offset vector can prevent VC points from falling on the boundary of Ω(Λs). It
can be optimized to minimize the average symbol energy using an iterative algorithm [32].
The procedure is to set an arbitrary and small random a first to get the coordinates of
VC points defined in (4.14), then replace the random vector by the centroid of the VC,
and restart from (4.14). For 2D and 4D VCs with M < 131072, a usually converges to
an optimal vector after repeating the above procedure only one time. In the case of 8D
VCs, repeating the procedure 3–5 times, a might converge to the optimal vector or a local
optimum. The optimization of a is only reasonable for small VCs where all points can be
enumerated. For very large VCs, where constellation points can only be generated using
Monte Carlo methods, the optimization of a is not possible, and the impact of choosing
a random and small a on the average symbol energy is negligible [95, Fig. 3].

In papers A-D, for VCs with M ≤ 217 ≈ 1.3×105), a was optimized using the method
described in [32], otherwise a random a uniformly distributed in Ω(Zn) was selected.

4.3 Encoding and decoding
The labeling process defined in (3.2) is done for VCs by two steps:

1. Map m = log2(M) bits b ∈ {0, 1}m to an integer vector u ∈ Zn

2. Map an integer vector u to a VC point x ∈ Γ.

Mapping integers to VC points (the second step mentioned above) and vice versa is
referred to as encoding and decoding for VCs. For arbitrary VCs, encoding/decoding
algorithms are proposed by Feng et al. in [129], based on the Smith normal form [130,
Ch. 15]. For VCs with a cubic coding lattice, Ferdinand et al. proposed encoding
and decoding algorithms in [131]. In [37], Kurkoski proposed a “rectangular encoding”
method, which is applicable to VCs with a shaping lattice described by a triangular
generator matrix and a cubic coding lattice. In this section, the three algorithms are
reviewed and compared specifically when they are applied to VCs with a cubic coding
lattice.

Table II summarizes the three algorithms for the special case of the lattice partition
Zn/Λs, which is the focus of papers A-D. The more general versions of Feng’s algorithms
for arbitrary Λ are described in [129]. In Ferdinand’s algorithms described in [131], the
basis vectors are column vectors and the decoding goes from low to high dimensions.
Here for the convenience of comparison, we describe them using row vectors as basis
vectors, and rewrite the decoding process of [131, Eqs. (19)–(21)], with a reverse order
of decoding, which however does not change the performance of their algorithms.

Feng’s algorithms are more general than Kurkoski’s, which are in turn slightly more
general than Ferdinand’s1. However, for the case where all three algorithms are applica-

1The dL in Ferdinand’s algorithms are not guaranteed to be integer vectors for arbitrary shaping
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ble, e.g., for commonly used MD shaping lattices, Kurkoski’s algorithms generally make
the labeling of VC points easier. Kurkoski’s algorithms allow for directly mapping u to
constellation points, thus retaining most of the neighbor relationships of constellation
points. In Feng’s and Ferdinand’s encoding algorithms, u is multiplied by a matrix,
which changes the neighbor relationships of constellation points.

Example 2: We consider the same VC as in Example 1 defined in section 4.2.1 and
compare different integer mapping rules when Feng’s, Ferdinand’s, and Kurkoski’s algo-
rithms apply to it.

In Feng’s algorithms, the Smith normal form J = SGsT is

J =
(

2 0
0 12

)
, S =

(
1 1
−2 −3

)
, T =

(
1 2
−2 −5

)
. (4.20)

Then the integer vectors u = (u1, u2) are defined as u1 ∈ {0, 1} and u2 ∈ {0, . . . , 11}.
The vectors uT −1 are calculated as

uT −1 =
(
u1 u2

)( 5 2
−2 −1

)
=
(
5u1 − 2u2 2u1 − u2

)
. (4.21)

In Ferdinand’s algorithms, L = Gs and u are enumerated as u1 ∈ {0, . . . , 5} and
u2 ∈ {0, . . . , 3}. The vectors dL are computed as

dL =
(
u1/6 u2/4

)(6 0
4 4

)
=
(
u1 + u2 u2

)
. (4.22)

In Kurkoski’s algorithms, L = Gs and u are enumerated as u1 ∈ {0, . . . , 5} and u2 ∈
{0, . . . , 3}.

Fig. 4.2 illustrates the three different mapping rules for this example, where the vectors
uT −1 in Feng’s algorithms, dL in Ferdinand’s algorithms, and u in Kurkoski’s algorithms
are highlighted. The enumeration of points in a rectangular shape of Kurkoski’s algo-
rithms help achieve a lower Gray penalty and a lower BER when the binary reflected
Gray code (BRGC) is applied to these integers [paper A].

4.4 Labeling and coded modulation schemes of VCs
As mentioned in section 4.3, the labeling of VCs is two-fold. For the mapping between
integers and VC points, we adopt Kurkoski’s algorithms described in section 4.3. Thus,
designing labeling schemes of VCs focuses on designing the bit-to-integer mapping.

A direct approach is to apply BRGC to the integer vector u, resulting in the low-
est Gray penalty and best uncoded BER performance. The uncoded and coded BER

lattices, thus making Ferdinand’s algorithms less general than Kurkoski’s algorithms. The condition
for Ferdinand’s algorithms to be applicable is Lij

Lii
∈ Z, ∀i = 1, . . . , n, 1 ≤ j < i.
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(
)

(a) Ferdinand’s algorithms.
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( )

(b) Ferdinand’s algorithms.

( )

(c) Kurkoski’s algorithms.

Figure 4.2: Example 2: different integer mapping rules for a 2D VC. The blue filled points are
encoded into points in the shifted Voronoi region a + Ω(Λs) (the light blue region)
in encoding.
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performance, adopting the Gray bit-to-integer mapping, is shown in paper A and D,
respectively.

Another mapping idea is inspired by Ungerboeck’s binary SP introduced in section 3.4.1.
Binary SP has been applied to 1D, 2D [122, 132, 133], and 4D [92, 93, 134, 135] signal
constellations. When binary SP is applied in dimensions larger than 2, the intra-set
MED might not increase at every bit level [134]. Binary SP also requires one FEC en-
coder/decoder pair at each bit level, which has a large encoding/decoding complexity
if the number of partition steps is large, and the delay introduced in multistage decod-
ing is proportional to the number of FEC encoder/decoder pairs. Generalized from the
binary SP, signal sets can be partitioned into multiple subsets based on the concept of
cosets [33,82,136,137], which enables SP in higher dimensions [33,82,137] and increasing
MED at every partition level. In paper D, we propose an “SP mapping” algorithm and
a special case thereof named “hybrid mapping” for VCs based on the SP with cosets.
The BER performance of VCs adopting these mapping rules in both uncoded and coded
systems have been studied and compared with QAM.

Although VCs offer high shaping gains, designing CM schemes for VCs to outperform
Gray-labeled QAM2 is challenging. This is due to the absence of Gray labeling for VCs,
and the resulting penalty from a non-Gray labeling might cancel out the shaping gain of
VCs. Both BICM and MLCM for VCs with SD FEC codes are designed in paper D, and
were indeed shown to outperform Gray-labeled QAM with BICM.

4.5 MI, GMI, and LLRs for very large VCs
Analyzing the MI and GMI of VCs helps with system design, and LLRs are necessary for
VCs with SD decoding. However, by definitions (3.20), (3.24), and (3.27), the calculation
of the MI and GMI requires full enumeration of all constellation points, which becomes
infeasible for large values of M . To address this challenge, we proposed a general MI
estimation method and an LLR approximation method for very large constellations based
on importance sampling in paper B. The MI estimation method is then generalized to
estimating the GMI in paper C. In the following, the concept of classical importance
sampling is briefly introduced.

Importance sampling is a weighted sampling method used in statistics for estimat-
ing properties of a target distribution [138, Ch. 9]. It proves particularly useful when
generating samples from a known distribution is challenging, e.g., the inverse of the cu-
mulative density function of the distribution is hard to get, or the Monte Carlo method
breaks down, which is the case in the following example. This method has applications
in various areas, including Bayesian inference, Monte Carlo simulation, and rare event
simulation.

2Gray labeling for cross QAM does not exist [73]. For cross QAM, usually a “quasi-Gray” labeling is
adopted [72]. In this thesis, “Gray-labeled QAM” loosely refers to both Gray-labeled square QAM
and quasi-Gray-labeled cross QAM formats.
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For instance, suppose the problem is to estimate the expectation

E[g(X)] =
∫

A

fX(x)g(x) dx (4.23)

for a random variable X, where g(x) is a function of x, fX(x) is the probability density
function of X, and A is the integral interval. When the Monte Carlo method breaks
down, e.g., the samples having the most significant contribution to the value of g(x) are
in the tail of fX(x), importance sampling can solve this issue by properly introducing
another distribution qX(x) to make Monte Carlo methods feasible again. Then the
expectation can be rewritten as

E[g(X)] =
∫

A

fX(x)g(x) dx =
∫

A

g(x)fX(x)
qX(x) qX(x) dx. (4.24)

Applying Monte Carlo integration to (4.24) yields

E[g(X)] ≈ 1
N

N∑
n=1

g(xn)fX(xn)
qX(xn) , (4.25)

where xn for n = 1, . . . , N are N samples from the distribution qX . The key point is to
choose this qX . Generally, qX(x) is proportional to |fX(x)|g(x) [139].
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Contributions and Future Work

In this chapter, we summarize our research flow and the contributions of the appended
papers, and discuss the future work.

5.1 Paper A
In paper A, we conducted a study on three existing encoding and decoding algorithms
for VCs in the literature: Feng’s, Kurkoski’s, and Ferdinand’s algorithms (summarized
in section 4.3). According to their different characteristics, we propose the use of VCs
with a cubic coding lattice adopting Kurkoski’s algorithms, with a pseudo-Gray labeling.
Such VCs have the same theoretical shaping gains but lower decoding complexity and
better labeling schemes than classical VCs. Simulation results over the AWGN channel
show that the proposed VCs achieve the lowest uncoded BER. An LDPC code is applied
to medium large VCs (with less than 131072 constellation points), showing that the
designed VCs have the lowest BER after LDPC decoding. Furthermore, we propose a
Gray penalty estimation method for very large VCs with a cubic coding lattice to evaluate
different labeling schemes.

Contributions: Shen Li (SL) compared the encoding/decoding algorithms, proposed
the Gray penalty estimation method, performed the simulation, analyzed the results, and
wrote the paper. Erik Agrell (EA) and Magnus Karlsson (MK) proposed the research
idea and formulated the problem. Ali Mirani (AM) contributed to the analysis. All
authors reviewed and revised the paper.

Context: section 4.3.
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5.2 Paper B

In paper B, we propose an MI estimation method and an LLR approximation method for
very large constellations based on importance sampling, and apply them to the designed
VCs with up to 3.6 × 1075 constellation points. The MI of VCs is estimated accurately
for the AWGN channel, showing high shaping gains over QAM formats in the medium
and high Es/N0 range. The LLR approximation method makes applying an SD FEC
code on top of such VCs feasible, and good coded BER results are found when the code
rate is high. The simulation results over the AWGN channel imply that VCs have good
potential for nonlinear fiber channels.

Contributions: SL proposed the LLR approximation method, performed the simula-
tion, contributed to the MI estimation algorithm, analyzed the results, and wrote the
paper. EA formulated the problem, proposed the importance sampling idea of estimating
the MI, and contributed to the analysis. AM and MK contributed to the analysis. All
authors reviewed and revised the paper.

Context: section 4.5.

5.3 Paper C

The good BER and MI performance of VCs over the AWGN channel found in papers A
and B encourage the investigation of their application in fiber-optic communication sys-
tems. In paper C, we focus on VC transmission over nonlinear fiber channels, including
the B2B, single-channel, and WDM systems. The fiber transmission is simulated using
the SSFM to solve the dual-polarized Manakov equation. The received DSP schemes
include CD compensation and DBP. We also proposed a general GMI estimation method
for very large constellations, extended from the MI estimation method in paper B. We
compare the uncoded BER, MI, and GMI performance of VCs with QAM in fiber com-
munication systems. The observed uncoded BER gains of VCs over QAM show that VCs
can achieve better performance than QAM in systems with HD FEC decoding. The GMI
gains are observed only at high SEs and when the GMI is above 0.9 of the SE, which
indicates that one suitable CM for VCs is BICM with high code rates and the SE of VCs
should be high. The MI gains suggest that MLCM for VCs is worth investigating.

Contributions: SL generalized the GMI estimation method, designed the simulation,
analyzed the results, and wrote the paper. AM and MK provided guidance on fiber
channel simulation. EA contributed to the analysis. All authors reviewed and revised
the paper.

Context: section 4.5.
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5.4 Paper D
The high MI and GMI performance of VCs demonstrated in papers B and C suggests
potential gains of VCs over QAM in coded systems. Practical CM schemes are needed to
preserve the VCs’ high shaping gains. In paper D, we design a concatenated CM scheme,
combining inner BICM and MLCM schemes with SD codes and outer HD codes for very
large VCs. For the inner MLCM, we propose two new bit-to-integer algorithms of VCs
based on lattice partition chains, and the corresponding LLR calculation algorithms.
This makes very large VCs adoptable in practical communication systems using SD FEC
codes with low complexity. The simulation results using LDPC codes for the AWGN
channel show that the proposed CM schemes sustain good shaping gains of VCs over
QAM in both BICM and MLCM schemes.

Contributions: SL formulated the problem, designed the CM schemes, labeling algo-
rithms, and LLR calculation algorithms for VCs. EA contributed to the analysis. All
authors reviewed and revised the paper.

Context: section 4.4.

5.5 Future work
• VC transmission over nonlinear fiber channels using the designed CM

schemes in paper D

Paper D has shown the excellent BER performance of VCs after LDPC decoding in
the AWGN channel. Paper C has shown higher uncoded BER, MI, and GMI gains of
VCs in nonlinear fiber channels than for the AWGN channel. Thus, higher Es/N0 gains
of VCs over QAM after LDPC decoding are expected for nonlinear fiber channels.

• Optimization of FEC codes for VC transmission over nonlinear fiber
channels

For the upcoming next-generation 800 Gbps and 1.6 Tbps standards for fiber commu-
nications, different types of FEC codes and specific DSP techniques can be investigated
and optimized for VCs to propose a tailored solution.

• Comparing VCs with other GS methods

For the optical channel, a fair comparison of VCs with other GS methods, including
machine learning and shaping for lattice codes, is currently lacking. Comparisons can be
made in terms of MI, GMI, complexity, and modulation-dependent distortions induced
by shaped constellations.
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