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ABSTRACT
The surge in economic and social development has resulted in significant challenges, especially
for linear physical infrastructure. A substantial part of the ageing physical linear infrastructure
has been built on problematic soils and often have poorly documented foundation solutions. A
typical example is the case of embankments for infrastructure on soft ground conditions. Soft soils
possess various important characteristics that contribute to their complex emerging soil response
when subjected to hydro-mechanical loading. In recent times, numerous advanced constitutive
models grounded in various theories and hypotheses have emerged to capture the behaviour of
soft soils. These models differ from models commonly used in geotechnical engineering, as
they encompass complex soft soil features, e.g. anisotropy, rate-dependency and degradation
of bonding that enable reasonably accurate predictions for test data obtained under controlled
laboratory conditions. However, their applicability for making informed decisions on large-scale
field projects may be limited, as deterministic calculations alone may not adequately consider the
variability in the behaviour of geomaterials encountered in real-world scenarios. Furthermore,
not all model parameters have direct geotechnical significance as they are derived solely from
mathematical expressions, posing challenges in their identification. With the growing utilisation of
advanced constitutive models in engineering analysis, the input parameters for these models take
on crucial roles as design parameters. This thesis provides a probabilistic methodology that enables
the identification of parameters of constitutive models for geotechnics, through inverse analysis
using Data Assimilation (DA). The primary objective of this thesis is to evaluate the applicability
of existing Data Assimilation concepts in the field of geotechnical engineering. To achieve this, a
modular framework that allows the implementation and use of multiple DA methods in conjunction
with geotechnical numerical codes is created. A comprehensive and systematic comparison of
contemporary state-of-the-art DA schemes specific to geotechnical engineering is performed along
with examining the factors influencing their performance. Additionally, hybridisation of meta-
heuristic algorithms with classical Data Assimilation methods has also been proposed to improve
some of the observed drawbacks. In this thesis, the limitations of the deterministic approach has
been demonstrated and the need for a robust probabilistic tool is shown to be paramount. It has
also shown that it is time to start embracing the value of monitoring data which can be put to
efficient use when a robust probabilistic framework like Data Assimilation is considered.
Keywords: Embankment, Soft soils, Uncertainty analysis, Data Assimilation
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NOMENCLATURE

Acronyms
CPT: Cone Penetration Test
CRS: Constant Rate of Strain
CSS: Current Stress Surface
GSA: Global Sensitivity Analysis
ICS: Intrinsic Compression Surface
IL: Incremental Loading
NCS: Normal Consolidation Surface
OCR: Over-consolidation ratio
PVD: Prefabricated Vertical Drains
SIR: Sequential Importance Resampling
SIS: Sequential Importance Sampling
SLS: Serviceability Limit State
ULS: Ultimate Limit State
Greek letters
𝛼0 initial inclination of NCS
𝜒0 initial amount of bonding
Λ̇ rate-dependent viscoplastic multi-

plier
𝜖𝑐𝑞 viscoplastic deviatoric strain
𝜖𝑒𝑞 elastic deviatoric strain
𝜖𝑐𝑣 viscoplastic volumetric strain
𝜖𝑒𝑣 elastic volumetric strain
𝜂 Stress ratio
𝜅∗ modified swelling index
𝜆∗ modified compression index
𝜆∗𝑖 modified intrinsic compression index
𝜇∗𝑖 intrinsic modified creep index
𝜈 Poisson’s ratio
𝜔 absolute effectiveness of rotational

hardening
𝜔𝑑 relative effectiveness of rotational

hardening

Φ sample space
𝜓 Particle Filter weight
𝜎′𝑝0 initial preconsolidation pressure
𝜏 reference time
𝜃 model parameters
𝜉 absolute rate of destructuration
𝜉𝑑 relative rate of destructuration
Roman lower case letters
𝑒0 Initial void ratio
𝑝′ mean effective stress
𝑝′𝑒𝑞 equivalent mean effective stress
𝑝′𝑚 mean effective preconsolidation pres-

sure
𝑞 deviatoric stress
Miscellaneous
⟨∙⟩ Macaulay brackets
Roman capital letters
 Event space
𝐸 Event
𝐺 Shear modulus
𝐻 Observation operator
𝐾 Bulk modulus
𝐾𝑣 Vertical hydraulic conductivity
𝑀𝑐 slope of critical state line in triaxial

compression
𝑀𝑒 slope of the critical state line in triax-

ial extension
𝑁 Monte Carlo sample size, number of

cycles
𝑃 Probability measure
𝑅 Observation error covariance
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Part I
Extended summary

1 Introduction

1.1 Background
In recent decades, there has been a significant surge in demand for infrastructure around the globe.
Natural geomaterials, such as soils and rocks, form a significant portion of the materials required
for construction, as part of the engineered physical infrastructures, including roads and railways, as
well as the subsoil built upon. As a result, understanding the characteristics and hydro-mechanical
response of natural geomaterials plays a crucial role in engineering design and analysis. The
progress in economic and social development has resulted in significant challenges, especially
for linear physical infrastructure where the need to expand the capacity of existing roads and
railways, and construction of new physical infrastructure have led to selection of sites with poor
quality soils that have inferior engineering properties. A typical example is the case of constructing
embankments on soft ground conditions that have a high compressibility.

Soft sensitive clays are present in several regions of Sweden, particularly in places with high
urbanisation such as Stockholm and Gothenburg. Despite extensive and considerable experience
contributing to the knowledge, embankment construction continues to present two major issues.
The first issue is to ensure overall stability of the ageing infrastructure in a changing environment,
i.e. to prevent drastic societal consequences. The other issue is to minimise deformations (within
tolerable limits) for better serviceability of the structure, hence controlling the maintenance
expenses. The former is termed as the ultimate limit state (ULS) and the latter the serviceability
limit state (SLS). For linear infrastructure, especially for embankments constructed on soft soils,
the design is primarily influenced by deformations i.e. SLS. Soft soils exhibit several key features,
including sensitivity, anisotropy, and rate-dependency, which contribute to the complexity of their
non-linear and time-dependent response to hydro-mechanical loading (Mitchell and Soga, 2005).
Thus, it is crucial to employ suitable prediction models that incorporate most of these soft soil
features, that generally are not part of traditional design methods used for SLS predictions. More
reliable design techniques are needed, to improve accuracy, reduce uncertainties, reduce carbon
footprint and ensure that foundations are optimised for their entire service life.

One of the most significant developments in geotechnical engineering is the introduction of
the critical state soil mechanics framework based on the concepts of soil hardening (Drucker et al.,
1957) and yielding (Roscoe et al., 1963). Constitutive models based on this framework are better
equipped to capture the behaviour of the soil for any arbitrary stress path, given they account for
the state of the soil. For example the Cam-Clay model (Roscoe and Burland, 1968) was one of
the first models to capture the elastic-plastic response for soils by introducing hardening laws that
evolve with loading history. The most common approach for solving boundary value problems
using these models in computational geomechanics is by the Finite Element Method. Over the past
several decades, the sophistication of constitutive models has increased (e.g. Al-Tabbaa, 1987;
Al-Tabbaa and Muir Wood, 1989; Whittle, 1993; Koskinen et al., 2002; Karstunen et al., 2005;
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Karstunen and Koskinen, 2008; Gras et al., 2018) leading to increasing accuracy in the prediction
of the overall soft soil behaviour. Some of the advanced models have been developed with stress
probing tests (Mašín, 2007) and constant stress path testing (Wheeler et al., 2003), and hence the
hardening laws in those models are more thoroughly validated than for the simple models.

Before applying more advanced constitutive models for designing real-world linear infrastruc-
ture, a prior validation on well documented test embankments is necessary. One of the motivations
is that the site investigation for test embankments are often more comprehensive than typically
found in commercial projects, providing sufficient information to calibrate advanced models.
Also, test embankments can be regarded as being equivalent to a controlled laboratory test at
boundary value level, due to the absence of embedded elements in the subsoil, and providing a
broad range of stress paths throughout the domain. Despite the well-instrumented sites, advanced
constitutive models are still unable to fully capture the actual soil response. This is partly due to
the disturbances from extracting samples from the soil, which in turn affect the soil properties
evaluated from laboratory tests (Karlsson et al., 2016). However, in reality, even with high quality
sampling, the deviation in parameters is still expected due to the unavoidably large variations of
the soil properties in a large soil volume when compared to the number of samples retrieved for
testing.

In geotechnics, uncertainties are prevalent, so most analysis of soil behaviour must take the
uncertainties of the properties of the soils into account and provide methods for determining how
they affect the final predictions. Even though the fidelity of computational models has improved,
and their accuracy has been validated with data from controlled tests, their true predictive power
at the field scale is still constrained by a deterministic framework. In the deterministic methods the
uncertainties are addressed by using a global or partial safety factor, leading to over-design in some
settings whilst being unsafe in other situations. Even in the simplest scenario where the geometry
of the system is known with sufficient accuracy and a constitutive model which is well validated
with laboratory test data, capturing the behaviour of the soil in-situ, is still a major challenge in
geotechnical engineering.

The observational method (Peck, 1969) has been recommended to address this issue and given
the rise in cost-effective and robust monitoring solutions for geotechnical structures in recent
years (Klar et al., 2006; Bennett et al., 2010; Cheung et al., 2010; Schwamb et al., 2014), have
enabled large-scale projects to be equipped with tools to monitor the system behaviour in real
time. This leads to new possibilities for validating the ever-growing optimisation techniques
for inverse analysis, and subsequent uncertainty reduction in the model prediction. The inverse
problem consists of using observations to infer the (updated) values of the model parameters
that characterise the system. Although there has been several significant contributions from the
deterministic approach (Gioda and Sakurai, 1987; Ledesma et al., 1996; Calvello and Finno,
2004; Lecampion and Constantinescu, 2005; Rechea et al., 2008; Levasseur et al., 2009; Hashash
et al., 2010; Levasseur et al., 2010), the inherent focus on the best possible fit between the model
prediction and observations ignores the uncertainties stemming from measurement noise, or model
uncertainties and their effect on the model predictions.

As opposed to the deterministic approach, the Bayesian statistical framework is most effective
for updating of model parameters using monitoring data (Wu et al., 2007; Zhang et al., 2010;
Juang et al., 2013). Here the a priori information on the model parameters is represented by a
probability distribution over the ‘model space’. This gives the practitioners the additional advantage
to assess the range of possible behaviour of the geo-structure whilst using monitoring data to
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update the model predictions. The uncertainties from both observation and forward simulation
can be considered here with a practical margin of error, but a systematic procedure is required.

Data Assimilation (DA) is a well-known and versatile mathematical discipline used predom-
inantly in the field of atmospheric science for numerical weather prediction. DA follows the
Bayesian approach more exactly in terms of representing uncertainty (Geer, 2021) acting as a
bridge integrating theoretical models and observations to estimate the state of an evolving system
enabling realistic estimations with a reduced overall variance in the prediction. The weather
forecasts are generated from the output of a DA system (Fletcher, 2017). Modern DA builds on
“state estimation” techniques developed in control systems engineering (Raanes, 2016) and is one
of the most useful inverse analysis schemes. Geotechnics could greatly benefit from approaches
used in DA, which have evolved to deal with real observations that are uncertain and sparse, hold-
ing potential to make better use of monitoring data and provide reliable estimates of uncertainty
in model prediction. DA has been applied to some geotechnical problems since the 1980s (e.g
Murakami and Hasegawa, 1985; A. Murakami, 1991) until recently (Hommels and Molenkamp,
2006; Shuku et al., 2013; Liu et al., 2018a; Tao et al., 2020; Mohsan et al., 2021). However, a
rigorous and systematic comparison between recent state-of-the-art DA schemes for geotechnical
engineering is still missing.

1.2 Aim of research
The aim is to validate an advanced constitutive model, and identify the limitations of the determin-
istic approach, enabling to further investigate the feasibility of using DA techniques for joint state
and parameter estimation in geotechnical engineering based on monitoring data. The main goal is
to assess the adoption of various state-of-the-art DA techniques and evaluate their relevance for
geotechnical engineering. Specifically, the methods are employed on test embankments in order to
evaluate the performance of each technique, compare their efficiency and identify the obstacles
encountered in their application. As part of the overall aim, the following questions are solved in
this thesis:

• Are advanced constitutive models always better in capturing the true state of the system?
• How do different DA methods apply to geotechnical numerical models of varying complex-

ity?
• Can DA still help capture the response of the true system, even if the model formulation

does not match the physics of the geotechnical system considered, be it simple or complex?
• Does the field monitoring setup i.e. the quantity, type and location of measurements has any

effect on the performance of the DA?
• Is there a possibility to improve the efficiency of a DA technique?

, Architecture and Civil Engineering 3



1.3 Method
To answer the previously stated research questions, the following tasks were carried out:

• Perform deterministic analyses of test embankments using an advanced constitutive model
that captures most of the soft soil features and quantify its limitations.

• Create a modular framework that allows the implementation and use of multiple DA methods
in conjunction with geotechnical numerical codes that allow scripted inputs.

• Test the framework by assessing the performance of the implemented DA techniques on
different constitutive models with varying levels of complexity.

• Identify the merits and limitations of employing DA for geotechnics and propose a novel
method.

1.4 Limitations
• The effect of temperature on the hydro-mechanical behaviour of soils has not been considered,

i.e. the evaluated model parameters are not corrected for differences in temperature between
the lab and in-situ conditions.

• The boundary value level validation is limited to static loading conditions, such as those of
test embankments constructed on soft ground.

• The non-linear behaviour at small magnitudes of strain amplitude is not considered.
• Since sufficiently high quality dataset were made available from test embankments, the

screening for outliers was not necessary in this study, but it is prudent to include them as
part of the developed module for future practical applications.

• The external applied load, soil layer thickness and geometry of the geostructure are consid-
ered deterministic i.e. fully certain during the inverse analysis.

• The spatial heterogeneity of the soil parameters is not considered and is reserved for future
studies.
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2 Deterministic analysis

2.1 Embankments on soft soil

Prior to the early 1900s, studies on the behaviour of embankments were basic and there was limited
understanding of the mechanical behaviour of soils, especially soft clays. Frontard (1914) was
one of the first to attribute the failure of embankments to the development of pore-water pressures
based on observations from experiments. The understanding of the mechanical behaviour of soils
developed gradually and the groundwork for modern soil mechanics was laid by a set of significant
contributions in the mid-1930s, (Buisman, 1936; Casagrande, 1936; Hvorslev, 1936; Rendulic,
1936). Later, Terzaghi’s contribution on the effective stress framework in soil mechanics, proposed
in his seminal work (Terzaghi, 1943), revolutionised the field of geotechnical engineering and
has been instrumental in rationalising the design and improving understanding of foundation
behaviour and the influencing factors. Terzaghi’s work on one-dimensional consolidation theory
was groundbreaking, and formed the basis for settlement calculations which still are regarded as a
point of reference by numerous geotechnical engineers today.

During this era and until early 1960s, a considerable amount of attention was given to the
stability of embankments constructed on soft soils, such as natural clays. Skempton and Golder
(1948) and Odenstad (1948) carried out practical studies to validate total stress calculations. Bishop
and Bjerrum (1960) subsequently built upon this work. Bishop (1955) introduced a method for
stability analysis using circular failure surfaces, which is still used in many projects today, and
provides a indicator of the safety factor for modern-day projects. Janbu (1957) presented a similar
technique for non-circular failure surfaces. As a result, models for embankment stability analysis
in soils have become well-established since around 1960.

During this period, there was limited progress in the development of techniques for calculating
the serviceability of embankments, which is a critical aspect of overall design. Unfortunately,
this area was primarily limited to Terzaghi’s initial proposal of settlement calculation based on
one-dimensional consolidation theory. The phenomenon of secondary settlement was often ignored
in most projects until the contributions of Bjerrum (1967), which were well-received by engineers
at that time. However, empirical methods contained elements of conservatism, and practitioners
encountered unacceptable outcomes when using them in real-world problems. Unfortunately,
the industry at that time was hesitant to adopt Cam-Clay type models developed by Roscoe and
Burland (1968) along with Finite Element methods, citing complexity as a primary reason.

In order to address the uncertainties associated with existing calculation methods for embank-
ments constructed on soft soils, the industry turned to in-situ testing while still relying on empirical
models. The economic consequences of inaccurate calculations for large projects were recognised,
and the use of trial embankments became a more widely accepted approach after 1970 (Leroueil,
1990). These test sites were typically included in a project, ideally with geotechnical conditions
similar to those of the entire project, to collect data such as surface settlements, settlements at
different depths, pore-water pressure development, and horizontal displacement. The purpose of
these trial embankments was to gather high-quality data to test the accuracy of existing calculation
methods and modify them if needed to suit specific site conditions, particularly for projects in new
or unknown territories. As a result, a significant amount of experience has been gained in terms of
stability and long-term settlements of embankments on soft soil.

, Architecture and Civil Engineering 7



Trial embankments are considered to be highly valuable asset for large-scale projects, despite
the fact that the interpretation of the results can take many years, particularly for long-term
settlement data. As a result, it is critical to consider the use of trial embankments early on in the
planning of major projects. To expedite consolidation, techniques have been developed, such as
the use of prefabricated vertical drains (PVDs).

The empirical methods have continued to survive to this day and are still used in several major
projects. While the Finite Element Method and accompanying constitutive models also existed in
parallel, the latter has only recently begun to be more widely accepted for analysing geotechnical
problems. Even with the advent of new models and sophisticated tools, the purpose of trial
embankments has not changed i.e. to test the validity of the calculation models and, if necessary,
adapt them to particular site conditions. However, the difference is that the knowledge of the
complexities of the soft soil behaviour have now been significantly improved and the new advanced
models are able to capture most of the soft soil features at the laboratory scale in controlled
conditions. This is a significant improvement compared to the empirical models generally used
in practice. The prominent features of the soft soil behaviour are discussed in the next section
followed by the brief introduction of the advanced model considered in this thesis.

2.2 Facets of soft soil behaviour
The behaviour of soft soil can be observed as a collection of distinct features such as compressibility,
primary and secondary consolidation, anisotropy and bond degradation. During construction of
embankments on soils of this type, the effect of these features are inevitable (and inseparable)
and a model with a unified approach is needed. Despite being commonly treated as continuum
materials, soft soils are actually porous fine-grained materials, and their behavior is influenced by
both the particles and their arrangement, as well as the presence of liquid and/or gas in the pores,
resulting in coupled hydro-mechanical behaviour. It is essential to differentiate between stresses
carried by the solid phase and those carried by the pore phase, since while the particle assembly
can transmit both the normal and shear stresses, the pore-water can only transmit hydrostatic stress.
The subsequent section will give a brief outline of the various aspects of the behaviour of soft soils
that need to be incorporated into the constitutive model chosen for embankment analyses (which
will be discussed in the following part of this section).

Deposition history

Soft soil behaviour is best described by the emerging strength and the deformation response under
different initial conditions and loading paths. The former depend on the constituents (as reflected by
the index properties) and the loading history. Therefore, the processes during geological formation
help to understand the origin of the soil properties and subsequent response under loading. Soft
soils are usually deposited over large areas of extent. During and after the deposition process the
deformation experienced is generally one-dimensional (Muir Wood, 1991). The movement of
soil particles has been predominantly vertical with lower tendency to move laterally. The particle
orientation is primarily horizontal due to the consolidation process after deposition and this is
experimentally corroborated in Birmpilis et al. (2019). Hence, the stress state and emerging
fabric remains highly three dimensional and the emerging response of the soft soils in the deposit
is different between the vertical and the horizontal directions. This leads to cross-anisotropic
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behaviour commonly observed in soft soils. In addition to the physical processes, several chemical
and biological processes influence the initial structure of the soil during deposition (Mitchell and
Soga, 2005). More complex time-dependent behaviour due to viscosity can be observed post
deposition. These phenomena have a significant impact on the soft soil behaviour, in terms of
stiffness and mobilised strength, and affect the hydro-mechanical response of the material.

Anisotropic yield surface

The fabric of a soft soil deposit refers to how the individual particles are oriented, distributed, and
shaped, as well as the way they come into contact with one another. Soft soils, in general, exhibit
yielding at different magnitudes of strain and effective stress for different loading paths, which
in triaxial stress space represents a rotated yield surface (As shown in Figure 2.1 plotted in the
triaxial stress space and normalised by the preconsolidation pressure). This is typical for (intact)
natural soft soils found in the Nordic countries and Canada.

The effect of anisotropy has been studied by several researchers, and for different natural
clays the anisotropic nature of the yield surface (Larsson, 1977; Larsson, 1981; Leroueil and
Vaughan, 1990; Wheeler et al., 2003; Karstunen and Koskinen, 2008) has been reported. The
in-situ anisotropic state (inherent anisotropy) evolves with subsequent loading (induced anistropy)
and is governed by the particle scale mechanisms (Hicher et al., 2000). This has a major impact
on the emerging (undrained) shear strength at continuum level which becomes anisotropic, as
e.g. observed in the changes in strength between triaxial tests sheared under compression and
extension.

Considering the significance of anisotropy, it is highly important to incorporate this mechanism
in the constitutive model. The effect of anisotropy on the emerging embankment behaviour has
been studied by several authors (Graham, 1979; Potts et al., 2002; Yildiz et al., 2009; Yildiz and
Uysal, 2016). The main finding is that with an anisotropic model a reasonable prediction of the
lateral displacements at the toe of the embankment is obtained
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Figure 2.1: Yield points of different natural soft soils (reproduced from (Länsivaara, 1999)).
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Apparent bonding

Soft soils are typically assumed to be normally consolidated, but the natural deposits in their
undisturbed state often demonstrate an initial stiffness that is relatively high and comparable
to the stiffness during unloading and reloading, which suggests a lightly overconsolidated state.
This is due to the presence of creep and cementation effects that result in inter-particle bonding
(Burland, 1990; Cudny, 2013). The reduction in void ratio due to secondary compression leads
to an increased apparent preconsolidation pressure and emerging shear strength. The effect of
structure, defined here as a combination of fabric and the (apparent) bonding between the particles
(Leroueil and Vaughan, 1990), on the mechanical behaviour of the soils depends strongly on the
stress history and void ratio. The mechanical behaviour of structured soft soils, consequently,
differs significantly from their reconstituted counterparts.

Several authors have evaluated the effect of structure on soft soil behaviour (Bjerrum and Lo,
1964; Bishop, 1971; Leroueil et al., 1979; Burland, 1990; Leroueil and Vaughan, 1990; Gens and
Nova, 1993; Cotecchia and Chandler, 1997; Koskinen et al., 2002; Karstunen et al., 2003). The
state of a soil, which has had all its original form of structure re-arranged from continuous loading
is referred to as the intrinsic state and is linked to the initial intact state via a model feature that
represents the bonding.

Figure 2.2 shows clearly the difference in response between an intact and a reconstituted sample,
where the slope of the normal compression line (𝜆) tends towards the intrinsic value (𝜆𝑖) at large
effective stress levels. After reaching the yield point (𝜎′𝑝0) from its initial stress (slope denoted by
the slope of the swelling line ‘𝜅’), the bonds between the particles start to gradually collapse until,
the intrinsic state is reached. The effect of structure on soft soil behaviour in triaxial shearing,
compression and swelling is well described by Leroueil and Vaughan (1990). The relevance of
considering degradation of structure in embankment problems is that it can occur as a result of
irreversible (plastic) strains and lead to more realistic predictions of settlements in-situ (Yildiz
et al., 2009; Cheang et al., 2016).
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Figure 2.2: Illustration of intact and reconstituted soil responses in the 𝑒 − 𝑙𝑛 (𝑝′) plot.
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Rate-dependent behaviour

The effect of rate-dependency on the emerging strength and compressibility of natural soft soils
has been studied by several authors (Crawford, 1964; Bjerrum, 1973; Sällfors, 1975; Janbu et al.,
1981; Graham et al., 1983a). Furthermore, the location of the yield envelope in effective stress
space is also a function of loading-rate (Tavenas et al., 1978; Lew, 1981).

The importance of modelling rate-dependency on e.g. embankment construction has been
demonstrated by several researchers (Kerry and Hinchberger, 1998; Rezania et al., 2016). An
example on the viscous effect of soft soil is best described by comparing the mechanical response
between a young and aged normally consolidated clay. The old deposit would have a reduced
void ratio due to creep under self-weight leading to higher yield stress than expected for the same
soil that is younger (Bjerrum, 1973). Hence due to creep, the yield surface has expanded over
time. When the soil is subjected to additional stress, the new stress state passes the original yield
point and only at a higher effective stress level the structure starts to evolve (degradation of bonds,
re-arrangement of fabric), falling towards the normal consolidation line again. This effective
stress level in oedometric conditions is referred to as the apparent preconsolidation pressure or
quasi-preconsolidation pressure as shown in Figure 2.3a (Leroueil et al., 1996).

Although it is true that secondary compression is driven by pure creep, these are not entirely
the same since creep also occurs outside the secondary compression regime (Tavenas et al., 1978;
Degago et al., 2011). Due to the viscoplastic nature of the soft soils, the induced strain rate will
influence the stress-strain response of the sample as shown in Figure 2.3b. An increase in strain
rate leads to an increase of the yield stress. Furthermore, for constant-rate of strain (CRS) tests a
system level interpretation is required, as the mobilisation of excess pore-water pressures (at large
levels of strain) is non-uniform (Muir Wood, 2016). The increase in strain rate is more pronounced
in soils with a higher plasticity index. However, the strength at critical state is largely independent
of strain rate effects. The effect of high creep rates in soft soils below an embankment increases the
risk of stability problems both during and after construction, in addition to affecting the prediction
accuracy of long term settlements.

Figure 2.3: (a) Illustration of creep and apparent preconsolidation pressure for Jonquiere clay (Leroueil
et al., 1996) (b) Constant rate of strain tests with different strain rates for Batiscan clay (Leroueil et al., 1985).
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Critical state

Soil when subjected to deviatoric stresses eventually tend towards an ultimate condition where
plastic (deviatoric) strains, i.e. shear, continue indefinitely under constant volume. This state is
termed as the critical state (Muir Wood, 1991). Critical state is the ultimate condition reached
irrespective of the original state (void ratio, anisotropy and bonding) prior to shearing. Hence,
the critical state is used as a reference state to describe the strength properties and the effect of
overconsolidation ratio and void ratios in different soils.

Figure 2.4 shows the critical state concept in the triaxial stress space. When the stress ratio
reaches the critical state line (𝜂 =𝑀) in compression or extension, the soil is said to have reached
the ultimate state (Mitchell and Soga, 2005). The critical state of a soil is independent from strain
rate effects, which makes it a useful reference criterion for design of structures where loads can go
beyond the peak strength and progressive failure might occur due to the deformation in the structure.
A distinct difference in behaviour can be observed between initially normally consolidated and
overconsolidated states (Muir Wood, 1991). In general, normally or lightly overconsolidated soils
whose stress state lies above and right to the critical state line (wet side) in the compression plane,
exhibit higher drained strength with volumetric hardening or positive excess pore-water pressure
generation. In contrast, for heavily overconsolidated clays, the stress state lies below and left to
the critical state line (dry side) and exhibits dilatancy or negative excess pore pressure.
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Figure 2.4: Illustration of the critical state in the 𝑝′ − 𝑞 𝑠𝑝𝑎𝑐𝑒.

2.3 Modelling based on Critical-State soil mechanics
The emergence of the framework of critical state soil mechanics by the research team at the
University of Cambridge in the late 1950s (Roscoe et al., 1958) is considered one of the most
significant developments in geotechnical engineering. Constitutive models that are based upon the
critical state soil mechanics framework are most effective in representing, and understanding, the
behaviour of soft soils under any given stress path. Roscoe and his team conducted experiments
and developed mathematical formulations based on yielding and the critical state concepts, which
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ultimately resulted in the Cam-Clay models (Roscoe and Burland, 1968; Schofield and Wroth,
1968). Unfortunately, the relative complexity of their formulation delayed their use in practice until
the mid 1970s. However, with the continuous efforts of the geotechnical community to develop
better and more sophisticated constitutive models, the challenge of predicting and simulating
complex features of soft soil behaviour has been improved. A version of a constitutive model for
soft soils which can be traced back to the Cam-Clay type formulation is described briefly in the
next section. The constitutive model used in this thesis has been refined in its predictive accuracy
by hierarchically introducing additional model features.

An advanced constitutive model: Creep-SCLAY1S
Creep-SCLAY1S is an advanced rate-dependent constitutive model for normally consolidated or
lightly overconsolidated soft soils formulated in the general stress space. One of the major advan-
tages of Creep-SCLAY1S is that it is a hierarchical rate-dependent model, similar to SCLAY1S
(Karstunen et al., 2005). Thus, features such as hardening laws that capture anisotropy and destruc-
turation can be “switched off” by appropriate choice of input parameters (Koskinen et al., 2002;
Karstunen et al., 2005; Gras et al., 2018). Therefore, the user can explore different features of
soft soil behaviour in an intuitive and simple manner. The model has been tested and successfully
validated at the element level (Yannie and Sivasithamparam, 2016; Gras et al., 2018) and against
several diverse boundary value problems (Cheang et al., 2016; Sexton et al., 2016; Tornborg et al.,
2021, 2023). The downside of the model is that it requires rather many (14) input parameters, of
which five are similar to those used in the (isotropic) modified Cam–Clay model. Three of those
parameters are state parameters, used for the initialisation of the model and updated during the
analysis. Although the required parameter set is large, most of the parameters have a physical
meaning and can thus be derived directly from conventional element level laboratory tests. There
is no purely elastic domain in this model, similar to the Anisotropic Creep Model (Leoni et al.,
2008); hence viscoplastic deformations are assumed to occur at all effective stress states. The total
strain rate is decomposed into elastic and viscoplastic component:

̇𝜖𝑣 = ̇𝜖𝑒𝑣 + ̇𝜖𝑐𝑣 ̇𝜖𝑞 = ̇𝜖𝑒𝑞 + ̇𝜖𝑐𝑞 (2.1)
where the superscripts ‘e’ and ‘c’ refer to the elastic and viscoplastic strain components, respectively,
and the subscripts ‘v’ and ‘q’ refer to the volumetric and deviatoric part.

The model assumes isotropic elastic behaviour similar to the Modified Cam-Clay model. The
elastic volumetric strain rate ( ̇𝜖𝑒𝑣) and elastic deviatoric strain rate ( ̇𝜖𝑒𝑞) are defined in relation to the
stress dependent bulk modulus, 𝐾 = 𝑝′∕𝜅∗ and shear modulus, 𝐺 = 3𝐾(1 − 2𝜈′)∕2(1 + 𝜈′):

̇𝜖𝑒𝑣 =
𝑝̇′

𝐾
̇𝜖𝑒𝑞 =

𝑞̇
3𝐺

(2.2)
where the invariants 𝑝′ and 𝑞 represent, respectively, the mean effective stress and deviatoric stress
in the triaxial stress space. Figure 2.5 shows the surfaces used in the Creep-SCLAY1S model
in triaxial stress space. The Normal Consolidation Surface (NCS), whose size is defined by the
isotropic preconsolidation pressure 𝑝′𝑚, acts as a bounding surface and delimits the small and large
creep strain rates. The current effective stress state is defined by the current stress surface (CSS)
with the size defined by 𝑝′𝑒𝑞 . An imaginary intrinsic compression surface (ICS) proposed by Gens
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Figure 2.5: Illustration of model surfaces used in Creep-SCLAY1S model (Tornborg et al., 2021).

and Nova (1993) is introduced, with size (𝑝′𝑚𝑖) is related to 𝑝′𝑚 through the bonding parameter ‘𝜒’
to capture the degradation of bonding observed in soft sensitive soils.

The size of ICS increases as a function of incremental volumetric creep strains relating to the
isotropic hardening rule. The subscript ‘i’ in Equation 2.3 refers to the intrinsic value.

𝑝′𝑚 = 𝑝′𝑚𝑖(1 + 𝜒) 𝑝̇′𝑚𝑖 =
𝑝′𝑚𝑖

𝜆∗𝑖 − 𝜅∗
̇𝜖𝑐𝑣 (2.3)

All three surfaces have similar shape and orientation, with the mathematical expression that
defines the size for triaxial conditions:

𝑝′𝑠 = 𝑝′ +
(𝑞 − 𝛼𝑝′)2

(𝑀(𝜃𝛼)2 − 𝛼2) 𝑝′
(2.4)

where 𝑝′𝑠 can be equal to 𝑝′𝑚, 𝑝′𝑒𝑞 or 𝑝′𝑚𝑖 to define the sizes of NCS, CSS or ICS, respectively.
The orientation of the surfaces is governed by the scalar variable 𝛼0 representing the initial

anisotropy of the soil. The inclination of the critical state line𝑀 has been made a function of Lode
angle (Sheng et al., 2000), used to control the slope of the critical state line in triaxial extension
(𝑀𝑒) and triaxial compression (𝑀𝑐). Due to the incorporation of a smooth failure surface, the
model has a numerical advantage over the Mohr-Coulomb failure surface by avoiding sharp corners.
To avoid repetition, the expressions related to Lode angle dependent critical state line are not
elaborated here and the reader is directed to Gras et al. (2017) for more details.

An associated flow rule is assumed in the Creep-SCLAY1S model which is reasonable when
evolution of anisotropy is included in the formulation (Wheeler et al., 2003). Therefore, the
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viscoplastic strain rate is considered similar to the viscous formulation inspired by the Anisotropic
Creep Model (Leoni et al., 2008):

̇𝜖𝑐𝑖𝑗 = Λ̇
𝜕𝑝′𝑒𝑞
𝜕𝜎′𝑖𝑗

(2.5)

In the above equation, the viscoplastic multiplier following the idea of Grimstad et al. (2010)
is considered:

Λ̇ =
𝜇∗𝑖
𝜏

(

𝑝′𝑒𝑞
(1 + 𝜒)𝑝′𝑚𝑖

)

𝜆∗𝑖 −𝜅
∗

𝜇∗𝑖
𝑀2

𝑐 − 𝛼
2
𝐾𝑁𝐶
0

𝑀2
𝑐 − 𝜂

2
𝐾𝑁𝐶
0

(2.6)

where 𝜇∗𝑖 is the modified intrinsic creep index, measured in the volumetric strain - 𝑙𝑛 (time) plot.
𝜇∗𝑖 is an intrinsic value, and hence should be derived from a load step where all bonding in the
material has been degraded (either at large effective stress levels, or alternatively from tests on
reconstituted samples). The reference time 𝜏 is usually taken as 24 hours, which is the standard
time for the load steps in incremental loading (IL) oedometer tests, but can be adjusted to match the
actual rate of testing. 𝜆∗𝑖 is the modified intrinsic compression index and 𝜅∗ the modified swelling
index that can be derived directly from the 𝜖𝑣 − 𝑙𝑛 𝑝′ plot. The right term in the Equation 2.6
has been added to ensure that under oedometric conditions the resulting creep strain corresponds
to the measured volumetric creep strain rate. 𝛼𝐾𝑁𝐶

0
defines the inclination of the ellipses in the

normally consolidated state (assuming normally consolidated 𝐾0 consolidation history).
The scalar state variable 𝛼 represents the amount of anisotropy, and the changes in anisotropy

are calculated by tracking the evolution of the surfaces as a function of viscoplastic strain rates.
In the general stress space a fabric tensor, analogous to the deviatoric stress tensor, is used to
account for principal stress rotations, and the consequent fabric rotations, in three dimensions. For
cross-anisotropic samples in the triaxial stress space, the rotational hardening law is simplified
into:

̇𝛼𝑑 = 𝜔
([

3𝜂
4

− 𝛼𝑑

]

⟨
̇𝜖𝑐𝑣⟩ + 𝜔𝑑

[𝜂
3
− 𝛼𝑑

]

|

|

|

̇𝜖𝑐𝑑
|

|

|

)

(2.7)

where 𝜂 is the stress ratio and 𝜔 & 𝜔𝑑 are model constants. Here 𝜔 controls the absolute effec-
tiveness of rotational hardening and 𝜔𝑑 controls the relative effectiveness of rotational hardening
due to deviatoric viscoplastic strain rate. The Macauley brackets ⟨⟩ are used here to maintain a
sensible prediction on the dry side of the critical state line, and a modulus sign for the viscoplastic
deviatoric strain rate due to sign convention in triaxial testing.

The initial inclination of the yield surface, 𝛼0, can be determined with drained radial stress
probing at different stress ratios. The yield points can subsequently be used to fit a yield surface
with a unique 𝛼0 value (Koskinen et al., 2002; Wheeler et al., 2003). However, this is not done in
everyday applications due to complexity in testing and long duration of drained tests on fine-grained
soils. Assuming an associated flow rule for the Creep-SCLAY1S model, ‘𝛼0’ can be calculated
from a simplified relation recommended by Wheeler et al. (2003).
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𝛼0 =
𝜂2𝐾0

+ 3𝜂𝐾0
−𝑀2

𝑐

3
𝜂𝐾0

=
3(1 −𝐾𝑁𝐶

0 )

(1 + 2𝐾𝑁𝐶
0 )

(2.8)

The anisotropic hardening formulation assumes that the inclination of the Normal Consolidation
Surface tends towards a target value for a given stress ratio, depending on the magnitude of the
volumetric and deviatoric viscoplastic strains. The constants in equation, 𝜔 and 𝜔𝑑 control the
absolute and relative effectiveness of the anisotropic change observed in the test.

In order to derive the value of 𝜔 for a given soil, indirect methods such as conducting exper-
imental tests involving significant rotation of the yield surface are required. e.g. An undrained
shearing in triaxial extension is most suitable to assess the value of 𝜔. In the absence of suitable
experimental data, a typical value of 𝜔 ranging between ‘10∕𝜆𝑖’ to ‘15∕𝜆𝑖’ suggested by Yin
and Karstunen (2011) can be taken, which suggests that within this range the model predicts the
complete degradation of anisotropy of the soil when subjected to stresses three times larger than
the yield stress. Parameter bounds related to structure and anisotropy for Creep-SCLAY1S model
are discussed in Gras et al. (2018). For 𝜔𝑑 , a simplified formulation is proposed:

𝜔𝑑 = 3
8
(4𝑀2

𝑐 − 4𝜂2𝐾0 − 3𝜂𝐾0)

(𝜂2𝐾0 −𝑀
2
𝑐 + 2𝜂𝐾0)

(2.9)

It is evident from Equations 2.9 and 2.8 that the value of both 𝜔𝑑 and 𝛼0 depend strongly on
the slope of the critical state line in triaxial compression. The higher the value for the friction
angle, the higher the anisotropy, and relative effectiveness of rotational hardening.

The rate of bond degradation is given as a function of viscoplastic volumetric and deviatoric
strain rate. Again there are two model constants 𝜉 and 𝜉𝑑 which controls the absolute destructuration
rate and the relative effectiveness due to viscoplastic deviatoric strain rate:

𝜒̇ = 𝜉
([

0 − 𝜒
]

|

|

𝜀𝑐𝑣|| + 𝜉𝑑
[

0 − 𝜒
] ̇𝜀𝑐𝑑

)

= −𝜉𝜒
(

|

|

𝜀𝑐𝑣|| + 𝜉𝑑 ̇𝜀
𝑐
𝑑
) (2.10)

The rate of bond degradation due to volumetric and deviatoric viscoplastic strains is controlled
by the parameters 𝜉 and 𝜉𝑑 respectively. To estimate 𝜉, the sample needs to be isotropically
compressed to stress states where the initial bonding in the sample is erased and there would
practically be volumetric strains only. In order to determine the parameter 𝜉𝑑 , 𝜉 is used along with
high stress ratio loading in triaxial tests to obtain the bond degradation from shear. In practice,
however, drained tests on such stress paths are rarely available, and usually data from IL or CRS
stress paths are used to fit the values of these two parameters. In this case, an optimisation procedure
can be employed to fit laboratory data for the parameters controlling the rate of destructuration,
but uniqueness is not guaranteed (Gras et al., 2017). In most cases, the deviation of the values
remains in a small range for a typical region of the soft soil profile.

Succinctly, the input parameters of the Creep-SCLAY1S model and their description are
tabulated in Table 2.1.
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Table 2.1: Description of Creep-SCLAY1S model parameters
Feature Parameter Unit Description

Critical state 𝜅∗ − Modified swelling index
𝜈′ − Poisson’s ratio
𝜆∗𝑖 − Modified intrinsic compression index
𝑀𝑐 − Slope of critical state line in triaxial compression
𝑀𝑒 − Slope of the critical state line in triaxial extension

Anisotropy 𝜔 − Absolute effectiveness of rotational hardening
𝜔𝑑 − Relative effectiveness of rotational hardening
𝛼0 † − Initial inclination of the reference surface

Bonding 𝜉 − Absolute rate of destructuration
𝜉𝑑 − Relative rate of destructuration
𝜒0 † − Initial amount of bonding

Viscous 𝜏 d Reference time for creep and definition of OCR
𝜇∗𝑖 − Intrinsic modified creep index

Initial conditions OCR † − Over-consolidation ratio (corresponding to reference time 𝜏)
𝑒0 † − Initial void ratio

† Initial state variables

2.4 Model sophistication: boon or bane ?
Advanced geotechnical models use a large number of parameters to simulate the soil response in
geotechnical problems. Identification of some of these parameters can be challenging, as they
are not directly related to measurable soil properties, but are instead derived from mathematical
equations. Therefore, it is important to have a systematic procedure to first evaluate and fix the
model parameters that can be directly derived from lab data, before fitting the remaining parameters
for a suitable loading path.

Advanced models may not be appealing to practicing engineers because of their complex
formulation and large number of input parameters. In addition, many of these models use pa-
rameters, such as the anisotropy and bonding parameters of the Creep-SCLAY1S model that
require non-traditional loading paths in traditional laboratory tests. This kind of testing may not
be practical in the industry due to the limited access to advanced laboratory facilities and the
associated time for testing and the (perceived) costs. In most projects, there are also issues with
poor sample quality resulting from extraction, transport and storage (e.g. Lunne et al., 1997;
Karlsson et al., 2016).

Moreover, even the simplest of elastoplastic models can be significantly impacted in accuracy
by a small number of samples used to derive their model parameters. Due to the typically large
parameter set involved in more advanced models, the evaluated values, when done manually,
are prone to error, and as discussed, sometimes the values are non-unique. This creates a rigid
dichotomy between sophistication and robustness. On the one hand, sophistication helps to closely
fit the physical system. The latter demands more information, such as the parameters that define
the constitutive model, which is quite difficult to get, and comes with additional uncertainties.
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2.5 The need for consistent parameter derivation
For cases where a comprehensive dataset is made available for the purpose of calibrating an
advanced model, the accuracy in the derived parameter values play a key role in the performance
of the model. This paves the way for optimisation techniques to adjust model parameters to suit
laboratory and field data so that the model prediction matches the experimental/measured data.

Typically the parameter space is bounded to logical values (either known from experience
or from prior sensitivity analyses) before optimisation. The mathematical framework involves
defining an error function that quantifies the deviation between the measured and the computed
response, and which is then iterated with perturbations in the parameter space until the error
function converges to a tolerable value. A plethora of optimization techniques, both deterministic
and stochastic, exist and each of them have their own advantages and drawbacks. However, the
common limitations incurred include i) getting trapped in a local minimum, ii) sensitivity to initial
conditions, iii) model-intrinsic control parameters, iv) inconsistency in the model parameters (i.e.
the fitted values vary each time the algorithm is run for the very same input data).

A comparative analysis of some of the commonly used optimisation algorithms in geotechnical
engineering is summarised in Yin (2017). The use of such optimisation procedures only further
complicates the use of advanced constitutive models. Hence, it is obvious that a consistent
methodology for deriving parameters from raw data (from both laboratory and field) in an automated
environment is paramount to minimise the dependence on external optimisation techniques.

Several researchers have shown that optimisation techniques, although a useful tool to predict
non-conventional parameters, have failed to show uniqueness in the fitted values for models even
simpler than the Creep-SCLAY1S model, and hence cannot be relied upon entirely.

In this thesis, a module for automated parameter derivation has been created using a series of
custom scripts that work with actual measurement data from both laboratory and field. The purpose
of this automated approach is to enable the user to process numerous dataset simultaneously, and
thus efficiently derive a precise and consistent set of parameters in a short period, while minimizing
the risk of errors. To manage the level of required user intervention, which would depend on
the project and quality of dataset, a toggle for adjusting different levels of automation (from
semi-automated to fully automated) is provided in the module. This module has been implemented
for analysing trial embankments in Paper A and Paper B and shall be detailed in Chapter 5.1.

2.6 Limitations of the deterministic approach
Although a highly advanced model with a systematic approach for deriving parameters can provide
relatively accurate results at laboratory scale, it can still encounter inaccuracies in predicting
the field-scale behaviour, due to the complexity of geological materials and the incomplete un-
derstanding of their formation history. Additionally, the differences between the design and as
built, and the impact of construction practices that might be different among different contractors,
further complicate the system. Hence, discrepancies between measured and predicted outcomes
at system level are likely to occur, and it is challenging to fully rely on a single deterministic
analysis. Moreover, due to the limited amount of data available, numerical models based on such
information may also result in further uncertainty. Therefore, relying solely on the model without
considering other factors can pose a risk in decision-making.
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A common approach in industry to overcome uncertainties is to perform parametric analyses.
In a parametric analysis various combinations of parameter values are tested, which can be both
time-consuming and expensive, and may not always produce satisfactory outcomes. In view of this
issue, practitioners for real-world projects resort towards ad-hoc strategies such as applying global
factor of safety (or partial factors of safety). Alternative strategies to address the uncertainty involve
choosing conservative input parameters, drawing insights from past experiences and historical
data, revising computation models and construction methods based on testing and observations
conducted on actual projects. Overall, the integral part in all these approaches is the engineering
judgement.

The quality of predictions using the Finite Element Method in geotechnics is mainly dependent
on the constitutive model used and the calibration of the model parameters. Several constitutive
models based on different theories and hypotheses have been developed and used for embank-
ments. However, most of these methods are deterministic and do not consider uncertainties in the
parameters. Application of probabilistic analysis of embankments is relatively rare in the literature
(Liu et al., 2018b; Zheng et al., 2018; Tian et al., 2022a).

In order to bridge the gap between the research and practical applications, it is important to
shift the focus towards developing analyses that are practical and realistic. When considering
uncertainty, incorporating probabilistic methods can aid in identifying model parameters. In
probabilistic methods, model parameters are treated stochastically, using probability distributions
for each parameter. As constitutive models for soils are increasingly utilised in engineering analysis,
the input parameters for these models become critical design parameters that must also be managed
probabilistically (Most, 2010; Jin et al., 2019).
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3 Probabilistic analysis

3.1 Uncertainty in geotechnics
There are two primary forms of uncertainty, known in general as aleatory and epistemic uncertainty.
Aleatory uncertainty, also known as irreducible uncertainty or inherent variability, pertains to the
inherent randomness or variability in natural processes. In contrast, epistemic Uncertainty refers
to those arising from a lack of knowledge or information about the mechanisms governing the
behaviour of a system (Kiureghian and Ditlevsen, 2009).

Aleatory uncertainties, relate to the natural variability of the ground conditions caused by
geological processes that constantly modify the spatio-temporal properties of the ground. It is not
affected by the accumulation of knowledge and is considered independent (Baecher and Christian,
2003). Quantifying its impact on the overall uncertainty and determining its significance can be
challenging since it is highly dependent on site-specific conditions.

There are two types of errors in measurement: systematic bias and random errors. They arise
from errors in the test equipment or from procedural-operator errors during the measurement
process. These errors are part of epistemic uncertainty, which can be reduced as knowledge
improves. Improvements in measurement techniques and equipment can help to minimise the
presence and magnitude of measurement errors (Phoon and Kulhawy, 1999).

The uncertainty that emerges from inferring soil properties and underground stratigraphy using
a limited amount of information is called statistical uncertainty. This is a form of knowledge
uncertainty and it cannot be eliminated unless the complete subsurface is investigated, which is
not feasible. Therefore, statistical uncertainty is an unavoidable aspect of site investigation.

When dealing with real-life scenarios, it is usual to merge various forms of variabilities and
uncertainties, and treat them as a single entity known as total variability. Among this collective
entity, the uncertainties related to selecting the appropriate models, their parameters, and soil layer
boundaries, among others, exert significant influence on the predictive results.

Uncertainty in the model and its parameters
The precise knowledge of the mechanical behaviour of the in-situ ground conditions requires a
better understanding of the site, while the extent of knowledge and experience the user has on the
model reflects the better understanding of the model. However, the quality of prediction is only
optimal for a specific combination of model prediction and observed behaviour. This discrepancy
can be attributed to: (1) the evaluation of design parameters for the model, either stiffness or
strength depending on the design (2) the formulation of the model itself. Due to the influence of
empiricism when formulating geotechnical prediction models, uncertainties associated with the
model formulation can be substantial. As outlined in Steinberg et al. (2001) and illustrated in Figure
3.1, the overall uncertainty in the predictions made by a model arises from sources including
the formulation defining the model complexity, the number of model parameters (depending
on the model complexity), and other factors such as the initial and boundary conditions. The
development of a model with ideal complexity that works perfectly for all situations is unlikely,
and the effectiveness of a model typically is site-specific.

In practice, despite the complexity of soil behaviour, reasonable predictions for the serviceability
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Figure 3.1: Balancing the uncertainty from model formulation and model parameters.

limit state, e.g. settlements below the centre line of an embankment, are still achieved through
empirical calibrations for local conditions. However, the results are non-generic outside the bounds
of the model capabilities and dataset used. Although the generality of complex models is higher,
this approach can lead to a high number of model parameters required. The complex model
fits data well, due to the higher degree of freedom, resulting in a less biased model. However,
there may be several non-unique parameter choices that can produce a similar fit, leading to high
parameter variance. As a result, the problem becomes ill-posed and the estimated parameters may
not accurately reflect the system dynamics.

The simpler models, on the other hand, are stiff, i.e. only a moderate fit to the dataset is obtained
by adjusting the model parameters making it relatively more biased, since there are typically only
a few parameter choices that can provide the moderate fit.

One of the major difficulties in geotechnical modelling is to find or create a model with sufficient
rigidity, with few parameters, while still being able to fit the data well. This is almost impossible,
because to enhance the generic capabilities of the model, a large parameter set is inevitable and
some of its sensitivity varies with different stress paths, stress levels, and boundary conditions,
as explained in Tahershamsi and Dijkstra (2021). The efficacy of the chosen inverse analysis
procedure can reduce the bias and variance of the estimates of the model parameters, regardless of
the model complexity. However, the success of this approach can only hold value if the calibrated
model parameters fall within the bounds of logical values (discussed in Paper D).
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3.2 Probability theory
Probability theory is a commonly used mathematical framework for dealing with uncertainties.
It is based on events and combinations of events. The mathematical theory of probability starts
with the definition of the probability space which is represented by the three components: (Φ,
, 𝑃 ). Probability theory is utilised to model situations in which outcomes happen randomly.
These situations are commonly known as experiments, and the sample space, Φ, consists of all
possible outcomes of the experiment. The event space  is the set of elements of Φ, also known
as 𝜎-algebra on Φ. The third component is the probability measure 𝑃 .

The first axiom follows that the probability of an event is a non-negative real number and is
always finite, 𝑃 ∶  → [0; 1]. This gives the probability value for each event, 𝐸𝑖 ∈ . The
condition 𝑃 (Φ) = 1 needs to be satisfied which is the second axiom. The third axiom states that
any countable sequence of disjoint events should satisfy 𝑃 (⋃𝑖 𝐸𝑖) =

∑

𝑖 𝑃 (𝐸𝑖). These axioms fit
well with the intuitive understanding of probability (Reichenbach, 1949; Billingsley, 1976; Jaynes,
2003). The following interesting properties are also noted:

• Conditional probability: The notion of conditional probability, along with its related
concepts of independence and dependence, is among the most significant concepts in
probability theory. The conditional probability of event A given B is written as 𝑃 (𝐴|𝐵).

• Marginal probability: This is defined as the probability of an event occurring in isolation,
and may be thought of as an unconditional probability, P(A). If the event A is independent
of B, then the conditional probability becomes equal to the marginal probability as shown
below:

𝑃 (𝐴|𝐵) = 𝑃 (𝐴) (3.1)

• Joint probability: 𝑃 (𝐴 ∩ 𝐵). Joint probability is the intersection of two or more events.
The probability of the intersection of A and B may be written as:

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴) 𝑃 (𝐵|𝐴) = 𝑃 (𝐵) 𝑃 (𝐴|𝐵). (3.2)

This can be arranged to give the relationship among the conditional probabilities known as
Bayes theorem:

𝑃 (𝐵|𝐴) =
𝑃 (𝐴|𝐵) 𝑃 (𝐵)

𝑃 (𝐴)
(3.3)

The theorem of total probability can be applied here for the denominator which is

𝑃 (𝐵|𝐴) =
𝑃 (𝐴|𝐵) 𝑃 (𝐵)

∑𝑛
𝑖=1 𝑃 (𝐴|𝐵𝑖) 𝑃 (𝐵𝑖)

(3.4)
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Random variable
For a discrete univariate set 𝑋, the function to calculate the probability of event 𝐴 in terms of
probability mass function (pmf) over the sample space, Φ, is given below,

𝑃 (𝐴) =
∑

𝐴
𝑓𝑋(𝑥) , [𝑥 ∈ 𝐴] ;

𝑛
∑

𝑖=1
𝑓𝑋(𝑥𝑖) = 1 (3.5)

If the random variable is continuous, then the probability is dealt in terms of distribution (pdf)
which then requires integration over the sample space, Φ,

𝑃 (𝐴) = ∫𝐴
𝑓𝑋(𝑥) 𝑑𝑥 , [𝑥 ∈ 𝐴] ; ∫

∞

−∞
𝑓𝑋(𝑥) 𝑑𝑥 = 1 (3.6)

The cumulative mass function and cumulative distribution function of 𝑋 is shown below.

𝐹𝑋(𝑥𝑗) =
𝑗
∑

𝑖=1
𝑓𝑋(𝑥𝑖) [discrete] ; 𝐹𝑋(𝑥𝑖) = ∫

𝑥𝑖

−∞
𝑓𝑋(𝑥) 𝑑𝑥 [continuous] (3.7)

Moments of probability distribution
Descriptive statistics are necessary to express probability information. The mean is a widely
used measure of central tendency and represents the centre of mass of the distribution. For both
probability mass function (pmf) and probability density function (pdf), the first moment of the
distribution around the origin provides the expectation or mean.

E(𝑋) = 1
𝑁

𝑁
∑

𝑖=1
𝑥𝑖 [discrete] (3.8)

E(𝑋) = ∫

+∞

−∞
𝑥 𝑓𝑋(𝑥) 𝑑𝑥 [continuous] (3.9)

A way to convey the variability in a dataset is by using the range, which is the difference
between the largest and smallest values. Nevertheless, the range is not a reliable statistical measure
because it is heavily influenced by extreme values. Instead, the variance is a preferable measure in
many statistical analyses.

Var(𝑋) = 1
𝑁 − 1

𝑁
∑

𝑖=1
(𝑥𝑖 − E(𝑋))2 [discrete] (3.10)

Var(𝑋) = E(𝑥 − E(𝑋))2 = ∫

∞

−∞
(𝑥 − E(𝑋))2 𝑓𝑋(𝑥) 𝑑𝑥 [continuous] (3.11)

The coefficient of variation (C.O.V.) is commonly used to measure uncertainty in soil properties.
The standard deviation is divided by the mean and represents a second-order assessment of data
dispersion. C.O.V. of parameters accounts for measurement errors, model uncertainty, and inherent
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uncertainty. However, not all parameters are considered uncertain, e.g. unit weights are often
deemed deterministic parameters with a C.O.V. of less than 10%. (Kulhawy et al., 2000). A
comprehensive investigation into the uncertainty of soil properties used in design was conducted
by Phoon and Kulhawy (1999).

For the case of a bivariate dataset, 𝑋 and 𝑌 , the covariance is the extension of their corre-
sponding variances.

Cov(𝑋, 𝑌 ) = E((𝑥 − E(𝑋))(𝑦 − E(𝑌 )))
=
∑

𝑥

∑

𝑦
(𝑥 − E(𝑋)) (𝑦 − E(𝑌 )) 𝑓𝑋𝑌 (𝑥, 𝑦)

= ∫

∞

−∞ ∫

∞

−∞
(𝑥 − E(𝑋)) (𝑦 − E(𝑌 )) 𝑓𝑋𝑌 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

(3.12)

The correlation between the two variables is assessed by the Pearson correlation coefficient,
𝜌𝑋𝑌 , defined as,

𝜌𝑋𝑌 =
Cov(𝑋, 𝑌 )

√Var(𝑋) Var(𝑌 )
(3.13)

3.3 Uncertainty propagation
While deterministic design methods still play a crucial role, probabilistic methods provide a
systematic and quantitative approach for geotechnical engineers to infuse uncertainties into their
calculation. In order to evaluate the impact of uncertainty in soil properties on the behaviour of a
system, it is logical to go beyond a deterministic approach and employ probabilistic analyses. These
analyses consider the properties of homogenised material layers as random variables, enabling the
treatment of uncertainty in material properties.

The model to predict the soil behaviour works by mapping the input space (which is controlled
by the parameters denoted as 𝜃) to the output space (also known as the prediction space denoted
as ) using the forward dynamics function, denoted as 𝐹 . If the model parameters are treated as
random variables, the uncertainties associated with these parameters are carried forward to the
output through the forward dynamics.

 = 𝐹 (𝜃) (3.14)
Various methods exist to propagate uncertainties in forward calculations, but one of the most
commonly employed approaches is Monte Carlo simulation (MCS) (Fishman, 1995). With
advancements in computing power, MCS has become increasingly important. MCS involves
establishing a probability distribution for each independent variable, and then running a simulation
where, during each iteration, a random value from the distribution function for each parameter is
selected and used in the calculation. The independent random samples are generated with size 𝑁𝑋as 𝜃 = [ 𝜃1, 𝜃2, 𝜃3,… , 𝜃𝑁𝑋

]. Once the simulation is executed repeatedly, it produces multiple
results represented as  = [ 𝐹 (𝜃1), 𝐹 (𝜃2), 𝐹 (𝜃3),… , 𝐹 (𝜃𝑁𝑋

) ]. The number of samples needed is
determined by factors such as the number of input variables, the complexity of the model, and the
accuracy required for the output. The result of the simulation is a probability distribution of the
output parameter. The statistics of the output is calculated as shown below:
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E(𝑌 ) ≈ 1
𝑁𝑋

∑

𝑦 ∈ 
𝑦 (3.15)

Var(𝑌 ) ≈ 1
(𝑁𝑋 − 1)

∑

𝑦 ∈ 𝑌
(𝑦 − E(𝑌 ))2 (3.16)

Theoretically, the rate at which the error in the estimate reduces is proportional to the square root
of the number of samples (Baecher and Christian, 2003). The fundamental concept of Monte Carlo
simulation is easy to understand and straightforward. Even though the importance of uncertainty
analysis is acknowledged, the implementation in engineering practice is still lagging, due to the
difficulties in quantifying all the uncertainties in a project e.g. loads, geologic site interpretations,
geotechnical properties, computation models, etc. thereby increasing the dimension of the problem.
Monte Carlo methods, in this regard, are advantageous for geotechnical problems, as they are
generally applicable and can handle high-dimensional random variables and complex problems,
making them ideal for geotechnical applications.

In this thesis, a method known as the Data Assimilation technique which incorporates ob-
servations into numerical forecasting models as part of an inverse analysis procedure is pursued.
Among the different Data Assimilation tools, Monte-Carlo based techniques are considered and
the details of these algorithms are mentioned in Chapter 4.

3.4 Inverse analysis

In geotechnics, inverse modelling techniques have been used for estimation of parameters as part
of model calibration. During model calibration, the parameters are modified until the model
response matches the measured response for a certain loading path. The physical meaning of the
model parameters, however, are preserved only when the model accurately represents the system
complexity (as demonstrated in Paper C & D). Usually, numerical models are calibrated by using
ad-hoc trial and error methods. The main benefit of using an inverse analysis is its ability to
automatically determine the best parameter values that match the observed and computed results.

The approach of inverse analysis with Bayesian statistical framework is the most effective
for updating of model parameters (Wu et al., 2007; Zhang et al., 2010; Juang et al., 2013).
In probabilistic methods the a priori information on the model parameters is represented by a
probability distribution over the ‘model space’. This gives the engineer the additional advantage to
assess the range of possible behaviour of the geo-structure, whilst using monitoring data to update
the model predictions.

Recent developments in other scientific domains have shown the efficacy of a powerful method,
known as Data Assimilation (DA), which systematically incorporates observations into numerical
forecasting models. There are several types of DA algorithms some of which follow the Bayesian
approach more exactly, in terms of representing uncertainty (Geer, 2021), i.e. they rigorously
integrate observations and numerical forecasting models, and account for their uncertainties to
estimate the state of an evolving system. This enables realistic estimations with a reduced overall
variance in the prediction. Chapter 4 is dedicated to this method.
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3.5 Bayesian Inference

Benefits of the Bayesian approach in geotechnics

Despite following the same axioms of probability theory, the distinction between the frequentist
and Bayesian approaches stems from their different interpretation of probability. Frequentists
view probability as a measure of frequency, while Bayesians view it as a measure of belief.
Frequentist methods do not require the specification of a prior probability distribution and focus
on the probabilities of observed and unobserved data. The frequentist approach operates on the
assumption that the probability of an event happening is equivalent to the frequency with which
that event occurs over a long period of time.

Bayesian statistics has two qualities that make it suitable for geotechnical applications: the
ability to assign probabilities to states of nature, such as site conditions or engineering parameters,
and the allowance of subjective probabilities. In contrast, frequentist statistics does not permit
either of these. (Baecher, 2021). The crucial difference between Bayesian and frequentist statistics
is explained in Figure 3.2.

Direct probability

Inverse probability

(Frequentist)

(Bayesian)

Parameter spaceParameter space Data spaceData space

Figure 3.2: Illustrative plot to show the difference between Bayesian and Frequentist approaches.
Adapted from Baecher (2021)

Bayesian methods can access the full potential of data in geotechnical practice. These methods
offer a robust approach for estimating probabilities for field conditions using available geotechnical
measurements, including in situ and laboratory tests, as well as field monitoring data, such as
displacements and excess porewater pressure. In essence, the Bayesian approach is a systematic
method for making logical deductions when faced with uncertainty. The advantages of using
Bayesian approach are numerous, and include the capacity to model complex problems using
robust algorithms (e.g. from Data Assimilation in Chapter 4) to analyse data while considering
uncertainty.

Framework

Bayesian inference is a method of fitting a statistical model by utilising prior knowledge on
the model parameters (Θ) and combining it with the observed monitoring data, using Bayes’
theorem (Equation 3.3). In this context, all unknowns are considered as random variables, and
the distribution of the model parameters, conditioned on the monitoring data, is expressed using
Bayes’ theorem (shown in Figure 3.3 assuming a Gaussian distribution for both the parameter and
data space). Figure 3.4 shows the working of a typical Bayesian inverse analysis procedure.
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𝑃 (Θ | data) = 𝑃 (data | Θ) 𝑃 (Θ)
𝑃 (data) ∝ 𝑃 (data | Θ) 𝑃 (Θ) (3.17)
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Figure 3.3: Illustration of Bayesian analysis

The following definitions apply:
• 𝑃 (data |Θ), also represented as(Θ; data), denotes the likelihood function which represents

the degree to which the parameter distribution describes the data. Considering the case of a
univariate Gaussian distribution, Θ ∼ 𝑁(𝜇Θ, 𝜎Θ), and a single measurement, 𝑦, with noise
𝜎, the likelihood function is then defined as,

𝑃 (y | Θ) = 1

𝜎
√

2𝜋
exp

(

− 1
2

(𝑦 − 𝜇Θ
𝜎Θ

)2) (3.18)

For more than one measurement,  = [𝑦1, 𝑦2,… , 𝑦𝑁 ], and assuming independence between
the measurements, the likelihood function is given as:

(Θ;) =
𝑁
∏

𝑖=1
𝑃 (𝑦𝑖 | Θ) (3.19)

• 𝑃 (Θ) denotes the a priori state of the parameters. The selection of this distribution should be
based on the available information about the parameters before any monitoring is conducted.
Further details are provided in the next section.

• 𝑃 (data) is the evidence (also called the marginal distribution) and is often used for nor-
malisation. Based on Equation 3.4, the Theorem of total probability applies: 𝑃 (data) =
∫ 𝑃 (data | Θ) 𝑃 (Θ) =

∑

𝑖 𝑃 (data | Θ𝑖) 𝑃 (Θ𝑖).
• 𝑃 (Θ | data) is the posterior distribution which reflects the updated knowledge on the model

parameters after considering the prior knowledge and site observation data.
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Figure 3.4: Schematic diagram of the Bayesian inverse analysis approach.

3.6 Prior knowledge
The source for the prior estimates from the preliminary design, i.e. in this context the prior
distribution of the model parameters, is attributed to the combination of site-specific information
and initial prior knowledge relevant to the site.

In cases where there is no prior knowledge of the parameters available regarding the site,
a weakly informative prior distribution can be used, where all possible values of the model
parameters are treated equally likely. This type of distribution is commonly incurred in practice.
The knowledge of the physical meaning of soil properties ensures that their range is generally
well-bounded. For model parameters that are mutually independent, the prior knowledge can be
represented by a uniform distribution, 𝑃 (𝜃), as shown below.

𝑃 (𝜃) =

{

1∕(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛) for 𝜃 ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥]
0 for otherwise (3.20)

When initial prior knowledge is improved in terms of quality and quantity, it becomes relatively
more informative and, sometimes, sophisticated. The log-normal distribution is a commonly
used informative prior distribution in geotechnical engineering due to its simple relationship with
the normal distribution and effectiveness in handling negative and inconsistent model parameter
values without requiring truncation. The choice of log-normal distribution in an inverse analysis
is expected to yield similar results compared to other distributions such as gamma, Weibull and
Rayleigh (Griffiths et al., 2013). If C.O.V. of a particular parameter decreases with the accumulation
of information, then the parameter distribution is said to have become well-informed or highly
confident. Hence, the level of confidence in the knowledge of the parameter depends on the C.O.V.
of its distribution. In this thesis, both the aforementioned types of prior distribution have been
used in the inverse analysis procedure (Papers C, D, E & F).
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4 Data Assimilation for geotechnics

4.1 Introduction

What is Data Assimilation ?

Data Assimilation (DA) is a scientific approach that involves integrating numerical forecasting
models with observations of a system, in order to create an updated forecast that is better than
the model or the observations on their own. The process of DA is essential for creating accurate
forecasts in various disciplines. Both the numerical models and observations of the system play
important roles, but neither are perfect. By combining the numerical models with observations,
a relatively more accurate forecast can be produced than relying solely on the numerical model
without information on the current measurement.

Forecasting models simulating the real-world physics are used to predict the future response.
In turn, the real-world observations can be used to update the model using DA which is an inverse
problem and this cycle of verification and validation continues. Figure 4.1 shows the significance
of DA in this deductive spiral where it acts as a bridge between model and observation.

VerificationVerification

ValidationValidation

Data

AssimilationPrediction Inverse

analysis

Forward

simulation

Model space

Observation space

Figure 4.1: Illustration of the deductive spiral (re-illustrated from Asch et al. (2016))

The evolution of Data Assimilation (DA) is closely linked to meteorology and DA was predom-
inantly used in this field for numerical weather prediction. Currently, DA is utilised in various
domains and geotechnical engineering stands to gain considerably by adopting the techniques
employed in DA. Developed to handle incomplete and uncertain real-world observations, these
techniques can enable geotechnical engineers to make better use of monitoring data and generate
more precise estimates of uncertainty in model predictions.
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Types of Data Assimilation algorithms

There are two main approaches of Data Assimilation: variational and statistical. An optimal
solution is the aim in both these approaches. The difference is that the statistical approach seeks
a solution with minimum variance while the variational approach seeks the minimum of a cost
function. The implementation of the variational technique, however, is rather impractical for general
geotechical engineering by requiring the use of tangent linear and adjoint models (Hommels and
Molenkamp, 2006). Hence, the variational technique suffers from limited applicability (Evensen,
2007).

Furthermore, when dealing with practical inverse problems, the data being analysed is imprecise
and includes random noise. In order to effectively address this measurement error, only statistical
models can provide the necessary rigour. The statistical approach is relatively easy to implement
and observations are assimilated in the model prediction each time they become available (i.e.
sequentially).

Although the observational method is a useful concept in geotechnics, using observed move-
ments to control construction in a timely manner can be challenging in typical projects where
contractors are constrained by time. Furthermore, quantitative assessments of the progress of the
engineering work is difficult. Therefore, it is necessary to assimilate observations sequentially, as
they become available.

Using sequential data assimilation techniques is preferable, particularly for highly critical
projects in geotechnical engineering. The statistical approach explicitly solves a series of equations
to find the posterior state of the system. One of the earliest and well known examples include the
Kalman Filter (KF) which follows a Bayesian state-estimation algorithm formulated by Kalman for
linear systems with Gaussian uncertainties (Kálmán, 1960). Later, the KF was modified into the
Extended Kalman filter (EKF) to accommodate lightly nonlinear systems (Jazwinski, 1970). For
many decades, the Extended Kalman Filter (EKF) has been the primary Bayesian algorithm used
for state-estimation in nonlinear systems. Despite its widespread use, the EKF is only a reliable
method for systems that are nearly linear within the updating time interval (Julier et al., 2000).

In Civil Engineering, systems can become highly nonlinear, which raises questions about the
effectiveness of the Kalman Filter (KF) and its extended version. Despite being used by researchers
for many years, the suitability of these techniques for highly nonlinear systems has received little
attention (Beck, 1978; Hoshiya and Saito, 1984; Koh and See, 1994). This is because, for highly
nonlinear problems, in most applications, the prior background error covariance matrix, cannot be
specified explicitly and requires an approximation. To achieve this, the probabilistic formulation
of the inverse problem requires a resolution in terms of ‘samples’ of the a posteriori probability
distribution in the model space.

As a result, the ensemble extensions of the classical Kalman filter, namely the Ensemble Kalman
Filter [EnKF] (Evensen, 1994), the Unscented Kalman Filter [UKF] (Julier and Uhlmann, 1997) and
Particle Filter [PF] (Gordon et al., 1993; Kitagawa, 1996) were proposed. These methods provide
strategies to approximate the background error covariance matrix using a statistically consistent
ensemble of states for nonlinear problems. As a result, Monte-Carlo based data assimilation
systems have started to garner widespread use in several applications. Each sample is forecast
individually by the forward model, and the spread of these samples define the uncertainty of the
estimate.
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DA in geotechnical engineering
DA has been applied to some geotechnical problems since the 1980s (e.g Murakami and Hasegawa,
1985; A. Murakami, 1991). Recently, more research on the use of advanced DA techniques has
been reported for geotechnical problems. DA by Particle filter (PF) has attracted attention for
updating model parameters in geotechnical engineering (Shuku et al., 2012, 2013; Nguyen et al.,
2014; Murakami et al., 2017; Shibata et al., 2019). However, the issue with degeneracy in PF is not
reported in any of these works, and comparison with other DA techniques is yet to be conducted.

Tao et al. (2020) demonstrated the use of EnKF through synthetic and real-case data to predict
the settlement of road embankments. The effect of sensitivity of model parameters, ensemble size
and observation error were studied. The use of elastoplastic model combined with EnKF is studied
by Mohsan et al. (2021) to update the factor of safety of a slope based on synthetic monitoring
data. Mohsan et al. (2021) noted that the state variables of the numerical model such as effective
stress, strain and pore-water pressures need to be updated with a recursive/restarting algorithm to
achieve proper convergence. The effect of sensor location is, however not reported.

Tao et al. (2021) used the Modified Cam-Clay elastoplastic model combined with EnKF for
back-calculating the spatial variability of the stiffness parameters, and showed the influence of the
quantity of sensors. Literature on some comparative studies between DA methods for geotechnics
do exist, e.g. Hommels and Molenkamp (2006) studied the effect of using Unscented Kalman Filter
(UKF) and Ensemble Kalman Filter (EnKF) for an embankment problem, but using a simplified
elastic-perfectly plastic Mohr-Coulomb model which is not suitable for general serviceability
calculations in geotechnical engineering. Tao et al. (2022) compared EnKF with Markov Chain
Monte Carlo (MCMC) algorithm for a consolidation settlement problem, but only for a simple
analytical model.

A comparison between the EnKF, UKF and PF algorithms have not been performed in previous
studies. This is crucial, since the purpose of the comparison is to assess the combination of forward
model and DA in terms of the extent of complexity required from them. Also the comparison
between the DA algorithms need to be performed for models with rate-dependency and bond
degradation features since natural geomaterials, especially natural soft clays (as seen in Section
2.2) are highly complex in nature. Combined with multilayered soil profiles, the estimation can
become a high dimensional Bayesian update problem.

Additionally, it is imperative to check whether DA can be used for models whose formulation
does not match the physics of the system, which can be expected in general geotechnical practice. It
should be noted that because of the constantly evolving nature of the DA discipline, an exhaustive
validation of all the different types of DA methods is a monumental task, and not practical within
the current scope. However, the commonly used recent DA methods for geotechnics, mentioned
in this section, can serve as a good starting point to answer the aforementioned points as part of
the objectives of this thesis.

4.2 Basic principles
Considering the Data Assimilation (DA) window is represented by 𝑡 ∈ [0, 𝑇 ], the state of the
system evolves via the forward model 𝔽 ∶ 𝑓 (𝑡, 𝑥) → 𝑓 (𝑡+Δ𝑡, 𝑥), ∀(𝑡, 𝑥) ∈ [0, 𝑇 ]×Ω with initial
condition 𝑓 (𝑡0 = 0, 𝑥). Starting from the prior distribution, represented as 𝑝(𝑥0) in the model
space, the system state 𝑥𝑘 ∈ ℝ𝑚 evolves via the relation shown in Equation 4.1. The true state
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of the system is observed via a set of instruments treated as the observation space modelled by
𝑦𝑘 ∈ ℝ𝑛. The variables from the model space are mapped to the observation space through the
operator ℍ ∶ 𝑓 (𝑡, 𝑥) → 𝑔(𝑡, 𝑥), ∀ (𝑡, 𝑥) ∈ [0, 𝑇 ] × Ω.

𝑥𝑘 =
(

𝑢𝑘
𝑝𝑘

)

∈ ℝ𝑚

𝑥𝑘+1 = 𝐹 (𝑥𝑘) + 𝑞𝑘
𝑦𝑘 = 𝐻(𝑥𝑘) + 𝑣𝑘

(4.1)

where, 𝑢𝑘 is the displacement vector and 𝑝𝑘 is the pore-water pressure vector at the nodes for
time-step 𝑘 of the discretised system. The process noise is given by 𝑞𝑘 ∼ 𝑁(0, 𝜎𝑞) due to modelling
errors and the noise corrupting the measurement is given as 𝑣𝑘 ∼ 𝑁(0, 𝜎𝑣). The error covariance
matrix for the process noise is given as 𝐸[𝑞𝑘 𝑞𝑇𝑘 ] → 𝑄𝑘 and for the observation error covariance
matrix is defined as 𝐸[𝑣𝑘 𝑣𝑇𝑘 ] → 𝑅𝑘.

The state of the system is updated using all the available noisy observations until time 𝑘
to construct the posterior density. The previous posterior from time 𝑘-1 is projected forward
using the transition density 𝑝(𝑥𝑘|𝑥𝑘−1), to generate the prior distribution at time 𝑘 based on the
Chapman-Kolmogorov equation (Chatzi and Smyth, 2009).

𝑝(𝑥𝑘|𝑦1∶𝑘−1) = ∫ 𝑝(𝑥𝑘|𝑥𝑘−1) 𝑝(𝑥𝑘−1|𝑦1∶𝑘−1) 𝑑𝑥𝑘−1 (4.2)
Subsequently the updated posterior at time 𝑘 can be obtained, by incorporating the latest observation
likelihood:

𝑝(𝑥𝑘|𝑦1∶𝑘) =
𝑝(𝑦𝑘|𝑥𝑘) 𝑝(𝑥𝑘|𝑦1∶𝑘−1)

𝑝(𝑦𝑘|𝑦1∶𝑘−1)
(4.3)

where 𝑝(𝑥𝑘|𝑦1∶𝑘) defines the a posteriori estimate. A solution for the above Bayesian integral
equations are usually intractable, especially for geotechnical problems. Hence, algorithms that
approximate the exact solution are necessary, which is described in the coming sections.

The process of sequential assimilation of observations is summarised in Figure 4.2. The
typical assimilation scheme is made up of two major steps: (1) a prediction/forecast step and (2) a
update/analysis step. At time k, the analysis, 𝑥𝑎𝑘, which is a result of the forecast 𝑥𝑓𝑘 and set of
observations, 𝑦𝑘, is projected to the next time step, 𝑘 + 1 using the forward model. The result of
the forecast is denoted 𝑥𝑓𝑘+1 and becomes the background, or initial guess, so that by using the
observation 𝑦𝑘+1 is then updated to 𝑥𝑎𝑘+1, and so forth, for the subsequent time steps.

4.3 Joint state and parameter estimation
In geotechnical engineering, the problem of estimating parameters for a forward model involves
finding the joint probability density function of the parameters and the model state, given a set
of measurements. In practice, however, a series of ad-hoc approaches is employed to “find” an
estimate of the parameters that is either close to prior experience, and logical deduction or, just
plainly, fit the model response in a random manner to be as close as possible to a set of measurements.
The latter approach is ill-advised, and the parameter set so obtained may not contain sufficient
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Time
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𝒇
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𝒂

𝒙𝒌+𝟑
𝒂

𝒚𝒌+𝟏

𝒚𝒌+𝟐

𝒚𝒌+𝟑

Figure 4.2: Illustration of sequential data assimilation.

information to predict the future response. The aim here is to achieve a set of parameters in the
model which results in a model solution that is consistent with a set of measurements while also
maintaining the physical meaning of that set such that it is more representative for the site.

The field of parameter estimation is well developed in Data Assimilation (DA), and is vastly
different from the aforementioned ad-hoc approach. Traditionally DA has been used exclusively
for state estimation, and the sentiment still exists that as long the state is accurately predicted,
the parameters can be fixed. This is acceptable when the sensitivity of the results at the current
timestep largely depend on the previous state of the system, rather than the model parameters.

In contrast, in geotechnical engineering the current state of the system depends on both the
model parameters and the state history of the system. DA with state estimation alone is not
expected to provide reasonable results, and also it does not provide any scientific knowledge. The
approach for parameter estimation can differ depending on the purpose. However, in this thesis,
success is measured mainly by how close the parameter estimates are to their true value, since
it is believed that this approach would provide a more consistent way of describing the future
behaviour of the system, and to better understand the underlying physics.

In order to estimate the model parameter set 𝜃 ∈ ℝ𝑝 concurrently with the evolving model
state, the state space 𝑥 ∈ ℝ𝑚 needs to be augmented to create a joint state-parameter space,
allowing to update the model parameters jointly with the state variables as part of the assimilation
process (Bocquet and Sakov, 2013; Iglesias et al., 2013).

𝑥̃𝑘 =
(

𝑥𝑘
𝜃𝑘

)

∈ ℝ𝑚+𝑝 (4.4)

This augmented system state can be combined with the governing equations of the model state
evolution in the usual manner, with the exception that the observation operator needs to be
augmented, i.e.
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𝐻̃𝑘 =
(

𝐻𝑘 0
)

∈ ℝ𝑛×(𝑚+𝑝) (4.5)
The augmented state vector allows for the calculation of the cross-covariance between the states
and parameters. The inference about the unobserved parameter, and its uncertainty relies crucially
on the cross covariance matrix (Equation 4.6). The off-diagonal elements of the (augmented)
state error covariance matrix, i.e. 𝑃𝑥𝜃 & 𝑃𝜃𝑥, pass information from the data assimilated state to
improve the estimate of the unobserved parameters. Since the model parameters are constant, the
persistence model is applied to the parameters, meaning the parameter set remains constant during
the model state evolution until the subsequent assimilation cycle.

E [ (𝑥̃ − E[𝑥̃]) (𝑥̃ − E[𝑥̃])𝑇 ] =
(

𝑃𝑥𝑥 𝑃𝑥𝜃
𝑃𝜃𝑥 𝑃𝜃𝜃

)

(4.6)

In this study the model error is not considered explicitly, since due to the adopted persistence
model, the evolution of parameters with time is perfect (𝑑𝜃∕𝑑𝑡 = 0). Therefore, any additional
model error taken into account may weigh down the significance of the previous assimilation,
which in turn affects the convergence (Trudinger et al., 2008).

4.4 Data Assimilation algorithms

Unscented Kalman Filter
The unscented Kalman filter employs the non-linear unscented transformation principle, which
uses a set of predetermined sigma points with corresponding weights to parameterise the mean
and covariance of the prior Gaussian distribution. This approach avoids propagating the full
information and achieves results equivalent to the original Kalman Filter for linear systems, while
elegantly generalised for nonlinear systems. The effectiveness of this method for nonlinear systems
is due to the fact that approximating a probability distribution with a set of points and weights
from the probability density function is simpler than approximating a nonlinear function.

The number of sigma points generated is 2𝐿 + 𝐼 , where 𝐿 → 𝑚 + 𝑝 is the dimension of
the augmented state variable reflecting the statistics of the system state. The first sigma point
is chosen as the mean of the distribution, and the remaining points are computed by scaling the
covariance matrix by 𝜆→ 𝛼2(𝐿 + 𝜅) − 𝐿, where 𝛼 distributes the sigma points around the mean
(value between 10−4 ≤ 𝛼 ≤ 1) and 𝜅 is the secondary scalar parameter to guarantee positive
semi-definiteness of the covariance matrix. 𝜅 is usually chosen ≥ 0. A good default choice is 0
(Merwe and Wan, 2003). These points are illustrated in Figure 4.3 and expressed as

𝜒0 = ̂̃𝑥𝑘−1|𝑘−1

𝜒𝑖 = ̂̃𝑥𝑘−1|𝑘−1 + [
√

(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1]𝑖 𝑖 = 1, ...𝐿

𝜒𝑖 = ̂̃𝑥𝑘−1|𝑘−1 − [
√

(𝐿 + 𝜆)𝑃𝑘−1|𝑘−1]𝑖−𝐿 𝑖 = 𝐿 + 1, ...2𝐿

(4.7)

and the associated weights are given below as
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𝑥

Figure 4.3: Illustration selecting sigma points for the unscented Kalman filter.

𝑊 𝑚
0 = 𝜆

𝐿 + 𝜆

𝑊 𝑐
0 = 𝜆

𝐿 + 𝜆
+ 1 − 𝛼2 + 𝛽

𝑊 𝑚
𝑖 = 𝑊 𝑐

𝑖 = 1
2(𝐿 + 𝜆)

𝑖 = 1...2𝐿

(4.8)

Here 𝛽 is a positive real number. An optimal choice for 𝛽 would be 𝛽 = 2, for true Gaussian priors.
Each of the sigma points in Equation 4.7 are then propagated in the time domain (Equation 4.9)
through the nonlinear function and the statistics are computed using the weights (Equation 4.8).

𝜒 𝑖𝑘|𝑘−1 = 𝐹 (𝜒 𝑖𝑘−1), 𝑖 = 0, ..., 2𝐿 (4.9)
Here,𝐿→ 𝑚+𝑝 is the dimension of the augmented state system and the statistics of the transformed
sigma points are computed using the associated weights where the mean and covariance of the
projected prior at time 𝑘 is calculated using the unscented transform,

̂̃𝑥𝑘|𝑘−1 =
2𝐿
∑

𝑖=0
𝑊 𝑚
𝑖 𝜒 𝑖𝑘|𝑘−1

𝑃𝑘|𝑘−1 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 (𝜒 𝑖𝑘|𝑘−1 − ̂̃𝑥𝑘|𝑘−1)(𝜒 𝑖𝑘|𝑘−1 − ̂̃𝑥𝑘|𝑘−1)𝑇 +𝑄𝑘−1

(4.10)

The sigma points are mapped to the measurement space and the mean is calculated.
𝑍 = 𝐻̃(𝜒 𝑖𝑘|𝑘−1)

𝑦̂𝑘|𝑘−1 =
2𝐿
∑

𝑖=0
𝑊 𝑚
𝑖 𝑍𝑖

(4.11)
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The covariance of the sigma points for the measurement and the cross covariance between the
state and the measurements are defined as:

𝑃 𝑦𝑦𝑘 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 (𝑍 − 𝑦̂𝑘|𝑘−1)(𝑍 − 𝑦̂𝑘|𝑘−1)𝑇 + 𝑅𝑘

𝑃 𝑥𝑦𝑘 =
2𝐿
∑

𝑖=0
𝑊 𝑐
𝑖 (𝜒 𝑖𝑘|𝑘−1 − ̂̃𝑥𝑘|𝑘−1) (𝑍 − 𝑦̂𝑘|𝑘−1)𝑇

(4.12)

The Kalman gain is then computed as the ratio between the belief in the state of the system to that
in the measurement. Subsequently the Kalman gain is used to update the estimate of the state
(mean and variance) using the measurement 𝑦𝑘

𝐾𝑘 = 𝑃 𝑥𝑦𝑘 (𝑃 𝑦𝑦𝑘 )−1

̂̃𝑥𝑘|𝑘 = ̂̃𝑥𝑘|𝑘−1 +𝐾𝑘 (𝑦𝑘 − 𝑦̂𝑘|𝑘−1)

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑘 𝑃
𝑦𝑦
𝑘 𝐾𝑇

𝑘

(4.13)

Figure 4.4 shows the illustration of the working of the Unscented Kalman Filter (UKF). Compared
to Monte-Carlo techniques that need numerous sampling points, the UKF is a relatively more
straightforward method. Its implementation is simpler, with the generation of sigma points during
each update being the only computationally intensive aspect. However, joint estimation of the
state and parameter can increase the dimensional complexity, particularly with large parameter
sets, leading to instability when combined with a highly nonlinear process model. Furthermore,
large noise in the dataset can decrease the overall performance.

Prediction

Generate
sigma points

Compute gain
& Updateො𝑥𝑘−1|𝑘−1

𝑃𝑘−1|𝑘−1
𝑥

ො𝑥𝑘|𝑘−1

𝑃𝑘|𝑘−1
𝑥

ො𝑥𝑘|𝑘

𝑃𝑘|𝑘
𝑥

Figure 4.4: Illustration of the working of the Unscented Kalman filter.
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Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF), which was proposed by Evensen (1994), is based on the
Kalman filter formulation. In this method, the statistics of the state variable are represented by a set
of ensemble members, which are propagated in time using the nonlinear dynamics of the system.
The standard Kalman filter analysis scheme is then applied to this ensemble set to calculate the
actual posterior mean and variance at each time step. Despite its widespread use in the geosciences
community, EnKF is still a relatively new technique in geotechnics.

The Ensemble Kalman Filter is popular since it can effectively handle large dimensional
problems using a small ensemble size (Schillings and Stuart, 2016), and it is straightforward
to implement. It utilises a derivative-free optimisation technique, where the ensembles act as
a substitute for derivative information and provide an approximation of the error covariance
matrix. As the ensemble size increases, the sampling error decreases proportionally at a rate of
√

1∕𝑁 . Over the years, EnKF has developed a large user group, and also has gained popularity in
geotechnical engineering. Recent studies have explored its potential in this field (e.g. Hommels
and Molenkamp, 2006; Vardon et al., 2016; Mavritsakis, 2017; Liu et al., 2018a).

The ensemble representation of the augmented state vector is represented as:

𝑥̃𝑁𝑘 =
(

𝑥1𝑘 𝑥2𝑘 … 𝑥𝑁𝑘
𝜃1𝑘 𝜃2𝑘 … 𝜃1𝑘

)

∈ ℝ𝑁×(𝑚+𝑝) (4.14)

The mean, anomaly matrix and the subsequent covariance matrix of the augmented ensemble
forecast state vector is estimated as:

𝑥̃𝑓𝑘 = 𝑥̃𝑓,𝑁𝑘 ⋅ 𝟏𝑁

𝑿𝑓
𝑘 = 1

√

𝑁 − 1
(𝑥̃𝑓,𝑁𝑘 − 𝑥̃𝑓𝑘 )

𝑃 𝑒,𝑓
𝑘 = (𝑿𝑓

𝑘 )(𝑿
𝑓
𝑘 )
𝑇 ≈ 𝑃 𝑓𝑘

(4.15)

where superscript 𝑒 represents the quantities estimated from ensembles with 𝟏𝑁 representing
the equal weight vector for calculating the mean. In order to maintain consistency in the error
covariance matrix between EnKF and KF, an ensemble of perturbed observation with covariance
𝑹 is defined (Burgers et al., 1998). Hence, the method can also be called the stochastic-EnKF
(Hoteit et al., 2015).

𝑦𝑗𝑘 = 𝑦𝑡𝑘 + 𝑣
𝑗
𝑘 𝑗 = 1, 2,… , 𝑁

𝒀 ′

𝑜 =
1

√

𝑁 − 1

[

𝑣1𝑘, 𝑣
2
𝑘,… , 𝑣𝑁𝑘

]

𝑹𝑒 = (𝒀 ′

𝑜)(𝒀
′

𝑜)
𝑇 ≈ 𝑹

(4.16)

The ensemble based Kalman gain matrix is obtained and each ensemble member is updated in the
analysis step (see Equation 4.17):
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𝑲𝑒 = 𝑃 𝑒,𝑓
𝑘 𝐻̃𝑇

[

𝐻̃𝑃 𝑒,𝑓
𝑘 𝐻̃𝑇 +𝑹𝑒

]−1

𝑥̃𝑎𝑛,𝑘 = 𝑥̃𝑓𝑛,𝑘 + 𝑲𝑒 [𝑦𝑛,𝑘 − 𝐻̃𝑥̃
𝑓
𝑛,𝑘], 1 ≤ 𝑛 ≤ 𝑁

𝑃 𝑒,𝑎
𝑘 = [𝑰 −𝑲𝑒𝐻̃] 𝑃 𝑒,𝑓

𝑘

(4.17)

The EnKF analysis method is an approximation because it does not properly consider non-Gaussian
contributions in the predicted ensemble. Unlike the particle filter, EnKF does not solve the Bayesian
update of a non-Gaussian probability density function. Instead, the updated ensemble inherits
most of the non-Gaussian properties from the forecast ensemble since only the updates defined
by the right-hand side of Equation 4.17 for calculating 𝑥̃𝑎𝑛,𝑘 are linear. According to Verlaan and
Heemink (2001), EnKF can be used for strongly nonlinear problems. In geotechnical engineering,
several studies have used prior variables with assumptions other than Gaussian, such as the uniform
distribution (Tao et al., 2020) and the prior distribution of parameter fields sampled from the
log-normal distribution (Liu et al., 2018a; Tao et al., 2021).

In order to avoid divergence of the filter, it is necessary to treat observations as random
variables, as noted by Burgers et al. (1998), who explained that failure to do so could result
in underestimation of the analysis covariance. To compare and assess the impact of perturbed
observations, a deterministic version of EnKF, known as the Ensemble Square Root Filter (EnSRF),
is implemented. Instead of introducing noise to the observations, as in Equation 4.16, the Kalman
gain is adjusted so that Equation 4.17 is satisfied, and independent observations are assimilated
sequentially, as demonstrated in Whitaker and Hamill (2002). This factor, shown in Equation 4.18,
can be a scalar between 0 and 1 meaning that to obtain the desired analysis error covariance, a
reduced form of the traditional Kalman gain is used. The calculation of [𝐼 −𝐾𝑒𝐻̃] involve the
square root of the background error covariance and is hence called the Ensemble Square Root
Filter (EnSRF) (Whitaker and Hamill, 2002).

𝐾𝑒 =
⎛

⎜

⎜

⎝

1 +
√

𝑅
𝐻̃𝑃 𝑒,𝑓

𝑘 𝐻̃𝑇 + 𝑅

⎞

⎟

⎟

⎠

−1

𝐾𝑒 (4.18)

Forward modelForward model

Prediction step Analysis step

Perturbed
observation

Figure 4.5: Illustration of the principle of the ensemble Kalman filter
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Particle Filter
The Particle filter (PF) (Kitagawa, 1996; Arulampalam et al., 2002; Doucet et al., 2013) uses
a set of independent particles, e.g. {𝑥(1)𝑘−1|𝑘−1, 𝑥

(2)
𝑘−1|𝑘−1,… 𝑥(𝑁)

𝑘−1|𝑘−1} with associated weights
{𝜓 (1)

𝑘−1, 𝜓
(2)
𝑘−1,… , 𝜓 (𝑁)

𝑘−1} at time ‘𝑘-1’. The approximation using the particles represented with
Dirac delta masses, ‘𝛿’, is shown below (Shuku et al., 2012).

𝑝(𝑥𝑘−1|𝑦1∶𝑘−1) ≈
𝑁
∑

𝑖=1
𝜓 (𝑖)
𝑘−1 𝛿(𝑥𝑘−1 − 𝑥

(𝑖)
𝑘−1|𝑘−1) (4.19)

The prediction step of Equation 4.2 is approximated as,

𝑝(𝑥𝑘|𝑦1∶𝑘−1) ≈
𝑁
∑

𝑖=1
∫ 𝜓 (𝑖)

𝑘−1 𝛿(𝑥𝑘−1 − 𝑥
(𝑖)
𝑘−1|𝑘−1) 𝑝(𝑥𝑘|𝑥𝑘−1) 𝑑𝑥𝑘−1

=
𝑁
∑

𝑖=1
𝜓 (𝑖)
𝑘−1 𝛿(𝑥𝑘 − (𝐹 (𝑥(𝑖)𝑘−1|𝑘−1) + 𝑞

(𝑖)
𝑘 ) … (4.1)

=
𝑁
∑

𝑖=1
𝜓 (𝑖)
𝑘−1 𝛿(𝑥𝑘 − 𝑥

(𝑖)
𝑘|𝑘−1)

(4.20)

and the Bayesian integral from Equation 4.3 can be approximated as,

𝑝(𝑥𝑘|𝑦1∶𝑘) ≈
𝑁
∑

𝑖=1
𝜓 (𝑖)
𝑘 𝛿(𝑥𝑘 − 𝑥

(𝑖)
𝑘|𝑘−1) (4.21)

As samples cannot be simulated directly from this distribution, the Importance Sampling technique
is used, where the samples are generated from a proposal density, 𝑞(𝑥𝑘|𝑦1∶𝑘) which approximates
the true filtering distribution. The importance weights account for the deviation from this true
distribution as shown below (Chatzi and Smyth, 2009):

𝜓 (𝑖)
𝑘 ∝

𝑝(𝑥(𝑖)𝑘 |𝑦1∶𝑘)

𝑞(𝑥(𝑖)𝑘 |𝑦1∶𝑘)
(4.22)

As the state is evolved, during the assimilation period, the importance weights are estimated
recursively using the relation below (Carrassi et al., 2017; Tamboli, 2021):

𝜓 (𝑖)
𝑘 ∝ 𝜓 (𝑖)

𝑘−1

𝑝(𝑦𝑘|𝑥
(𝑖)
𝑘 ) 𝑝(𝑥(𝑖)𝑘 |𝑥(𝑖)𝑘−1)

𝑞(𝑥(𝑖)𝑘 |𝑥(𝑖)𝑘−1, 𝑦𝑘)
(4.23)

with weights normalised to 1. The choice of a relevant proposal density may not be straightforward
and depends on the problem. The most commonly used approach is to use the transitional prior
as the importance density function, 𝑞(𝑥(𝑖)𝑘 |𝑥(𝑖)𝑘−1, 𝑦𝑘) = 𝑝(𝑥(𝑖)𝑘 |𝑥(𝑖)𝑘−1). This process is called the
Sequential Importance Sampling (SIS) procedure, representing the bootstrap version of the Particle
Filter (Gordon et al., 1993), and is the most widely used due to its ease of implementation. The
above equation then reduces to:
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𝜓 (𝑖)
𝑘 = 𝜓 (𝑖)

𝑘−1 𝑝(𝑦𝑘|𝑥
(𝑖)
𝑘|𝑘−1) (4.24)

𝑝(𝑦𝑘|𝑥
(𝑖)
𝑘|𝑘−1) ∝ 𝑒𝑥𝑝

[−(𝑦𝑘 −𝐻𝑥
(𝑖)
𝑘|𝑘−1)

𝑇 𝑅−1
𝑘 (𝑦𝑘 −𝐻𝑥

(𝑖)
𝑘|𝑘−1)

2

]

(4.25)
The importance weights are, in this case, essentially dependent on the likelihood function. For
geomaterials with elastic-viscoplastic law the behaviour at the current timestep is highly dependent
on the information from the previous state of the stress, strain and pore-water pressure of the
system. These are preserved when using the SIS algorithm by keeping the initially generated
model trajectories constant during the entire filtering process, updating only the weights based on
sequentially observed data. Although limiting to prediction and correction steps for updating the
weights is reasonable for most geotechnical applications, the SIS suffers from sample degeneracy.
Due to the curse of dimensionality, the maximum weight in the bootstrap PF converges to one
unless the sample size grows exponentially with the problem dimension (Bengtsson et al., 2008;
Bickel and Bengtsson, 2008; Fearnhead and Künsch, 2018). There are two general ways for dealing
with the degeneracy of the particle filter, one is finding a good proposal density and the other is
resampling.

Observation density

Resampling

Predictionp(xt|zt-1)

p(zt|xt)

p(xt|zt)

p(xt+1|zt)

p(xt-1|zt-1) Prior

Figure 4.6: Illustration of the working of Particle Filter with resampling procedure.

The importance weights of the individual particle trajectories are subsequently updated, and used
to assess whether resampling is necessary. If the effective sample size has dropped below a
user-defined threshold, particles with lower weights are relinquished, and resampling is used to
create more promising trajectories that adequately capture the evolving posterior state distribution.
For geotechnical problems, the number of particles is severely constrained by the computational
cost, which further penalises this approach. This can be resolved by reinforcing the filter with a
sequential importance resampling (SIR) technique that uniformly resets the weights to 𝑁−1 using
balanced sampling schemes (i.e. stratified or systematic (Carpenter et al., 2000)) but is, quite often,
still not sufficient to counteract this issue as will be shown in this thesis.
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4.5 Nature of data
There are several factors that can diminish the true value of a geotechnical dataset, and they all can
be categorised into two components: quantity and quality. Disparity between theory and actual
field conditions exist, and the magnitude of this depends on several factors. However, one of the
major issues that amplifies this discrepancy is the shortage of data. The reason is due to the high
costs associated with acquiring data. Even with a comprehensive data collection, the magnitude
of geotechnical uncertainty remains considerable due to the fact that the volume of geomaterials
investigated is much smaller than the spatial volume considered in the analysis. As a result, making
decisions always involves risk in geotechnical engineering, and is only further amplified due
to simplifications in modelling and testing errors. Measurement error arises from equipment,
procedural–operator, and random testing effects. Equipment effects result from inaccuracies in
the measuring devices and variations in equipment geometries and systems employed for routine
testing (Phoon and Kulhawy, 1999). In general, tests that are highly operator dependent, and
that have complicated test procedures, will have greater variability than otherwise. Based on the
information provided in this section, the criteria for identifying the optimal Data Assimilation
algorithm for geotechnical applications is mentioned in the next section.

4.6 Criteria
The appropriate data assimilation (DA) method for a geotechnical problem should be efficient
against the following factors:

• Problem dimension: Practical problems in geotechnical engineering are usually associated
with significant uncertainties. Hence the number of variables of interest that need to be
estimated is usually high. Therefore, the selected DA method should be stable for high
dimensional problems.

• Limited information: The data needed for utilisation of probabilistic assessment are not
available to the sufficient extent. This is investigated in the context of geotechnical problems
whether a meaningful level of accuracy and precision in state and parameter estimation are
achieved with the selected DA method based on limited information.

• Data quality: Several different sources of uncertainties can affect the observation data
retrieved during various phases of a geotechnical project. The low quality of data is a real
issue in geotechnical engineering when considered for inverse analysis. Hence, the selected
DA method needs to be consistent in the accuracy and precision of the results when faced
with low quality datasets i.e. highly noisy dataset.

• Computational efficiency: Although some data assimilation methods may offer improved
convergence, the high computational cost may make them less attractive for most geotechni-
cal applications. Therefore, it is important to choose a DA method that strikes a balance
between convergence and computational efficiency.
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5 Summary of Appended Papers

Structure of the Chapter

In this Chapter, the results from the appended papers of this thesis are summarised. This Chapter is
structured according to the research questions mentioned in Section 1.2 (see Figure 5.1). Since both
Papers A and B deal with deterministic analyses of trial embankments with a similar methodology,
the summary of these papers are combined in this Chapter. In Paper C, the performance of various
Data Assimilation (DA) algorithms with different constitutive models have been studied for a
synthetic case to identify the most robust algorithm. This method is further evaluated against
monitoring data from a real test case in an extension to Paper C. In Paper D, the numerical model
from Paper C is used but with the difference here to investigate whether DA can help capture
the response of a system even when the model formulation does not match the physics of that
geotechnical system. The effect of field monitoring setup on the performance of DA is studied
in Paper E. In Paper F, an improved Particle Filter is proposed where its generic formulation is
combined with an optimisation algorithm to mitigate its limitation for geotechnical application.

Are advanced constitutive models 
always better in capturing the true 

state of the system ?

How do different DA methods apply to 
geotechnical numerical models of 

varying complexity?

Can DA still help capture the response 
of the true system, even if the model 

formulation does not match the physics 
of the geotechnical system considered, 

be it simple or complex ? 

Does the field monitoring setup i.e. 
the quantity, type and location of 

measurements has any effect on the 
performance of the DA ? 

Is there a possibility to improve
the efficiency of a DA 

technique ?

Papers A & B

Paper C & 
Extension

Paper D

Paper E

Paper F

Research question

Deterministic analyses of 2 trial 
embankments using the advanced 

Creep-SCLAY1S model and identify some 
of the limitations.

The performance of different DA methods 
are studied with two constitutive models 

using a synthetic experiment. This study is 
extended to a real case dataset  

The synthetic experiment from Paper 
C is used but with the emphasis on 
the issue of epistemic uncertainty 
with regards to model selection. 

The Ensemble Kalman Filter is 
implemented in PLAXIS 2D FE code using 
the Python API for a synthetic application 
to study the effect of monitoring strategy 

on the DA performance.

The limitations of the generic Particle 
Filter is mitigated by proposing a novel 

technique i.e., hybridisation with an 
optimisation algorithm.

Approach

Figure 5.1: Schematic diagram on the structure of this Chapter.
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5.1 Papers A & B

Paper A: "Towards consistent numerical analyses of embank-
ments on soft soils" & Paper B: "Consistent Class A & C
predictions of the Ballina test embankment"

Introduction
In Paper A, the analysis of a trial embankment constructed in Haarajoki, Finland by the Finnish
National Road Administration between July and August 1997 was conducted. The embankment
has a length of 100 meters, width of 8 meters, and a height of 2.9 meters. Half of the embankment is
constructed without any ground improvement, while the other half is improved with prefabricated
vertical drains.

Paper B deals with the prediction of the deformation behaviour of a trial embankment con-
structed in Ballina, Australia, which was part of a prediction Symposium in September 2016,
inviting practitioners and academics world-wide. The trial embankment (80 m long and 16 m
wide with a 3 m high crest) was constructed with drains to study the settlement behaviour of the
soft ground. Before the embankment was built, high-quality soil samples were taken from the site
and subjected to advanced laboratory testing at the University of Newcastle (Pineda et al., 2016),
which was supplemented by sophisticated in-situ testing (Kelly et al., 2017).

Both these embankment were extensively instrumented to measure pore pressures, vertical
and horizontal deformations, and total stresses at key locations. Based on the provided test data,
it can be observed that the soil deposits in Haarajoki and Ballina display high sensitivity, rate
dependency, and anisotropy. Therefore, the Creep-SCLAY1S model (Gras et al., 2017) is chosen to
simulate this behaviour, as it takes all these features into account. The properties of the soil would
change as a function of depth, based on the index properties, necessitating the use of separate
layers with uniform properties, each with its own set of model parameters.

Automated parameter derivation
When employing complex models like Creep-SCLAY1S, determining accurate parameters becomes
challenging due to the large number of parameters in the model. Manual derivation can introduce
inconsistencies, which subsequently compromises the accuracy of the input parameters, and
ultimately impact the performance of the model. Hence, the process of determining model
parameters using techniques that work well with actual measurement data has been automated to a
large extent to produce a reliable set of parameters. The advantage of this automated approach
is that it allows the user to process multiple datasets at once, and to obtain a consistent set of
parameters in a short time with minimal error. Moreover, a large number of laboratory tests can
be easily integrated into the analysis.

Despite the requirement of a considerable number of parameters for the Creep-SCLAY1S
model, a consistent approach is maintained during the entire procedure, and the user can assess
the quality of the process at each stage. With minimal user intervention, the method operates
seamlessly. The data for the Haarajoki and Ballina test site are imported into this framework and
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processed using the module as shown in Figure 5.2. The validation of the method was carried out
on both the test sites, where laboratory and field measurements were used.

Figure 5.2 shows the workflow of this algorithm. A high level overview of the workings of
this algorithm can be described as follows. Initially the data is imported into the repository and
processed for noise. For this purpose, the Savitzky-Golay filter (Savitzky and Golay, 1964) is
applied to smooth and correct the noisy data. Then the parameters are derived in an automated
manner using a series of functions and criteria preset in the algorithm. Combined with the data
from index test, the layers for the soil profile is defined to capture the variation of properties with
depth. After finalising the layers for the soil profile, the optimal value from each layer is selected
and a unique parameter set is obtained for each layer.

Using the parameter values from each layer, laboratory test simulations are conducted for
respective samples from each of these layers. In general practice, this process is tedious but due to
an automated environment, it is quite convenient for the user to execute this inspection in a time
efficient manner. After validation with the laboratory data, boundary value simulations with the
same parameter set are used to demonstrate the effectiveness of the procedure.

Disturbed  
samples 
omitted

If discrepancy  
exist

Check again

Raw data from

Laboratory, Field 

and other

Repository

Layering of soil

profile

Process stress-strain 

curves from corrected 

lab data

Process water content,

bulk density, Undrained 

shear strength information 

with depth of soil profile

Mean value of 

Parameter set for 

each layer

Boundary value 

simulation

Compare with

field results

Laboratory simulations 

for all tests using 

derived parameters

Regression to correct

noisy lab data

Automated parameter 

derivation from IL, CRS

and Triaxial data

Figure 5.2: Schematic diagram of workflow.

Layering
Due to the large variation in the properties of the soft soils between different depths, the hydro-
mechanical behaviour changes with depth. Therefore, the soil profile is divided into layers of
similar characteristics to avoid oversimplification and perform a reliable validation. Among others,
information on the index properties, undrained shear strength from CPT tests, unit weight of the
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soil with depth are some of the key criteria in the layering process.
Sometimes the quality of such data may be affected due to manual and/or instrument errors

and other information such as shear wave velocity, organic content, mineralogy, sensitivity, data
from dilatometer tests and other field observations, which although can also be subject to variation,
can provide valuable complementary input to assess the existing deviations.

Stress-strain curves from laboratory tests are another important pre-requisite to assess the
layering process. The choice of data from CRS or IL tests depends, however, on the application at
boundary value level. In addition to the amount, quality and reliability of the provided data, the
design of the experimental programme (strain rates, stress levels) further affects the usefulness of
the data.

If the validation cases involved are test embankments, then IL tests are preferred, since data
from CRS tests do not provide reliable data on creep, and are thus not representative for staged
construction of an embankment at the field scale. Data from triaxial tests provides data on the
strength of the soil at critical state, which is another key feature that is included in the layering
process. All these data are imported into the algorithm and processed using conditional arguments
and logical operators. It should be noted that information from two boreholes should not be mixed
during the layering process but should be interpreted separately to assess the horizontal extent of
the layering of the soil profile. Although this process is automated, user intervention may still be
required to interpret the results before finalising the layering process.

Result
The results of the simulation are compared against field measurements. Using this methodology, a
closer match between the predicted and measured behaviour is achieved without the use of any
cumbersome optimisation methods or any tampering with the parameter set. The consistency of
the parameter set is achieved from the laboratory scale to the boundary value simulations. The
latter is successfully demonstrated by the predictions of the performance of Haarajoki and Ballina
trial embankments. However, even with a consistent approach minor discrepancies do exist and
they are mentioned as follows.

Haarajoki: The results obtained from the model were compared to the measured settlements in
space and time for the normal cross-section without ground improvement. The predictions were
found to be in good agreement with the measured values, without requiring any further parameter
modifications. The settlement predictions are in good agreement with the measured values, but
the horizontal displacement is overestimated, indicating that one of the possible reasons can be
that the predicted 𝐾0 value may not be a good representation of the site condition. Although
there were some discrepancies with the measured pore pressure profiles, those fall within the
accuracy of the field instrumentation. To analyse the PVD improved subsoil in areas with ground
improvement, a method proposed by Chai et al. (2001) is used. This method involves using an
equivalent vertical hydraulic conductivity (𝐾𝑣𝑒) that approximates the increase in the normal
vertical hydraulic conductivity (𝐾𝑣) after PVD installation. By using this methodology, the PVD
improved subsoil can be analysed under the same 2D plane strain conditions as the area without
PVD, with only the input hydraulic conductivity values changing.

The properties of the smear zone were found to have a significant impact on the predicted
results, but their assessment is challenging due to uncertainties in the ground condition during
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and after PVD installation. Additionally, the presence of the desiccated crust layer has a large
sensitivity on the results.

Ballina: The main reason for the difference between the predicted settlements and the field
measurements in Class A predictions is due to (1) uncertainty in the preconsolidation pressure
obtained from CRS data, which even after correcting for strain-rate effects, remained overly high,
and (2) uncertainty in the characteristics of the smear zone adjacent to the drains (similar to
that observed in Amavasai et al. (2017)). Since settlement predictions, and the model used, are
highly sensitive to the magnitude of the preconsolidation pressure, obtaining accurate values is
critical. For Class C predictions, the measurement data provided after the Class A prediction is
subsequently used to re-evaluate the preconsolidation pressure from the high quality incremental
loading oedometer tests with a reference time consistent with the model. The assumptions made
regarding the hydraulic conductivity of the system were also re-evaluated, and as a result, the
accuracy of the predictions was improved.
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5.2 Paper C

Title: "Data assimilation for geotechnics - exploring the possi-
bilities"

Introduction
Researchers and practitioners have started to realise the potential of using Bayesian methods as
part of the inverse analysis for geotechnical problems. Data Assimilation (DA) is a powerful
tool and can be used to integrate forecast and monitoring data for state estimation and parameter
inference. Recent contributions have shown the efficacy of using DA in geotechnics, however,
there are various methods within the DA framework, each with their own benefits and drawbacks,
and a comprehensive evaluation of these algorithms is yet to be undertaken. There is currently a
lack of systematic research on the stability and efficiency of different DA methods for geotech-
nical applications. In this paper, the potential of using different DA methods in geotechnics is
studied. To demonstrate and compare the effectiveness of different DA algorithms in geotech-
nics, the geotechnical forward model benchmark case is simplified to a synthetic and classical
one-dimensional settlement problem of an embankment on soft soil. This simplified approach
serves as a proof-of-concept example and allows for a comparison of various DA techniques
while maintaining computational efficiency. If needed, the forward model can be replaced with a
more advanced numerical model within the implemented general framework. The study evaluates
the performance of different DA algorithms, including the Unscented Kalman Filter, Ensemble
Kalman Filter, Ensemble Square Root Filter, and Particle filter, as described in Chapter 4.

Methodology
In this paper, a set of synthetic examples are created to evaluate the performance of the aforemen-
tioned DA algorithms. This allows to evaluate the DA performance in a controlled environment
where modifications can be systematically incorporated. The methodology has the following steps:

• Using a pre-defined set of parameters the forward model is run which serves as the synthetic
truth. A set of measurements are derived from this synthetic true experiment with pre-
defined virtual sensor locations. The retrieved measurements are perturbed to generate a
realistic noisy observed dataset.

• Based on the initial prior knowledge of the parameters, the forward model is simulated.
Whenever synthetic observations are made available at specific time intervals, the forecasted
state in the model space is converted into the observation space. By employing data
assimilation (DA), the posterior distribution of the parameter set is then estimated.

• The predicted state i.e. settlement and excess pore water pressure at a specific location and
time interval, depend not only on the magnitude of the model parameters but also on the
history of the state variables, such as stress, strain, and porewater pressure. Hence a recursive
algorithm is employed where after each assimilation process, the forward simulation is
restarted from the initial time period in order to update the aforementioned states along with
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the model parameters to achieve proper convergence, albeit, at an unavoidably increased
computational cost (Mohsan et al., 2021).

• The performance of different DA algorithms is evaluated. For any modifications to enable
parametric assessment, adequate changes to the observational network, error statistics or
the model are employed and the methodology is repeated.

The current study examines two constitutive formulations: a basic elastoplastic formulation and
an advanced elastoviscoplastic formulation with structural degradation, coupled with consolidation
(Józefiak and Zbiciak, 2017), which are used to calculate settlements and excess pore water pressure
under an embankment loading in a one-dimensional section. The study aims to investigate the
impact of model complexity on the performance of various DA algorithms, including the updating
of parameters and settlement predictions (see Figure 5.3).

Elasto-viscoplastic model 
with structural degradation 

Elasto-plastic model 

Unscented Kalman Filter (UKF)
Ensemble Kalman Filter (EnKF) & 

Ensemble Square Root Filter (EnSRF)
Particle Filter (PF)

Figure 5.3: Constitutive models and Data Assimilation procedures chosen in this study.

A fully coupled hydro-mechanical finite difference simulation based on Rahman and Can Ulker
(2018) has been implemented. The overall workflow is implemented and solved in a Python
environment (Van Rossum and Drake Jr, 1995). This study shall aim to touch upon some of the
typical questions on the effect of model complexity, and the convergence of the model parameters
on the DA performance. The knowledge gained from this analysis is expected to be useful to
identify a robust DA method for application for combined state and parameter estimation in
geotechnical engineering. The performance of different DA algorithms are assessed based on
accuracy and precision of the parameter estimation (see Figure 5.4).

Effect of sensor location on convergence of parameters
The performance of DA is influenced by the sensitivity of the parameters. The presence of
insensitive parameters means that a unique solution cannot be guaranteed, and additional strategy
is needed to restrict the parameter space, typically by conducting a preliminary sensitivity analysis,
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Figure 5.4: Illustration of accuracy and precision.

and/or utilising prior knowledge to determine the most significant parameters, and consequently
constrain the less sensitive parameters to a reasonable value (Chen et al., 2013).

Nonetheless, in this study, no parameters were excluded as that allows to investigate how each
DA procedure performs in the presence of these insensitive parameters. The sensitivity of the
parameters is not constant in the spatio-temporal domain due to the change in the effective stress
level in the system (Tahershamsi and Dijkstra, 2021, 2022). Consequently, the performance of the
DA will also vary depending on the sensor location. In view of this, the time and location of our
measurement, which we include in our DA scheme, dictates the convergence of the parameters.

To illustrate this point, let us consider the same scenario but with a change in the drainage
boundaries at the bottom of the model. In this case, the drainage is closed at the bottom boundary
and settlement measurements are taken at a depth of 4m with high frequency (0.5 days) for the first
50 days, followed by the time intervals used previously. This was selected based on engineering
judgement, however, a prior spatiotemporal sensitivity assessment of the model parameters can be
an effective approach for optimal sensor placement (Hölter et al., 2015; Schoen et al., 2022).

Figure 5.5 depicts the performance of EnKF in estimating the parameters for the model. We
observe that the modified swelling index (𝜅∗) converges faster than the other parameters in the
first 50 d, which is likely due to the effective stress level being still in the overconsolidated region.
This finding is consistent with the results reported in Tahershamsi and Dijkstra (2021) from a
sensitivity point of view. Now continuing the simulation with the previously used regular time
intervals (shown until 300 days in Figure 5.6), the other parameters reach convergence to their
true value, as now the stress level has reached the elastoplastic region. In the synthetic truth, the
time of stiffness transition from the elastic to elastoplastic region at 4m depth is around 140 days
and this corresponds well with Figure 5.6d where the assimilation of the modified compressibility
index starts around this time.
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Figure 5.5: Convergence of particles of EnKF (0–50 d) for Elastoplastic model parameters in (a),(b),(c)
[Color representation: Solid Gray: ensemble, Solid Blue: mean of the ensemble, Dashed black: Synthetic
true value] and (d) normalised variance of all parameters.
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Figure 5.6: Convergence of particles of EnKF (0–300 d) for Elastoplastic model parameters in (a),(b),(c)
[Color representation: Solid Gray: ensemble, Solid Blue: mean of the ensemble, Dashed black: Synthetic
true value] and (d) normalised variance of all parameters.

54 , Architecture and Civil Engineering



Conclusions
The results indicate that the Ensemble Kalman Filter (EnKF) with perturbed observation performs
substantially better compared to its square root variant (EnSRF) and all other filters, even for
complex elastoviscoplastic models. Also EnKF can be relatively more stable in the presence of
wild outliers in the data as demonstrated by Lei et al. (2010). The effect of number of ensembles
of the EnKF for a geotechnical application has been studied by several researchers (Hommels
and Molenkamp, 2006; Vardon et al., 2016; Mohsan et al., 2021) and not repeated here for the
sake of brevity. Among the Data Assimilation techniques tested, the Unscented Kalman Filter
(UKF) is the most computationally efficient and can be recommended for simpler geotechnical
models. The UKF requires inherent parameters for choosing sigma points, due to its deterministic
algorithm. With increasing values for 𝛼 (from equation 4.7 and 4.8), the points move away from
the mean. Meanwhile, the weight associated with the center particle increases while for the other
particle decreases. Nevertheless, the effect of UKF performance based on the location of chosen
sigma points (0.80 ≥ 𝛼 ≥ 0.10) is found to have negligible difference in the convergence of the
parameters but this needs further evaluation with other applications.

The Particle Filter is shown to be less suitable for estimation of moderate to large sets of
model parameters in geotechnics. One of the reason is due to the relatively high accuracy of the
instruments considered in this exercise, leading to issues such as particle degeneracy i.e. losing
the diversity of the particles. Although this can be circumvented by increasing the sample size or
using an appropriate proposal distribution to sample the posterior, the issue can still persist. The
traditional PF needs improvement in order to make it feasible for general uncertainty quantification
in geotechnical engineering (see Paper F).

From a practical point of view, the convergence of modified swelling index may not be essential
in real-life embankment situations, as long as the short and long term behaviour are estimated
accurately. However, this exercise demonstrates that the stability of the parameter estimation de-
pends on the relationship between the parameters and the observations. The available observations
must contain adequate information to determine the unknown parameters of interest. Therefore, it
is demonstrated that parameter sensitivity is dependent on the observation strategy. Regardless of
the Data Assimilation method used, its effectiveness relies on an optimally designed monitoring
network, which includes selecting an optimal sensor location and measurement interval. This
finding highlights the impact of sensor placement on the quality of the implemented inverse
analysis method.
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5.3 Paper C Extension

Title: "Analysis of Ballina trial Embankment using Data Assim-
ilation"

Introduction
Based on the synthetic tests, the Ensemble Kalman Filter (EnKF) is identified as the most robust
among the considered Data Assimilation (DA) algorithms. However, the ideal synthetic test
considered is a homogeneous soil profile, while real world soil investigation data significantly
deviate from this state and usually have a layered profile (change of material properties with depth).
Hence as a next step, the EnKF algorithm is evaluated against monitoring data from a real test
case i.e. Ballina trial embankment. The background information on the Ballina test embankment,
soil layering, in situ and laboratory tests, instrumentation and in-situ measurements are presented
in Kelly et al. (2018). Some of the previous works dealing with Bayesian updating of the Ballina
embankment (Tan et al., 2019; Tian et al., 2022b) involve the use of soft soil creep model (SSC)
for the estuarine clay layer for the purpose of updating the model parameters. Research reported on
the use of an advanced elastoviscoplastic model with structural degradation for Bayesian updating
is limited. In contrast, the use of advanced models in deterministic analysis for the Ballina trial
embankment is more prevalent (e.g. Amavasai et al., 2018; Rezania et al., 2018). Even when
using such complex models, discrepancies still exist between the model prediction and the system
behaviour, highlighting the difficulties in capturing accurately the in-situ behaviour. Both the
Elastoplastic model (EP) and the Elastoviscoplastic model with structural degradation (EVP-S) are
combined with EnKF algorithm to evaluate their performance with the Ballina trial embankment.
The aim in this section is actually two-fold:

• To validate the efficiency of EnKF for high dimensional Bayesian updating of a real world
embankment problem.

• To investigate whether high fidelity can be achieved for the simpler EP model by integrating
monitoring data from a complex system with the help of Data Assimilation.

Methodology
Analyses are performed along the section with the magnetic extensometer (MEX1). The 1D
hydro-mechanical coupled finite difference model proposed by Yang and Carter (2018) for the
Ballina embankment is used. Similar to their Class-C prediction, only the estuarine clay layer
(1.5 m to 11.1 m) was analysed with three sub-layers (Layer 1: 2 m thick, Layer 2: 5 m thick
& Layer 3: 2.6 m thick) due to its high plasticity and the effect of prefabricated vertical drains
are modelled using increased values for the vertical hydraulic conductivity along the soft soil
profile. The monitoring data for the DA procedure is extracted from the magnets at depths of
around 2 m (Magnet-1), 5 m (Magnet-2), 8 m (Magnet-3) and 10.9 m (Magnet-4). The prior
statistics for the model parameters are considered the same for all layers and are represented by
the log-normal distribution with the coefficient of variation (C.O.V.) values corresponding to Liu
et al. (2018b) (see Table 5.1 and 5.2). A total of 200 ensemble members have been generated from
this distribution for the analysis.
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Table 5.1: Prior statistics of uncertain parameters of the EP constitutive model for all 3 layers.
Parameter Mean COV
𝜆∗ [-] 0.216 0.26
𝜅∗ [-] 0.032 0.25
𝜎′

𝑝 [kPa] 55.0 0.23
𝑘 [m/day] 9e-4 0.30
𝐶𝑘 [-] 0.50 0.20

Table 5.2: Prior statistics of uncertain parameters of the EVP-S constitutive model for all 3 layers.
Parameter Mean COV
𝜆∗𝑖 [-] 0.150 0.26
𝜅∗ [-] 0.032 0.25
𝜎′

𝑝 [kPa] 55 0.23
𝜒0 [-] 7.0 0.20
𝜌 [-] 10.0 0.20
𝜇∗
𝑖 [-] 0.0030 0.20

𝜏 [days] 3 0.20
𝑘 [m/day] 9e-4 0.30
𝐶𝑘 [-] 0.50 0.20

Results

The ensemble mean of the assimilated settlements for both the EP and the EVP-S model using
EnKF is shown in Figure 5.7. It should be noted that similar to Paper C, the restart algorithm
is employed where after each assimilation, the forward model is restarted from the initial time
period to update the state variables i.e. stress, strain and pore-water pressure along with the model
parameters. Using EnKF, an accurate state prediction is achieved, regardless of model complexity.
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Figure 5.7: Comparison of the assimilated settlement based on monitoring data using the EnKF
Data Assimilation (DA) algorithm for (a) EP & (b) EVP-S model
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A preliminary simulation with only prior knowledge from Tables 5.1 and 5.2 without EnKF is
conducted using the EP and EVP-S model. Figure 5.8 shows the difference between the simulated
settlements using only prior knowledge of the random variables and that when combined with EnKF.
So using only prior knowledge with no Data Assimilation, the EVP-S model would overestimate
the settlements, and in the case of EP there would be an underestimation.
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Figure 5.8: Comparison of the data assimilated state predictions with that from prior knowledge
for the EP and EVP-S models.

The ensemble distribution is shown in Figure 5.9 for the EP model and in Figure 5.10 for the
EVP-S model to show the difference in simulation between using Data Assimilation to update the
ensemble prediction and that using only prior knowledge. The results, especially Figure 5.9a. and
5.10a., are similar to those observed in Tao et al. (2022).
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Figure 5.9: Comparison of ensemble distribution for settlement prediction using EP model with
(a) using EnKF and monitoring data (b) using only prior knowledge (Color representation: Solid
Gray: ensemble, Solid black: Ensemble mean, marker: Measurement from field)
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Figure 5.10: Comparison of ensemble distribution for settlement prediction using EVP-S model
with (a) using EnKF and monitoring data (b) using only prior knowledge (Color representation:
Solid Gray: ensemble, Solid black: Ensemble mean, marker: Measurement from field)

With regards to the precision of the state prediction using DA, the standard deviation of the
settlement after 3 years at the location of Magnet-1, are recorded as 2.9 mm and 2.57 mm for the
EP and EVP-S model respectively. A simple model still captures the system behaviour not just
accurately but also with a precision that is on par with that of an advanced model, when using
EnKF. When checking the assimilated parameters for the EP model (see Table 5.3), however, the
modified compressibility index (𝜆∗) in the first layer is slightly elevated and the preconsolidation
pressure for all the layers show lower values than reported in the laboratory data for samples from
those depths (Pineda et al., 2016).

Table 5.3: Assimilated EP model parameters for the Ballina embankment.

Parameters Layer 1 Layer 2 Layer 3
mean COV mean COV mean COV

𝜆∗ 0.250 0.14 0.185 0.02 0.150 0.01
𝜎′

𝑝 46.26 0.10 42.45 0.08 49.87 0.15
𝜅∗ 0.028 0.17 0.030 0.20 0.027 0.23
𝑘 0.00132 0.09 0.00177 0.09 0.00148 0.06
𝐶𝑘 0.532 0.14 0.498 0.17 0.440 0.14

Since the EP model does not consider the deformations arising from rate dependency (creep)
and loss of bonding (destructuration), some parameters in the EP model deviate from the expected
values from laboratory tests, to compensate for the effects that are not explicitly captured by
the model. This shows that by using monitoring data to update model parameters, the system
behaviour can be predicted with improved fidelity, regardless of the forecasting model. When a
simpler model is used to capture more complex system behaviour, the model parameters may not
necessarily represent the true soil parameters, but rather become fitting parameters to accommodate
the additional features of the system. The final assimilated hydraulic parameters are reasonably
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Table 5.4: Assimilated EVP-S model parameters for the Ballina embankment.

Parameters Layer 1 Layer 2 Layer 3
mean COV mean COV mean COV

𝜆∗𝑖 0.106 0.04 0.095 0.02 0.088 0.03
𝜎′

𝑝 47.816 0.02 62.01 0.02 71.53 0.02
𝜅∗ 0.0247 0.15 0.029 0.14 0.036 0.16
𝜇∗
𝑖 0.0028 0.09 0.0030 0.06 0.0031 0.07
𝜒0 8.334 0.18 10.56 0.10 7.197 0.16
𝜌 8.713 0.10 10.08 0.07 6.338 0.17
𝜏 2.71 0.17 4.32 0.14 3.24 0.18
𝑘 0.00110 0.06 0.00143 0.13 0.00165 0.04
𝐶𝑘 0.426 0.26 0.611 0.16 0.599 0.18

close for both models, and most of the assimilated parameters for the EVP-S model (see Table
5.4) correspond to those adopted independently in Amavasai et al. (2018).

Conclusions
• This study demonstrates that even with a reliable estimation algorithm like EnKF, the

parameter estimation outcomes may be unsatisfactory when a simpler model is used. A
more effective approach is to utilise a forward model that accurately represents the system
behavior. Therefore, a successful state and parameter estimation technique depends on a
robust forward model that captures the fundamental processes in the behaviour of the system,
along with a reliable DA estimation algorithm.

• Although the EVP-S model performs relatively satisfactory for this case study, it is not
necessarily the best model to use. There may exist other variants of this formulation for
viscous behaviour that are rigid in the sense defined earlier (Section 3.1), and yet able to fit
the response well. A similar approach to consider the effect of PVDs need to be considered
using different methods (Hansbo et al., 1981; Chai et al., 2001; Walker and Indraratna, 2006;
Walker et al., 2009).

• It should be noted that the difference in using the informative log-normal distribution, and
the weakly informative uniform distribution has already been discussed in Tian et al. (2022b)
for the Ballina embankment, and hence not repeated here for the sake of brevity.
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5.4 Paper D

Title: "On the feasibility of data assimilation for uncertainty
modelling in geotechnics"

Introduction
Due to the inherent complexity of soil behaviour, geotechnical applications typically rely on
advanced constitutive models that involve a large number of model parameters to achieve high
fidelity solutions. However, a common issue in geotechnical problems is that the scarcity of relevant
data makes it difficult to accurately characterize these models, leading to increased uncertainties
in the predictions. To avoid this situation, simpler models are preferred, but they may not possess
the sufficient features to represent the complexities of a geotechnical system. This study aims to
investigate the problem of epistemic uncertainty in terms of model selection, to determine whether
a simpler model can be used to capture a complex system when combined with a Data Assimilation
(DA) algorithm. The Ensemble Kalman Filter (EnKF) is used as the DA procedure in this paper.

Methodology
The workflow undertaken in this paper is shown in Figure 5.11. The measurements are generated
synthetically with noise using any model from the module which comprises of advanced elasto-
viscoplastic model with structural degradation (EVP-S), Elastoplastic model (EP) and, the newly
proposed, Elastoplastic model with structural degradation (EP-S). The uncertain variables are
assumed to be log-normally distributed to avoid negative values. For each case, when a specific
constitutive model is chosen to represent the synthetic truth of the system, a different model is then
chosen to run forward in time, and then integrated with the observations using EnKF algorithm to
jointly estimate the state and model parameters.

Results
The numerical model from Paper C is chosen in this study for the synthetic experiment but with
the methodology mentioned in the previous section. The study has shown that using the EnKF
to integrate observations allows the model to capture the behaviour of a system, regardless of its
complexity, within the monitoring time window. The calibrated parameters of the model also
enable accurate predictions of the long-term behavior of the system beyond the monitoring window,
where observations are not available. The study suggests that the choice of a suitable model does
not depend solely on capturing all the physical processes of the system, as long as it is coupled
with a Data Assimilation procedure (or any other robust Bayesian inverse analysis technique).

However, the use of a simplified model can result in the calibrated parameters to become more
fitting parameters rather than informative of the system behaviour. In some cases, this can becomes
a major limitation, especially in the prediction window when there is no monitoring data beyond a
certain time period for which the model has been calibrated. The future forecast of this calibrated
simple model may diverge from the true behaviour of the complex system when there is a drastic
change in the boundary condition in contrast to the simple static loading problem considered in
this study.
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Nevertheless, the synthetic cases used in this study has helped to understand better the reason
behind the convergence of those fitted values by retracing to the difference in complexity between
the model formulation and the synthetic system. For systems with time-dependent behaviour, the
simpler non-viscous models can still capture the creep settlement beyond the monitoring window,
albeit with some slight deviation. This minor discrepancy can be alleviated by monitoring over a
more extended period, although this may not be cost-effective in most projects.

Elasto-viscoplastic model 
+ structural degradation 

Numerical model Run Forward simulation
Extract observations 
with specific interval

Code Repository

Numerical model Run Forward simulation
Assimilate with 

observation

Extract results

Ensemble Kalman
Filter

Synthetic data pipeline

Data Assimilation module
Elastoplastic model

+ Structure

Elastoplastic model

Figure 5.11: Workflow for including Data Assimilation with numerical forward model to estimate
state and parameters.
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5.5 Paper E

Title: "Data assimilation for Bayesian updating of predicted
embankment response using monitoring data"

Introduction
The accurate and precise determination of model parameters is pivotal for the successful implemen-
tation of the Data Assimilation (DA) procedure, as it significantly contributes to comprehending
the underlying physics of the soil behavior. The objective of this study is to estimate the pa-
rameters of the constitutive model by analyzing field measurement data from a synthetic trial
embankment constructed in the Plaxis Finite Element code through the employment of a Data
Assimilation (DA) procedure. The Ensemble Kalman Filter (EnKF) is used as the DA procedure
in this study. Although using DA as an inverse analysis procedure is an efficient approach, the
aspect of determining which measurement to include is often overlooked. This is because the
accuracy and precision of the obtained parameter is directly linked to the selected experimental
configuration, including factors like the quantity and type of sensors, as well as their location. An
optimal sensor configuration can dramatically increase the quality of the DA analysis. However,
the instrumentation set-up for most geotechnical applications, particularly for trial embankments,
are standardised e.g. settlement gauge under the centre of embankment, inclinometer near the
toe etc. It should be noted that even with this straightforward set-up, the type of observation
included in the Data Assimilation (DA) procedure still has a large influence on the convergence
of some constitutive model parameters. This is due to the sensitivity of those model parameters
to certain measurements and in order to assess this, a Global Sensitivity Analysis (GSA) using
factorial design (Tahershamsi and Dijkstra, 2022) is performed in this study. The effect of chosen
prior distribution of the model parameters i.e. weakly-informed to well-informed distribution is
considered.

Methodology
The integration of the Ensemble Kalman filter (EnKF) into a geotechnical application implemented
within the PLAXIS Finite Element code is illustrated in Figure 5.12. The behavior of the system is
simulated in a controlled setting by producing synthetic measurement data with noise, specifically
vertical and horizontal displacements. The Data Assimilation (DA) procedure is then implemented
for the considered time-dependent geotechnical system, which involves an embankment on soft
soil undergoing consolidation. Following initialisation, the Soft Soil (SS) model utilizes the set of
ensembles, each with unique set of parameters, to predict the geotechnical response in the time
domain up to a specified time step. These ensembles represent the prior belief of the parameter
values leading up to the time of available measurement. The predicted state in the model space is
subsequently transformed into the observation space, and through the use of DA, the posterior
distribution of the parameter set is estimated. The displacement at a specific time interval depend
not only on the magnitude of the model parameters but also on the state variables, such as stress,
strain, and porewater pressure distribution, at each time step. Hence, a recursive algorithm is
necessary to update these states along with the model parameters at each assimilation cycle to
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achieve proper convergence, albeit, at an unavoidably increased computational cost (Mohsan et al.,
2021). The converged parameters are assessed in terms of physical meaningfulness and subsequent
model performance on future forecasts post-assimilation window. A hydro-mechanical Finite
Element (FE) simulation serves as the forward model.

Initialise ensemble of
input parameters

Initialise ensemble of
input parameters

Run Forward simulation in 
PLAXIS 2D

Run Forward simulation in 
PLAXIS 2D

Calculate Kalman
gain

Calculate Kalman
gain

Compute resultsCompute results

MeasurementMeasurement

Propagate to the 
next time step

Propagate to the 
next time step

Update ensemble 
of parameters

Update ensemble 
of parameters

Yes

No

Figure 5.12: Illustration of the integrated workflow of PLAXIS FE with Ensemble Kalman Filter

The study investigates the impact of various factors such as sensor characteristics, prior
distribution type, and parameter sensitivity on the Bayesian update of embankment behaviour. The
entire workflow is implemented and solved in a Python environment (Van Rossum and Drake Jr,
1995), utilizing the PLAXIS Python interface to dictate the Finite Element calculations in PLAXIS
and integrating it with the DA algorithm in the same code. A basic version of this script to made
available as open source in the link: https://github.com/amaran1988/DA-PLAXIS2D.git. The
dimensions of the numerical model along with the sensor locations are shown in Figure 5.13. For
more details the reader is directed to Amavasai et al. (2023).
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Figure 5.13: Mesh discretisation and dimensions of the numerical model.

Results
The results from this study show some important points regarding joint state and parameter
estimation using DA for geotechnical analyses. For instance, among several factors that influence
the performance of the DA algorithm such as the error statistics from measurements or from
background covariance matrix, the sensor strategy i.e. the quantity and type of observation play
a significant role. It is shown in this study that it is not just the quantity of sensors but also the
type of sensors and its combination that dictates the performance of the DA procedure, with the
latter having the most significant influence. The reason for this is due to the varying sensitivity
of the parameters for different types of observation which correlates to the convergence of the
parameters when DA is employed for inverse analysis. This strong correlation between the type
of observation and convergence of parameters, although does not depend on the type of prior
information (be it well or weakly-informed as shown in this study), strongly depends on the location
of that observation since the sensitivity of the parameter varies in the spatiotemporal domain.
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5.6 Paper F

Title: "Particle Filter based on Jaya optimization for Bayesian
updating of nonlinear models"

Introduction

The Particle Filter (PF) is a method in the Data Assimilation (DA) framework that has gained
popularity in geotechnical applications recently (Shuku et al., 2012; Murakami et al., 2013; Shibata
et al., 2019). It is a Sequential Monte Carlo technique that uses observational data to update model
predictions as they are received in a sequential manner. The probability density is represented by a
finite number of particles with associated weights making it efficient for nonlinear state estimation.
The traditional versions of PF, however, struggles with two major drawbacks when working with
limited sample size: the problem with degeneracy and impoverishment (Li et al., 2014) affecting
the diversity in the distribution of particles in the state space.
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Figure 5.14: Illustration of particle degeneracy and impoverishment and the solution for these
problems using the proposed PF-JAYA algorithm.

As shown in Figure 5.14, degeneracy occurs when the distribution of weights among the
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particles become extremely uneven such that few particles get large weights and the rest end up
with negligible weights. This issue can be countered by employing an additional resampling step,
but when faced with limited number of particles, suffers from impoverishment as shown in the
same Figure. Introducing noise after the resampling step can help mitigate the problem mentioned
earlier, but this approach is unlikely to enhance the estimation accuracy, because this step only
improves particle diversity in the state space, and does not consider the recent observation.

Proposed method

In this paper, a novel hybrid Particle Filter based on Jaya Optimization (Rao, 2016) [PF-JAYA] is
proposed. The algorithm works by taking into account both the current measurement information
and the previous state of the particles to move them towards high likelihood regions in the state space
as shown in Figure 5.15. This method effectively addresses the problems of particle degeneracy
and impoverishment, while also achieving accurate estimates, making it a robust and efficient
algorithm to improve the performance of PF, both in theory and in practice.

Post Jaya optimizationDuring Jaya optimization
High likelihood 

region

X X

Y
Y

Figure 5.15: Illustration of the working of PF-JAYA during and after the Jaya optimization
procedure.

Validation cases

This paper demonstrates the effectiveness of the proposed hybrid PF-JAYA algorithm through two
geotechnical engineering-specific joint state and parameter estimation problems. These problems
involve the prediction of settlement in soft ground under embankment loading, where the first
problem uses an analytical linear elastic settlement model, while the second problem utilises a
one-dimensional hydro-mechanical coupled finite difference numerical model with an elastoplastic
constitutive model. PF based on the resampling procedure (PF-SIR) is used as a reference baseline
for comparing the performance of the proposed hybrid PF-JAYA algorithm. Additionally, the
Ensemble Kalman Filter (EnKF) is also used in the second validation case as a means to compare
the performance of the PF-JAYA algorithm. To further demonstrate the effectiveness of PF-JAYA,
an additional validation case is conducted using the Lorenz model (Lorenz, 1963).
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Results
The first example case demonstrated that PF-JAYA outperforms PF-SIR in terms of accuracy
and convergence in both state and parameter estimation, even with a limited number of particles,
and the choice of prior distribution had little effect on the results. PF-JAYA was found to be less
affected by increasing sparsity in the monitoring data.

In the second example, PF-JAYA outperformed all DA algorithms, including EnKF, in terms of
accuracy and precision in parameter estimation. The sensitivity of model parameters, determined
by sensor strategy, was found to dictate the convergence of the DA algorithm.

In the third example, using the Lorenz ’63 model as a non-geotechnical validation case, PF-
JAYA demonstrated superior performance over EnKF in terms of state estimation. Although
the proposed approach has achieved remarkable improvement in the accuracy, robustness, and
convergence compared to its predecessors, it has resulted in increased computational requirements.
In order to make PF-JAYA practical for large scale problems, computationally efficient surrogate
models are necessary.

68 , Architecture and Civil Engineering



Factors influencing Data Assimilation for geotechnics
This study suggests that combining Data Assimilation with a deterministic geotechnical forecasting
model holds promise for addressing state and parameter estimation for time-dependent geotechnical
problems. However, the performance of the Data Assimilation procedure is influenced by several
factors. It is crucial to understand these factors before engaging their use in general geotechnical
practice, some of which are mentioned as follows:

• Sensor Strategy: The choice of sensor strategy can significantly impact the performance of
the assimilation procedure as shown in Paper C and Paper E. Sensor strategy refers to the
selection of sensors, their locations, quantity and the frequency of measurements. However,
this is not always straightforward, and the cost of sensors and their maintenance should also
be considered as part of this factor.

• Error statistics: The effect of model uncertainty (as studied in Paper D) has a large effect
on the physical meaning of the assimilated parameters. Also, the errors associated with
measurements defines the accuracy of the estimation. It is crucial to identify and quantify
these errors as they hold a significant influence on the DA performance.

• Complexity: The choice of the assimilation algorithm and the predictive forward model
along with the sensitivity of its parameters can significantly impact the performance of DA
as shown in Paper C and Paper F. The computational requirement of the DA algorithm and
the dimension of the forward model defines the criteria for choosing in practical applications.

Parameter sensitivity
Time interval of 
measurements

Model error

Location of sensors
Number & type of 

sensors

Data 
assimilation

Measurement noiseType of DA method

Model dimension

Sensor strategy

Error statistics

Complexity

Figure 5.16: Data Assimilation influence chart.
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6 Conclusions and recommendations

6.1 Conclusions

Data Assimilation (DA) methods are commonly presented in the literature as a complex mathe-
matical framework constrained predominantly to numerical weather prediction. As a result, this
precluded the use of DA in geotechnical engineering. In contrast, this thesis offers an intuitive
description of the use of DA procedures in geotechnical engineering, for which a modular frame-
work with various DA algorithms has been implemented. The algorithms have been applied to
several synthetic examples and real case dataset. Based on the findings reported in the appended
papers, the main conclusions are summarised as follows:

• Data from two trial embankments have been used to validate an advanced rate-dependent
constitutive model in Paper A (Haarajoki embankment) and Paper B (Ballina Embankment).
A consistent parameter set has been derived for the constitutive model using standard
laboratory tests and and field data of both these embankments, using a custom built semi-
automated parameter derivation module. One of the drawbacks of the advanced constitutive
model used is the requirement to perform non-standard laboratory tests for the anisotropic
and destructuration parameters, which even for the test embankments considered in this
thesis were not available. Hence, values based on empirical relation were taken.

• For the Haarajoki embankment in Paper A, the settlements predicted by the model agreed
well with that measured in the field for the section without ground improvement. For the
improved area with vertical drains, however, the effect of the smear zone properties had a
large impact on the predicted results. A simplified relation to account for the smear zone
properties has been considered in the model to obtain the equivalent hydraulic conductivity
without any further change in the numerical model. Despite not fully modelling the drains
and their installation in full detail, a remarkably good agreement was achieved for the
settlements under the embankment for the same set of model parameters, leading to the
fact that a consistent parameter set is achieved. However, it should be noted that the model
predictions are sensitive for the properties of the dessicated crust on top of the soft soil layers.
Furthermore, the horizontal displacements at the toe of the embankment are overestimated,
meaning that the predicted 𝐾0 value is not representative of the site.

• Following a similar parameter derivation approach for the Ballina embankment in Paper B,
the observed discrepancies between the Class A predictions and the field measurements were
mainly due to the over-estimated apparent preconsolidation pressure from the constant rate
of strain compression tests that were provided early in the prediction contest. This is a classic
case of error stemming from engineering judgement, due to limited data and unavailable
prior knowledge about the site. The Class C predictions used the preconsolidation values
derived from the incrementally loaded oedometer tests instead, with a reference time that is
consistent with the model, giving a substantial improvement in the model performance. A
second uncertainty stemmed from the estimation of the hydraulic conductivities affected by
the smear zone resulting from the installation of the drains.
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• Both Paper A & Paper B have shown that an advanced constitutive model implemented
in a hydro-mechanically coupled Finite Element code, even with its excellent predictive
capabilities validated at the laboratory scale under controlled conditions, still is unable
to fully capture the system behaviour in the field scale. The latter indicates that model
sophistication on its own is not the practical way forward, as long as a deterministic approach
is followed. Therefore, the need to consider uncertainties in a probabilistic framework, whilst
maintaining a sufficiently accurate prediction model is paramount, especially for model
parameter estimation in real-world applications.

• Paper C dealt with the implementation of different DA methods and assessed their perfor-
mance, benefits and drawbacks when applied to different constitutive models. The criteria
involved the assessment of the accuracy and precision of each DA method when applied to
various constitutive models with differing complexity. This paper demonstrated that DA is a
promising tool to address joint state and parameter estimation for time-dependent problems
in geotechnical engineering. Caution is, however, required when choosing the appropriate
method and observation data. The impact of different monitoring points on the assimilation
of model parameters has been studied and it is found that the effectiveness of the DA process
is determined by the location of sensors and the time interval of measurements, due to the
variation in parameter sensitivity in the spatiotemporal domain. Among the DA methods
that were evaluated, the Unscented Kalman Filter was found to be the most computationally
efficient and reasonably accurate (and precise), and thus it is recommended for simpler
geotechnical models. However, for more complex constitutive models that have a large
model parameter set, the Ensemble Kalman Filter (EnKF) was found to perform better, in
terms of accuracy and precision, than the other techniques. Particle Filter (PF) is shown to
be less effective in high dimensions (even with resampling after the particle weight update
step). Under the constraint of limited sample size, PF can fail to capture the true value of
the model parameters while EnKF have a potential advantage.

• The EnKF is further evaluated in Paper D where its effectiveness in trying to capture the
behaviour of a complex system using a simplified model is studied. The results demonstrate
that by using DA, the model is still able to capture the behaviour of that system within the
monitoring time window and by using the calibrated parameters, able to capture the long
term behaviour of the system well beyond the monitoring window where observations are
not (yet) available. This shows that for state estimation the choice of a suitable model may
not necessarily be based on capturing all the physical processes of the system, as long as it
is augmented with a DA procedure. However the calibrated parameters, in most situations,
can be at risk of losing their physical meaning i.e., values beyond the bounds of logical
comprehension and prior experience.

• The difference between the effect of type and number of observations included in the DA
procedure is studied in Paper E. The Ensemble Kalman filter (EnKF) is integrated into the
PLAXIS Finite Element code to analyse a synthetic embankment case. The sensitivity of
the parameters has a large influence on its convergence during DA . Depending on the type
of observation included, the convergence of the model parameters during DA would change.

• A novel Particle Filter based on Jaya optimisation (PF-JAYA) has been proposed in Paper F.
This proposal is an improvement of the original particle filter (PF) algorithm which reduces
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the effects of particle degeneracy and impoverishment, the two well known drawbacks of
PF. The theoretical and practical effectiveness of this algorithm has been systematically
studied and is shown to outperform the classical DA algorithms. The PF-JAYA has shown
consistency in its superior performance under cases with various types of a priori information
and model complexity.

• To summarise, the limitations of the deterministic approach are demonstrated and the need
for a robust probabilistic tool is shown to be paramount. Considering DA has been around
for several decades, it is still a new concept when implementing for geotechnics, so in that
sense this study is preliminary, but has revealed several insights to the attractive concept of
state and parameter estimation for geotechnical engineering.

6.2 Future scope
The work done so far on implementing DA algorithms for geotechnical engineering can be viewed
as an initial step, and there are many avenues yet to be explored. These techniques have numerous
advantages with many promising features and can be used for a wide range of problems. In this
section we present some potential areas for future research:

• The effect of sensor strategy on the performance of DA, regardless of the technique used,
motivates to perform a detailed study regarding optimal sensor placement. However, this is
non-trivial and a general guideline to optimal sensor placement is difficult to establish until
a large test bed of synthetic geotechnical scenarios are investigated.

• To account for spatial heterogeneity, the work is planned to be extended toward estimation
of parameter fields based on monitoring data. This should be done in 3D since assuming a
plane strain assumption for random fields can be erroneous, and not representative of the
site, unless the variability in the out of plane dimension is considered.

• In recent years, the focus of research has shifted from theoretical proposals to models that
reflect real-world data. Hence, the current developed module would be extended to include
data driven techniques with online learning capabilities.

6.3 Recommendations
• The current norm includes practitioners to manually interpret data to match the input

requirements of a physics-based model in an ad-hoc manner. This strategy needs to be
reviewed and probabilistic methods that make sense of monitoring data are needed to offer
insights into critical decisions for ongoing projects.

• Data assimilation, like Finite Element analysis, can be prone to misuse when there is lack
of proper understanding. Therefore, it is important to have some prior knowledge of the
factors that can influence the DA tool (as shown in Chapter 5.6) before exercising its use.

• Using 3D Finite Element models to perform forward calculation is computationally de-
manding. Adding a probabilistic inverse analysis wrapper for such models can be far from
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practical. To make the most of monitoring data, computationally efficient surrogate models
are recommended for engineering practice.

• The scope for optimal sensor placement in practical applications depend on the model used
for predicting the system behaviour. In order to propose a sensor strategy for a site requires
first for the model to capture the site response accurately. Paradoxically to achieve this, data
from that site is required in order to calibrate the model preferably with a Data Assimilation
tool. One solution is to first have a well instrumented site with a comprehensive monitoring
scheme based on engineering judgement and past experience. Subsequently, one can use
that data to first refine the model (i.e. to choose the right model, calibrate the parameters,
test the accuracy of future state prediction etc.) and then optimise the quantity of sensors
(and possibly reuse the rest of the sensors for another project). In this way a reliable Digital
twin of the site is obtained which can help plan a proper maintenance program for efficient
asset management.

• The value of historical datasets are not fully recognised, and is often stored away without
utilizing it in any ongoing projects. A comprehensive analysis of such datasets can provide
valuable prior information which is an important step before employing Data Assimilation
in geotechnical engineering practice.
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