
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On the Robustness of Statistical
Models: Entropy-based

Regularisation and Sensitivity of
Boolean Deep Neural Networks

Olof Zetterqvist

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology
Gothenburg, Sweden 2023

On the Robustness of Statistical Models: Entropy-based Regularisation and
Sensitivity of Boolean Deep Neural Networks
Olof Zetterqvist
Gothenburg 2023
ISBN 978-91-7905-897-5

© Olof Zetterqvist, 2023

Doktorshavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5363
ISSN 0346-718X

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone +46 (0)31 772 1000

Cover:
Illustration of how sensitive a deep neural network is towards mislabelled
training data. Additional details may be found on page 20.

Typeset with LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

On the Robustness of Statistical Models:
Entropy-based Regularisation and Sensitivity of

Boolean Deep Neural Networks

Olof Zetterqvist

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Models like deep neural networks are known to be sensitive towards many
different aspects of noise. Unfortunately, due to the black-box nature of these
models, it is in general not known why this is the case. Here, we analyse and
attack these problems from three different perspectives. The first one (Paper I)
is when noise is present in training labels. Here we introduce a regularisation
scheme that accurately identifies wrongly annotated labels and sometimes
trains the model as if the noise were not present. The second perspective
(Paper II) studies the effect of regularisation in order to reduce variance in
the estimation. Due to the bias-variance trade-off, it is a hard task to find
the appropriate regularisation penalty and strength. Here we introduce a
methodology to reduce bias from a general regularisation penalty to make
the estimation closer to the true value. In the final perspective (Paper III), we
study the sensitivity that deep neural networks tend to have with respect to
noise in their inputs, in particular, how these behaviours depend on the model
architecture. These behaviours are studied within the framework of noise
sensitivity and noise stability of Boolean functions.

Keywords: Deep neural networks, Regularisation, Noisy labels, Boolean func-
tions, Noise sensitivity, Noise stability

iv

List of publications

This thesis is based on the work represented by the following papers:

I. Zetterqvist, O., Jörnsten, R., Jonasson, J. Regularisation via observation
weighting for robust classification in the presence of noisy labels. Submit-
ted

II. Zetterqvist, O., Jonasson, J. Entropy weighted regularisation, a general
way to debias regularisation penalties. Manuscript

III. Jonasson, J., Steif, J, Zetterqvist, O. Noise Sensitivity and Stability of Deep
Neural Networks for Binary Classification. Submitted

Author contributions

I, II. Responsible for simulations and development of the methodology. Also
contributed to the manuscript and some of the theory.

III. Contributed to the development of the theory and the manuscript.

v

vi

Acknowledgements
First and foremost, I would like to express my deepest appreciation to my supervisor
Johan Jonasson for all the good discussions, excellent supervision, and for always
keeping my curiosity alive! I would also like to thank my co-supervisor Rebecka
Jörnsten for helpful inputs and ideas. Also, thanks to Jeffrey Steif for great collaboration
and the many discussions from which I have learned very much!

I would also like to show my appreciation to all my colleagues and friends at Mathe-
matical Sciences in Gothenburg: Anna, Carl-Joar, Clemens, David, Edvin, Erik, Felix,
Gabrijela, Helga, Henrik, Jimmy, Johan, Juan, Linnea, Mattias, Mikael, Oscar, Oskar,
Selma, Tobias, Vincent and many more. Without you, my time at the department would
not have been as bright and fun! I would also like to thank Annika, Serik and Petter
for helping me when things were extra hard and Aila, Elisabeth, Marie and Marija for
all the help when I was confused and didn’t know how things should be done at the
department.

I would also like to thank the Wallenberg AI and Autonomous Systems and Software
Program (WASP) for creating such a great community where I meet fellow friends and
extended my knowledge in AI.

Finally, I would like to thank my family and friends for their endless support and for
always being there in all the ups and downs.

vii

viii

Contents

Abstract iii

List of publications v

Acknowledgements vii

Contents ix

1 Introduction 1

2 Background 3

2.1 Neural network models . 4

2.2 Regularisation penalties and the bias-variance tradeoff 13

2.3 The effect of label noise and how to train with it 18

2.4 Important concepts for Boolean functions 22

3 Summary of papers 27

3.1 Paper 1 . 27

3.2 Paper 2 . 30

3.3 Paper 3 . 32

4 Discussion 39

Bibliography 43

ix

x CONTENTS

1 Introduction

We, as individuals and organisations, take decisions based on data all the time,
and the need for automatic methods increases by each day. Therefore much
research is put on methodologies to set up a model, let it learn from data and
then apply its knowledge to new unseen examples. This can, for example,
be learning to separate between malignant and nonmalignant cancer cells or
detecting spam mail in your inbox. Depending on the task at hand, there is an
extensive set of models and methodologies that can be used. In recent years,
one of the most discussed model architectures is the deep neural network
(DNN), mostly due to the many success stories. The model especially shines in
image processing, natural language processing and signal processing but has
been showing impressive results in other areas as well.

The first ideas behind the neural network were first introduced in (McCulloch
and Pitts, 1943), and the model is structure-wise often compared to the archi-
tecture of the brain. Even if the idea has been known for a long time, it was
not until much later that it became as popular as today. The main reason for
the delay was the need for huge computational power to handle the size of
the model and data. However, the model has become much more available for
practical use with today’s exceptional computation units, such as the graphical
processing unit (GPU) and tensor processing unit (TPU), which is optimised
for fast matrix multiplications, something that is frequent during training and
evaluation of DNNs.

Even if DNNs have shown to be very powerful tools, they have their weak-
nesses. They require some expertise to master both during training and during
inference of data not seen in the training process. The reasons for this are many.
It could be that there are errors in the training data that are unknown to the
developer, which has a considerable impact on the model. There would also be
errors in the data not used for training which make the model not recognise it
as a typical input that it is trained to recognise.

1

2 1. Introduction

In general, it is not known why DNNs work as well as the do. One reason is
their large flexibility and ability to adapt to complex patterns. Still, this does
not answer the question of why the model tends to generalise well especially
not when considering that the large flexibility leads to the model can be very
sensitive towards errors in training and evaluation data. This is why, even if we
know the internal computations, the model is considered a black-box model.

Fortunately, there are ways to make DNNs and similar models more robust.
Here the focus is on three different aspects of model robustness. The first one is
robustness towards errors in training data, in particular errors in labels which
can be devastating in a classification setting. This is discussed in Section 2.3,
which shows how noisy labels affect the model and discusses what can be done
to reduce the effect of adverse data points. This section lays out the background
of Paper 1, which introduces a new, easily implemented methodology to iden-
tify unreliable training examples and adapt the training thereafter. Another
way to make training more robust is to limit the search space during training
by introducing a regularisation penalty. By doing so, the hope is to get a model
that generalises better to new observations. This is discussed in more detail in
Section 2.2, which summarises the properties of regularisation penalties and
what alternative versions there are, which is the main background of Paper 2.
Finally, we study robustness regarding the stability towards errors in the model
input, as small errors can lead to devastating output results. Paper 3 investi-
gates typical DNN architectures from the perspective of Boolean functions and
shows how the properties of the model depend on the model architecture. The
relevant theory and concepts of Boolean functions are discussed in Section 2.4.
Before going into these areas, we need to discuss the models at hand, which
is done in Section 2.1. Finally, in Chapter 3, there is a short summary of the
papers followed by a discussion in Chapter 4.

2 Background

Let (X ,Y) be the data domain of the task at hand where X is the input domain,
and Y is the output domain. For example, one can think of X as a set of all
possible images and Y as the set of labels these images can be associated with.
Another example is to think of X as the set of all stock market values in the latest
months and Y as the set of all possible values of the stock market tomorrow. The
assumption is that there is some unknown function f that maps each element
in X to Y . The goal is, based on observations (xi, yi) ∈ X × Y , i = 1, . . . , n,
to make inferences about the spaces X and Y . Here each observation xi is
assumed to be sampled from some distribution over X and yi sampled from

yi = f(xi) + ϵi (2.1)

where ϵi is some noise, possibly dependent on xi. The inference is made by
setting up a model space F with models f̂(x; θ) and, based on the observations,
find the parameters θ ∈ Θ that make f̂ best approximate f . Here Θ is the
space of all possible parameters that could describe f̂ , and F is induced by
this variation in θ. There are naturally a few questions that one needs to
consider. First, how does one measure the similarity between f̂ and f when f
is unknown? The best thing we can do is to base the similarity on the difference
between observed data and predictions done by the model f̂ . Secondly, to
represent f fully, we need samples from the whole space X × Y , which is
not possible in practice. Is there some family of functions F that makes the
generalisation better for new observations making it easier to get away with
fewer observations? Also, given the function family F , finding the optimal θ
is not trivial, and the methods used depend heavily on the properties of data
and what family of functions one optimises over. In the following sections, we
will review two common function families F , what type of data they tend to
handle well, some problems these models come with, and what can be done to
make these problems less noticeable.

3

4 2. Background

2.1 Neural network models

One commonly used family of models are the deep neural networks (DNN).
The first ideas behind artificial neural networks were introduced by McCulloch
and Pitts (1943) and have since then become a popular tool in many data science
applications. The reason for this is the great flexibility of these models and the
increment of computational power, making it feasible to train them. However,
even if they show very impressive results, their flexibility leads to some serious
challenges in the form of overfitting. Here, we consider three main models, the
fully connected neural network (FCNN), the linear model which is a special
case of the FCNN and the convolutional neural network (CNN). Here follows
a short overview of these models.

2.1.1 Linear models and the fully connected neural network

One of the most common neural network architectures is the fully connected
neural network (FCNN). The structure of the FCNN is highly inspired and com-
pared with the architecture of the brain, which is built by billions of neurons.
Due to this analogy, the components in the FCNN are usually called neurons as
well. In the model, these neurons can be seen as small computational building
blocks used to build larger models. Even if one specific neuron cannot solve
complex problems, their union can achieve remarkable things. The simplest
possible case of the FCNN is the linear model which corresponds to a single
neuron. Given an input vector xi = (xi,1, . . . , xi,d) the output from the linear
model is given by

f(xi; θ) = σ

 d∑
j=1

θjxi,j + θ0

 (2.2)

where θ = (θ0, . . . , θd) ∈ Θ are fixed parameters determining the behaviour of
the model. Here Θ is considered the space of all feasible parameters. In the
neural network literature, the function σ is called the activation function and
transforms the input to the desired output domain Y . In linear models, one can
simply take σ(x) = x giving a linear regression model typically used if Y = R,
or σ(x) = 1

1+e−x giving a logistic regression model which typically is used
if Y = {0, 1}. A logistic regression model is typically used in a classification
setting where one wants to determine the separation between two classes in
data. Graphically the linear model or a neuron can be described as a directed

2.1. Neural network models 5

Figure 2.1: An illustration of the mathematical modulation of a neuron represented in
Equation 2.2. The neuron takes in several inputs xi,j , and processes these by multiplying
them with the parameters θj and summing them up. The final output is then given by
the function σ of the weighted sum.

acyclic graph (DAG) where each neuron corresponds to one local calculation
using (2.2). The corresponding DAG can be seen in Figure 2.1.

Even though ordinary regression and logistic regression models perform well
in many situations, they have many limitations. The most significant one is of
course that they only can model linear behaviours in data. To make the model
more flexible and able to handle more complex data, one has to extend the
model space. The idea of the FCNN is to combine many neurons creating a
larger DAG, giving the model a larger model space and flexibility. The typical
way is to have many neurons grouped in many layers. Within each layer, each
neuron works in parallel with the same input as the other neurons in that layer,
but different neurons have different θ. The output produced is then sent to
the next layer which considers the outputs of the previous layer as input. This
creates a recursive structure with a DAG illustrated in Figure 2.2. Typically this
is iterated by a fixed number of layers T and with a fixed number of neurons
d(t) at each layer t ∈ {0, . . . , T}. d(0) is considered the input dimension of the
model. Let us now define a FCNN formally.

Let X(t) be a column vector with elements corresponding to the output values
from neurons at layer t. Each element in X(t) corresponds to the output from
one specific neuron in contrast to the linear model case where we only needed
one vector θ ∈ Rd+1 to calculate the output. The function that takes us from
X(t−1) to X(t), is now parameterised by a matrix θ(t) ∈ Rd(t),d(t−1)

and vector
b(t) ∈ Rd(t)

. Given θ(t), b(t) and X(t−1), X(t) is given by

6 2. Background

Figure 2.2: An illustration of a neural network. Each circle represents one neuron shown
in Figure 2.1. By stacking these together creating a neural network, we get a more
flexible model that can approximate more complex functions.

X(t) = σ
(
θ(t)X(t−1) + b(t)

)
. (2.3)

This process is now iterated for each layer until the final layer T . The total
model is thus parameterised by the sequence of matrices θ = (θ(1), b(1), . . . ,
θ(T), b(T)). The layer at t = 0 is often called the input layer, and X(0) corre-
sponds to the model’s input. The layers at t = 1, . . . , T −1 are called the hidden
layers and layer T is the output layer. As in the linear model, the chosen σ at
the final layer is chosen to correspond to the output domain Y . If a multidi-
mensional output is desired one can add additional neurons in the final layer.
One example is if one has a multi-class classification problem with C classes.
Then typically d(T) = C where each output neuron models the probability
of belonging to the corresponding class. Here the most common activation
function at the final layer is the softmax function

σ(x) =
e−x∑
j e

−xj
.

For the hidden layers, σ can be chosen more arbitrarily. Common choices
are the sigmoid function σ(x) = 1/(1 + e−x), tangens hyperbolicus function
σ(x) = (ex − e−x)/(ex + e−x) or the ReLU function σ(x) = max(0, x).

2.1. Neural network models 7

2.1.2 The convolutional model

An alternative model to the FCNN is the convolutional neural network (CNN)
first introduced in (LeCun et al., 1998). One disadvantage of the FCNN model
is that it is not very good at handling translations in input data. Since each
weight in θ corresponds precisely to its location in the model, a shift in the
input domain leads to significantly different output results. The model is not
translation invariant. There are many situations where it is desirable to have a
translation invariant model. For example, when working with image data, the
object location in the image should not affect the output result. Here the CNN
model is of great use.

The CNN is very similar to the FCNN in that it is constructed by concatenating
layers to create the full deep model. However, while each layer in the FCNN
consists of a matrix product, summation and an activation function, each
layer in the CNN instead consists of a convolution between the input and
some predetermined matrices, so called filters. These filters correspond to the
parameters θ that determine the model behaviour. We will start to consider the
most simple case of a CNN where the input is a vector and where there is only
one filter between each layer. The one-dimensional model is also the version
with the most theoretical focus in this thesis. After that, we will generalise the
concept to more filters and complex inputs.

Let X(0) ∈ Rd(0)

be the input to the CNN, θ(1) ∈ Rk a filter of size k and
b(1) ∈ R the bias. The output of the convolutional layer is given by

X(1) = σ(Z(1) + b(1))

where Z(1) is the convolution between X(0) and θ(1). The idea behind the
convolution operator is to construct Z(1) index by index where a fixed index
in Z(1) is determined by a weighted sum of k spatially nearby values in X(0).
The weights in the sum are given by θ(1). Typically is k much smaller than the
length of X(0). The next element in Z(1) is determined by a new weighted sum
with the same weights θ(1) but where the scope of input locations in X(0) has
shifted some distance s, the so called stride of the convolution. This process is
repeated until the filter has travelled through the whole input. The advantage
of the convolution is that it naturally captures the local information in the input
such that correlations between inputs spatially close to each other are more
easily captured. In Figure 2.3, there is an illustration of the one-dimensional
convolutional operator. Notice that the size of the output Z is determined by
the input size d(0), the filter size k and the stride s and is given by (d(0)−k)/s+1.

The activation function σ is typically chosen in the same way as for the FCNN.

8 2. Background

Figure 2.3: An illustration of the convolution operator with a one-dimensional input
string. Each circle in the bottom row represent one input value while each circle
represent one value in Z. The corresponding rectangles correspond to the scope of
values that are considered to determine the following value in Z when the filter size is 5
and stride is 2.

This process is then iterated until a desired depth T resulting in the model
output. In many cases, one often adds fully connected layers as well after the
convolutional layers.

The convolutional layer can easily be extended to data structured as a matrix
or a higher dimensional tensor. For example, consider a coloured image X(0) as
input, represented as a tensor with width W , height H and C colour channels.
Consider also a filter θ(1) as a tensor with width w, height h and C colour
channels. Then the convolution between X(0) and θ(1) is done similarly to the
one-dimensional case, but where the filter slide over both the image height
and width. At each position, the weighted majority gives the output value
over all values covered by the filter. Notice that all colour channels are always
considered for each output value. This results in an output Z with height
(H − h)/sh + 1 and width (W − w)/sw + 1 where sh and sw is the stride in the
corresponding directions. The number of colour channels in the output is one.
Since each filter outputs one output channel, one uses more filters between
each layer to get an output with multiple channels. This way, given a specific
layer one can construct outputs with an arbitrary number of colour channels
by chancing how many filters one use at that specific layer. The total model
is then iterated similarly to the one-dimensional case. In Paper 3, theoretical
aspects of the one-dimensional CNN are studied in more detail.

2.1. Neural network models 9

2.1.3 Loss functions and training

Let (X,Y) be random variables on X ×Y . The goal is to find the optimal setting
θ∗ such that f̂(x; θ) approximates f(x) as closely as possible. To say that f̂(x; θ)
approximates f(x) does, of course, depend on what metric is used to measure
the similarity. To measure the similarity between f̂ and f , we need some sort of
metric D(f̂(X; θ), f(X)) that captures the task at hand. In a regression setting,
the most commonly used metric is the expected value of the norm distance
squared

D(f̂(X; θ), f(X)) =
1

2
EX

[
||f(X)− f̂(X; θ)||22

]
where || · ||2 is the L2 norm. The estimate θ̂ is now given by the argument that
minimises this metric, hence

θ̂ = argmin
θ

1

2
EX

[
||f(X)− f̂(X; θ)||22

]
.

In a classification setting, this metric is not very suitable. In that case, a more
commonly used comparison between f̂ and f is the cross entropy (which
technically is not a metric)

D
(
f̂(X; θ), f(X)

)
= EX

[
−f(X) log(f̂(X; θ))

]
giving rise to the minimisation objective

θ̂ = argmin
θ

EX

[
−f(X) log(f̂(X; θ))

]
If the model space is limited to linear models, both these estimates are unam-
biguous. However, this is not true for deep neural networks where the same
function can be represented by many different settings of θ. A simple way to see
this is by perturbing the neurons within one layer and switching the weights
accordingly. Then the weights θ would be different, but the corresponding
function would be the same.

One problem with the above minimisation tasks is that the distributions of X
and Y and the function f are generally unknown. Therefore, one has to estimate
the expected values based on observed data (X,Y) = (x1, y1), . . . , (xn, yn)

10 2. Background

sampled from their corresponding random variables (X,Y). This means that
we use approximations for the corresponding minimisation objectives. Since
both are expected values, this is done with an average overall observation. In
the regression situation, this gives the objective

θ̂ = argmin
θ

1

2n

n∑
i=1

||yi − f̂(xi; θ)||22 (2.4)

and in the classification setting

θ̂ = argmin
θ

− 1

n

n∑
i=1

(
yi log

(
f̂(xi; θ)

)
+ (1− yi) log

(
1− f̂(xi; θ)

))
. (2.5)

Since the estimates are now based on samples from X × Y , it is not reasonable
to assume that f̂ will be the same as f everywhere, even if the model space
contains the true data generating model, f . This is especially true if the noise
levels ϵ are large. A common phenomenon is that the model learns the noise
and becomes more complex than the true data structure. This phenomenon is
called overfitting, which will be discussed in more detail in the next section.

Notice that in both the regression and classification problems, the minimisation
problem is of the form

θ̂ = argmin
θ

L(f̂(X; θ),Y) = argmin
θ

1

n

n∑
i=1

ℓ(f̂(xi; θ), yi). (2.6)

where L(f̂(X; θ),Y) is typically refereed to as the loss function and, ℓ(f̂(xi; θ), yi)
represent the loss contribution from data point (xi, yi). This form will be of
importance, as we will see later.

Depending on the data and the model at hand, the minimisation problem can
be hard to solve analytically, meaning we need to turn to numerical methods.
The only situation in this thesis where we can find an analytical solution is
when we have a linear regression model. Otherwise the most common method
is to use variants of gradient descent where the gradients are obtained through
some backpropagation procedure (Hecht-Nielsen, 1992).

2.1. Neural network models 11

Figure 2.4: An illustration of the generalisation properties of neural network. Here we
see data point generated by yi = x2

i − 10 + 3ϵi where ϵi is iid standard Gaussian. Based
on these, three models are fitted, a second-degree polynomial, a 15-degree polynomial
and a deep neural network consisting of 101 301 parameters. The optimal polynomial
is found analytically, while the neural network is trained using gradient descent.

2.1.4 Overfitting and why neural network tends to generalise
well.

Overfitting, which loosely speaking is when the model f̂(x; θ) is far too complex
in contrast to the amount of data given, leads to bad generalisation on new
observations. Figure 2.4 shows an example of this, where three models have
been trained on 15 data points generated by the function yi = x2

i − 10 + 3ϵi
where ϵi is iid standard Gaussian. Two of these models are polynomials, one
of second order and one with an order of 15. The higher-order model goes
through every data point perfectly, but it does not capture the overall structure
of the data. It has overfitted, making it generalise poorly.

Conversely, the second-order polynomial is not that flexible and can not express
such complicated functions. In this case, limiting the model’s flexibility by not
using too many tunable parameters seems to be a good idea. However, in the
figure, one can also see a DNN consisting of many more tunable parameters
than both polynomial models. Still, that model does not overfit as much, even
if it still fits almost every point perfectly.

The property that DNNs tend not to overfit is one of many reasons behind the
many success stories of neural networks. The DNNs models have been showing
that they can handle many different kinds of data and are, in many fields, state
of the art. In general, it is not well known why deep neural networks perform as
well as they do, but one reason is the enormous flexibility of the model. In fact,
(Cybenko, 1989) show that neural networks are universal approximators, i.e.

12 2. Background

for any arbitrary function, there is an architecture of a neural network such that
the model approximates the function arbitrarily close. This property gives rise
to a natural question; If neural networks have such extensive flexibility, why
do they not tend to overfit, even if they are highly over-parameterised? As it
turns out, as shown in (Belkin et al., 2019), the generalisation property changes
behaviour as the number of tunable parameters increases. First, models tend to
overfit with data if the number of parameters is very large. However, this is only
true until a certain point. If one adds even more parameters, the generalisation
property of the model tends to overfit less. One can wonder why this is the
case. One explanation is given in (Pérez et al., 2018). Here the authors study
the parameter function map θ → f̂(x; θ) of deep neural networks and show
that by randomising θ, which typically is done at the start of training, this map
is heavily biased towards simple functions. So even if the neural network can
represent very complex functions describing the most strange behaviours, they
tend to start from a position where the model is not that complex. However,
these results only hold for the initialisation of the model. The next step is to ask
oneself what happens during training. Will the model move away from simple
functions to more complex ones? In (Mingard et al., 2021), the authors look at
this question. They show that during training, the parameters θ tend not to
move that far away from their initial state, still representing a "simple" function.
A similar result to this is shown in (Jacot et al., 2018; Zou et al., 2020; Du et al.,
2018), where they show that for a very deep DNN, the hidden layers can be
approximated as a kernel, similar to a kernel method for linear models, and
during training θ tend to not move that far from its initial state. This preserves
the model’s simplicity.

These results sound promising as long as observed data follows the distribution
that the model is set to approximate. However, several things can make the
model perform poorly anyway. For example, noise or errors can make the data
unnecessarily complex. Examples are if the noise term ϵi in 2.1 is very large so
it overshadows f or if samples from a completely different distribution, called
outliers, have been added to the observations. This can force the parameters
θ to move further during training, potentially leading to a region where the
function is unnecessarily complex. This, in combination with the fact that DNN
is so flexible, makes them extra vulnerable. To prevent this from happening,
a common approach is to limit the search space of the training algorithm and
stop it from reaching complex functions. The following sections will discuss
how such limitations can be implemented.

2.2. Regularisation penalties and the bias-variance tradeoff 13

2.2 Regularisation penalties and the bias-variance
tradeoff

In this thesis, we consider two main ideas to prevent the model f̂(x; θ) from
reaching too complex functions during training. One of them is to, in some way,
turn off noxious data points that we believe are outliers or have been annotated
incorrectly. This can for example be if some data has been mislabelled in
a classification setting. These methods will be discussed in more detail in
section 2.3. The other methodology discussed here is to limit the search space
during training such that the parameters θ can not express complex models.
A common way to do this is by adding a penalty to the loss objective 2.6 that
penalises complex models. What follows is a description of how this is done
in the setting of linear models. However, many of the concepts immediately
generalise to neural networks.

Let θ∗ be the true best parameters θ that makes f̂(x; θ∗) approximate f as
closely as possible. For the rest of this section, assume that f̂(x; θ) is a linear
model and that the amount of training data is larger than the number of
unknown parameters. This ensures that 2.6 is convex and, more importantly,
θ∗ is unique. Assume also that Y = R. This means that each data point xi ∈ Rp

can be seen as a row vector and θ = (θ1, . . . , θp) ∈ Rp as a column vector,
where p is the number of covariates. However, many concepts presented here
immediately extend to DNNs, higher dimensional outputs and more unknown
parameters. Let θ̂ be the estimated parameters θ based on the observations
(x1, y1), . . . , (xn, yn) that we have at hand. Since each data point is a random
variable, θ̂ is also a random variable. Optimally one would have an estimator θ̂
such that

Eθ

[
(θ̂ − θ∗)2

]
=
(
Eθ[θ̂ − θ∗]

)2
+ Eθ

[
(θ̂ − Eθ[θ̂])

2
]

(2.7)

is as small as possible. Both estimates 2.4 and 2.5 are such that 2.7 converges
to zero as n increases. However, in practice, n is fixed and sometimes small
compared to the dimension of θ, making the estimate not necessarily optimal
due to overfitting. Fortunately, a few things can be done. As seen in Equation
2.7, the error depends on two terms, the first one (Eθ[θ̂ − θ∗])2 corresponds
to the bias squared and measures how close the model comes to the true
optimal model on average. The second term Eθ[(θ̂−Eθ[θ̂])

2] corresponds to the
variance of the estimated model. A common technique to reduce the variance is
to add a penalty to the optimisation objective. This is typically done by adding
a regularisation term λg(θ;ϕ) to the loss function where λ determines the

14 2. Background

strength of the regularisation and ϕ is the set of hyperparameters determining
the shape of g. Expanding the estimator 2.6, the regularised estimation of θ is
thus given by

θ̂ = argmin
θ

[
1

n

n∑
i=1

ℓ(f̂(xi; θ), yi) + λg(θ;ϕ)

]
. (2.8)

The regularisation term g(θ;ϕ) should only have one unique local minimum,
located at θ = 0, and be quasi-convex. This makes the objective more biased
towards smaller parameters θ, limiting the solution space and reducing the
variance. To see this, one can show that as long as g(θ;ϕ) is quasi-convex, then
for all λ > 0 there is a t > 0 such that the objective in 2.8 can be formulated as,

θ̂ = argmin
θ

1

2n

n∑
i=1

(
yi − f̂(xi; θ)

)2
= argmin

θ

1

2n

n∑
i=1

(yi − xiθ)
2

subject to g(θ;ϕ) ≤ t. (2.9)

By setting a small t, corresponding to a large λ, one can force θ to be within
lower level curves of g(θ;ϕ), which reduces the search room and hence also the
variance.

The most well-known choices of g are the Ridge penalty

g(θ) =
1

2
||θ||22 =

1

2

∑
j

θ2j

and the Lasso penalty (Tibshirani, 1996),

g(θ) = ||θ||1 =
∑
j

|θj |

which both give convex constraints in 2.9.

So the technique of adding a regularisation penalty works very well at reducing
the variance of the estimate. However, by limiting the search space, we also
create a bias in the estimates. If θ∗ is not in the set g(θ;ϕ) ≤ t, θ∗ is not a
possible estimate, and we have created a bias. Thus, the bias will increase with
a smaller t or larger λ. Since both terms in 2.7 depend on λ, one has to tune λ
such that the model generalises as well as possible and hence minimises 2.7.
This is called the bias-variance tradeoff. Figure 2.5 illustrates this tradeoff in

2.2. Regularisation penalties and the bias-variance tradeoff 15

Figure 2.5: An illustration of the bias-variance tradeoff for the ridge regularisation
method on a two-dimensional linear regression setting. Data is sampled from the model
Yi = xiθ

∗ + ϵi there xi,1, xi,2, ϵi ∼ N(0, 1). The true parameters are θ∗ = (1,−4)T . In
each λ setting, 100 datasets are sampled and for each one, θ is estimated according to
θ̂ = (XTX+ λI)−1XTY. Based on each estimate θ̂, the mean estimate is also calculated.
The main takeaway is that when λ = 0, there is a large variance for estimates θ, but the
mean estimate is very close to the true parameter θ∗. However, as we increase λ, the
variance decreases, but each estimate is moved closer to the origin, increasing the bias.

a two-dimensional setting using ridge regularisation in a regression setting.
The illustration shows that when the regularisation strength λ is small, the bias
is small but has a large variance. However, by increasing λ, the estimations θ̂
shrink towards the origin, reducing the variance and increasing the bias of the
estimates. The behaviour of the tradeoff between bias and variance depends
on the regularisation term g(θ;ϕ). By choosing different g(θ;ϕ), one could get
a more suitable tradeoff making the choice of regularisation important.

2.2.1 Properties of good regularisation penalties and ways to
achieve them.

This section lays out the main background for Paper 2. The Ridge and Lasso
penalties are good at limiting the expressfullness of the model. However, they
come with a few undesired properties in the form of large additional bias. For
g to be considered "good", the community has identified several characteristics
that it is good if g fulfils. In Fan and Li (2001), they list a few properties.

16 2. Background

The first one is unbiasedness, meaning that g should not introduce any addi-
tional bias to the estimate θ̂. Since the estimates of θ are unbiased when there
is no regularisation at all, setting g(θ;ϕ) = 0 would give us unbiasedness. In
general, unbiasedness is hard to achieve for all θ if a regularisation penalty is
used. However, a penalty should give as small bias as possible, especially for
large θ. As a rule, we will say that the estimator introduces a small bias if for
all j, the bias of θ̂j tends to zero as |θ∗j | increases.

The second property is sparsity, meaning that g is a thresholding rule i.e. that
if θj is very small, it should be estimated as zero. This gives a sparse estimate
of θ and thus reduces model complexity.

The final property listed is continuity, meaning that the estimates θ should be
continuous with respect to changes in the training input xi and yi. If this were
not the case, it could be that the resulting estimator θ̂ is not able to reach the
correct value θ, introducing a bias in the estimates.

In addition to these common goals, some additional ones concern what happens
as the number of observations grows to infinity. Two common goals here are:

The estimator should be consistent, meaning that the estimated parameters
should converge in probability to the true parameters as n goes to infinity. Note
that this includes cases when λ depends on n. Typically λ → 0 as n increases.

Finally, the estimator should be sign consist, meaning that the sign of the
estimated θ should converge to the sign of the correct parameters as the number
of observations goes to infinity. Here the sign is defined to be zero if the input
is zero.

While it may sound hard to fulfil all these properties, several well-known
methods achieve some or most of them. One family of regularisation penalties
is the Bridge penalty

g(θ;α) =
∑
j

|θj |α (2.10)

where α > 0 is a hyperparameter determining the shape of the penalty (Frank
and Friedman, 1993). Special cases are when α = 2 when we get the Ridge
penalty and α = 1 when we get the Lasso penalty. The Lasso estimator is well
known to give sparse and continuous estimates. By allowing λ to decrease
with n, (Knight and Fu, 2000) show that the lasso estimator is consistent under
mild conditions. This relies on λ decreases at a sufficient rate. Additionally,
(Zhao and Yu, 2006) shows that the Lasso can be sign consistent with the correct

2.2. Regularisation penalties and the bias-variance tradeoff 17

choice of λ. However, for a fixed λ, Lasso is well known to be biased with a bias
that increases linearly with λ. The Ridge estimator provides neither sparsity
nor unbiased estimates. The more general Bridge estimator can be consistent
(Knight and Fu, 2000), again with a λ depending on n, and is continuous if
α > 1. However, it is only sparse and signs consistent if α ≤ 1 Huang et al.
(2008), and it is no longer continuous if α < 1. Summarising, in the Bridge
family, the Lasso estimator is the regularisation penalty that fulfils most of the
properties listed above.

In many cases, when the number of covariates is large, the Lasso estimator is a
good choice. However, to reduce the estimator’s bias, alternative versions with
a smaller bias have evolved. The most common ones are the Adaptive Lasso
estimator (Zou, 2006), and the Smoothly Clipped Absolute Deviation estimator
(SCAD) (Fan and Li, 2001). The Adaptive Lasso estimator is based on the idea
of using a weighted lasso objective

θ̂ = argmin
θ

 1

2n

∑
i

(yi − xiθ)
2 + λ

∑
j

ωj |θj |

 (2.11)

where ωj is the weight corresponding to covariate θj . This is not a unique idea
and has been investigated in other ways as well (Jung, 2011; Bergersen et al.,
2011; Zhang, 2011; Javanmard et al., 2018; Bellec and Zhang, 2019). In Adaptive
Lasso, the estimate θ̂ is found in a two-step procedure. First, one estimates θ
without any regularisation. Let us call this estimate θ̃. Then based on θ̃ one
calculate the weights ωj as ωj = 1/|θ̃j |α where α is a hyper parameter. The
estimate θ̂ is then given by minimising 2.11.

The idea behind the SCAD estimator is to work similarly to the Lasso estimator
for small θ but with a reduced penalty for larger θ. This is done with the penalty
g(θ, a) = 1

λ

∑
j g̃λ(θj , a) where a is a hyperparameter larger than 2 and

g̃λ (θj ; a) =


λ|θj | if 0 ≤ |θj | ≤ λ

− |θj |2−2aλ|θj |+λ2

2(a−1) if λ ≤ θj ≤ aλ
(a+1)λ2

2 if |θj | ≥ aλ.

(2.12)

Since both Adaptive Lasso and SCAD build on the idea behind the Lasso
estimator, they inherit some properties of the Lasso estimator, such as consis-
tency and sign consistency, for the right choice of λ = λn. They are also both
continuous. In addition, they are both unbiased in the limit as |θ∗j | increases,

18 2. Background

Unbiased Consistency Continuity Sparsity Sign consistency
OLS Yes Yes Yes No No

Lasso No Yes Yes Yes Yes
Ridge No Yes Yes No No
Bridge When γ < 1 Yes When γ ≥ 1 When γ ≤ 1 When γ ≤ 1
SCAD Yes Yes Yes Yes Yes

Adaptive Lasso Yes Yes Yes Yes Yes

Table 2.1: A table showing which properties the discussed methods fulfil.

which the Lasso estimator is not. Table 2.1 summarises the methods and their
properties. Notably, SCAD and Adaptive Lasso are the only methods with all
desired properties. However, SCAD and adaptive Lasso have other issues to
consider. The most obvious for Adaptive Lasso is the need to estimate θ twice,
once for θ̃ and once for θ̂. This could slow the minimisation procedure if the
number of covariates or data points is very large.

The SCAD algorithm does not need an additional training procedure. However,
experiments in Paper 2 indicate that SCAD can be sensitive to small changes in
hyperparameter settings. In Figure 2.6, we can see how different estimators
behave when only one covariate and data point are present. I.e. the solution to

θ̂ = argmin
θ

[
1

2
(y − θ)2 + λg(θ;ϕ)

]
for different y. What to notice here is that the Lasso, SCAD and Adaptive
Lasso methods all have a plateau at θ = 0 close to y = 0, giving rise to the
thresholding rule. In addition, SCAD and Adaptive Lasso both converge to the
line θ = y for large |y| giving rise to less biased estimates for large parameters.
This is not true for Lasso or Ridge.

2.3 The effect of label noise and how to train with it

In practice, acquiring a classification dataset requires lots of time and resources.
For example, this can be that someone has to look at each data point one at a
time and label them accordingly. Now, if someone would do this for thousands
of data points, there will naturally be some errors, especially if data is hard to
classify. By assumption, data distributions corresponding to different classes
are somehow separated, meaning that an erroneously annotated label leads to
the data point being very much out of distribution. Since the user assumes that
each label is correct, this encourages the estimator to choose a θ̂ corresponding
to a very complex model, which can be far from the true function f . This
follows since the model is flexible enough to memorise specific data examples.
In Figure 2.7, we see an illustration of how label noise can impact the training of

2.3. The effect of label noise and how to train with it 19

Figure 2.6: An illustration of the introduced biases produced by different methods. For
a given y, θ̂ is given by the argument that minimise the objective L(θ;ϕ) = 1

2
(y − θ)2 +

λg(θ;ϕ). This is done for the Lasso, Ridge, Adaptive Lasso and SCAD estimators.

a model. Here an FFNN with 201, 801 tunable parameters is trained on a data
set with four different label noise settings; when no noise is present, one label
is wrong, 20% of labels are incorrect and when 30% are incorrect. Optimally
the model would behave almost the same for all noise settings, but clearly, this
is not the case. This illustrates that the model’s extreme capacity makes it by no
means caption the true relationship between the two classes when label noise
is present. It is clear that the model does not capture the relation between the
classes well when label noise is present.

There is much research that shows that label noise is indeed harmful when
training a DNN. (Zhang et al., 2016, 2021) show that even though DNNs tend
to generalise well when data is without mislabels, they can easily fit data with
random labels. They also argue that this is true under explicit regularisation
and can happen even if the input data is pure noise. So by training sufficiently
long, the expressed function will be so complex that it can fit pure noise. This
makes the model generalise poorly to new data. Fortunately, there are many
things one can do. In (Arpit et al., 2017), they show empirically that DNNs
tend to learn simple patterns first, which typically is the pattern we would like
the model to learn, and then memorise noise in data. This property creates
a window of opportunity to stop training when it has learned the simple
pattern but before it starts adapting to noise. This is called early stopping,
which is widely used in many situations within deep learning today. In the
context of label noise, (Li et al., 2020) show that with some assumptions on
the data, like how different classes are clustered and how well separated the

20 2. Background

(a) (b)

(c) (d)

Figure 2.7: An illustration of what could happen when one training data point is
misclassified. Each image shows the classification boundaries from a neural network
with 201 801 parameters trained on data with different label noise settings. In a) there is
no label noise, in b) one point is mislabeled, in c) 20% of the labels is incorrect and in d)
30% of labels is incorrect.

classes are, training with gradient descent with early stopping is robust to
label noise. This goes hand in hand with the discussion above in Section
2.1.4, where we noticed that the models tend to represent a simple function at
initialisation. However, with errors in data, the further you train, the more the
parameters θ tend to move to a more complex domain. There are, however, a
few problems with early stopping. One is that the loss function you train on is
never minimised, which means we lose the theoretical justification of our loss
function. In addition, one needs an extra dataset that one can use to determine
when to stop training.

There is an extensive set of other methods that each tries to reduce the impact of
mislabelled data and somehow construct critical thinking into model training,
Frénay and Verleysen (2014); Song et al. (2020), which are too many for a
complete overview here. According to the latter of these papers, these methods
can be categorised into four umbrella categories as follows.

The first one is the category of Robust architectures. This can, for example, be
a noise adaption layer whose purpose is to mimic the errors done in sampling.
More concretely, if the model tries to learn the probability P(yi = k|xi; θ), the

2.3. The effect of label noise and how to train with it 21

extra layer extends the modelling to

P(ỹi = k|xi; θ) =
∑
j

P(ỹi = k|yi = j; θ)P(yi = j|xi; θ)

where ỹi is the given label, which may be wrong. One example is (Bootkrajang
and Kabán, 2012), where they use this on linear logistic regression or (Gold-
berger and Ben-Reuven, 2017; Hendrycks et al., 2018; Sukhbaatar et al., 2015)
where it is implemented on DNNs.

The next category is to use Robust regularisation that, in different ways,
prevent the expressfullness of the model. This could mean methods such
as a Lasso or Ridge penalty, or dropout, which is commonly used in deep
learning. One can also imagine using label smoothing and training on convex
combinations of data points. One example of this is mixup (Zhang et al.,
2017) where instead of training on data points (xi, yi) one first does a convex
combination between two data points

(x̂i, ŷi) = (λxi + (1− λ)xj , λyi + (1− λ)yj)

where λ is chosen randomly from a symmetric beta distribution. This encour-
ages the model to behave linearly between data points, and errors will be
smoothed out during training.

The third group is to use a Robust loss design which designs a loss function
that is more robust to errors in labels. This is the category that the method
presented in Paper 1 would be categorised into. There are several robust loss
functions. For linear models, some examples are the support vector machines
(Cortes and Vapnik, 1995) or the many different M-estimators for linear re-
gression such as the Huber loss or Welsch’s exponential loss (Hampel et al.,
1986). There are many methods for DNN as well. One way is to extend the loss
function (2.6) to a weighted sum. This leads to a new loss

θ̂ = argmin
θ

n∑
i=1

ωiℓ(f̂(xi; θ), yi)

where ωi are the individual weights for the different data points. There are
several different methods to determine ωi. In (Gao and Fang, 2016; Gao and
Feng, 2018), they extend the minimisation problem in addition to minimising
over θ; they also minimise over ωi. They use an optimisation constraint on
positive weights to stop them from becoming negative. They also introduce
an additional regularisation term that penalises them from going too far away
from one. The minimisation problem is solved by iterating between minimising

22 2. Background

over θ and ω.

The final category uses a Sample selection technique, making it more probable
to sample correctly labelled data for training. This can be done in many ways.
One way is to sample data based on the loss values of the data and interpret
data with a low loss to be more likely to be correct. One way to use this is
demonstrated in (Jiang et al., 2018), where they have two networks, a student
and a mentor network. The idea is that the mentor determines which data
points the student should train on based on the loss of data that the mentor
produces.

Of course, there are other methods as well that do not fit any of these categories.
One example is (Koh and Liang, 2017), where they represent a methodology to
estimate how much each data point impacted model training. Typically a data
point which is mislabelled or any other outlier affects the training much more
than other points. This way, one can find hazardous data points and remove
them manually.

2.4 Important concepts for Boolean functions

This section will cover a small subset of the otherwise extensive theory of
Boolean functions. The purpose is to give insight into the concepts used in
Paper 3. First, the important concepts for general Boolean functions are intro-
duced and in Subsection 2.4.1 there will be a discussion about the connection
to previous sections. The literature on Boolean functions is quite extensive;
however, the go-to sources in the area are (Garban and Steif, 2014; O’Donnell,
2014).

A Boolean function is a function f taking an input ωn from the hypercube
Ωn = {±1}n and producing an output f(ωn) ∈ {±1}. In the literature, a few
functions are frequently occurring and of interest when concerning neural
networks. Examples of Boolean functions that will be of interest are

i) The majority function (majn) returning the most common value within
its inputs

majn(ωn) = sign

(
n∑

i=1

(ωn)i

)
.

2.4. Important concepts for Boolean functions 23

ii) The weighted majority function (majθ,n) described as

majθ,n(ωn) = sign

(
n∑

i=1

(ωn)iθi

)
.

iii) As a special case of the weighted majority function, we have the dictator
function (dictn,k), which only returns the value of the k’th bit. Hence

dictn,k(ωn) = (ωn)k.

iv) The parity function (parn) defined as

parn(ωn) =

n∏
i=1

(ωn)i

v) the iterated 3-majority (iter 3-majn) is defined as an iteration of majority
functions with three inputs. If n = 3k for some integer k, the function can
be described as a tree graph Gn = (V,E), where

V = {v0,0, v1,0, v1,1, v1,2, . . . , vk−1,0, . . . , vk−1,3k−1 , vk,0, . . . , vk,3k}
E = {(vk′,i, vk′−1,j) : k

′ = 1, . . . , k, i = 3j, 3j + 1, 3j + 2.}

Each vertex vk′,i is assigned a Boolean value which is iteratively calcu-
lated as the majority of the nodes vk′+1,3j , vk′+1,3j+1 and vk′+1,3j+2. The
function inputs give the value of the leaves, and the function output is
given by the value of v0,0. Similarly, we define the iterated k-majority
function where each iteration is done with a majority function with k
inputs.

Two important concepts are noise sensitivity and noise stability, first introduced
in (Benjamini et al., 1999). To understand these concepts, assume ωn is sampled
uniformly on Ωn i.e. the bits are i.i.d. fair coin flips. Now for any fixed ϵ ∈ [0, 1]
also define ωϵ

n as for each i, (ωϵ
n)i equals (ωn)i with probability 1−ϵ and −(ωn)i

with probability ϵ where each bit change happens independently of each other.
In (Benjamini et al., 1999), noise sensitivity is defined as follows.

Definition 2.4.1. The sequence {fn} is noise sensitive if for every 0 < ϵ ≤ 1/2,

lim
n→∞

Cov (fn(ω), fn(ω
ϵ)) = 0.

Notice that this concept tells us nothing about a specific Boolean function but

24 2. Background

rather a sequence of Boolean functions. In summary, as n grows, the sequence
{fn} is noise sensitive if it is such that small initial noise in the input leads to an
output that is uncorrelated with the original output, removing all information
in the initial input. Among the examples of noise sensitive functions are the
parity function and the iterated k-majority function noise-sensitive for each
odd k (Garban and Steif (2014) exercise 7 p. 23). Often one says that a function
fn is noise sensitive, implicitly talking about the sequence {fn} as n increases.

In contrast to noise sensitivity, (Benjamini et al., 1999) also defines noise stability
as follows

Definition 2.4.2. The sequence {fn} is noise stable if

lim
ϵ→0

sup
n

P(fn(ω) ̸= fn(ω
ϵ)) = 0.

Noise stability is often considered the opposite of noise sensitivity, even if
this is strictly not true. It could be that a sequence of Boolean functions {fn}
is neither noise stable nor sensitive, and it could also be both. However,
these examples are often rather constructed. In words, noise stability can be
described as follows: as n grows, small changes in the initial input will likely
lead to no changes in the output domain. Among the functions defined above
the weighted majority functions and hence also the majority and the dictator
function are noise stable (Peres, 2021).

2.4.1 Connection to neural networks

There are several different versions of Boolean neural networks. One example is
the Hopfield model (Hopfield, 1982; Juang, 1999), which has shown interesting
results lately (Ramsauer et al., 2020). One can also base the Boolean model on
structures from an ordinary feed-forward model or convolutional model. There
are many similarities between neural networks and familiar Boolean functions
(Anthony, 2005; Steinbach and Kohut, 2002). Here follows a short overview
of the similarities and differences. The most obvious way to study a neural
network from a Boolean perspective is to start from a typical neural network
and make it to a Boolean function. The simplest way is to use an activation
function in the final layer that forces the output to be Boolean. For example,
one can use the sign function σ(x) = sign(x). Comparing the sign function
with the otherwise commonly used function hyperbolic tangent function (tanh)
σ(x) = ex−e−x

ex+e−x the latter can be seen as a real-valued version of the former. We
compare the sign and tan hyperbole functions in Figure 2.8.

2.4. Important concepts for Boolean functions 25

Figure 2.8: An comparison between the sign and tanh activation functions.

Using the sign function as an activation in each neuron, see Figure 2.1, the
computation in each unit becomes the weighted majority function where the
weights θ corresponds to the model parameters representing the input to that
unit. Hence each output in Equation 2.3 corresponds to a weighted majority.
The entire model is created by stacking many of these layers as in the regular
network structure. Unfortunately, since the sign function is not differentiable,
one aspect that is lost by translating it to a Boolean network is the ability to
calculate gradients which makes training harder. However, in this thesis, we
are only interested in the theoretical properties of these models and no focus is
put on how to train them.

It is well-known that real-valued neural networks can be sensitive to input noise
and that small perturbations in the input space can lead to significant changes
in the output domain. In (Goodfellow et al., 2014) they show a typical example
where the classifier model sees an image of a panda, but after some cleverly
chosen noise is added to the image, the model is fooled into believing that the
image contains a gibbon while a human can not see any difference between
the original and the noisy image. Many of these kinds of sensitivity results
have been shown in the literature (Szegedy et al., 2013; Moosavi-Dezfooli et al.,
2016). This is potentially a huge problem concerning the trustworthiness of
the model, and much research has been done on how to train neural nets to
make them more robust (Ren et al., 2020; Zheng et al., 2016). While sensitivity
holds for typical neural networks, (Peluchetti et al., 2020) shows that a neural
network can theoretically be made stable by letting the width of each layer
grow to infinity.

This type of noise sensitivity to input perturbations is similar to noise sensi-
tivity for Boolean functions. The similarity is that both consider small noise

26 2. Background

perturbations in the input domain and study how it affects the output results. It
is clear though that they are different since the Boolean version only considers
i.i.d. flips with random i.i.d inputs, while the concepts for typical neural net-
works consider structured data with structured noise components. However,
it still raises the interesting question if a Boolean version of a neural network
is noise sensitive or noise stable. This question is the inspiration for Paper
3, where we provide theoretical results answering this question for several
network settings. There has been some other work done in this aspect. One
example is (Peixoto and Drossel, 2009), where they empirically investigate the
effect of input noise in Boolean networks.

3 Summary of papers

3.1 Paper 1 (Regularisation via observation weight-
ing for robust classification in the presence of
noisy labels)

This paper aims to attack the problem of label noise in the classification setting
discussed in section 2.3. The goal is to introduce a robust method that both
identifies noise examples and adapts the training such that less focus is placed
on suspected errors. All this comes with an easy-to-implement methodology.

Following the categorisation of methods discussed by Song et al. (2020), the
approach would be categorised into the robust loss design methodology and
follows a similar approach of Gao and Fang (2016); Gao and Feng (2018). The
approach is to extend the loss function in the minimisation problem 2.6 and
introduce weights ω = (ω1, . . . , ωn) that distribute the importance between
data points in some sense optimally. As in Gao and Fang (2016); Gao and Feng
(2018), these weights are found by extending the minimisation objective to
minimise over the weights. This leads to the minimisation objective

θ̂, ω̂ = argmin
θ,ω≥0

[
n∑

i=1

ωiℓ(f̂(xi; θ), yi) + αg(ω)

]

where g is a regularisation function with a minimum at ωi = 1 and α is a hyper
parameter determining how much ω can fluctuate from one. In Gao and Fang
(2016); Gao and Feng (2018) g is set to g(ω) =

∑
i(ωi − 1)2. The algorithm they

27

28 3. Summary of papers

use to find an optimal θ and ω is by iterating between the objectives

θ̂ = argmin
θ

[
n∑

i=1

ωiℓ(f̂(xi; θ), yi) + αg(ω)

]

ω̂ = argmin
ω≥0

[
n∑

i=1

ωiℓ(f̂(xi; θ), yi) + αg(ω)

]
.

Our paper extends this approach to solve three main problems. Firstly, iterating
between two minimisation objectives can be costly, and it could be that one
does not converge to a local minimum since one is solving the problem in a
block coordinate descent methodology. Secondly, with no further constraints
on the weights ω, it could be that different classes are prioritised differently,
creating the risk that all ωi within one class become very small, making the
model disregard that class entirely. Finally, since the optimisation problem is
extended to include more parameters, the dimensionality significantly increases
the optimisation’s complexity.

To address these problems, we add constraints on ω such that the mean
weight within each class should be constant, typically 1, and use a cleverly
chosen regularisation function g. Here we suggest using the regularisation
g(ω) =

∑
i ωi logωi − ωi + 1. The reason is that this regularisation function

has several benefits. First, it is convex and has a global minimum at ω = 1,
which encourages each data point to be treated equally. Secondly, since g is not
defined for negative ω, one does not need to consider special measurements for
hindering ω to become negative. Finally, and maybe most importantly, it leads
to an easy solution for ω, significantly reducing the optimisation complexity.

All in all, for a setting with K classes, where Ck = {i : yi = k} the minimisation
problem becomes

θ̂, ω̂ = argmin
θ,ω

[
n∑
i

ωiℓ(f̂(xi; θ), yi) + α

n∑
i

(ωi log(ωi)− ωi + 1)

]
(3.1)

with the constraints
∑

i∈Ck
ωi = |Ck| for all k = 1, . . . ,K. These constraints

force each class to be treated equally and hinder entire classes from being
disregarded while still allowing weights to differ within the class.

It turns out, in the minimisation problem 3.1, one can solve for ω analytically.

3.1. Paper 1 29

With the constraints on ω the minimum is found at

ω̂i = |Ck|
e−ℓ(f̂(xi;θ),yi)/α∑

j∈Ck
e−ℓ(f̂(xj ;θ),yj)/α

where k = yi. This further results in that an optimal θ can be found by solving

θ̂ = argmin
θ

−α

K∑
k=1

|Ck| log

(∑
i∈Ck

e−ℓ(f̂(xi;θ),yi)/α

)
. (3.2)

Summarising, even though it initially seems that this methodology introduces
many extra parameters one needs to solve for, further increasing the risk of
overfitting, the number of parameters can actually be reduced to the original
amount again but still have the effect of weighted observations. The cost is
one additional hyper parameter. We call this methodology regularisation via
observation weighting (ROW).

While this sound promising, the effects of observation weights come with a
problem in the form of introducing non-convexity to the minimisation objective
due to the ωiℓ(f̂(xi; θ), yi) term. This means that even if the original objective
is convex with a unique minimum, the methodology could make the new
objective non-convex and introduce non optimal local minima, making the
optimisation harder.

We investigate the minimisation objective 3.2 both analytically and empirically
and show that it indeed is a loss function that could reduce the impact of noisy
labels and potentially, with the correct α get a result as if there were no noise in
labels at all. The theoretical results focus on a linear logistic regression model
used on a two-class classification problem. Here we show that with Gaussian
covariates and independent label flips in both classes, there is an α that gives
estimates of θ as if there were no label noise present in the data.

The experiments are done both on DNNs and on linear models, both on real
and synthetic data. In both cases, the experiments show that the methodology
indeed is able to identify mislabeled data and disregard them during training.
In addition, since some data points are turned off, this leads to less overfitting
making it less important to use early stopping. This means that we could
potentially train until convergence and that we actually have reached an op-
timum of the model. This is unlike when using early stopping, where one
aims for an optimum but on purpose stops long before it is reached, making
interpretability hard. These results go hand in hand with the discussion in
section 2.1.4. By turning off protrusive data points, the training will not make

30 3. Summary of papers

the model parameters converge too far away from its initial setting, creating
a similar effect as early stopping. Since the model tends to represent simple
functions before training, ROW will make the model more likely to be simple
after training as well.

3.2 Paper 2 (Entropy weighted regularisation, a gen-
eral way to debias regularisation penalties)

Inspired by the work in Paper 1, this paper uses the idea of weights to attack
the problem of the bias introduced by different regularisation terms. A problem
that was discussed in Section 2.2. This is done by adding the weights to the
regularisation terms instead of the observation terms in the loss function.

For a linear regression model, a general regularisation objective is formulated
as

θ̂ = argmin
θ

[
1

2

∑
i

(yi − xiθ)
2 + λg(θ;ϕ)

]
= argmin

θ

[
1

2
||Y− Xθ||22 + λg(θ;ϕ)

]
where again ϕ is parameters determining the shape of g and (X,Y) = (x1, y1),
. . . , (xn, yn). Now, regularisation such as Lasso or Ridge introduces undesirable
bias. Assuming that g(θ;ϕ) can be formulated as g(θ;ϕ) =

∑
j ĝ(θj ;ϕ) we

expand the minimisation to be

θ̂, ω̂ = argmin
θ,ω

1
2
||Y− Xθ||22 + λ

∑
j

ωj ĝ(θj ;ϕ) + γg̃(ω)


with the goal of reducing the bias introduced by regularisation. Here g̃(ω) cor-
responds to an extra regularisation penalty that hinders ω from becoming nega-
tive or too small. The function that is chosen is g̃(ω) =

∑
j (ωj log(ωj)− ωj + 1),

giving the total minimisation formulation

θ̂, ω̂ = argmin
θ,ω

1
2
||Y− Xθ||22 +

∑
j

(λωj ĝ(θj ;ϕ) + γ(ωj log(ωj)− ωj + 1))

 .

It may look like these new weights double the number of parameters we need
to optimise, leading to an unnecessary overparameterisation. However, due
to the structure of the problem, one can solve for ω analytically as in Paper

3.2. Paper 2 31

1. Doing this, one gets that ωj = e−
λ
γ ĝ(θj ;ϕ) which further leads to that the

estimate of θ is given by

θ̂ = argmin
θ

1
2
||Y− Xθ||22 + γ

∑
j

(1− e
λ
γ ĝ(θj ;ϕ))

 .

In the article, this is done with two different settings of ĝ(θj ;ϕ), when ĝ(θj ;ϕ)
is the Lasso penalty ĝ(θj) = |θj | and the ridge penalty ĝ(θj) = (1/2)θ2j . This
gives rise to the new methods Entropy weighted Lasso (EWL) and Entropy
weighted Ridge (EWR).

For both methods, it turns out that they inherit many properties from the origi-
nal regularisation penalty but with a decreased bias. However, one thing that
has been lost is the guarantee of convexity. This could lead to non-continuous
estimates with respect to changes in data. Fortunately, in both cases, λ and γ
can be chosen such that we are guaranteed convexity. For EWL, a sufficient
condition is that γ > λ2

s21
where s1 is the smallest eigenvalue of X. For EWR, a

sufficient condition is that λ <
s21e

3/2

4 . This requires that X has full rank; hence
the number of unknown parameters in θ is smaller than the number of data
points. In Figure 3.1, one can see the estimates θ̂ in a one dimensional case with
one datapoint. This is the same setting as in Figure 2.6 but now also with EWR
and EWL. Here there are many aspects to notice. First, locally close to y = 0
EWR and EWL both perform very similarly to the Ridge and Lasso methods.
For the EWL this makes it so that the method is sign consistent and gives sparse
estimates. Secondly, for both methods, the bias decreases for larger θ, which
is one of the criteria listed in (Fan and Li, 2001). Notice as well that when
γ < λ2 for the EWL method, the estimate is no longer continuous with respect
to y. This comes from the fact that the loss is no longer convex. In table 3.1,
one can see a summary of the properties of the regularisation methods that
have been discussed. Compared to adaptive Lasso and SCAD, EWL behaves
quite similarly. There are, however, a few differences. First of all, adaptive
lasso requires two estimations of θ to get the final result, making it potentially
take longer to estimate. Both SCAD and EWL just require one estimation step,
which can be done using coordinate gradient descent. Experiments show that
SCAD is more sensitive to hyperparameter selection which makes adaptive
lasso and EWL easier to tune. However, EWL is not guaranteed to be convex
and hence requires extra information about the problem formulation in the
form of s21. Which method to use boils down to a consideration between these
pros and cons that best fit the problem setting.

32 3. Summary of papers

Figure 3.1: How θ̂ depends on y with EWL, EWR, SCAD and Adaptive Lasso for a
single data point y and a single parameter θ. In this case s21 = 1 and EWL is convex
whenever γ > λ2 and EWR is convex whenever λ < e3/2/4 ≈ 1.12.

Unbiased Consistency Continuity Sparsity Sign consistency
OLS Yes Yes Yes No No

Lasso No Yes Yes Yes Yes
Ridge No Yes Yes No No
Bridge When γ < 1 Yes When γ ≥ 1 When γ ≤ 1 When γ ≤ 1
SCAD Yes Yes Yes Yes Yes

Adaptive Lasso Yes Yes Yes Yes Yes
EWL Yes Yes When γ ≥ λ2/s21 Yes Yes

EWR Yes Yes When λ ≤ s21e
3
2 /4 No No

Table 3.1: A table of which approaches fulfil the different requested properties. This is
an extended version of table 2.1 where EWL and EWR are also included.

3.3 Paper 3 (Noise Sensitivity and Stability of Deep
Neural Networks for Binary Classification)

This paper’s main objective is to more in depth study the sensitivity/stability
properties discussed in Section 2.4 of classical neural networks models. Using
the sign function at each activation σ ensures that the resulting model is a
Boolean function if we enforce a Boolean input string.

Properties of the neural network do, of course, depend on the weights θ, and
talking about noise sensitivity/stability does not make much sense if θ is not
specified. In practice, θ is not unambiguous due to randomness in initialisation
and randomness in the training algorithm. This raises the question, "Is the

3.3. Paper 3 33

distribution πn such that if I sample θ from πn, will the corresponding Boolean
neural network be noise sensitive or stable?"

To attack this question, we extend the noise sensitivity definition 2.4.1 to a
more general version that covers that the noise level ϵ may depend on n. This
property is called quantitatively noise sensitivity and is defined as follows.

Definition 3.3.1. Let ϵn ≤ 1/2 be non-increasing in n and ϵn → 0. The sequence
{fn} is quantitatively noise sensitive (QNS) at level {ϵn} if

lim
n→∞

Cov (fn(ωn), fn(ω
ϵn)) = 0.

Considering random θ, we extend the definitions to cover randomness in the
Boolean function. Given a probability measure πn defined over all Boolean
functions, we define both annealed and quenched noise stability and sensitivity
versions of noise stability and sensitivity. These are defined as follows

Definition 3.3.2. πn is quenched QNS at level {ϵn} if for every δ > 0 and
ϵn ≤ 1/2, there is an N such that for all n ≥ N

πn{fn : Covω,ωϵ(fn(ω), fn(ω
ϵn)) ≤ δ} ≥ 1− δ.

Definition 3.3.3. πn is annealed QNS at level {ϵn} if for every 0 < ϵn ≤ 1/2

lim
n→∞

Covfn,ω,ωϵn (fn(ω), fn(ω
ϵn)) = 0.

Definition 3.3.4. πn is quenched noise stable if for every δ there is an ϵ > 0
such that for all n,

πn{fn : Pω,ωϵ(fn(ω) ̸= fn(ω
ϵ)) < δ} ≥ 1− δ

Definition 3.3.5. πn is annealed noise stable if

lim
ϵ→0

sup
n

Pfn,ω,ωϵ(fn(ω) ̸= fn(ω
ϵ)) = 0.

The annealed versions can be seen as a direct extension of the previous def-
initions where the probability measures have been extended to include the
Boolean functions. On the other hand, the quenched versions study if a typical
model is noise stable or sensitive.

As it turns out, there are clear relationships between the annealed and quenched
versions, summarised as follows

Theorem 3.3.1. Let Fn be the set of all Boolean functions on {−1, 1}n → {−1, 1}

34 3. Summary of papers

and let πn be a probability measure on Fn. Then the following are true

(i) {πn} is annealed QNS at level {an} iff {πn} is quenched QNS at level {an}
and Varfn(Eω[fn(ω)]) → 0 as n → ∞.

(ii) {πn} is annealed noise stable iff {πn} is quenched noise stable.

The paper studies two Boolean versions of neural network architectures, the
fully connected neural networks and convolutional neural networks, and exam-
ines how different assumptions on θ and architecture lead to different model
properties. The Boolean version of the fully connected model is defined re-
cursively for t ∈ {1, . . . , Tn}, as ω(t) = sign(θ(t)ω(t−1)) where ω(0) is the input
bits and θ(t) ∈ Rn×n, i.e. a typical fully connected neural network with sign
as activation and with no bias terms. The final output is h(ω(Tn)) where h is
some fixed Boolean function. To make the first step towards understanding
the model’s sensitivity, the weights θ(t) are considered jointly Gaussian inde-
pendent between t and columns. The weights within one column of θ(t) are
correlated with correlation ρn ≥ 0. One can think of ρn = 0 as that the model
has been initiated, but the model has not seen any data, and no training has
been done. Setting ρn > 0 can (a little far-fetched) be thought of as that some
training has been done on data that gives rise to correlation.

One concept that turns out to be important in this setting is the concept of a
sharp threshold which is defined as follows

Definition 3.3.6. A sequence of Boolean functions {hn} has a sharp threshold
at 1/2 if {hn} is such that for ω being i.i.d. Bernoulli(pn) and if {pn − 1/2} is
bounded away from 0, then limn→∞ P(hn(ω) = sign(pn − 1/2)) = 1.

The most important results for the fully connected neural network can be
summarised as follows.

• Let ρn = 0, 1/2 ≥ ϵn ↓ 0 be such that nϵn → ∞ and let limn→∞ Kn/log(1/ϵn)
= ∞. Then

(i) if limn→∞ bn = 0, limn→∞ nbn = ∞ and Tn ∈ [Kn, e
nbn], then for

any Boolean functions {hn}, the resulting {fn,Tn
} is annealed QNS

at level {ϵn} with respect to {πn},

(ii) if the hn´s are odd and Tn ≥ Kn, then {fn,Tn} is annealed QNS at
level {ϵn},

(iii) if Tn ≥ Kn then for any {hn}, {fn,Tn} is quenched QNS at level
{ϵn},

3.3. Paper 3 35

(iv) there are Boolean functions {hn} such that for Tn growing suffi-
ciently fast with n, {fn,Tn} is not annealed noise sensitive.

(v) if {hn} is noise stable and Tn is bounded, then {fn,Tn
} is annealed

noise stable.

• Let δ < ρn < 1 − 4(log logn)3

logn for some fix δ, 1/2 ≥ ϵn ↓ 0 be such that

nϵn → ∞ and Tn ≥ e4(log logn)2 . Then

(i) if {hn} is odd and has a sharp threshold 1/2, then {fn,Tn
} is an-

nealed QNS at level {ϵn}.

(ii) if {hn} is odd and Tn grows sufficiently fast with n, then {fn,Tn
} is

annealed QNS at level {ϵn}.

• If ρn > 1− log logn
18 logn . Then the following holds.

(i) {fn,Tn
} is annealed and quenched noise stable if hn has a sharp

threshold at 1/2.

(ii) {fn,Tn
} is annealed and quenched noise stable if Tn ≥ (log n)1/4.

Some of these results go hand in hand with the empirical results shown pre-
viously. Here typically ρn = 0. In (Peluchetti et al., 2020), they study the
stability of infinitely wide (non-binarized) neural networks and show that
taking the width to infinity leads to stable behaviours. Additionally, (Peixoto
and Drossel, 2009) show empirically that deep Boolean networks tend to have
stable behaviours. Both these results are when the depth is bounded.

The second model studied in our paper is the CNN, specifically a CNN with
one-dimensional inputs and very simplified filters, which are mainly consid-
ered to be of size three. The final model is given by stacking many of these
layers after each other. When analysing the full model, it can help to translate
it into a directed graph where each node can be seen as a placeholder of one
input bit from one specific layer in the model. In Figure 3.2, one can see the
graphs that are considered in the paper, and it can be a helpful reference to
have in mind when discussing the properties of the graphs.

Consider first the input string of bits ω(0). This string is represented by a set of
nodes L(0), the nodes at the bottom in the recursion in Figure 3.2. Considering
these nodes as an input to a convolutional layer with filter size three, with
stride s and no padding, gives rise to a new set of nodes L(1). These nodes
are directly above those in L(0) in Figure 3.2. The number of edges between
nodes in the two layers corresponds to the filter size, and the amount of
overlap between the edges depends on the convolution stride. Each edge in
the graph represents one value in the convolutional filter θ(0), and due to the

36 3. Summary of papers

(a) The corresponding graph for con-
volutional iterated 3-majority function
with stride 1.

(b) The corresponding graph for con-
volutional iterated 3-majority function
with stride 1 on an n-cycle.

(c) The corresponding graph for con-
volutional iterated 3-majority function
with stride 2.

(d) The corresponding graph for con-
volutional iterated 3-majority function
with stride 2 on an n-cycle.

Figure 3.2

convolutional structure, these values are shared between many edges. This
procedure is iterated either until we have a given depth or until only one node
is left as output, corresponding to the function’s output value. This gives rise
to the layers L(t) and filters θ(t), t = 0, . . . , T where θ(t) are independent over t.
In the paper, both a regular convolution on an n-cycle is considered.

The results for these models can be summarised as follows

(i) The corresponding CNN with stride one and filter sizes three is annealed,
and hence quenched, noise stable for any distribution on θ(t). This is true
for both the noncyclic and the cyclic versions.

(ii) The corresponding CNN with stride two and filter sizes three is annealed,
and hence quenched, noise sensitive if the distribution of θ(t) is such that
the probability of representing a majority function is bounded away from
zero. This is true both for the cyclic and the noncyclic version.

(iii) The corresponding CNN with stride one and filters with elements all one
and of size 2k + 1 for all k ∈ Z+ is annealed and hence quenched, noise
stable.

(iv) The corresponding CNN with stride s > 1 and with filter sizes, 2k + 1

3.3. Paper 3 37

for all k ∈ Z+ is annealed, and hence quenched, noise sensitive if the
distribution of θ(t) is such that the probability of representing a majority
function is bounded away from zero. This is true both for the cyclic and
the noncyclic version.

38 3. Summary of papers

4 Discussion

This thesis contributes to different aspects of the robustness of deep neural
networks and linear models, towards label noise in a classification setting,
towards better regularisation penalties giving a more favourable bias-variance
trade-off and towards knowledge about fundamental robustness properties
of deep neural network designs. The work here contributes to a better under-
standing of the problems at hand and, in some settings, gives methodologies
that make the results better. However, there are many aspects to look into to
get a complete understanding and avoid potential traps. Here there will be a
short discussion about these questions for the different papers.

As we saw in section 2.3, there is an extensive set of methodologies one can
use to handle noise labels in a classification setting, and in Paper 1, we present
the ROW methodology, a way to reduce the impact of treacherous data exam-
ples in an easily implementable way. The drawback is the need for an extra
hyperparameter α, which needs to be optimised using a separate subset of
the data. This is not uncommon for these types of regularisation technics.
However, for the method to be practically sufficient, it is important to have a
good sense of what the parameter should be in order to minimise the search
space. The paper provides evidence that the sensitivity with respect to α is
quite low, but there is still room for more research in this area. Excitingly there
is potential for other improvements as well for the ROW methodology. One
example is to improve the constraints of the weights

∑
j∈Ck

ωj = |Ck|. One
suggestion is to add an extra parameter ρk for each class and instead use the
constraints

∑
j∈Ck

ωj = ρk|Ck|. This way, ρk could be tuned to capture known
class imbalances, for example, due to prior knowledge about the label noise
distribution.

Training with noisy labels is a large field in machine learning, and many
methods have been suggested to improve training. However, one aspect of
the problem that is often overlooked is what these methodologies do with the
discrimination properties of the model. There is a large family of approaches

39

40 4. Discussion

that rely on identifying data that is out of distribution and puts less trust in
those examples. Either via observation weights or modelling of noise. These
show promising results regarding identification of untrustworthy training
examples. However, if there is a data domain where data points are less
frequent and deviant from other data but still labelled correctly, the model
could misinterpret these as outliers, putting less enthuses on that domain and
disregarding them as training examples. Hence the algorithm has potentially
increased discrimination within the model. To the best of our knowledge, this
aspect of training with noisy labels is not much investigated and is something
that needs further investigation in order to be able to rely fully on an algorithm.

The methodology in Paper 2 is very similar to the one used in Paper 1. Therefore
it comes with many of the same perks, such as an easy implementation and no
extra parameters to solve for, even if the task at hand initially requires double
the amount. However, it requires an extra hyperparameter γ, which one needs
to tune. In some cases, one can choose γ to the smallest value such that the
problem is guaranteed to be convex. However, this requires that the number of
observations is larger than the number of parameters and that we have enough
information about the data such that the smallest singular value of X is known.
Even so, one must tune λ to find the perfect model. This is, of course, true for
other methods as well, such as Lasso. However, some algorithms calculate
the estimates for each λ as fast as one Lasso estimate (Hastie et al. (2009), p
73-77). This algorithm uses the fact that the map λ → θ(λ) is piecewise linear.
For EWL, the corresponding map is not piecewise linear, meaning there is no
similar methodology for finding the optimal hyperparameters. An interesting
question for future research would be if such an algorithm could be found for
more complex methods such as EWL or SCAD, potentially leading to a much
faster hyper parameter tuning.

The work in Paper 3 can be seen as the first step of a full understanding of
the sensitivity and stability properties of the DNN from the perspective of
Boolean functions. Even though it is well-known that regular DNNs tend to
be sensitive towards input perturbations (Goodfellow et al., 2014; Szegedy
et al., 2013; Moosavi-Dezfooli et al., 2016) and there are similar results for
Boolean functions (Peixoto and Drossel, 2009), to the best of our knowledge
we are first to show theoretical stability/sensitivity results from a Boolean
function perspective. It is clear that the results are only a first step towards
a full understanding of the properties of Boolean neural networks. First, the
results only hold for untrained models whose weights are independent of the
data. The next natural step would be to see what would happen if the model
were actually trained on data. How do the stability/sensitivity properties
depend on the data or the training algorithm? One can imagine many ways to
attack these questions. Since it is known that during training, θ does not move

41

that far from its original position (Jacot et al., 2018; Zou et al., 2020; Du et al.,
2018), one could ask the question: given an initialisation of the parameters θ,
can the model be made stable/sensitive by shifting θ a small distance δ? More
concretely, if one allows θ to move some distance δ, how probable is it that the
initialisation of θ is such that one can reach a stable function?

42 4. Discussion

Bibliography

Anthony, M. (2005). Connections between neural networks and boolean func-
tions. Boolean Methods and Models, 20.

Arpit, D., Jastrzębski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S.,
Maharaj, T., Fischer, A., Courville, A., Bengio, Y., et al. (2017). A closer look
at memorization in deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 233–242. JMLR. org.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32):15849–15854.

Bellec, P. C. and Zhang, C.-H. (2019). De-biasing the lasso with degrees-of-
freedom adjustment. arXiv preprint arXiv:1902.08885.

Benjamini, I., Kalai, G., and Schramm, O. (1999). Noise sensitivity of boolean
functions and applications to percolation. Publications Mathématiques de
l’Institut des Hautes Études Scientifiques, 90(1):5–43.

Bergersen, L. C., Glad, I. K., and Lyng, H. (2011). Weighted lasso with data
integration. Statistical applications in genetics and molecular biology, 10(1).

Bootkrajang, J. and Kabán, A. (2012). Label-noise robust logistic regression and
its applications. In Joint European conference on machine learning and knowledge
discovery in databases, pages 143–158. Springer.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314.

43

44 BIBLIOGRAPHY

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent
provably optimizes over-parameterized neural networks. arXiv preprint
arXiv:1810.02054.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likeli-
hood and its oracle properties. Journal of the American statistical Association,
96(456):1348–1360.

Frank, L. E. and Friedman, J. H. (1993). A statistical view of some chemometrics
regression tools. Technometrics, 35(2):109–135.

Frénay, B. and Verleysen, M. (2014). Classification in the presence of label
noise: A survey. IEEE Transactions on Neural Networks and Learning Systems,
25:846–869.

Gao, X. and Fang, Y. (2016). Penalized weighted least squares for outlier
detection and robust regression.

Gao, X. and Feng, Y. (2018). Penalized weighted least absolute deviation
regression. Statistics and Its Interface, 11:79–89.

Garban, C. and Steif, J. E. (2014). Noise sensitivity of Boolean functions and
percolation, volume 5. Cambridge University Press.

Goldberger, J. and Ben-Reuven, E. (2017). Training deep neural-networks using
a noise adaptation layer. In ICLR.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986).
Robust statistics. Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics, New York: John Wiley Sons, Inc.,
ISBN 0-471-82921-8, MR 0829458.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition, volume 2.
Springer.

Hecht-Nielsen, R. (1992). Iii.3 - theory of the backpropagation neural net-
work**based on “nonindent” by robert hecht-nielsen, which appeared in pro-
ceedings of the international joint conference on neural networks 1, 593–611,
june 1989. © 1989 ieee. In Wechsler, H., editor, Neural Networks for Perception,
pages 65–93. Academic Press.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K. (2018). Using trusted
data to train deep networks on labels corrupted by severe noise. In Advances
in neural information processing systems, pages 10456–10465.

BIBLIOGRAPHY 45

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of sciences,
79(8):2554–2558.

Huang, J., Horowitz, J. L., and Ma, S. (2008). Asymptotic properties of bridge
estimators in sparse high-dimensional regression models. The Annals of
Statistics, 36(2):587–613.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: Conver-
gence and generalization in neural networks. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc.

Javanmard, A., Montanari, A., et al. (2018). Debiasing the lasso: Optimal
sample size for gaussian designs. Annals of Statistics, 46(6A):2593–2622.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L. (2018). MentorNet: Learn-
ing data-driven curriculum for very deep neural networks on corrupted
labels. In Dy, J. and Krause, A., editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2304–2313. PMLR.

Juang, J.-C. (1999). Stability analysis of hopfield-type neural networks. IEEE
Transactions on Neural Networks, 10(6):1366–1374.

Jung, K. M. (2011). Weighted least absolute deviation lasso estimator. Commu-
nications for Statistical Applications and Methods, 18(6):733–739.

Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Annals of
statistics, pages 1356–1378.

Koh, P. W. and Liang, P. (2017). Understanding black-box predictions via
influence functions. In Precup, D. and Teh, Y. W., editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 1885–1894, International Convention Centre,
Sydney, Australia. PMLR.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Li, M., Soltanolkotabi, M., and Oymak, S. (2020). Gradient descent with early
stopping is provably robust to label noise for overparameterized neural
networks. In International conference on artificial intelligence and statistics,
pages 4313–4324. PMLR.

46 BIBLIOGRAPHY

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

Mingard, C., Valle-Pérez, G., Skalse, J., and Louis, A. A. (2021). Is sgd a bayesian
sampler? well, almost. Journal of Machine Learning Research, 22.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). Deepfool: A simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

O’Donnell, R. (2014). Analysis of Boolean Functions. Cambridge University Press.

Peixoto, T. P. and Drossel, B. (2009). Noise in random boolean networks.
Physical Review E, 79(3):036108.

Peluchetti, S., Favaro, S., and Fortini, S. (2020). Stable behaviour of infinitely
wide deep neural networks. In Chiappa, S. and Calandra, R., editors, Pro-
ceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine Learning Research, pages
1137–1146. PMLR.

Peres, Y. (2021). Noise stability of weighted majority. In In and Out of Equilibrium
3: Celebrating Vladas Sidoravicius, pages 677–682. Springer.

Pérez, G. V., Camargo, C. Q., and Louis, A. A. (2018). Deep learning generalizes
because the parameter-function map is biased towards simple functions. stat,
1050:23.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., Gruber, L.,
Holzleitner, M., Pavlović, M., Sandve, G. K., et al. (2020). Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217.

Ren, K., Zheng, T., Qin, Z., and Liu, X. (2020). Adversarial attacks and defenses
in deep learning. Engineering, 6(3):346–360.

Song, H., Kim, M., Park, D., and Lee, J.-G. (2020). Learning from noisy labels
with deep neural networks: A survey. arXiv preprint arXiv:2007.08199.

Steinbach, B. and Kohut, R. (2002). Neural networks–a model of boolean
functions. In Boolean Problems, Proceedings of the 5th International Workshop on
Boolean Problems, pages 223–240. Citeseer.

Sukhbaatar, S., Estrach, J. B., Paluri, M., Bourdev, L., and Fergus, R. (2015).
Training convolutional networks with noisy labels. In 3rd International Con-
ference on Learning Representations, ICLR 2015.

BIBLIOGRAPHY 47

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and
Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199.

Tibshirani, R. (1996). Regression selection and shrinkage via the lasso. Journal
of the Royal Statistical Society Series B, 58(1):267–288.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Under-
standing deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Understand-
ing deep learning (still) requires rethinking generalization. Commun. ACM,
64(3):107–115.

Zhang, C.-H. (2011). Statistical inference for high-dimensional data. Mathema-
tisches Forschungsinstitut Oberwolfach: Very High Dimensional Semiparametric
Models, Report, 48:28–31.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal
of Machine Learning Research, 7:2541–2563.

Zheng, S., Song, Y., Leung, T., and Goodfellow, I. (2016). Improving the
robustness of deep neural networks via stability training. In Proceedings of
the ieee conference on computer vision and pattern recognition, pages 4480–4488.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. (2020). Gradient descent optimizes
over-parameterized deep relu networks. Machine Learning.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the
American statistical association, 101(476):1418–1429.

48 BIBLIOGRAPHY

