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Spent nuclear fuel represents the majority of materials placed under nuclear safeguards today and it requires
to be inspected and verified regularly to promptly detect any illegal diversion. Research is ongoing both on
the development of non-destructive assay instruments and methods for data analysis in order to enhance the
verification accuracy and reduce the inspection time. In this paper, two models based on Artificial Neural
Networks (ANNs) are studied to process measurements from the Partial Defect Tester (PDET) in spent fuel
assemblies of Pressurized Water Reactors (PWRs), and thus to identify at different levels of detail whether
nuclear fuel has been replaced with dummy pins or not. The first model provides an estimation of the
percentage of replaced fuel pins within the inspected fuel assembly, while the second model determines the
exact configuration of the replaced fuel pins. The two models are trained and tested using a dataset of Monte-
Carlo simulated PDET responses for intact spent PWR fuel assemblies and a variety of hypothetical diversion
scenarios. The first model classifies fuel assemblies according to the percentage of diverted fuel with a high
accuracy (96.5%). The second model reconstructs the correct configuration for 57.5% of the fuel assemblies
available in the dataset and still retrieves meaningful information of the diversion pattern in many of the
misclassified cases.

1. Introduction The processing and the interpretation of the measurements performed

with these techniques mainly relies on the expert judgement of the

One of the most important tasks in nuclear power plants under safe-
guards is regular inspections to verify that no special nuclear material
is missing from the Spent Nuclear Fuel (SNF) assemblies. This task is
crucial before the assemblies are transferred to dry cask storage or
encapsulated for permanent repository disposal (Vaccaro et al., 2018),
where further inspections become more challenging or impossible. In
the safeguards community, the search for missing/replaced fuel pins in
SNF assemblies is known as detection of partial defects (IAEA, 2022;
Lee and Yim, 2020). Spent nuclear fuel is particularly sensitive from
a safeguards perspective because of its residual fissile material such as
235U and 23°Pu. In the recent years, about 80% of the material placed
under safeguards was plutonium contained in SNF (IAEA, 2014).

Several methods of Non-Destructive Assay (NDA) such as the Digital
Cherenkov Viewing Device (DCVD) (Branger et al., 2020), the Fork De-
tector (FD) (Rinard and Bosler, 1988) and the Passive Gamma Emission
Tomography (PGET) (Mayorov et al., 2017) among others are used
to detect possible diversions in SNF assemblies. These techniques are
approved for inspection by the International Atomic Energy Agency
(IAEA) and have been extensively applied for many years (IAEA, 2011).

inspectors. In addition, such investigations are focused on the coarse
detection of possible illicit diversion of nuclear material with the
exception of the PGET which can provide pin-level resolution.

Recent efforts have been conducted to develop methods that can
enhance the processing of the measured data and extract more details
of the system configuration. For example, machine learning algorithms
were used to quantify the percentage of replaced fuel pins in SNF
assemblies (Rossa et al., 2020, 2018; Aldbissi et al., 2022), to predict
parameters of SNF assemblies (Mishra et al., 2021), to detect and
localize missing radioactive sources within a small grid (Durbin and
Lintereur, 2020), to track elemental and isotopic material flows through
material balance areas for safeguards (Shoman and Cipiti, 2018). These
methods can help to reduce the inspection time and make the identifi-
cation of diversion patterns more precise, so that the decision process
of the inspectors is facilitated.

In this paper, novel insights are discussed about the application
of Artificial Neural Networks (ANNs) to quantify and characterize
possible partial defects in SNF assemblies of Pressurized Water Reactors
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Fig. 1. Intact 17 x 17 PWR spent nuclear fuel assembly (left) and an example of a diversion scenario (right).

(PWRs). For this purpose, a synthetic dataset is used and includes
simulated neutron and gamma measurements according to the Partial
Defect Tester (PDET), an inspection technique developed by Lawrence
Livermore National Laboratory (Sitaraman and Ham, 2007; Ham and
Sitaraman, 2011; Ham et al., 2015). The specific objective is to study
the performance of two ANN models for the prediction of the total
amount of replaced fuel pins within a SNF assembly and for the
determination of the exact diversion pattern, respectively.

The paper is structured as follows. The methodology together with
the description of the ANN models is introduced in Section 2. The
model for the estimation of the percentage of fuel pins replaced in a
SNF assembly is examined in Section 3. The performance of the model
for the identification of intact and diverted fuel pins in a SNF assembly
is discussed in Section 4. Conclusions are drawn in Section 5.

2. Methodology

The general strategy for the verification of the integrity of Spent
Nuclear Fuel (SNF) assemblies is to acquire measurements of observable
quantities, such as the neutron flux within the assembly, and deter-
mine whether the outcome of the measurements is consistent with the
declared configuration of the assemblies or not. An underlying assump-
tion is that there is a one-to-one correspondence between the spatial
distribution of the observables and the actual composition of the fuel
assembly, whether intact or not, which is the basis of the identification
of the defects. Furthermore, that the measurable quantities can also
be simulated by core calculation methods for any intact or defect fuel
assembly.

An approach for safeguards inspections of SNF assemblies is based
on the Partial Defect Tester (PDET). The first prototype of the PDET
was developed by Lawrence Livermore National Laboratory and con-
sists of a set of neutron fission chambers and gamma-ray ionization
chambers that can be inserted in the guide tubes of assemblies of
Pressurized Water Reactors (PWRs) (Sitaraman and Ham, 2007; Ham
and Sitaraman, 2011; Ham et al., 2015). The measured quantities from
the PDET are the passive emission of neutrons and gamma-rays taken at
the empty guide tube positions in the SNF assembly. Therefore, these
measurements at different locations within the system provide more
detailed information for the retrieval of the configuration of the fuel
pins.

In current work, a dataset of simulated PDET responses in intact
PWR assemblies and diversion scenarios is used to train and test two
ANNs models for the identification of possible partial defects at differ-
ent levels of detail from the PDET data. Artificial neural networks are
well-suited for these types of problems (i.e., the task of reconstructing
a system configuration from the observables) because they are effective
in modelling non-linear relationships between input and output and
recognizing complex data patterns.

2.1. PDET dataset

The dataset for the study relies on previous work performed at
SCK CEN (Rossa et al., 2020, 2018). It includes the PDET responses
simulated via Monte Carlo N-Particle - MCNP code (Werner, 2018) for
17 x 17 PWR spent nuclear fuel assemblies with and without diversion,
see Fig. 1.

The dataset contains 196 intact fuel assemblies. Each of them is
unique in terms of its Initial Enrichment (IE), Cooling Time (CT)
and Burn-Up (BU). There are 107 modelled diversion patterns, both
symmetrical and asymmetrical, and have a minimum of 4 up to a
maximum of 180 fuel pins replaced by dummy pins made of stainless
steel. Each of the 107 diversion scenarios is repeated 9 times, but with
different conditions of IE, CT and BU, so the overall number of fuel
assemblies with missing fuel pins is 963. The values of IE, CT and BU,
which are used for the intact and diverted cases in all the possible
combinations, are summarized in Table 1.

Strictly speaking, the one-to-one correspondence between the neu-
tron or gamma-ray flux and the defect configuration exists only be-
tween fuel assemblies of the same IE, BU and CT values. It would
therefore be a more straightforward procedure if the training set con-
tained only intact and various defect configurations for assemblies
of the same IE, BU and CT values as the assembly to be identified.
However, in practice, in view of the multitude of assemblies with
different IE, BU and CT values, this would require a huge dataset. It is
therefore assumed that the relationship between the flux distributions
and the defect structure is only mildly affected by the different values of
the IE, BU and CT parameters. The study performed actually gives some
indications of the significance of these parameters, as it is discussed
later.
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Table 1
Values of BU, IE and CT included in the PDET dataset.
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Table 2
Hyper-parameters optimized for the ANN models using grid search.

Intact fuel assemblies Diversion scenarios

Burn-Up 5, 10, 15, 20, 30, 40, 60 10, 30, 60
(MWd/kgU)

Initial Enrichment 2, 2.5, 3, 3.5, 4,45, 5 2,35,5
(W%)

Cooling Time 1, 5, 10, 50 5

(years)

Since the arrangement of a 17 x 17 PWR fuel assembly has 25 guide
tubes (see Fig. 1), the calculated PDET responses for each configuration
are 50, i.e., 25 thermal neutron detection rates and 25 gamma-ray
detection rates.

2.2. ANN models

Two ANN models are developed to process the PDET responses
associated with a PWR spent nuclear fuel assembly and characterize the
possible partial defects. The first model identifies a possible diversion
in terms of the percentage of replaced fuel pins. The second model
identifies if fuel pins are removed and at which positions within the
fuel assembly.

Both models are built using the Tensorflow (Abadi et al., 2015)
and the Keras (Chollet et al., 2015) open-source software libraries, and
they are based on an artificial neural network with an input layer, a
hidden layer and an output layer. The neurons that belong to the input
and hidden layers are activated with the Rectified Linear Unit (ReLU)
function, which allows for back-propagation (i.e., the backward tuning
of the weights and the biases of the neurons through the comparison
between the estimated and the correct output) with an efficient con-
vergence rate. The weights and the learning rate of the network are
optimized with the Adaptive Moment Estimation (ADAM).

For the estimation of the percentage of replaced fuel pins, the algo-
rithm is designed to process the input associated with a fuel assembly
and then assign the fuel assembly to one of the prescribed classes,
which correspond to different percentage ranges of diverted material
(See Table 3 for the definition of the classes). To obtain an appropriate
solution of this so-called multiclass problem, the SoftMax activation
function is selected for the output layer and the error (loss) of the
algorithm in the optimization process is evaluated from the Categorical
Cross-Entropy loss function.

In the case of the identification of the locations where the nuclear
fuel pins have been replaced with dummies, the algorithm processes the
PDET responses for a fuel assembly and gives as output a probability of
being replaced to each of the fuel pins. This is obtained by applying the
Sigmoid activation function in the output layer. The Sigmoid function
is a typical choice for outputs that are non-mutually exclusive such
as in the current application, where each pin is treated independently
and can be either present or replaced. For practical reasons, if the
probability of a fuel pin to be identified is between 0.5 and 1, the fuel
pin is labelled as missing, while, if the probability is less than 0.5, the
fuel pin is labelled as present. Then, the problem can be considered
a multi-label binary classification, and the performance of the ANN
model can be adequately evaluated with the Binary Cross-Entropy loss
function.

The input to the ANN models is provided with the PDET responses
for the fuel assembly under investigation, which comprises 50 values
(see Section 2.1). Therefore, the number of neurons in the input layer
of the ANN models is fixed to 50. The set of neutron emissions and
the set of gamma-ray emissions obtained from PDET and used as input,
are separately normalized so that they are on the same scale and their
processing is more consistent.

Multi-label model
(individual fuel pins)

Multi-class model
(% of replaced fuel pins)

Number of Epochs 2000 1000
Batch-size 10 25
Neurons in the hidden layer 50 300
Table 3
Percentage of diversion in fuel assemblies and prescribed class
labels.
Percentage of replaced pins (x) Class label
x=0
x < 10%

10% < x < 20%
20% < x < 30%
30% < x < 40%
40% < x < 50%
x> 50%

DU A WNH=O

The size of the output layer depends on the model. For the estima-
tion of the percentage of the replaced fuel, the output layer includes a
neuron for each of the prescribed classes. For the identification of which
fuel pins may be replaced, the output layer has a neuron for each of the
fuel pins in the fuel assembly.

The ANN models are trained and tested via an N-fold
cross-validation process. Accordingly, the whole dataset is shuffled and
divided into N random batches. N-1 of these batches are used to train
the ANN, while the remaining one is used for the testing. The procedure
is repeated N times so that each of the N batches serves as testing
dataset one time. The model accuracy is then taken as the average of
the accuracy from the N batches which leads to a less biased result.

A grid search optimization is performed to determine the number
of epochs and the batch size in the training process, and the number
of neurons for the hidden layer. The values for the two models are
summarized in Table 2.

3. Percentage of replaced fuel pins

The first ANN model categorizes a fuel assembly with respect to a set
of classes based on the percentage of diverted material. Seven classes
are prescribed and are reported in Table 3. The class label 0 is for intact
fuel assemblies and the class labels 1 to 6 indicate fuel assemblies with
progressively higher numbers of replaced fuel pins.

The ANN model is trained and tested according to a 5-fold cross-
validation process, and it reaches an accuracy of 96.5%. More insights
are provided by the confusion matrix that summarizes the correct and
incorrect predictions for each class, see Fig. 2.

The confusion matrix shows that the misclassified fuel assemblies
fall into one or two class higher or lower than their true class. As
mentioned in Section 2.2, the model estimates the probability that a
fuel assembly belongs to any of the prescribed classes and assigns the
fuel assembly to the class with the highest probability. In the current
misclassifications, the correct class has always the second highest prob-
ability, and the relative differences between the probabilities of the true
and predicted labels are below 5% in most cases, see Fig. 3.

The majority of the misclassifications are in classes 0 and 1. This
bias might be expected since the number of intact fuel assemblies in
the dataset is bigger than the number of fuel assemblies with a specific
diversion pattern and since the class with true label 1 (maximum partial
defect of 10%) is the closest to the class of intact fuel assemblies with
true label 0. On one hand, the cases with partial defect belonging to
class 1 but identified as intact cases (false negatives), are of severe
concern because diverted material goes undetected. Examples of these
misclassified fuel assemblies are shown in Fig. 4 and they share com-
mon characteristics, i.e., the removal is symmetric, in a checkered-like
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Fig. 3. Classification of fuel assemblies based on % of replaced fuel pins; relative
differences between probabilities associated with true and wrongly predicted class label.

pattern, and more focused on the outer edges. On the other hand,
intact cases predicted in class 1 (false positives/false alarms) are a less
sensitive issue, even though they would require additional resources
and time for clarification during an inspection.

The analysis also indicates that higher numbers of misclassified
diversions are found at BU of 10 MWd/kgU and IE of 2 w%, BU of 10
MWd/kgU and IE of 5 w%, and BU of 30 MWd/kgU and IE of 2 w%, see
Fig. 5. The tendency could be related to the nature of the dataset used
to train the model. As described in Section 2.1, the dataset covers more
variations in BU, IE and CT for the intact cases than for the diversion
scenarios. In addition, the intact fuel assemblies with low BU (between
5 and 30 MWd/kgU) are larger in number than the ones with high BU
(between 30 and 60 MWd/kgU), while their values of IE are evenly
distributed between 2 and 5 w%. Further investigations are needed to
understand the effects of these parameters on the model performance
and to identify possible sources of bias.

4. Identification of the replaced fuel pins

The second ANN model introduced in Section 2.2 is applied to deter-
mine the exact configuration of the 264 fuel pins within a 17 x 17 PWR
fuel assembly. Each individual fuel pin in the assembly is considered
and its probability of being replaced is predicted by processing the
PDET data. Then, the size of the model output is equal to the number
of fuel pins.

Given a 5-fold cross validation process, the model can reconstruct
the exact arrangement of the fuel pins in 667 out of the 1159 fuel
assemblies available in the PDET dataset, which corresponds to a
fraction of 57.5%. The predictions are correct for 97.4% of the intact
fuel assemblies (191 out of 196) and 49.4% of the diversion scenarios
(476 out of 963). As expected, the performance is better with the cases
without partial defects because in the training the intact configurations
are more numerous than any of the specific diverted configurations.
Yet, the algorithm can detect 94.8% of all the incomplete fuel assem-
blies as diversion scenarios despite the incorrect number/location of
the replaced fuel pins.

As discussed in Section 2.2, the model estimates the probability of
a fuel pin to be replaced within the fuel assembly. If the probability
is higher than the threshold value of 0.5, the fuel pin is labelled as
missing, otherwise as present. The analysis of the distribution of the
probabilities for the fuel pins that are correctly and wrongly predicted
can provide insights into the behaviour of the model.

The distribution of the probabilities for all the correctly predicted
fuel pins is shown in Fig. 6. Two large peaks are respectively found
close to the probability values of 0 and 1, and reflect the high confi-
dence in the correct results of the model.

The probability distribution of the wrongly predicted fuel pins is
shown in Fig. 7. A bigger portion of the misclassifications (64.5%)
has probability less than 0.5 and thus consists of replaced fuel pins
predicted as intact, i.e., false negatives. The distribution has two peaks
respectively near the probabilities of 0.5 and 0. The misclassifications
with probabilities around 0.5 are characterized by a low level of confi-
dence because the difference in probability with the other label (which
is the true label) is small. The misclassifications with probabilities close
to 0 (thus, far from the threshold) have a higher level of confidence. The
tendency to make more misclassifications in favour of false negatives
and with higher levels of confidence may depend on the training
dataset, where the fraction of the intact fuel pins is large (78.4%). The
construction of a more balanced dataset to avoid this type of bias is not
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straightforward. Adding more diversion scenarios does not necessarily
increase the weight of the replaced pins since fuel assemblies with
realistic partial defects still have a significant number of intact fuel
pins. Approaches to improve the dataset and to correct possible biases
will be studied in the future work.

The misclassified fuel assemblies are 492 in total, and the associated
errors may involve one or more fuel pins, see Table 4. The majority of
these fuel assemblies have a relatively low number of incorrect fuel pins
(between 1 and 20) and are therefore reproduced nearly properly to a

2.5

- == 0.5 Probability threshold

Number of cases

0.5 1
Probability

Fig. 6. Classification of the individual fuel pins; probability distribution of the correctly
classified fuel pins.

significant extent. Fig. 8 shows examples of predicted diversion patterns
with different numbers of misclassified fuel pins. Although they are not
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Table 4
Number of fuel assemblies with x incorrect fuel pins.

Number of misclassified pins (x) Number of cases  Fraction of the dataset (%)

x=0 667 57.5
1<x<10 238 20.5
10<x<20 160 13.8
20 <x <30 46 4.0
30 < x <40 19 1.6
40<x <50 8 0.7
50 < x <60 6 0.5
x> 60 15 1.3

accurate, they can provide a useful indication of the main region of the
real diversion, with the exception of the case with 67 wrong fuel pins.

5. Conclusions

Two models based on Artificial Neural Networks (ANNs) are as-
sessed for the task of determining possible partial defects in PWR spent
nuclear fuel assemblies. The models are trained and tested using a
dataset of simulated responses of the Partial Defect Tester for both
intact fuel assemblies and diversion scenarios with different values of
burn-up, initial enrichment and cooling time.

The first model assigns spent fuel assemblies to classes defined by
percentage ranges of replaced fuel pins. For this purpose, the algo-
rithm processes the PDET information for one fuel assembly, estimates
the probability of the fuel assembly to be in each of the prescribed
ranges, and assigns the fuel assembly to the range with the highest
probability. The results show a classification accuracy of 96.5%. For
the misclassifications, the relative differences between the probabilities
of the predicted and the true class is below 5% with few exceptions.
In addition, the majority of the misclassifications occur between the
class of intact fuel assemblies and the class with the smallest partial
defects (i.e., less than 10% of replaced fuel pins). Further investigation
is required to clarify the effect of the dataset on the model performances
when considering different burn-up, initial enrichment and cooling
times of the spent fuel.

The second model is developed to identify the presence or absence
of each individual fuel pin inside an assembly and thus to retrieve
the exact arrangement of the fuel pins from the analysis of the PDET
responses. The algorithm estimates the probability of the fuel pins
to be replaced and labels the fuel pins with probability higher than
the threshold value of 0.5 as missing, otherwise as present. Given the
training and testing based on the current PDET dataset, the model fully

Annals of Nuclear Energy 193 (2023) 110005

reconstructs 57.5% of the fuel assemblies and with a high level of
confidence. A substantial majority of the misclassified fuel pins consists
of false negatives, i.e., replaced fuel is diagnosed as present. The
estimated probability of these fuel pins is below 0.5 and the distribution
has a large peak close to zero. The aspect of many diverted fuel pins
misclassified with probabilities close to zero is important because a
high level of confidence is associated with the error and thus it becomes
difficult to understand how trustworthy the results are. This bias can
be related to the existing imbalance of labels in the datset used for the
training process (the intact fuel pins are 78.4% of the total). In addition,
a large fraction of the misclassified fuel pins has probabilities around
the threshold value of 0.5, so the wrong labelling of the fuel pins is
assigned with a lower confidence.

Future work needs to address the issue on the high confidence in
the erroneous classifications so that the interpretation of the results
can be more robust, and to study methods for the correction of the bias
towards false negatives. Nevertheless, in a relevant quantity of incorrect
fuel assemblies the predicted diversion patterns differ from the real
ones by few fuel pins (e.g., 238 out of the total 1159 fuel assemblies are
reproduced with 1 to 10 incorrect fuel pins) and therefore still provide
meaningful information on the partial defect and its spatial distribution.

The results presented in the paper are obtained from a 5-fold
cross validation procedure where the training and testing batches are
randomly selected from the dataset. Since the dataset collects multiple
cases of the same assembly configuration (which vary because of
burn-up, initial enrichment and cooling time), the ANN models are
simultaneously trained and tested using patterns of intact and replaced
fuel pins that are often the same. Then, it will be also important
to investigate the full capabilities of these models with respect to
diversions that are not part of the training phase.

CRediT authorship contribution statement

Moad Al-dbissi: Conceptualization, Methodology, Software, Formal
analysis, Writing — original draft, Writing — review & editing, Visu-
alization. Riccardo Rossa: Conceptualization, Methodology, Formal
analysis, Writing — review & editing, Supervision. Alessandro Borella:
Conceptualization, Methodology, Formal analysis, Writing — review
& editing, Supervision. Imre Pazsit: Conceptualization, Methodology,
Formal analysis, Writing — review & editing, Supervision. Paolo Vinai:
Conceptualization, Methodology, Formal analysis, Writing — original
draft, Writing — review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request

Acknowledgements

The project was financially supported by SCK CEN under grant
agreement PO4500047684, and the Swedish Radiation Safety Authority
under agreements SSM2021-709 and SSM2021-786.



M. Al-dbissi et al. Annals of Nuclear Energy 193 (2023) 110005

Real Predicted

Missing/replaced fuel pin

Example I Empty guide tube position

8 misclassified pins

TR

O T e |

Fuel pin
£
FH
Example IT = 'l
16 misclassified pins l‘l .
XX
]
Example ITT
27 misclassified pins
Example IV
36 misclassified pins
. XX
Example V 11 131
42 misclassified pins 'xxxxxl
X X1
Example VI
55 misclassified pins
Example VII
67 misclassified pins u
EXTXIX X TX.
[ o
o
) il
Fig. 8. Examples of misclassified diversion scenarios.
References Durbin, M., Lintereur, A., 2020. Implementation of machine learning algorithms
for detecting missing radioactive material. J. Radioanal. Nucl. Chem. 324 (3),
Abadi, M., et al., 2015. TensorFlow: Large-scale machine learning on heterogeneous 1455-1461.
systems. Ham, Y., Kerr, P., Sitaraman, S., Swan, R., Rossa, R., Liljenfeldt, H., 2015. Partial
Aldbissi, M., Borella, A., Pézsit, I., Rossa, R., Vinai, P., 2022. Optimizing neural defect verification of spent fuel assemblies by PDET: Principle and field testing
networks to detect replaced spent fuel pins using the partial defect tester. In: IAEA in interim spent fuel storage facility (CLAB) in Sweden. In: The 4th International
Symposium on International Safeguards. IAEA, Vienna. Conference on Advancements in Nuclear Instrumentation Measurement Methods
Branger, E., Grape, S., Jansson, P., 2020. Partial defect detection using the DCVD and their Applications. ANIMMA.
and a segmented region-of-interest. J. Instrum. http://dx.doi.org/10.1088/1748- Ham, Y., Sitaraman, S., 2011. Partial defect tester: A novel approach to detect partial
0221/15/07/P07009. defects in pressurized water reactor spent fuel. Nucl. Technol. 175 (2), 401-418.
Chollet, F., et al., 2015. Keras. https://keras.io. http://dx.doi.org/10.13182/NT11-A12312.


http://refhub.elsevier.com/S0306-4549(23)00324-9/sb1
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb1
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb1
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb2
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb2
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb2
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb2
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb2
http://dx.doi.org/10.1088/1748-0221/15/07/P07009
http://dx.doi.org/10.1088/1748-0221/15/07/P07009
http://dx.doi.org/10.1088/1748-0221/15/07/P07009
https://keras.io
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb5
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb5
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb5
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb5
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb5
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb6
http://dx.doi.org/10.13182/NT11-A12312

M. Al-dbissi et al.

IAEA, 2011. Safeguards techniques and equipment. In: International Nuclear
Verification Series, No. 1 (Rev. 2), Vienna, Austria.

IAEA, 2014. Annual Report 2013, GC(58)/3, Vienna, Austria.

IAEA, 2022. Safeguards Glossary 2022 Edition.

Lee, H.,, Yim, M.S., 2020. Investigation of a fast partial defect detection method
for safeguarding PWR spent fuel assemblies. Ann. Nucl. Energy 144, 107496.
http://dx.doi.org/10.1016/j.anucene.2020.107496.

Mayorov, M., White, T., Lebrun, A., Brutscher, J., Keubler, J., Birnbaum, A., Ivanov, V.,
Honkamaa, T., Peura, P., Dahlberg, J., 2017. Gamma emission tomography for
the inspection of spent nuclear fuel. In: 2017 IEEE Nuclear Science Symposium
and Medical Imaging Conference (NSS/MIC). pp. 1-2. http://dx.doi.org/10.1109/
NSSMIC.2017.8533017.

Mishra, V., Branger, E., Elter, Z., Grape, S., Jansson, P., 2021. Comparison of
supervised machine learning algorithms to predict PWR spent fuel parameters. In:
INMM/ESARDA Joint Annual Meeting 2021.

Rinard, P.M., Bosler, G.E., 1988. Safeguarding LWR spent fuel with the FORK detector.
Los Alamos National Laboratory report LA-11096-MS.

Annals of Nuclear Energy 193 (2023) 110005

Rossa, R., Borella, A., Giani, N., 2020. Comparison of machine learning models for the
detection of partial defects in spent nuclear fuel. Ann. Nucl. Energy 147, 107680.
http://dx.doi.org/10.1016/j.anucene.2020.107680.

Rossa, R., Borella, A., van der Meer, K., 2018. Comparison of the SINRD and PDET
detectors for the detection of fuel pins diversion in PWR fuel assemblies. In:
INMM-59 Annual Meeting.

Shoman, N., Cipiti, B.B., 2018. Unsupervised machine learning for nuclear safeguards.
Technical Report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Sitaraman, S., Ham, Y., 2007. Characterization of a safeguards verification methodology
to detect pin diversion from pressurized water reactor (PWR) spent fuel assemblies
using Monte Carlo techniques. In: INMM 48th Annual Meeting, Tucson, AZ.

Vaccaro, S., Gauld, 1., Hu, J., De Baere, P., Peterson, J., Schwalbach, P., Smejkal, A.,
Tomanin, A., Sjoland, A., Tobin, S., Wiarda, D., 2018. Advancing the Fork detector
for quantitative spent nuclear fuel verification. Nucl. Instrum. Methods Phys. Res.
A 888, 202-217. http://dx.doi.org/10.1016/j.nima.2018.01.066.

Werner, C.J., 2018. MCNP6.2 release notes.


http://refhub.elsevier.com/S0306-4549(23)00324-9/sb8
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb8
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb8
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb9
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb10
http://dx.doi.org/10.1016/j.anucene.2020.107496
http://dx.doi.org/10.1109/NSSMIC.2017.8533017
http://dx.doi.org/10.1109/NSSMIC.2017.8533017
http://dx.doi.org/10.1109/NSSMIC.2017.8533017
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb13
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb13
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb13
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb13
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb13
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb14
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb14
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb14
http://dx.doi.org/10.1016/j.anucene.2020.107680
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb16
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb16
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb16
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb16
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb16
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb17
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb17
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb17
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb18
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb18
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb18
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb18
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb18
http://dx.doi.org/10.1016/j.nima.2018.01.066
http://refhub.elsevier.com/S0306-4549(23)00324-9/sb20

	Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural Networks (ANNs)
	Introduction
	Methodology
	PDET dataset
	ANN models

	Percentage of replaced fuel pins
	Identification of the replaced fuel pins
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


