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Abstract
We consider the Lorentz gas in a distribution of scatterers which microscopically converges
to a periodic distribution, and prove that the Lorentz gas in the low density limit satisfies a
linear Boltzmann equation. This is in contrast with the periodic Lorentz gas, which does not
satisfy the Boltzmann equation in the limit.

Keywords Lorentz gas · Boltzmann Grad limit · Boltzmann equation

1 Introduction

The Lorentz gas was introduced in [14] to give a new understanding of phenomena such
as electric resistivity and the Hall effect. Lorentz introduced many simplifications to admit
“rigorously exact solutions” to some questions, which has made the model very attractive in
the mathematical community.

The Lorentz gas can be described as follows: Let X be a point set in R2 (actually most of
what is said in this paper could equally well have been set in R

n with n ≥ 2). The point set
can be expressed as a locally finite counting measure,

X (A) = #{Xi ∈ A}, (1)

i.e. the number of points in the set A, or the empirical measure

X =
∑

δX j , (2)

Examples of interest are the periodic setX = Z
2, or randompoint processes such as a Poisson

distribution. The Lorentz process is the motion of a point particle with constant speed in the
plane, colliding elastically with the obstacles, which are circular of a fixed radius r and
situated at each point X ∈ X . Given an initial position and velocity of the point particle,
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Fig. 1 A trajectory of the Lorentz
process

(x0, v0) ∈ R
2 × S1, its position at time t is given by

(x(t), v(t)) = T t
X ,r ((x0, v0)) =

⎛

⎝x0 +
M∑

j=1

(t j − t j−1)v j−1 + (t − tM )vM , vM

⎞

⎠ , (3)

where t0 = 0, and {t1, . . . , tM } is the set of times where the trajectory of the point particle
hits an obstacle, and where v j is the new velocity that results from a specular reflection on
the obstacle. We also set x j = x(t j ). The notation is clarified in Fig. 1. For a general point
set X it may happen that obstacles touch or overlap, and then a particle could be trapped or
at least experience an infinite number of collisions in a finite time interval, and then (3) may
fail to be valid. Adding further constraints on the obstacle configurations one may ensure
that (3) is always valid, or fail only for a set of initial conditions of measue zero. This is
true, for example, if the point set is a Delone set, and hence satisfies bounds on the minimal
distance between the points as well as on the density of points. If X is deterministic, or if
one considers a fixed realization of a random point process, this is a deterministic motion.
Then T t

X ,r forms a group of maps, and (x, v) �→ T t
X ,r (x, v) is continuous in the interior

of M := (R2\ ∪x∈X B̄r (x)
) × S1, where Br (x) is the open disk of radius r and center

at x , except at points (x, v, t) such that T t
X ,r (x, v) belongs to the boundary of M. On this

boundary, where the collisions take place, v jumps, and it is natural to identify ingoing and
outgoing velocities, i.e. points (y, v) and (y, v′) such that |y−x | = r and (y−x)·(v+v′) = 0
for some x ∈ X ; one may then chose to represent this point by the outgoing velocity to make
T t
X ,r (x, v) well-defined for all x, v and t .
For a given point set X we also consider the rescaled set Xε = √

εX , so that for any set
A ⊂ R

2

Xε(A) = X
(

A√
ε

)
. (4)

We think of X as describing the domain of the Lorentz gas at a microscopic scale, and Xε as
the macroscopic scale. Expressed in the macroscopic scale, we assume that for any open set
A ⊂ R

2

lim
ε→0

ε #{x ∈ Xε ∩ A} = cm(A), (5)
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where m(A) is the Lebesgue measure of the set A and c is a positive constant.
For the rest of the paper the obstacle radius is fixed to be equal to ε in the macroscopic

scaling, and therefore
√

ε in the microscopic scaling.
In the macroscopic scale, the time t1 of the first encounter with an obstacle for a typical

trajectory T t
Xε ,ε

(x0, v0) satisfies t1 = O(1/c), i.e. the mean free path-length of a typical
trajectory is of the order 1/c. This is known as the low density limit, or the Boltzmann-Grad
limit.

Consider next an initial density of point particles, i.e. a non-negative function f0 ∈
L1(R2 × S1), and its evolution under the Lorentz process. For a fixed pointset X the density
at a later time is given by fε,t = fε(x, v, t) = f0(T

−t
Xε ,ε

(x, v)), which is well-defined when

(3) holds for almost all (x0, v0), because the map T−t
Xε ,ε

is both invertible and measure pre-

serving. One may now study the limit of f0(T
−t
Xε ,ε

(x, v)) for a given realization of X ; this
is known as the quenched limit, as opposed to the annealed limit (see [1]), where the object
of study is the expectation over all realizations of X , fε(x, v, t) = E[ f0(T−t

Xε ,ε
(x, v))] (see

[15]). Here the expectation is taken with respect to the probability distribution of the point
set X . Of course there is no difference when X is deterministic.

Equivalently the evolution fε,t in the annealed setting is defined as the function that
satisfies, for each g ∈ C0(R

2 × S1)
∫

R2×S1
fε(x, v, t)g(x, v) dxdv =

∫

R2×S1
f0(x, v)E

[
g
(
T t
Xε ,ε

(x, v)
)]

dxdv. (6)

Gallavotti [8, 9] proved that when X is a Poisson process with unit intensity, and ε

converges to zero, then fε,t converges to a density ft which satisfies the linear Boltzmann
equation:

∂t f (x, v, t) + v · ∇x f (x, v, t) = −2 f (x, v, t) +
∫

S1−
f (x, v′, t)|v · ω| dω. (7)

Here S1− = S1−(v) = {ω ∈ S1 | v · ω < 0} and v′ = v − 2(ω, v)ω. Spohn has proven a
related, and more general, result in [27]. Both the results by Gallavotti and Spohn concern
the annealed setting. Boldrighini, Bunimovich and Sinai [1] proved the same result in the
quenched setting, i.e. taking the limit in (6) for a typical realization of X , and not for the
expectation over X .

On the other hand, it is also known that when X = Z
2 (or for that matter many other

regular point sets, such as quasi crystals), then the Lorentz process is not Markovian in the
limit and therefore (6) does not hold, see [2, 11]. For a periodic distribution of scatterers, in
dimension two and higher, Marklov and Strömbergsson have proven that there is a limiting
kinetic equation in an enlarged phase space [16, 17]. Caglioti and Golse [5] obtained similar
results, strictly in dimension two, using different methods.

Marklof and Strömbergsson have studied this problem in several papers [18–21].Working
in the quenched setting, they present in [22] a very general theorem concering the Boltzmann-
Grad limit of the Lorentz process, where they give a concise set of conditions for a point
set X , such that the Lorentz process T t

Xε ,ε
(x, v) converges to a random flight process. Their

theorem and its relation to the results of this paper is discussed in some more detail in Sect. 2
below.

The problem studied in this paper is the following: Let X be the periodic point set that
has one point at the center of each cell of the euclidean lattice, and let Yε be a random point
set that also has one point in each lattice cell, but in a random position, and we assume that
Yε converges to X in the sense that all points of Yε converge to the corresponding point of
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X when ε → 0, uniformly over X . This convergence is thus assumed to take place at the
microscopic level. To study this in the Boltzmann-Grad limit, we set

Yε,ε = √
εYε and Xε = √

εX . (8)

We are then interested in comparing the limits of the corresponding Lorentz processes, T t
Yε,ε

and T t
Xε

, assuming that the obstacle radius is ε. Themain result of the paper is the construction
of a family of point sets Yε that converges to the periodic distribution, and yet the Lorentz
process T t

Yε,ε
(x, v) converges to the free flight process generated by the linear Boltzmann

equation (6), contrary to the limit of T t
Xε

(x, v). It is in a sense a non-stability result for the
periodic Lorentz gas, and while not proven in this paper it seems very likely that if X is
a Poisson process with constant intensity, (almost) any approximation Yε would result in
convergence of the two Lorentz processes to the same limit. The proof follows quite closely
the construction in [6, 26], and consists in constructing a third process, T̃ t

Yε,ε
which can be

proven to be path-wise close to the free flight process, and also to the Lorentz process. The
full statement of the result, together with the main steps of the proof are given in Sect. 2.
Section3 gives the somewhat technical proof that T̃ t

Yε,ε
converges to the Boltzmann process,

and Sect. 4 contains a proof that the probability that an orbit of T t
Yε,ε

crosses itself near an

obstacle is negligible in the limit as ε → 0, which is then used to prove that T̃ t
Yε,ε

and T t
Yε,ε

with large probability are path-wise close.
The scaling studied here for the Lorentz process is not the only one studied in literature.

A more challenging problem is the long time limit, where the process is studied over a time
interval of [0, tε[, where tε → ∞when ε → 0. Recent results of this kind have been obtained
in [15]. It would be intersting to try to adapt the techniques in [15] to the present sitution, but
we leave that to a future study. And Marklof and Tóth prove a superdiffusive central limit
theorem for the displacement of a particle at a finite time t [23].

In a different direction, there are many results concering the ergodic properties of the
Lorentz gas with a fixed configuration of scatterers, as opposed to the small scatterer limit
that is setting of the present work. Early results are due to Bunimovich and Sinai, [3, 4], and a
recent example is [25]. Typically these works deal with periodic configurations of scatterers,
but there are also results on non-periodic configurations for example by Lenci and coworkers,
see [12, 13].

2 TheMain Result and the Principal Steps of Its Proof

LetX = Z
2 and defineYε as a perturbation ofX in the following way: Let φ be a rotationally

symmetric probability density supported in |x | < 1, fix ν ∈]1/2, 1[, set
Yε = {( j, k) + ε1−νξ j,k | ( j, k) ∈ Z

2, ξ j,k i.i.d. with density φ
}
, (9)

and let

Yε,ε = √
εYε . (10)

Thus each obstacle has its center in a disk of radius ε1−ν centered at an integer coordinate,
( j, k). This disk will be called the obstacle patch below. The obstacle itself reaches at most
a distance ε1−ν + ε1/2 from the same integer coordinate; this larger disk will be called an
obstacle range below. The ratio of the obstacle range and the support of the center distribution
is thus 1+εν−1/2, which converges to 1when ε → 0, and to simplify some notation the radius
of the obstacle patchwill be used instead of the radius of the obstacle range, and the difference

123



The Lorentz Gas with a Nearly… Page 5 of 27 123

will be accounted for with a constant in the estimates. In order to avoid cumbersome notation,
the parameter ν is not indicated in the symbol Yε , but it is important to remember that the
obstacle distribution also depends on ν.

Clearly Yε converges in law to the periodic distribution in R
2. Nevertheless we have the

following theorem:

Theorem 2.1 Fix ν ∈]1/2, 1[ and let T t
Yε,ε

(x, v) be the Lorentz process obtained by placing a

circular obstacle of radius ε at each point of Yε,ε . Let t̄ > 0, and let f0(x, v) be a probability
density in R

2 × S1. Define fε(x, v, t) as the function such that for all t ∈ [0, t̄] and all
bounded functions g ∈ C(R2 × S1),

∫

R2×S1
fε(x, v, t)g(x, v) dxdv =

∫

R2×S1
f0(x, v)E

[
g
(
T t
Yε,ε

(x, v)
)]

dxdv, (11)

where T t
Yε,ε

(x, v) is defined in Eq. (3). Then there is a density f (x, v, t) ∈
C
([0, t̄], L1(R2 × S1)

)
such that for all t ≤ t̄ , fε(x, v, t) → f (x, v, t) in L1(R2 × S1)

when ε → 0, and such that f (x, v, t) satisfies the linear Boltzmann equation

∂t f (x, v, t) + v · ∇x f (x, v, t) = κ

(∫

S1−
f (x, v′, t)|v · ω| dω − 2 f (x, v, t)

)
. (12)

The constant κ depends on φ and S1− and v′ are defined as in Eq. (7).

Remark 2.2 To simplify notation, point particles are allowed to start inside obstacles, and to
cross the obstacle boundary from the inside without any change of velocity.

Both the statement in this theorem and the proof are very similar to the main results of
[6, 26], but the distribution of scatterers is quite different, and this leads to new questions on
the relation between limits of the scatterer distribution and limits of the Lorentz process. In
those papers the point processes Yε are constructed as the thinning of a periodic point set:

Yε = {εν( j, k) | η j,k = 1, η j,k i.i.d. Bernoulli with P[η j,k = 1] = ε2ν−1} . (13)

Here it is clear that this Yε converges in law to the Poisson process with intensity one, and
therefore it is perhaps not surprising that the limit of the Lorentz process is the same as for
the Lorentz process generated by a Poisson distribution of the obstacles. Theorem 2.1 in
the present paper states that the limit of the Lorentz process is the free flight process of the
Boltzmann equation in some cases also if the limiting obstacle density is periodic, and raises
the question as to which point processes X are stable to perturbation when it comes to the
low density limit of the corresponding Lorentz processes.

Some understanding of this result can be drawn from the very heuristic argument used
to derive the scaling of the Boltzmann–Grad limit: if a point particle is to move a distance
L without hitting an obstacle of size ε, it is required that a cylinder of radius ε and length
L = O(1) around the particle path is free from obstacle centres. Or, what is the same, for
any direction v, each obstacle is the origin of a cylinder of forbidden initial points x0 for
trajectories starting at x0 in the direction of v, and with a free path of at least L . In the two
dimensional case the cylinders are simply strips of width 2ε and one finds that in order to
have an average mean free path of order one, one needs to have a density of obstacles equal
to O (ε−1

)
. If the obstacle centers are distributed one per each lattice cell as in our setting,

then the lattice cell must be of order ε1/2, which motivates the scaling in (10). However,
the heuristic argument indicates that one needs to consider the point process at different
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Fig. 2 Left: A perturbed periodic distribution. Mid: The corresponding �ε as defined by Eq. (14). Right: �ε

computed from a periodic distribution. In all cases, the obstacle radius
√

ε is 10−4 and the diameter of the
obstacle patch isO(10−2). The direction v is drawn from the uniform distribution on S1

scales along the path of a point particle and orthogonal to the path. This is expressed in a
very precise form in [22] as the condition [P2] on the particle distribution X . In a simplified
form, restricted to our two-dimensinal case, it says the following: Writing points x ∈ X
as row vectors, let R(v) be the orthogonal matrix that rotates the coordinate system so that
v ∈ S1 is in the direction of the first coordinate. Let Dε be the diagonal matrix with entries
(ε1/2, ε−1/2). Let λ(v) be a probability density on S1, and let v be a random vector with
distribution λ. For any fixed x ∈ X (possibly excluding a small fraction of points of X )
consider the point set

�ε = (X − x) R(v)Dε . (14)

This is a random point set, and the assumption [P2] is that �ε converges in distribution to a
point process�, independent of x and λ. Intuitively this says that starting from any point inX
the point set looks the same, if it is expanded with a factor ε−1/2 in the direction orthogonal
to v, to make the obstacle size equal to O(1) in that direction, and compressed with a factor
ε1/2 in the direction along v. IfX is a Poisson process with intensity one, then so is�ε for all
ε > 0, and although this is not proven here, it seems likely that if �ε is defined starting with
Yε as defined in (8) then � will also be a Poisson process. This is due to the fact that when
ν > 1/2, the points are randomly spread out around over a distance ε1−ν , which is much
larger than the width of the strip. Figure 2shows an example of this, where to the left there
is a part of the perturbed periodic point set, with ε1−ν ∼ 10−4, so that by eye it is difficult
to distinguish from a periodic distribution. The middle figure shows a realization of �ε for
a random choice of v and with ε ∼ 10−8, to be with compared with the image to the right
which is the same �ε but starting from a periodic X .

If ν < 1/2, the points in Yε are spread out over a small patch small also after the rescaling
with Dε , and therefore one would expect exactly the same behaviour in the limit as for the
strictly periodic distribution X . When ν = 1/2 the centres of the scatterers are distributed
in a ball essentially of the same size as the obstacle. In Fig. 2 one would see an image as
the one to the right, but where the points would be spread in an narrow ellipsis with a minor
axis of order one in the vertical direction, and ε in the horizontal direction. As proven in
[24], the distribution of free path lengths is then asymptotically the same as for the periodic
case, and therfore the the particle density fε would not converge to the solution of a linear
Boltzmann equation. However, the distribution of scattering angles could be quite different
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from the periodic case, and it could be of interest to study this in more detail, in particular in
the long time limit as in [15].1

The general results from [22] states that when [D2] and some other conditions are satisfied,
then the Lorentz process converges to a free flight process, which in general is notMarkovian,
except in a larger phase space. It is only in case the distribution of free path lenghts is
exponential that one can derive a linear Boltzmann equation like Eq. (12).

Before presenting the proof of Theorem 2.1 twomore remarks are relevant. First, the main
theorem in [22] is very general, and it seems likely that the results presented here, and also
the results from [6, 26] could be concluded from their results. However, the results in [22] are
proven under the hypothesis [P2] described above, stating that the�ε from Eq. (14) converge
for a fixed X ; here we have a family of distributions Yε depending on ε. The proof in [22]
seems to be robust enough to cover also this case, but it would need to be checked. The second
remark concerns the distinction between the quenched and annealed limits. In [1, 22], the
meaning of quenched is that you fix once and for all a realization of the point process X ,
and the limits are obtained from a rescaling of this process. In this paper the distribution of
scatters depends on ε also at a microscopic level, and so one cannot just simply take one fixed
realization of Yε and rescale. With Yε defined as in (9) a natural way of viewing a quenched
limit would be to take one fixed realization of the ξi, j , but with Yε defined as in (13) there
seems to be no unique way of defining a quenched limit. One could possibly define the ηi, j
as (independent) 0, 1-valued random processes ε �→ ηi, j,ε with ε as a decreasing parameter,
and with a transition rate 1 → 0 defined so as to obtain the correct density ofYε for all values
of ε. One could then define the quenched limit as the one obtained from one fixed realization
of this process. The results in this paper concern the annealed limit, and then the difference
is not important.

In the proof of Theorem 2.1 we consider three processes: The Lorentz process T t
Yε,ε

(x, v),

the free flight process T t
B(x, v) generated by the Boltzmann equation (11), and an auxiliary

Markovian Lorentz process, T̃ t
Yε,ε

(x, v).

The Boltzmann process is the random flight process (x(t), v(t)) = T t
B(x, v) generated by

Eq. (1). Let 0 = t0 < t1 <, . . . , tn < t be a sequence of times generated by independent,
exponentially distributed increments t j − t j−1 with intensity 2, let v0 = v define v j =
v j−1 − 2(ω j · v j−1) ω j , where the ω j ∈ S1 are independent and uniformly distributed.
Finally set

x(t) = xn(t) = x + t1v + (t2 − t1)v1 + · · · + (tn − tn−1)vn−1 + (t − tn)vn

v(t) = vn . (15)

Of course the number n in the sum is then Poisson distributed. The solution of Eq. (1) may
be defined weakly by

∫

R2×S1
f0(x, v)g(x, v, t) dxdv =

∫

R2×S1
f (x, v, t)g(x, v) dxdv. (16)

The function g(x, v, t) can then be expanded as a sum of terms, each representing the paths
with a fixed number of jumps:

g(x, v, t) = V t g(x, v) =
∞∑

n=0

gn(x, v, t), (17)

1 I am grateful to an anonymous referee for pointing out this range of cases.
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Fig. 3 Trajectories for the
Lorentz process and the
Markovian Lorentz process. The
obstacle size and the support for
the probability distributions are
exaggerated

with

gn(x, v, t) = (V t g)n(x, v) = e−2t
∫ t

0

∫ t

t1
· · ·
∫ t

tn−1

dt1 · · · dtn

×
∫

(S1−)
n
dω1 · · · dωn

n∏

k=1

|ωk · vk−1|g(xn(t), vn) . (18)

The Markovian Lorentz process here is similar to the corresponding process in [6, 26], in
the way that re-collisions, i.e. the event that a particle trajectory meets the same obstacle a
second time, are eliminated. The construction is explained in Fig. 3. The red thin circles mark
the support of the distribution of obstacle center in each cell, and the blue circle indicates
the reach of an obstacle, the obstacle range. In each cell there is an obstacle, fixed from the
start in the Lorentz model, but changing in the Markovian Lorentz model. Note that the size
of both the obstacle radius and the obstacle support are very small, and decreasing to zero
with ε, but drawn large here, for clarity. The path meets the same obstacle patch twice in the
boxed cell. In the Lorentz case, the orbit simply traverses the cell the second time, because it
misses the obstacle. In the Markovian case the obstacle is at a new, random position, drawn
in blue color, the second time the orbit enters the support, and there is a positive probability
that the path collides with the obstacle, as shown with the blue trajectory. In both cases the
trajectory is surely well defined, but the probability of realizing an orbit is different.

The process can be defined as in Eq. (16), with the function g(x, v, t) replaced by

g̃ε(x, v, t) = E

[
g(T̃ t

Yε,ε
(x, v))

]
=

∞∑

n=0

g̃ε,n(x, v, t) , (19)

(
Ṽ t

ε,n

)
g(x, v) = E

[
g(T̃ t

Yε,ε
(x, v))1n jumps

]
= g̃ε,n(x, v, t) , (20)

where g̃ε,n(x, v, t) is the contribution of trajectories having exactly n velocity jumps in the
interval [0, t]. All these terms can be computed rather explicitly by counting the number of
times a trajectory crosses the obstacle range of one cell.
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The operators V t and Ṽ t
ε are both well-defined operators C(R2 × S1) → C(R2 × S1),

and contractions in L∞ because for the Boltzmann process as well as the Markovian Lorentz
processwe havewith probability one a finite number of velocity jumps in a finite time interval,
and for each n, the terms Eqs. (18) and (20) are continuous. Because v ∈ S1, both V t and
Ṽ t

ε are maps C0(R
2 × S1) → C0(R

2 × S1), i.e. functions of compact support are mapped to
functions of compact support, but this latter property is not needed here.

To simplify notation these three processes are hereafter denoted zε(t), z(t) and z̃ε(t). As
described in [6, 26] all these processes belong with probability one to the Skorokhod space
D[0,t̄](R2 × S1) of càdlàg functions on R2 × S1 equipped with the distance

dS(x, y) = inf
λ∈


{
sup

t∈[0,t̄]
‖x(t) − y(λ(t))‖R2×S1 + sup

t∈[0,t̄]
|t − λ(t)|

}
, (21)

where


 = {λ ∈ C([0, t̄]) : t > s �⇒ λ(t) > λ(s), λ(0) = 0, λ(t̄) = t̄}. (22)

Any z ∈ C(D[0,t̄](R2×S1)) induces a measureμ on D[0,t̄](R2×S1)which is first defined
on cylindrical continuous functions F , i.e. functions F ∈ C(D[0,t̄](R2 × S1)) of the form
F(z) = Fn(z(t1), z(t2), . . . , z(tn)) where Fn ∈ C((R2 × S1)n) and 0 ≤ t1 < t2 < · · · <

tn ≤ t̄ . For such functions μ is defined by
∫

F(z)μ(dz) =
∫

f0(z)Ptn ,...,t1,0(z1, z2, . . . , zn |z0)dz0dz1 . . . dzn, (23)

where Ptn ,...,t1,0(z1, z2, . . . , zn |z0) is the joint probability density of z(t1), z(t2), . . . , z(tn)
given the starting point z0. For a Markov process, such as the Boltzmann process, this is
∫

F(z)μ(dz) =
∫

f0(z)Pt1,0(z1|z0)Pt2,t1(z2|z1) . . . Ptn ,tn−1(zn |zn−1)dz0dz1 . . . dzn,

(24)

where Pt j ,t j−1(z j |z j−1) is the transition probability of going from state z j−1 to state z j in
the time interval from t j−1 to t j . Then by a density argument the measure μ is defined for
all F ∈ C(D[0,t̄](R2 × S1)).

(Proof of Theorem 2.1) Let μ, με and μ̃ε be the measures induced by z(t), zε(t) and z̃ε(t).
Just like in [26], one may prove that for every F

lim
ε→0

∫
F(z)μ̃ε(dz) =

∫
F(z)μ(dz). (25)

The argument uses a theorem from Gikhman and Shorokhod (1974) [10], and relies on
an equicontinuity condition and on the convergence of the marginal distributions of z̃ε(t).
Both the equicontinuity condition and the convergence of the marginal distributions are
consequences of Proposition 3.5 which shows that the number of jumps of zε in small time
intervals is not too large, and Theorem 3.1, which states that the one-dimensional marginals
of z̃ε(t) converge to the marginals of z(t). ��
The next step is to prove that (με − μ̃ε)⇀0 when ε → 0, i.e.

∣∣∣∣
∫

F(z)με(dz) −
∫

F(z)μ̃ε(dz)

∣∣∣∣→ 0 (26)
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when ε → 0, and this is done by a coupling argument. Given that zε(0) = z̃ε(0), the two
processes have the same marginal distributions up to the first time t∗ where zε(t) = z̃ε(t)
returns to an obstacle range it already visited. For the process zε(t), the position of the obstacle
within its support is then fixed, whereas for the process z̃ε(t) a new random position of the
obstacle is chosen when the trajectory arrives. Hence

∣∣∣∣
∫

F(z)με(dz) −
∫

F(z)μ̃ε(dz)

∣∣∣∣ =
∣∣∣∣
∫

Kε

F(z)με(dz) −
∫

Kε

F(z)μ̃ε(dz)

∣∣∣∣

≤ sup |F | (με(Kε) + μ̃ε(Kε)) , (27)

where Kε ⊂ D[0,t̄](R2 × S1) is the set of trajectories that contain at least one such re-
encounter for t ≤ t̄ . Proposition 4.1 states that the righthand side of (27) converges to zero
when ε → 0. This together with (25) implies that

με → μ (28)

weakly when ε → 0, and this concludes the proof of Theorem 2.1. �
We end the section with a comment on the propagation of chaos for these processes.

For the Boltzmann process z(t) and for the process z̃(t) it is clear that if a pair of initial
conditions (z1(0), z2(0)) are chosen with joint density f 10 (x1, v1) f 20 (x2, v2), then the joint
densities of (z1(t), z2(t)) and (z̃1ε (t), z̃

2
ε (t)) also factorize: a chaotic initial state is propagated

by the flow, because the two paths are independent, they never interact. The same is not true
for (z1ε (t), z

2
ε (t)), because there is a positive probability that the two paths will meet in the

obstacle density support of one obstacle, which creates correlations. However, the same kind
of estimates as the ones used to prove that the probability of re-encounters for one trajectory
becomes negligible when ε → 0 can be used to prove that also the probability that two
different trajectories meet inside an obstacle range becomes small, and such estimates could
be performed for any finite number of trajectories. The calculations are carried out in some
detail in Sect. 4, and formulated as Theorem 4.2.

3 TheMarkovian Lorentz Process

TheMarkovian processmay be described using the underlying periodic structure. Over a time
interval [0, t], the particle traverses O (ε−1/2

)
lattice cells, and when the path is sufficiently

close to the cell center to cross the obstacle range, there is a positive probability that it is
reflected by an obstacle. Because the obstacle position is chosen independently each time the
trajectory enters a cell, this may all be computed rather explicitly.

We write

g̃ε(x, v, t) = E

[
g
(
T̃ t
Yε,ε

(x, v)
)]

= Ṽ t
ε g(x, v) =

∞∑

n=0

(Ṽε)
t
ng(x, v). (29)

This is the test function evaluated along the path of a point particle. It defines a semigroup Ṽ t
ε

acting on the test function, and the terms in the sum express the contribution to this semigroup
from paths with exactly n velocity jumps. Obviously these terms are not semigroups in their
own right.

Theorem 3.1 Take ν ∈]1/2, 1[ and let T̃ t
Yε,ε

(x, v) be the corresponding Markovian Lorentz

process as defined above. Fix t̄ > 0. For any density f0(x, v) in R
2 × S1, let f̃ε(x, v, t) be
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the unique function such that
∫

R2×S1
f̃ε(x, v, t)g(x, v) dxdv =

∫

R2×S1
f0(x, v)E

[
g
(
T̃ t
Yε,ε

(x, v)
)]

dxdv, (30)

for all t ∈ [0, t̄], and any bounded g(x, v) ∈ C(R2 × S1). The expectation in (30) is taken
with respect to the distribution of Yε . Then there is a function f (x, v, t) such that for all t

f̃ε(x, v, t) → f (x, v, t), (31)

and f (x, v, t) satisfies the linear Boltzmann equation, Eq. (7).

Proof Take any bounded function g ∈ C0(R
2 × S1), and t < t̄ . We must prove that

∫

R2×S1

(
f̃ε(x, v, t) − f (x, v, t)

)
g(x, v) dxdv → 0 when ε → 0, (32)

or, equivalently,
∫

R2×S1
f0(x, v)

(
V t g(x, v) − Ṽ t

ε g(x, v)
)
dxdv → 0. (33)

The expression in (33) is bounded by

‖g‖L∞
∫

R2×S1
f0
(
1 f0>λ + 1|x |≥M

)
dxdv + λ‖(V t g − Ṽ t

ε g)1|x |<M‖L1 , (34)

and choosing λ and M large enough, depending on f0, the first term can be made arbitrarily
small, smaller than ε0/2, say, where ε0 is taken arbitrarily small. It then remains to show
that the second term can be made smaller than ε0/2 by choosing ε small enough. Both V t

and Ṽ t
ε are bounded semigroups, and therefore, after dividing the interval [0, t] into N equal

sub-intervals, [ j t/N , ( j + 1)t/N ] one gets

V t g(x, v) − Ṽ t
ε g(x, v) =

N−1∑

j=0

Ṽ j t/N
ε

(
V t/N − Ṽ t/N

ε

)
V (N−1− j)t/N g(x, v). (35)

As noted in [6], the underlying Hamiltonian structure implies that he two semigroups are
contractions in L1 ∩ L∞, and therefore it is enough to prove that for N = Nε appropriately
chosen

Nε

∥∥∥V t/Nε g − Ṽ t/Nε
ε g

∥∥∥
L1

→ 0 (36)

when ε → 0. Setting Nε = t/τε for a suitable τε , we find

∣∣V τε g(x, v) − Ṽ τε
ε g(x, v)

∣∣ =
∣∣∣∣∣

∞∑

k=0

(
(V τε )k g(x, v) − (Ṽ τε

ε )k g(x, v)
)
∣∣∣∣∣

≤ ∣∣(V τε )0g(x, v) − (Ṽ τε
ε )0g(x, v)

∣∣+ ∣∣(V τε )1g(x, v) − (Ṽ τε
ε )1g(x, v)

∣∣

+
∣∣∣∣∣

∞∑

k=2

(V τε )k g(x, v)

∣∣∣∣∣+
∣∣∣∣∣

∞∑

k=2

(Ṽ τε
ε )k g(x, v)

∣∣∣∣∣ . (37)

Denote the four terms in the right-hand side by RI , RI I , RI I I , and RIV , and set rε
= ε(2ν−1)/2

(
1 + log(t/

√
ε)
)
. From Proposition 3.4 it follows that the first term, accounting

for paths with no jump in the given interval, satisfies

Nε

∫

R2×S1
RI (x, v) dxdv ≤ t

τε

CM2r1/2ε , (38)
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Fig. 4 A particle path traversing the lattice cells. The cell size, diameter of the distribution of the obstacle
center and obstacle size are given in the macroscopic scale to the left and microscopic scale to the right

which converges to zero with ε if r1/2ε /τε does. The second term accounts for paths with
exactly one jump, and according to Proposition 3.6,

Nε

∫

R2×S1
RI I (x, v) dxdv ≤ CM2 (ω(τε, g) + rε + ‖g‖∞

√
rε + ‖g‖∞rε/τε

)
. (39)

Here ω(τε, g) is the modulus of continuity for g. For this term it is enough that rε/τε

converges to zero, but the rate of convergence may depend on the modulus of continuity of
the test function g.

We also have that if τε > r1/2ε

Nε

∫

R2×S1
(RI I I (x, v) + RIV (x, v)) dxdv ≤ CM2‖g‖∞tτε. (40)

This follows because for the Boltzmann process, the probability of having more than two
jumps in an interval of length τε is of the order τ 2ε , and Proposition 3.5 states that the same
is true for the Markovian Lorentz process. Therefore, in conclusion, the convergence stated
in eq. (32) holds with a rate depending on f0 but which can be controlled by entropy and
moments, and on the modulus of continuity of the test function g. ��

The expressions (35) and (36) imply that it is enough to study the processes in short
intervals, and Proposition 3.5 below shows that it is then enough to consider two cases: a
particle path starting at (x, v) ∈ R

2 × S1, i.e. with position x ∈ R
2 in the direction v, moves

without changing velocity during the whole interval, or hits an obstacle at some point x ′
and continues from there in the new direction v′, but suffers no more collisions. The three
propositions used in the proof of Theorem 3.1 all depend on Lemma 3.2 below, where the
underlying periodic structure is used to analyze the particle paths in detail up to and just after
the first collision with an obstacle. To set the notation for the following results, we consider a
path starting in the direction v from a point x in the direction of v. It is sometimes convenient
to denote the velocity v ∈ S1 by an angle β ∈ [0, 2π [, and both notations are used below
without further comment. When a collision takes place, the new velocity v′ depends on v and
on the impact parameter r as shown in Fig. 5, where r ∈ [−1, 1] when scaled with respect
to the obstacle radius. In this scaling, dr = cos(β ′/2) dβ ′/2, when β ′ is given as the change
of direction.
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Fig. 5 The figure illustrates a
collision with an obstacle and the
notation used to describe this

Without loss of generality we may assume that the path is in the upward direction with
an angle β ∈ [0, π/4] to the vertical axis as in Fig. 4, because all other cases can be treated
in the same way just by a finite number of rotations and reflections of the physical domain.
Let y1 be the first time the path enters the lower boundary of the lattice cell, and then let
y j = y1+ ( j −1) tan(β) mod 1 be the consecutive points of entry to the lattice cell. Setting
y0 = − tan(β)/2, the signed distance between the particle path through the cell and the cell
center is ρ j = (y j − y0) cosβ, and the probability that the path is reflected at the j-th passage
and given the sequence ρ j , the events of scattering in cell passage nr j are independent.

Define

p0(x, v, t) = P

[
no collision in the interval [0, t[

for a path starting at (x, v) ∈ R
2 × S1

]
. (41)

The probability that a scattering event takes place in the j-passage of a lattice cell is a function
of the distance from the path to the centre of the cell,ρ j , and is zero outside |ρ j | < ε1−ν+ε1/2.
This probability will be denoted p j = p j (x, v), and depends only on the initial position x and
the direction v. Given that a scattering event takes place, the outcome of this event depends
on the scattering parameter, i.e. the distance between the path and the (random) center of
the obstacle. Let Ax,v,t be any event that depends on a position x and direction v of a path
segment of length t . Then the probability that A = Ax ′,v′,t ′ is realized after the first collision
can be computed as

P[A] =
n∑

j=1

p0(x, v, t j−)p j (x, v)P[Ax ′,v′,t ′ | j] . (42)

Here P[Ax ′,v′,t ′ | j ] denotes the conditional probability of the event Ax ′,v′,t ′ given that the
collision takes place when the particle crosses cell number j along the path, and this also
depends on the x and v. The time when the path enters cell number j is denoted t j−, and
the terms in the sum contains a factor p0(x, v, t j−) for the probability that no collision has
taken place earlier. Similarly t j+ denotes the time when the trajectory leaves the cell; that is
a random number, but we always have 0 < t j+ − t j−1 < 2

√
ε.

In (42), (x ′, v′, t ′) are random, so P[A] involves also an integral over these variables, and
the notation P[Ax ′,v′,t ′ | j] is intended to include this integration. The expectation E[ψ] of
some functionψ is computed in the samewaywithP[Ax ′,v′,t ′ | j] replaced byE[Ax ′,v′,t ′ | j] .
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Given the density φ for the position of the obstacle define

ϕ0(x1) =
∫

R

φ0(x1, x2) dx2, (43)

where (x1, x2) is an arbitrary coordinate system in R
2. Because φ is assumed to be rota-

tionally symmetric, the resulting function ϕ0 is independent of the orientation of this
coordinate system. It is a smooth probability density with support in [−1, 1], and then
ϕε(r) ≡ εν−1ϕ0(ε

ν−1r) is also a smooth probability density with support in |r | ≤ ε1−ν .
For each k the obstacle center is chosen randomly inside a circle of radius ε1−ν around

the cell center, and one can then compute the probability that the path is reflected at step k.

Lemma 3.2 Consider a lattice cell in the microscopic scale, so that the cell side has length
one, andassume that there is an obstacle of radius ε1/2with center distributedwith a density of
the formφ(x) = ε2ν−2φ0(ε

ν−1x), whereφ0 ∈ C∞(R2) has support in the unit ball ofR2. Let
ϕε be defined as in Eq. (43) and rescaled with ε. Letψ0 ∈ L1(R)withψ0(x) = 0 for |x | > 1,
and set ψε(x) = ψ0(x/

√
ε). Consider a particle path traversing the cell n times with an

angle β ∈ [0, π/4] to the vertical cell sides, and set y1, . . . , yn to be the consecutive points at
the lower edge of the cell. We have y1 ∈ [−1/2, 1/2[ and yk = −1/2+(1/2+(k−1) tan(β))

mod 1. Then

p[ψε](y, β) =
∫

R

ψε(x1)φε(y cos(β) + x1) dx1 (44)

satisfies

n∑

k=1

p[ψε](yk, β) =
√

ε n

cos(β)

∫ 1

−1
ψ0(x) dx + Ra(y1, β). (45)

The remainder term Ra also depends on n and ε. It is bounded by a function R̄A(β), that
depends on φ, n and ε but not on ψ , and that satisfies

|Ra(n, ε, y1, β)| ≤ ‖ψ0‖L1 R̄A(β) where (46)
∫

R̄A(β) dβ ≤ Cεν−1/2(1 + log n) . (47)

Proof The result is a small extension of the corresponding proposition in [26], and also the
proof follows closely that paper. For any fixed β, the expression p[ψε](y, β) has support
in an interval of length 2(ε1−ν + ε1/2)/ cos(β). Extend this function to be a one-periodic
function of y. For simplicity we assume that n is odd, and set n = 2m + 1. With n large,
this assumption would only make a very small contribution from adding one extra term to
the sum in case n were even. Then

n∑

j=1

p[ψε](y j , β) =
m∑

j=−m

p[ψε](y1 + ( j + m − 1) tan(β), β)

=
∞∑

k=−∞
p̂k

m∑

j=−m

e2π ik(y1+( j+m−1) tan(β))

=
∞∑

k=−∞
p̂ke

2π ik(y1+(m−1) tan(β))
m∑

j=−m

e2π ik j tan(β) . (48)
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In this expression p̂k is the k-th Fourier coefficient of the periodic function p[ψε](·, β),
and the sum to the right can be evaluated as the Dirichlet kernel of order m with argument
k tan(β):

Dm(x) = sin((2m + 1)πx)

sin(πx)
. (49)

Therefore
n∑

j=1

p[ψε](y j , β) = (2m + 1) p̂0 + Ra, (50)

where

Ra =
∑

k �=0

p̂ke
2π ik(y1+(m−1) tan(β))Dm(k tan β). (51)

The Fourier coefficients p̂k can be computed as the Fourier transformof p[ψε](·, β) evaluated
at the integer points k,

p̂k =
∫ ∞

−∞
e−2π iky p[ψε](y, β) dy =

√
ε

cos(β)
ψ̂0
(−√

εk
)
ϕ̂0
(
ε1−νk

)
. (52)

Here ϕ̂0 and ψ̂0 are the Fourier transforms of ϕ0 and ψ0. Note the factor
√

ε which is due to
the definition of ψε , which is not rescaled to preserve the L1-norm. We have

p̂0 =
√

ε

cos(β)

∫
ψ0(x)dx, (53)

and because ψ0 ∈ L1 and ϕ0 is smooth, the coefficients p̂k decay rapidly: For any a > 0
there is a constant ca depending on ϕ0 such that

| p̂k | ≤ √
ε‖ψ0‖L1

ca
1 + ∣∣ε1−νk

∣∣a . (54)

Because β ∈ [0, π], the dependence on β can be absorbed into the constant ca . Let

R̄A(β) =
∑

k �=0

ca
√

ε

1 + ∣∣ε1−νk
∣∣a |Dm(k tan β)| (55)

The remainder term Ra = Ra(n, ε, y1, β) is therefore bounded by

|Ra | ≤ ‖ψ0‖L1 R̄A(β). (56)

Using a standard estimate of the L1-norm of the Dirichlet kernel,
∫ π/4

0
|Dm(k tan β)| dβ =

∫ 1

0

|Dm(kξ)|
1 + ξ2

dξ

≤ 1

k

∫ k

0
|Dm(ξ)| dξ ≤ C(1 + logm). (57)

Therefore these integrals are independent of k, and so
∫ ∣∣R̄A(β)

∣∣ dβ ≤ C
√

ε(1 + log(m))
∑

k �=0

ca‖ψ0‖L1

1 + ∣∣ε1−νk
∣∣a

≤ C‖ψ0‖L1εν−1/2(1 + log(n)) , (58)
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because the sum is bounded by C
∫∞
0 (1 + (ε1−νx)a)−1 dx , and replacing log(m) by log(n)

only modifies the constant. This concludes the proof. ��
Remark 3.3 The assumption that ψ0 ∈ L1 is actually stronger than needed. The proof works
equally well as long as the Fourier transform of ψ0 is not increasing too fast, and a Dirac
mass with support in ] − 1, 1[, for example, would give the same kind of error estimate.

Proposition 3.4 The terms (V t )0g(x, v) and (Ṽ t
ε )0g(x, v) are given by

(V t )0g(x, v) = e−2t g(x + vt, v) and (59)

(Ṽ t
ε )0g(x, v) = p0(x, v, t)g(x + vt, v) . (60)

where p0(x, v, t) is the probability that a trajectory starting at x ∈ R
2 in direction v does not

hit an obstacle in the interval [0, t]; this can be computed explicitly. The function p0(x, v, t)
satisfies p0(x, v, t) − e−2t = Rb(x, v, t) with

|Rb(x, v, t)| ≤ R̄B(β) (61)

for a function R̄B(β) that satisfies
∫

S1
R̄B(β) dv ≤ Cε(2ν−1)/4

√
1 + log(t/

√
ε) , (62)

and consequently, for any bounded g ∈ C
(
R
2 × S1

)
with support in |x | ≤ M,

∥∥(V t )0g − (Ṽ t
ε )0g

∥∥
L1(R2×S1) ≤ CM2‖g‖L∞ε(2ν−1)/4

√
1 + log(t/

√
ε). (63)

Proof Consider a path starting at x ∈ R
2 in the direction of v. There is no restriction in

assuming that the direction v is clockwise rotated with an angle β as illustrated in Fig. 4,
which shows one lattice cell, with an obstacle patch indicated with a red circle, and a blue
circle indicating the maximal range for an obstacle, and the red solid disk shows one possible
position of the obstacle. In themacroscopic scale, the lattice size is ε1/2, the obstacle has radius
ε, and the obstacle patch has radius ε3/2−ν . These values are indicated within parenthesis,
and the microsopic scale, in which the lattice size is 1 is indicated to the left. When ε → 0
the obstacle patch in microscopic scale shrinks to a point, but is is drawn large in the image
for clarity. The path under consideration enters a new lattice cell for the first time at y1, and
enters the second lattice cell at y2, drawn in the same image. A path of length t in macroscopic

scale will traverse a number n of lattice cells in the vertical direction. We set m = � t cosβ

2ε1/2
�.

Then

n = 2m + 1 = t cosβ

ε1/2
+ ζ, (64)

where ζ ∈] − 1, 1], and depending on whether where the path starts and ends, the path may
touch one additional cell. The error due to the exact position of the start and end points in a
lattice cell can be taken into account by allowing ζ ∈ [−2, 2]. Then

p0(x, v, t) = P[ no collision in the interval [0, t[ ]

=
n∏

j=1

(1 − p(y j , β)) = exp

⎛

⎝
n∑

j=1

log(1 − p(y j , β))

⎞

⎠ (65)
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where p(y, β) is the probability that a trajectory entering a lattice cell at y with angle β

along the lower cell boundary meets an obstacle before leaving the cell on the top. Because
p(y j , β) < cεν−1/2 → 0 when ε → 0 we may assume that p(y j , β) < 1/2, and therefore

− (1 + cεν−1/2)p(y j , β) < log(1 − p(y j , β)) < −p(y j , β), (66)

which provides an asymptotic expression for p0(x, v, t) once the sum
∑n

j=1 p(y j , β) has
been evaluated. That (V t )0g(x, v) has the form (59) is evident, and hence it remains to prove
the estimate (63). From (66) we get

∣∣e−2t − p0(x, v, t)
∣∣

≤
∣∣∣e−2t − e

∑n
j=1 p(y1β)

∣∣∣+
∣∣∣e−(1+cεν−1/2)

∑n
j=1 p(y1,β) − e−∑n

j=1 p(y j ,β)
∣∣∣

≤
∣∣∣e−2t − e−∑n

j=1 p(y1,β)
∣∣∣+ cεν−1/2 . (67)

Referring to the notation in Lemma 3.2 the probability p(y j , β) can be computed as

p(y j , β) = p[1ε](y, β), (68)

that is, ψ0 is set to one in the interval [−1, 1] and zero outside this interval. The same lemma
then gives

n∑

j=1

p(y1, β) = 2
√

εn

cos(β)
+ Ra(n, ε, y1, β) = 2t + R̂a, (69)

where Ra satisfies the estimate (47), and |R̂a − Ra | ≤ 2
√

ε. Hence |R̂a(n, ε, y1, β)| ≤
C R̄A(β) for some constantC , andMarkov’s inequality says that for any λ > 0, the inequality
m({v ∈ S1 | R̄A > λ}) ≤ C

λ
εν−1/2(1 + log(t/

√
ε)) holds. Therefore

∫

S1

∥∥e−2t − p0(·, v, t)
∥∥
L∞ dv ≤

∫

S1

∥∥∥e−2t − e−2t+R̂3

∥∥∥
L∞ dv + 2πcεν−1/2

≤ C
(
m({v ∈ S1 | R̄A > λ}) + λ + εν−1/2)

≤ C
εν−1/2(1 + log(t/

√
ε))

λ
+ Cλ + Cεν−1/2 ≤ Cε(2ν−1)/4

√
1 + log(t/

√
ε) .

(70)

where the norms inside the integrals are takenwith respect to the variable x . Then (63) follows
after integrating the expression over R2 because

∥∥(V t )0g − (Ṽ t
ε )0g

∥∥
L1(R2×S1) ≤ ‖g‖L∞(R2×S1)πM2

∫

S1

∥∥p0(·, v, t) − e−2t
∥∥
L∞ dv,(71)

when g = 0 for |x | > M . ��

Proposition 3.5 Let t > εa with a < (2ν − 1)/4. Then if g = 0 for |x | > M,
∥∥∥∥∥

∞∑

k=2

(Ṽ t
ε )kg

∥∥∥∥∥
L1(R2×S1)

≤ C‖g‖L∞M2t2. (72)
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Proof Let BM be the ball of radius M inR2, and consider a path starting at (x, v) ∈ BM ×S1,
and set Jk = Jk(x, v, t) be the event that this path has exactly k velocity jumps in the time
interval [0, t]. Similarly, let Jk+ denote the same for the case of at least k jumps. Then

∥∥∥∥∥

∞∑

k=2

(Ṽ t
ε )kg

∥∥∥∥∥
L1(R2×S1)

≤ ‖g‖L∞(R2×S1)

∫

BM×S1
P[J2+ | (x, v)] dxdv, (73)

that is, the conditional probability that a path has at least two velocity jumps given the initial
position and velocity (x, v) is integrated over x and v. Considering J2+(x, v, t) for one octant
of S1 at a time, we may represent v by an angle β ∈ [0, π/4] as in the proof of Lemma 3.2.
A path in the direction of β starting at x will traverse n = �t cos(β)/

√
ε� ± 1 lattice cells if

it is not reflected on an obstacle along the way, and so

P[J2+ | (x, v)] =
n∑

j=1

p0(c, v, t j−)p jP[J1+(x ′, v′, t − t j+) | ( j, x ′, v′)] (74)

that is, as a sum of terms conditioned on the event that the first jump takes place at the j-th
passage of a lattice cell. Clearly

P[J2+ | (x, v)] ≤
n∑

j=1

p jP[J1+(x ′, v′, t) | ( j, x ′, v′)] , (75)

and the terms p jP[J1+(x ′, v′, t) | ( j, x ′, v′)] can be expressed as p[ψε](y, β) with

ψε =
(
1 − p0(x

′, v′(r/ε))
)
1|r |≤ε (76)

in Lemma 3.2; p0(x ′, v′(r/ε), t) is the probability that there is no collision in a path of
length t starting at x ′ in the direction of v′, and this direction is given as the outcome of
a collision with an obstacle with impact parameter r/ε. Using Proposition 3.4 we find that∣∣p0(x ′, v′(r/ε), t) − e−2t

∣∣ ≤ R̄B(β ′(r/ε)), where β ′ is the angular direction corresponding
to v′. Rescaling ψε gives

∣∣∣∣
∫ 1

−1
ψ0 dr − 2

(
1 − e−2t)

∣∣∣∣ ≤
∫ 1

−1
R̄B(v′(r), t) dr

=
∫

S1
R̄B(ε, v′)cos(β

′/2)
2

dv′ , (77)

where β ′ is the scattering angle of v′ with respect to the velocity before scattering, v. It
follows that

‖ψ0‖L1 ≤ 2(1 − e−2t ) + Cε(2ν−1)/4
√
1 + log(t/

√
ε). (78)

Therefore, using Lemma 3.2, the righthand side of Eq. 74 is bounded by
√

εn

cos(β)
‖ψ0‖L1 + C‖ψ0‖L1 R̄A(β), (79)

and integrating with respect to v over S1 and then x over BM , gives

‖g‖L∞M2C
(
1 − e−2t + r1/2ε

) ( √
εn

cos(β)
+ rε

)

≤ ‖g‖L∞M2C
(
t2 + t(r1/2ε + r(t, ε)) + r3/2ε

)
(80)
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as a bound for the right hand side of Eq. (73). Here rε = ε(2ν−1)/2(1 + log(t/
√

ε), and t
is assumed to be small. The proof is concluded by comparing the terms when t > εa with
a < (2ν − 1)/4. ��

The following proposition concerns the terms
(
V t
)
1g(x, v) and

(
Ṽ t

ε

)
1g(x, v) defined by

(
V t )

1g(x, v) = e−2t
∫ t

0

∫

S1−
g(x + τv + (t − τ)v′, v′)|v · ω| dω dτ (81)

and
(
Ṽ t

ε

)
1g(x, v) = E

[
g(x + τ̃ v + (t − τ̃ )v′, v′)1J1(x,v,t)

]
, (82)

where as before, J1(x, v, t)) is the event that there is exactly one jump on the trajectory
starting at x in the direction of v. The τ̃ ∈]0, t[ and v′ ∈ S1 are the random jump time and
velocity of the particle after the jump.

Proposition 3.6 Let ω(δ, g) be the modulus of continuity for g, i.e. a function such that
|g(x, v) − g(x1, v1)| ≤ ω(|x − x1| + |v − v1|, g). Then

∥∥(V t)
1g − (Ṽ t

ε

)
1g
∥∥
L1(R2×S1)

≤ CM2 (tω(t, g) + rεω(t, g) + ‖g‖L∞rε + ‖g‖L∞ tr1/2ε

)
(83)

where the support of g is contained in {(x, v) | |x | < M} and rε = εν−1/2(1 + log n).

Proof First, because g is assumed to have compact support, the modulus of continuity exists,
and ω(δ, g) → 0 when δ → 0. Define gx (v) = g(x, v), i.e. a function depending only on
v but with x regarded as a parameter. Because |v| = |v′| = 1, we then have |gx (v′) − g(x
+ τv + (t − τ)v′, v′)| ≤ ω(t, g), and therefore

∣∣(V t)
1gx − (V t)

1g
∣∣ ≤ tω(t, g), (84)

where the factor t multiplying ω(t, g) comes from the integral in the definition of V t
1 .

Similarly
∣∣(Ṽ t

ε

)
1gx − (Ṽ t

ε

)
1g
∣∣ ≤ (1 − p0(x, v, t))ω(t, g) ≤ (1 − e−2t + R̄A(β)

)
ω(t, g), (85)

where p0 and R̄A are defined as above. It remains to compare

(
V t )

1gx (v) = te−2t
∫

S1−
gx (v

′)|v · ω| dω (86)

and
(
Ṽ t

ε

)
1gx (v) = E

[
gx (v

′)1J1(]x,v,t)
]
. (87)

The operators
(
V t
)
1 and

(
Ṽ t

ε

)
1 act only on the variable v of gx , x being considered as a

parameter, and it is possible to use Lemma 3.2. By conditioning on the event that a velocity
jump takes place in the j-the passage of a cell,

E
[
gx (v

′)1J1(x,v,t)
] =

n∑

j=1

p jE
[
g(v′)p0(x, v, t j−)p0(x j , v

′, t − t j+)
∣∣ j
]

(88)

where t j− and t j+ denote the time points when the trajectory enters and leaves cell number
j along the path, x j is the (random) point of reflection of the trajectory inside cell j , v′ the
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random new velocity, and finally, E[ f | j] is shorthand for the expectation of f subject to the
event that the jump takes place in cell number j along the path. Then

E
[
gx (v

′)1J1(x,v,t)
] = e−2t

n∑

j=1

p jE
[
g(v′)

∣∣ j
]

+
n∑

j=1

p jE

[
g(v′)p0(x, v, t j−1)

(
p0(x j , v

′, t − t j−) − e−2(t−t j+)
) ∣∣ j
]

+
n∑

j=1

p jE

[
g(v′)

(
p0(x, v, t j−1) − e−2t j−) e−2(t−t j+)

∣∣ j
]

+ e−2t
n∑

j=1

p jE

[
g(v′)

(
e2(t j+−t j−) − 1)

) ∣∣ j
]
. (89)

Using Lemma 3.2 with ψ0(r) = gx (v′(r))1|r |≤1 one finds that the first term is

t
∫ 1

−1
gx (v

′(r)) dr + Ra(n, ε, x, β), (90)

with Ra bounded by ‖g‖L∞ R̄A(β) and
∫
S1 R̄A(β) dv′ ≤ Cεν−1/2(1 + log(t/

√
ε)). The

second term is bounded by

‖g‖L∞
n∑

j=1

p jE
[
R̄B(β ′(r/ε))

∣∣ j
] = ‖g‖L∞ t‖R̄B(β(·)‖L1 + ‖g‖L∞ Rb(n, ε, x, v), (91)

where, in the same way as before, |Rb| ≤ ‖R̄B(β(·)‖L1 R̄A(β) . Similarly the third term is
bounded by

‖g‖L∞
n∑

j=1

∣∣p0(x, v, t j−1) − e−2t j−
∣∣ p j ≤ C‖g‖L∞ R̄B(β)

(
t + C R̄A(β)

)
,

≤ C‖g‖L∞ t R̄B(β) + C‖g‖L∞ R̄A(β) , (92)

and the last term by

C
√

ε
(
t + R̄A(β)

)
. (93)

Adding the error estimates from (84), (85), (90), (91), (92),and (93) and integrating over β

gives

∫

S1

∣∣(V t )
1g(x, v) − (Ṽ t

ε

)
1g(x, v)

∣∣ dv

≤ C
(
tω(t, g) + rεω(t, g) + ‖g‖L∞rε + ‖g‖L∞ t r1/2ε

)
, (94)

again writing rε for the expression εν−1/2(1+ log n). This concludes the proof, because the
integration over the support of g in x is trivial. ��
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Fig. 6 A path making a loop by returning to the same obstacle range in the lattice cell that here is indexed by
0 ∈ Z

2

4 Equivalence of Processes and Propagation of Chaos

TheLorentz process and theMarkovianLorentz process are equivalent in the set of trajectories
that don’t return to the same obstacle patch, and the purpose of this section is to prove that
the probability that a path in the Markovian process returns to the same patch vanishes in the
limit as ε → 0. This is a geometrical construction which consists in estimating the measure
of the set Bε ⊂ R

2 × S1 of initial values that result in a path returning to the same obstacle
patch. This subset depends on the realization of the obstacle positions, but the estimates of the
measure m(Bε) of this set do not, and m(Bε) → 0 when ε → 0. A very similar calculation
is then made to prove that the probability that a pair of trajectories i the Markovian process
meet in an obstacle range also converges to zero when ε does. The same calculation could
be repeated for any number of simultaneous trajectories, and from that one can conclude that
propagation of chaos holds for this system.

Consider then a path passing through an obstacle range, and then returning to the same
patch. All such paths can be enumerated by giving the relative (integer) coordinates of the
lattice cells where the path changes direction, that is ξ j ∈ Z

2 denotes the difference of the
integer coordinates of the end point and starting point of a straight line segment of the path.
This is illustrated in Fig. 6, where the starting point p of the loop is indicated with a black
dot in cell nr. 0, which in this case is a point where the path is reflected, but in most cases it
would not be. The point is not the starting point of the particle path, which may have a long
history before entering this particular loop. For a loop with n collisions, we therefore have

ξ1 + ξ2 + · · · + ξn+1 = 0 ∈ Z
2. (95)

For a given time interval t ∈ [0, t̄[, we must have

|ξi | + |ξ2| + · · · + |ξn+1| ≤ t̄ε−1/2, (96)
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because the size of a lattice cell is
√

ε in the scaling we are considering here. The notation
is indicated in Fig. 6, where the first few and the last segment of a loop are indicated with
a solid line, the segments joining the lattice centers with dashed lines, and angles β j of the
path segments, as well as the integer coordinates.

When ε is small, the path segments are almost parallel to the corresponding segment
joining the lattice cell centers, and the same holds for the segment lengths. In the worst case,
with a segment joining two neighboring cells, the relative error at most of orderO(ε1−ν). In
the following computation, all lengths are expressed in terms of the integer coordinates, and
the error coming from this approximation is taken into account by a constant denoted c.

A loop returning to the same obstacle range is not uniquely determined by the integer
sequence ξ1, . . . , ξn+1, because there is some freedom in setting the initial position and angle
of the path. The last angle βn+1 must belong to an interval of width �βn+1 that satisfies

�βn+1 ≤ c
ε3/2−ν

√
ε|ξn+1| (97)

where the enumerator is the diameter of the obstacle range, and
√

ε|ξn+1| is the length of the
last segment. And it is an easy argument to see that then the angle of the n-th segment must
belong to an interval of width smaller than

�βn ≤ c
ε√
ε|ξn |�βn+1. (98)

Following the path backwards gives

�β1 ≤ cn
εn/2

|ξ1||ξ2| · · · · · |ξn |�βn+1 ≤ cn+1 εn/2

|ξ1||ξ2| · · · · · |ξn |
ε1−ν

|ξn+1| . (99)

The history of the path leading up to the point p is at most t̄ , and hence the phase space
volume spanned by the possible histories leading to a loop indexed by a sequence (ξ1, . . . , ξn)

is bounded by t̄ cε3/2−ν�β1, the length of the path times the diameter of of the obstacle range
times the angular interval. The constant c is there to account for the difference between
the diameter of the obstacle range and obstacle patch, and can be taken as close to 1 as one
wishes.Of course the history is not likely to be one straight line segment, but different histories
leading a particular loop may be very different, with none or many reflections. However, it is
well-known that the so called billiard map is measure preserving. Let ∂� = ⋃z∈√

εZ2{x ∈
R
2 | x − z = ε3/2−ν}, i.e. the union of all obstacle boundaries. If (x, v) ∈ ∂� × S1+, a point

on the boundary of an obstacle, with velocity pointing out from the obstacle, then the billiard
map is the map (x, v) �→ (x1, v1) where (x1, v1) are the position and outgoing velocity after
the trajectory hits the next obstacle. This map preserves the measure |n · v|dx‖dv, where n
is the normal point out from the obstacle at x and dx‖ is the length mesure of the obstacle
boundary, see e.g. [7]. This means that even if the set of histories leading leading to the loop
indexed by (ξ1, . . . , ξn) splits into a complicated form, the phase space volume in the full
space still satisfies the same bound. Because the loop is indexed with coordinates relative to
the starting point, all periodic translates of a point of the history maps into a loop of with the
same index sequence, the fraction of points (x, v) ∈ B × S1, where B is any one lattice cell,
that leads to a loop with the given index is bounded by

t̄ cε3/2−ν�β1m(B)−1 ≤ t̄ cε3/2−νcn+1 εn/2

|ξ1||ξ2| · · · · · |ξn |
ε1−ν

|ξn+1|ε
−1

= t̄ ccn+1ε2(1−ν)+(n−1)/2 1

|ξ1||ξ1| · · · |ξn+1| . (100)
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To compute an estimate of the fraction of (x, v) ∈ B × S1 that leads to any loop with n + 1
segments it is enough to sum this expression over the set of (ξ1, . . . , ξn, ξn+1) satisfying

ξ1 + ξ2 + · · · + ξn+1 = 0; , ξ j �= 0 ,

|ξ1| + |ξ2| + · · · + |ξn+1| ≤ t̄/
√

ε.

Using |ξ1|−1|ξn+1|−1 ≤ 1
2

(|ξ1|−2 + |ξn+1|−2
)
, we find that the sum is bounded by

∑ 1

|ξ1|2|ξ2| · · · |ξn |
≤ C

∫

|x1|≤t̄/
√

ε

1

|x1|2 dx1
∫

|x2|+···+|xn |≤t̄/
√

ε−|x1|
1

|x2| · · · |xn+1|dx2 . . . dxn

≤ C(2π)n
∫ t̄/

√
ε

1

1

s
ds

(t̄/
√

ε)n−1

(n − 1)! = C(2π)n log(t̄/
√

ε)
t̄ n−1

(n − 1)!ε(n−1)/2
. (101)

The last line has been obtained by changing to polar coordinates in R
2, and taking the

simplex in the inner integral to span over the full length T /
√

ε. Therefore, summing the
estimate in (100) first over the loops of length n+1 and then over n = 1 · · · ∞ the following
estimate for the fraction of initial points in phase space that result in a loop along the path:

t̄Cect̄ log
(
t̄/

√
ε
)

ε2(ν−1). (102)

This calculation may be summarized as a proposition:

Proposition 4.1 Let T t
Yε,ε

be the Lorentz process as in Theorem 2.1. Denote the event that

there is a loop along the path of length t̄ starting at (x, v) by L(x, v). Then
∫

R2×S1
f0(x, v)E

[
g(T t

Yε,ε
(x, v))1L(x,v)

]
dxdv → 0 (103)

when ε → 0.

Proof It is enough to see that the integral is bounded by

‖g‖∞
∫

BM×S1
f0(x, v)1L(x,v) dxdv (104)

where BM is the ball of radius M in R
2, and assumed to contain the support of g. This is

bounded by

‖g‖∞
∫

BM×S1
f0(x, v)1{ f0>λ} dxdv + ‖g‖∞λ

∫

BM×S1
1L(x,v)∪{ f <λ} dxdv

≤ ‖g‖∞
∫

BM×S1
f0(x, v)1{ f0>λ} dxdv + ‖g‖∞λt̄Cect̄ log(t̄/

√
ε) ε2(ν−1). (105)

This expression can be made arbitrarily small by first choosing λ large enough to make the
first term as one wishes, and then the second term can be made equally small by choosing ε

sufficiently small. All this is uniform in the random positions of the obstacles. ��
The proof of propagation of chaos is similar in many ways. Consider two paths of the

Markovian Lorentz model with independent initial conditions (x, v) and (x ′, v′). Because
there is no interaction between the two particles, the particles remain independent until they
meet the same obstacle range, if ever. As in the previous calculation, take a fixed realization
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of the random configuration of obstacles in each obstacle range. Let A(x, z) be the set of
angles v ∈ S1 such that there is a possible path from the point x ∈ R

2 to the obstacle range
with center at z ∈ √

εZ2. The set of angles such that the path reaches the patch before hitting
an obstacle is bounded by ε3/2−ν/|x − z|, and the measure of angles v such that the path
meets the obstacle patch after at least one collision with an obstacle can be computed as
above. The result is that

m(A(x, z)) ≤ Cε3/2−ν

(
1

|x − z| + eCt̄ log(t̄/
√

ε)

)
, (106)

and the set of angles v and v′ such that both the path T t (x, v) and T t (x ′, v′) meet the same
obstacle range is bounded by

m
({

(v, v′) ∈ (S1)2 | v ∈ A(x, z), v′ ∈ A(x ′, z)
})

≤ Cε3−2ν
(

1

|x − z| + eCt̄ log(t̄/
√

ε)

)(
1

|x ′ − z| + eCt̄ log(t̄/
√

ε)

)
. (107)

This expression should now be summed over all possible z ∈ √
εZ2, and because the speed

of a particle is equal to one, these z belong to a ball of diameter t̄ . As above we find, after
rescaling,

∑

z∈Z2,|z|<t̄/
√

ε

1

|x ′ − z|
1

|x − z| ≤ 1

2

∑

z∈Z2,|z|<t̄/
√

ε

(
1

|x − z|2 + 1

|x ′ − z|2
)

≤ C log(t̄/
√

ε) , (108)

and
∑

z∈Z2,|z|<t̄/
√

ε

(
1

|x ′ − z| + 1

|x − z|
)

≤ Ct̄/
√

ε . (109)

The dominating term when summing the expression in (107) comes from the part that does
not depend on z. We get

∑

z∈Z2,|z|<t̄/
√

ε

m
({

(v, v′) ∈ (S1)2 | v ∈ A(x, z), v′ ∈ A(x ′, z)
})

≤ C(1 + t̄2)eCt̄ log(t̄/
√

ε)ε2(1−ν) , (110)

which again decreases to zero when ε does. Themaps T t
Yε

and T̃ t
Yε

extend to pairs of particles
in a natural way, so that

(x(t), v(t), x ′(t), v′(t)) = T t
Yε

(
x0, v0, x

′
0, v

′
0

)
and

(x̃(t), ṽ(t), x̃ ′(t), ṽ′(t)) = T̃ t
Yε

(
x0, v0, x

′
0, v

′
0

)
(111)

denote the position in phase space of a pair of particles evolving with the Lorentz process
and theMarkovian Lorentz process respectively. In the latter case the obstacle position inside
an obstacle patch is determined independently for the two particles, and every time a path
meets an obstacle range, and therefore

T̃ t
Yε

(
x0, v0, x

′
0, v

′
0

) = (T̃ t
Yε

(x0, v0), T̃
t
Yε

(x ′
0, v

′
0)
)
. (112)

In the Lorentz evolution this breaks down as soon as there is a loop for one of the particle
paths, or when the two particle paths meet in one and the same obstacle range. However, the
computation above leads to the following theorem:
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Theorem 4.2 Let T t
Yε,ε

be the Lorentz process as in Theorem 2.1. Then for g1, g2 ∈ C(BM

× S1)

lim
ε→0

∫

(R2×S1)2
f0(x, v) f0(x

′, v′)
(
E

[
g1 ⊗ g2(T

t
Yε,ε

(x, v, x ′, v′))
]
−

E

[
g1(T

t
Yε,ε

(x, v))
]
E

[
g2(T

t
Yε,ε

(x ′, v′))
] )

dxdvdx ′dv′ = 0 .

(113)

This says that the evolution of two particles in the Lorentz gas become independent in the
limit as ε → 0.

Proof Let L2(x, v, x ′, v′) denote the event that the two particle paths starting at (x, v) and
(x ′, v′) and evolving in the same random obstacle configuration meet in an obstacle range.
Then

E

[
g1 ⊗ g2

(
T t
Yε,ε

(x, v, x ′, v′)
)

(1 − 1L2(x,v,x ′,v′))
]

= E

[
g1
(
T t
Yε,ε

(x, v)
)
g2
(
T t
Yε,ε

(x ′, v′)
) (

1 − 1L2(x,v,x ′,v′)
)]

. (114)

Therefore the integral in (113) is bounded by

‖g1‖∞‖g2‖∞E

[∫

(R2×S1)2
f (x, v) f (x ′, v′)1B(x,v,x ′,v′), dxdvdx ′dv′

]
. (115)

Fix ε > 0 arbitrary, and take M > 0 and λ > 0 so large that
∫

R2×S1
f (x, v)(1|x |>M + 1 f >λ) dxdv < ε. (116)

We find that (113) is bounded by

‖g1‖∞‖g2‖∞2ε + C(t̄)λ2R
2 log(t̄/

√
ε)ε2(1−ν), (117)

which can bemade smaller then 2ε by choosing ε sufficiently small.HereC(t̄) is a t̄ depending
constant coming from the expression (110). This concludes the proof because εwas arbitrarily
small. ��

Theorem 4.2 could have been proven for tensor products of any order with exactly the
same kind of computations, and therefore this is a proof that propagation of chaos holds. The
rate of convergence in the theorem depends on the density f0, and also on the time interval.
The dependence of f could have been replaced by bounds of the moments and entropy. The
dependence of the time interval is much more difficult to get passed, but could maybe be
addressed as in [15] which deals with the Lorentz gas in a Poisson setting.

Funding Open access funding provided by Chalmers University of Technology. The resarch was carried as
part of my employment at Chalmers University of Technology, no other funding was received.

Data Avaliablility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study

Declarations

Competing Interests The author has no relevant financial or non-financial interests to disclose.

123



123 Page 26 of 27 B. Wennberg

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boldrighini, C., Bunimovich, L.A., Sinaı̆, Y.G.: On the Boltzmann equation for the Lorentz gas. J. Stat.
Phys. 32(3), 477–501 (1983)

2. Bourgain, J., Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz
gas. Commun. Math. Phys. 190(3), 491–508 (1998)

3. Bunimovich, L.A., Sinaı̆, Y.G.: Markov partitions for dispersed billiards. Commun. Math. Phys. 78(2),
247–280 (1980/1981)

4. Bunimovich, L.A., Sinaı̆, Y.G.: Statistical properties of Lorentz gas with periodic configuration of
scatterers. Commun. Math. Phys. 78(4), 479–497 (1980/81)

5. Caglioti, E., Golse, F.: On the Boltzmann–Grad limit for the two dimensional periodic Lorentz gas. J.
Stat. Phys. 141(2), 264–317 (2010)

6. Caglioti, E., Pulvirenti, M., Ricci, V.: Derivation of a linear Boltzmann equation for a lattice gas. Markov
Process. Relat. Fields 6(3), 265–285 (2000)

7. Chernov,N.,Markarian, R.: ChaoticBilliardsMathematical Surveys andMonographs, vol. 127.American
Mathematical Society, Providence (2006)

8. Gallavotti, G.: Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna, Istituto di
Fisica, Università di Roma, (358) (1972)

9. Gallavotti, G.: Statistical Mechanics. Texts and Monographs in Physics. Springer, Berlin (1999)
10. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes. I. Classics inMathematics. Springer,

Berlin (2004). Translated from the Russian by S. Kotz, Reprint of the 1974 edition
11. Golse, F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci. Toulouse Math.

(6) 17(4), 735–749 (2008)
12. Lenci, M.: Aperiodic Lorentz gas: recurrence and ergodicity Ergodic theory. Dyn. Syst. 23(3), 869–883

(2003)
13. Lenci, M., Troubetzkoy, S.: Infinite-horizon Lorentz tubes and gases: recurrence and ergodic properties.

Physica D 240(19), 1510–1515 (2011)
14. Lorentz, H.: Le mouvement des électrons dans les méteaux. Arch. Néerl. 10, 336–371 (1905)
15. Lutsko, C., Tóth, B.: Invariance principle for the randomLorentz gas—beyond the Boltzmann–Grad limit.

Commun. Math. Phys. 379(2), 589–632 (2020)
16. Marklof, J., Strömbergsson, A.: Kinetic transport in the two-dimensional periodic Lorentz gas.

Nonlinearity 21(7), 1413–1422 (2008)
17. Marklof, J., Strömbergsson, A.: The distribution of free path lengths in the periodic Lorentz gas and

related lattice point problems. Ann. Math. (2) 172(3), 1949–2033 (2010)
18. Marklof, J., Strömbergsson, A.: The Boltzmann-Grad limit of the periodic Lorentz gas. Ann. Math. (2)

174(1), 225–298 (2011)
19. Marklof, J., Strömbergsson, A.: The periodic Lorentz gas in the Boltzmann–Grad limit: asymptotic

estimates. Geom. Funct. Anal. 21(3), 560–647 (2011)
20. Marklof, J., Strömbergsson,A.: Free path lengths in quasicrystals. Commun.Math. Phys. 330(2), 723–755

(2014)
21. Marklof, J., Strömbergsson, A.: Generalized linear Boltzmann equations for particle transport in

polycrystals. Appl. Math. Res. Express. AMRX 2, 274–295 (2015)
22. Marklof, J., Strömbergsson,A.: Kinetic theory for the low-density Lorentz gas. (2019). arXiv:1910.04982.

To appear in Memoirs of the AMS
23. Markof, J., Tóth, B.: Superdiffusion in the periodic Lorentz gas. Commun. Math. Phys. 347(3), 933–981

(2016)
24. Markof, J., Vinogradov, I.: Spherical averages in the space of marked lattices. Geom. Dedicata. 186,

75–102 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1910.04982


The Lorentz Gas with a Nearly… Page 27 of 27 123

25. Pène, F., Terhesiu, D.: Sharp error term in local limit theorems and mixing for Lorentz gases with infinite
horizon. Commun. Math. Phys. 382(3), 1625–1689 (2021). (2)

26. Ricci, V., Wennberg, B.: On the derivation of a linear Boltzmann equation from a periodic lattice gas.
Stoch. Process. Appl. 111(2), 281–315 (2004)

27. Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys. 60(3),
277–290 (1978)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	The Lorentz Gas with a Nearly Periodic Distribution of Scatterers
	Abstract
	1 Introduction
	2 The Main Result and the Principal Steps of Its Proof
	3 The Markovian Lorentz Process
	4 Equivalence of Processes and Propagation of Chaos
	References




