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ARTICLE

Limits of the phonon quasi-particle picture at the
cubic-to-tetragonal phase transition in halide
perovskites
Erik Fransson1, Petter Rosander1, Fredrik Eriksson1, J. Magnus Rahm1, Terumasa Tadano 2 & Paul Erhart 1✉

The soft modes associated with continuous-order phase transitions are associated with

strong anharmonicity. This leads to the overdamped limit where the phonon quasi-particle

picture can break down. However, this limit is commonly restricted to a narrow temperature

range, making it difficult to observe its signature feature, namely the breakdown of the

inverse relationship between the relaxation time and damping. Here we present a physically

intuitive picture based on the relaxation times of the mode coordinate and its conjugate

momentum, which at the instability approach infinity and the inverse damping factor,

respectively. We demonstrate this behavior for the cubic-to-tetragonal phase transition of

the inorganic halide perovskite CsPbBr3 via molecular dynamics simulations, and show that

the overdamped region extends almost 200 K above the transition temperature. Further, we

investigate how the dynamics of these soft phonon modes change when crossing the phase

transition.
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The vibrational properties of solids are pivotal for many
physical phenomena, including but not limited to phase
stability and thermal conduction. In crystalline solids, the

vibrational spectrum is commonly described in terms of phonons
as quasi-particle representations of the lattice vibrations. The
phonon frequency ω0 is typically much larger than the damping
Γ, and the phonon relaxation time τ= 2/Γ is thus much longer
than the oscillation period, such that the quasi-particle picture is
well motivated1–6. In this so-called underdamped limit, the
relaxation time decreases as the damping Γ increases.

By comparison, there are far fewer cases when phonon modes
become overdamped, i.e., ω0τ < 17,8. This can occur either due to
large damping or for very soft modes, usually in the immediate
vicinity of a phase transition, for example, in the case of body-
centered cubic Ti9–11, rotationally disordered 2D materials12, in
ferroelectrics such as BaTiO3

13–17 or in halide perovskites18,19. In
the overdamped limit, the relaxation time increases with
increasing damping Γ, which calls into question the picture of a
well-defined phonon mode with a frequency and relaxation time.
Overdamped phonon dynamics is, however, usually limited to a
rather narrow temperature window, and under these circum-
stances, the inversion of the relationship between relaxation time
and damping cannot be readily observed. Here, we demonstrate
that the soft phonons modes associated with the phase transitions
in the prototypical halide perovskite CsPbBr3 are, however, out-
standing manifestations of this exact behavior as the overdamped
region extends almost 200 K above the tetragonal-cubic phase
transition.

Halide perovskites are promising materials for photovoltaic
and optoelectronic applications. Specifically, CsPbBr3 has
received a lot of attention in recent years20. With increasing

temperature, it undergoes phase transitions from an orthor-
hombic (Pnma) to a tetragonal (P4/mbm) and eventually a cubic
phase (Pm�3m)21–25. These phase transitions are connected to
specific phonon modes and arise due to the tilting of the PbBr6
octahedra, corresponding to phonon modes at the R and M
points (Fig. 1a)26–30. Experimentally, these modes have been
shown to exhibit overdamped characteristics in the vicinity of the
phase transitions18,19,31. The phase transitions have also been
studied from first-principles and via molecular dynamics (MD)
simulations; see, e.g., refs. 32–35.

Here, we reveal the dynamics of the octahedral tilt modes in
CsPbBr3 over a wide temperature range via MD simulations
based on a machine-learned potential (MLP) that achieves close
to density functional theory (DFT) accuracy (Supplementary
Note S2, Fig. S1)36,37. To obtain access to mode-specific
dynamics, we project the MD trajectories onto normal modes
that are associated with phase transitions in this material. As
shown below, this requires both large systems (comprising at least
several 10000 atoms) and sufficiently long times scales
(~50–100 ns) in order to achieve converged results (see Supple-
mentary Note S7, Fig. S9, and Fig. S8). The DFT data and the
MLP models are provided as a Zenodo dataset38.

Reference data for the construction of the MLP was generated
by DFT calculations39–41 using the strongly constrained and
appropriately normed (SCAN) exchange-correlation functional42

(Supplementary Note S1). Simulations and atomic structures
were handled via the ASE43 and CALORINE packages44. The
phonon frequencies and relaxation times obtained with the MLP
are in good agreement with experimental work for multiple
phonon modes (see Fig. S5). In addition, we consider several
different self-consistent phonons (SCP) methods45 as well as

Fig. 1 Phonons and phase transitions in CsPbBr3. a Phonon dispersion for the cubic phases of CsPbBr3 obtained using the machine-learned potential
(MLP) in the harmonic approximation, 0 K (dashed lines) and from an effective harmonic model (EHM) at 500 K (solid lines). b Potential energy landscape
along the unstable M-tilt mode calculated with MLP and density functional theory (DFT). The inset shows the CsPbBr3 crystal structure (Cs purple, Pb
gray, Br red) in the energy minima, for which the PbBr6 octahedra have been tilted in-phase (visualization made with OVITO75). c–e Lattice parameters and
mode coordinates obtained from a cooling run based on the isothermal–isobaric (NpT) ensemble with phase transitions at approximately 300 K and 275 K.
In c–e Solid, dashed, and dotted lines refer to the Cartesian directions x, y, and z, respectively.
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effective harmonic models (EHMs)46–49 using the HIPHIVE50,
ALAMODE51, and SSCHA packages52.

Results and discussion
Tilt modes and phase transitions. The phase transitions in
CsPbBr3, and similarly in many other perovskites, are driven by
modes that correspond to tilting of the PbBr6 octahedra. These
modes are located at the M (in-phase tilting) and R-points (out-
of-phase tilting) in the phonon dispersion for the cubic structure
(Fig. 1a). They are threefold degenerate, corresponding to tilting
around the three Cartesian directions. These tilt modes exhibit a
double-well potential energy surface (PES), which the MLP
reproduces perfectly compared to DFT (Fig. 1b).

The MLP predicts temperatures of 300 K and 275 K for the
cubic-tetragonal, Tc↔t, and tetragonal-orthorhombic, Tt↔o, tran-
sitions, respectively (Fig. 1c). This is lower than the experimental
values of 400 K and 360 K20,22,23,25, a discrepancy that can be
primarily attributed to the underlying exchange-correlation
functional53.

The mode coordinates of the tilt modes are useful order
parameters for analyzing the phase transitions (Fig. 1d, e). At
300 K, the system transitions from the cubic to the tetragonal
phase, as seen in both the lattice parameters and in the freezing in
of one of the three M-tilt modes (Mz). For the tetragonal phase,
two R-modes (Rx and Ry) start to show larger fluctuations, and at
265 K, the system transitions to the orthorhombic phase. Here,
we also note the slight difference in character between these two
phase transitions. For the cubic-tetragonal transition, the order
parameter (QM) and lattice parameter change sharply at the
transition temperature Tc↔t (closer in character to a first-order
transition), whereas for the tetragonal-orthorhombic transition,
the order parameter and lattice parameter change more gradually
around Tt↔o (exhibiting continuous character) in agreement with
experimental observations of the transition character20,21. We
note here that the mode coordinate is a global order parameter
for the system. In the cubic phase, even though the mode
coordinate is on average zero, there still exists a strong local
correlation between the neighboring octahedra. This connects to
previous work on perovskites regarding the local atomic structure
deviating from the cubic structure while globally still appearing
cubic28,29,54–58.

Mode coordinate dynamics. The mode coordinates exhibit
interesting dynamical behavior already in the cubic phase far
above the transition to the tetragonal phase, which can be con-
veniently observed in the time domain (Fig. 2a, b). At 500 K,
regular (phonon) oscillator behavior is observed, whereas, at
350 K (closer but still above TC), a slower dynamic component
becomes evident. Finally, at 280 K and thus below the phase
transition, one observes the common oscillatory motion super-
imposed on a long timescale hopping motion between the two
minima, corresponding to the (degenerate) tetragonal phase
(Fig. 1b). We note here that the hopping frequency depends
strongly on system size, and is thus not a good thermo-
dynamic observable on its own.

The mode coordinate can be analyzed by fitting the respective
autocorrelation functions (ACFs) to a damped harmonic
oscillator (DHO) model (Fig. 3). The ACF for a regular
(underdamped) mode shows a clear oscillatory pattern, as
illustrated here by the highest optical mode at the R-point with
a typical relaxation time of about 0.37 ps, which is longer than the
mode period of about 0.2 ps (Fig. 3a). The M-tilt mode at 500 K
has similar damping but is much softer (yet still underdamped),
and the ACF decays with a relaxation time of about 0.58 ps
(Fig. 3b). At 350 K (Fig. 3c), however, the same mode is

overdamped, and in this case, the DHO model becomes the sum
of two exponential decays, see Eq. (3), with relaxation times
τL= 5.22 ps and τS= 0.31 ps. It is interesting to note that the
decay time of the ACF at 350 K is about ten times longer than at
500 K. The DHO fits still match the data very well for both the

Fig. 2 Phonon mode coordinates. Mode coordinate Q(t) for the M-tilt
mode, a at 500 K (well above Tc↔t), b at 350 K (close to Tc↔t), and c at
280 K (below above Tc↔t). The M-tilt mode is three-fold degenerate
(x, y, z), but here only the Mz mode is shown. Also note that for 280 K,
the system switches the tilt axis at irregular intervals.

Fig. 3 Phonon mode auto-correlation functions (ACFs). ACFs (solid lines)
of a the highest optical mode at the R-point as well as the M-tilt mode at
b 500 K and c 350 K, along with fits to a damped harmonic oscillator
(DHO) model (dashed lines). Note the large difference in time scale
between b and c.
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underdamped and overdamped cases (see Fig. S11 for how the
two exponential decays behave for Q and P in the overdamped
case).

When Γ/ω0 increases, and the system becomes overdamped,
the dynamics of the modes are moving towards the diffusive
Brownian motion regime. For overdamped modes, the relaxation
time of the ACF increases as Γ/ω0 increases, opposite to the
underdamped behavior. While this is a well-known feature of a
simple one-dimensional DHO, here, one observes this behavior
for phonon modes in a complex atomistic system. This
phenomenon arises due to the free energy landscape being very
flat close to the transition, resembling a bathtub. As a result of the
high friction and weak restoring force, it, therefore, takes a long
time for the DHO to move back and forth around zero (Fig. 2c;
see Fig. S12 for the power spectra)59.

Frequency and relaxation times vs. temperature. The fre-
quencies and relaxation times of the M-tilt and R-tilt modes are
summarized as a function of temperature in Fig. 4. The frequency
ω0 softens significantly with decreasing temperature for both
modes, whereas the relaxation time τ is more or less constant.
The softening of the frequency thus drives the modes to the
overdamped limit with decreasing temperature. The M-tilt and
R-tilt modes only become underdamped above 480 K and 410 K,
respectively, well above the transition temperature to the tetra-
gonal phase at 300 K. This indicates that we expect the phonon
quasi-particle for these modes to work better at high tempera-
tures, which interestingly is the opposite behavior compared to
most phonon modes which become more damped and anhar-
monic with increasing temperature. At the cross-over from the
underdamped to the overdamped regime, the two-time scales τS
and τL emerge. When approaching Tc↔t, we see that τL increases
exponentially, whereas τS→ τ/2.

SCPs and effective harmonic models. Next, we analyze the
representation of these strongly anharmonic modes by commonly
used phonon renormalization techniques, specifically different
SCP schemes and EHMs (Fig. 5) (see Supplementary Note S5 and

Supplementary Note S6 for a more detailed description of the
methods). To this end, we constructed 4th-order force constant
potentials (FCPs) at each temperature which were used as input
to all SCP methods; see Supplementary Note S4 and Fig. S6 for
more details. There are several SCPs variants45. In SCP-alamode,
the Green’s function approach is employed as implemented in the
ALAMODE package51. In the stochastic self-consistent harmonic
approximation (SSCHA) scheme, the harmonic free energy is
minimized using gradient methods, as implemented in the
SSCHA package52. In SCP-hiphive second-order force-constants
are obtained by iterative fitting to forces from displacements
sampled from the harmonic model and forces obtained from the
MLP as implemented in the HIPHIVE package50. Here, we
employ the “bare” SCP implementations in ALAMODE and
SSCHA. We note, however, that there are computationally more
demanding corrections for both methods35,60, the analysis of
which is, however, beyond the scope of the present work. The
EHMs (in this field also referred to as temperature-dependent
potentials) are constructed from fitting second-order force con-
stants to displacement and force data obtained from MD simu-
lations with the MLP (see Supplementary Note S6 for details).

Here, we find very similar behavior for both M-tilt and R-tilt
modes. The three SCP methods (SCP-hiphive, SSCHA, SCP-
alamode) employed here are in excellent agreement with each
other, given the differences in theory and implementation
between them. The SCP frequencies systematically overestimate
the frequency ω0 obtained from the ACFs by about 1 meV (see
Supplementary Note S5 for a more detailed description of the
SCP methods). The EHMs constructed by fitting the forces from
MD trajectories, on the other hand, show good agreement with
the mode projection results. We note here that the trend for SCPs
and EHMs to over and underestimate frequencies, respectively,
appears to hold for all modes in the system, which is in line with
previous studies35,61–63. However, while EHMs from MD yield a

Fig. 4 Phonon frequencies and relaxation times. Frequencies and
relaxation times were obtained from auto-correlation functions of a M-tilt
and b R-tilt modes as a function of temperature. The shaded region
indicates the overdamped regime. Note that the M-tilt mode is overdamped
already about 200 K above the phase transition temperature. Here, markers
are data points, and lines are interpolations to guide the eye.

Fig. 5 Phonon frequencies comparison with SCP. Frequencies of a M-tilt
and b R-tilt modes as a function of temperature from several self-consistent
phonons (SCP) schemes, effective harmonic models (EHMs) based on
molecular dynamics (MD), and damped harmonic oscillator (DHO)
frequencies fitted to auto-correlation functions.
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better frequency for the tilt modes compared to SCP, this is not in
general true (see Fig. S7 for details).

Behavior near phase transitions. Next, we look at how these
modes behave as the system goes through the transition from the
cubic to the tetragonal phase. While in the cubic phase, the three
M (and R) modes (denoted with subscripts x, y, and z to indicate
the Cartesian direction) are degenerate, the degeneracy is broken
in the tetragonal phase, and the z-direction becomes symme-
trically distinct from the other two (Fig. 1c, d). Therefore, in order
to distinguish these modes, we will denote them by Mxy and Mz

(analogously for R-modes) in the tetragonal phase. In the tetra-
gonal phase, there exist multiple global minima for the M-mode
coordinate, as can be seen in Fig. 2c, where the system jumps
between these minima. To avoid capturing this (system-size
dependent) hopping time in the ACFs, we employ very large
system sizes of up to 400,000 atoms, for which the system remains
in the same tetragonal orientation throughout the entire simu-
lation. Furthermore, we extrapolate the frequencies to the infinite
system-size limit (Fig. S10).

The resulting frequencies are shown in Fig. 6. For the cubic-to-
tetragonal transition, the M-frequency does not go to zero at the
transition temperature, which is in agreement with the character
of the transition being first order, as observed
experimentally20,21,23. For the tetragonal-to-orthorhombic phase
transition, on the other hand, the Rxy frequency does go to zero at
the transition temperature, in agreement with a continuous
transition as observed experimentally21. This leads to the long
timescale in the DHO trending to infinity, τL→∞, as the
temperature approaches TC. Additionally, the Rxy mode exhibits a
strong size dependence close to the transition temperature (see
Fig. S10).

The Curie–Weiss law, ω0ðTÞ / ðT � TCÞp, provides very good
fits for the temperature dependence of the modes driving the

phase transitions. For the tetragonal-to-orthorhombic transition,
the fitted critical temperature, TC= 273 K, agrees very well with
the observed transition temperature of 274(1) K, which is
consistent with this transition being a continuous transition21.
Furthermore, the fitted critical exponent of 0.55 is very close to
the value of 1/2 suggested by Landau theory observed in many
continuous phase transitions driven by soft modes15,64–66. The
cubic-to-tetragonal transition has a first-order character, as
evident from the finite frequency of the M mode at the transition
temperature. As a result, fitting both the critical temperature and
the critical exponent is ambiguous (due to the absence of data at
temperatures for which the frequency goes to zero). We,
therefore, fix the critical exponent to 1/2, which yields a critical
temperature of 295 K, about 7 K lower than the transition
temperature. Here, the critical temperature corresponds to the
temperature at which the cubic phase becomes dynamically
unstable, i.e., the point at which the free energy barrier between
the two phases disappears.

The parameter τ remains fairly constant in the tetragonal phase
across its entire temperature range for all four modes (Fig. S13).
Interestingly, once the Mz mode freezes in (and the tetragonal
phase is formed), both the Mz and Rz modes stiffen significantly
with temperature. This results in the Rz mode becoming
underdamped again with decreasing temperature at around
290 K and both M-modes approaching the underdamped limit
as the system approaches the orthorhombic transition.

Conclusions
We have carried out a detailed computational analysis of the
dynamics in CsPbBr3, focusing in particular on the tilt modes. We
observe overdamped modes for the cubic phase almost 200 K
above the cubic-to-tetragonal transition temperature. These
overdamped tilt-modes exhibit correlation on very long time
scales (τL) compared to the typical relaxation time (τ) or period
(1/ω0) of the mode. This is in line with the dynamics of the modes
transitioning toward Brownian motion due to the frequency
approaching zero. What we find here is that these modes can,
however, still be mathematically well described as DHOs, which
allows one to formally obtain a phonon frequency and relaxation
time compliant with a quasi-particle picture. A physically more
intuitive description is, however, obtained if the DHO model is
described by two relaxation times, which can be approximately
associated with mode coordinate and momentum, respectively.
As a result of the soft character of these modes, the respective
amplitudes can be large already at moderate temperatures. This
implies that even for relatively modest electron–phonon coupling
strengths, these modes should have a notable impact on the
optoelectronic properties of these materials56,67–70. A systematic
investigation of these effects on a per-mode basis would be an
interesting topic of further study.

In addition, we demonstrated that commonly used computa-
tional phonon renormalization methods agree very well with each
other but, without extensive correction schemes, exhibit sys-
tematic errors in describing the frequencies of the anharmonic tilt
modes considered here. Understanding the single-point fre-
quencies obtained from such methods and their relation to the
full dynamical spectra is thus very important when, e.g., com-
paring to experimental measurements.

Methods
To analyze phonon modes directly from MD simulations, we employed phonon
mode projection3,71,72. The MD simulations were carried out using the GPUMD
package37,73. For more details on the MD simulations, see Supplementary Note S3.
The atomic displacements u(t) and velocities v(t) can be projected on a mode λ,
with the supercell eigenvector eλ via

QλðtÞ ¼ uðtÞ � eλ and PλðtÞ ¼ vðtÞ � eλ:

Fig. 6 Phonon frequencies across the phase transition. M and R-tilt mode
frequencies from auto-correlation functions and damped harmonic
oscillator fits as a function of temperature in the tetragonal and cubic
phases. Here, filled symbols correspond to the frequencies in the cubic
phase, and open symbols to the frequencies in the tetragonal phase. Solid
lines show Curie-Weiss fits of the form, ω0ðTÞ / ðT � TCÞp. For the
M-mode in the cubic phase we obtain TC= 295 K (with fixed p= 0.5),
while for the Rxy mode in the tetragonal phase we obtain TC= 273 K and
p= 0.55. The cubic and tetragonal frequencies overlap in temperature,
which is possible due to the first-order character of the transition and the
fact that simulations are carried out in the microcanonical (NVE) ensemble,
which does not allow for the cell shape to change between cubic and
tetragonal.
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Here, the phonon supercell eigenvector of the tilt modes were obtained with
PHONOPY74, and symmetrized such that each of the three degenerate modes
corresponds to tilting around the x, y, and z direction respectively. The ACFs of Q
and P were calculated in order to analyze the dynamics of the modes of interest as

CQðtÞ ¼ hQλðt0ÞQλðt þ t0Þi; ð1Þ
which can be modeled as the ACF of a DHO. The DHO is driven by a stochastic
force and has a natural frequency ω0 and a damping Γ. The ACF of the DHO splits
into an underdamped regime (ω0 > Γ/2) and an overdamped regime (ω0 < Γ/2). In
the underdamped regime, the solution of the DHO is

CDHO
Q ðtÞ ¼ Ae�t=τ cosωet þ

Γ

2ωe
sinωet

� �
; ð2Þ

where ωe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 � Γ2

4

q
, the relaxation time is τ= 2/Γ, and A is the amplitude11. In

the overdamped limit, the solution becomes the sum of two exponential decays as

CDHO
Q ðtÞ ¼ A

τL � τS
τLe

�t=τL � τSe
�t=τS

� �
ð3Þ

where

τS;L ¼ τ

1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðω0τÞ2

p :

Here, τS and τL denote the short and long timescales, respectively. If the natural
frequency approaches zero (e.g., for continuous phase transitions driven by a soft
mode), we thus expect τL→∞ and τS→ τ/2. In this limit, the resulting ACF,
CDHO
Q ðtÞ, would only consist of a single exponential decay, with a decay time

approaching infinity, which corresponds to the behavior seen in Brownian motion.
Similar expressions are obtained for the ACF of the phonon velocity, which is

CDHO
P ðtÞ ¼ � d2

dt2 C
DHO
Q ðtÞ. For the overdamped case, it becomes

CDHO
P ðtÞ ¼ A

τL � τS

1
τS

e�t=τS � 1
τL

e�t=τL

� �

The ACFs for Q and P were fitted simultaneously to the DHO model in order to
extract ω0 and Γ.

Data availability
The DFT data and the MLP models are provided in a Zenodo dataset38.
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