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We consider commutative C∗-algebras of Toeplitz operators in the weighted 
Bergman space on the unit ball in Cn. For the algebras of elliptic type we find 
a new representation, namely as the algebra of operators which are functions of 
certain collections of commuting unbounded self-adjoint operators in the Bergman 
space.
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1. Introduction

An important topic in the analysis of Toeplitz operators in Bergman spaces is the description of com-
mutative C∗- and Banach algebras generated by such operators. Such description was performed in the 
book [17] and a series of papers, see e.g. [7,8,12], for weighted Bergman spaces on the unit disk and on 
the unit ball Bn in Cn. Typical results in this direction relate commutative algebras with certain groups 
of conformal transformations (biholomorphisms) of Bn, n ≥ 1, and the symbols of Toeplitz operators that 
generate commutative C∗-algebra, should be invariant with respect to these transformations.

Recently, in the paper [14], a different approach to the construction of commutative algebras was initiated. 
Namely, for a self-adjoint operator V in the Bergman space on the unit disk B1, the algebra of functions 
of this operator is commutative (in the sense corresponding to the size of the algebra of functions under 
consideration). If the operator V commutes with a group of isometries of the Bergman space, generated 
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by a one-parametric group of conformal mappings of the disk, the algebra of functions of this operator 
contains the C∗-algebra generated by Toeplitz operators, whose symbols are invariant under the above 
one-parametric group of conformal mappings. Such correspondence gives a better insight to the structure 
of commutative algebras of operators, extends the known classes of symbols generating bounded Toeplitz 
operators and, in particular, provides a clear explanation for the property of a Toeplitz operator to be 
compact.

In the present paper we extend the approach developed in [14] to the study of commutative algebras of 
Toeplitz operators in the Bergman space on the ball in Cn. The passage to the multi-dimensional case requires 
some additional considerations. The most important is that the treatment of the classical commutative 
algebras of Toeplitz operators requires, generally, not the usual spectral theory of self-adjoint operators but 
the multi-variable spectral theory for collections V = (V1, . . . , Vm) of commuting self-adjoint operators.

Following the pattern of the one-dimensional case, it was shown in [12] that for each maximal Abelian 
subgroup (MASG) of the biholomorphisms of the unit ball Bn, the C∗-algebra generated by Toeplitz opera-
tors whose symbols are invariant under the action of this subgroup, is commutative. Recall [12], that there 
are five types of model MASGs on Bn (or its unbounded realization, the Siegel domain Dn):

Quasi-elliptic group of biholomorphisms of the unit ball Bn, isomorphic to Tn with the group action

t : z = (z1, ..., zn) ∈ Bn �−→ tz = (t1z1, ..., tnzn) ∈ Bn,

for each t = (t1, ..., tn) ∈ Tn.
Quasi-parabolic group of biholomorphisms of the Siegel domain Dn, isomorphic to Tn−1 × R with the 

group action

(t, h) : (z′, zn) ∈ Dn �−→ (tz′, zn + h) ∈ Dn,

for each (t, h) ∈ Tn−1 × R.
Quasi-hyperbolic group of biholomorphisms of the Siegel domain Dn, isomorphic to Tn−1 × R+ with the 

group action

(t, r) : (z′, zn) ∈ Dn �−→ (r1/2tz′, rzn) ∈ Dn,

for each (t, r) ∈ Tn−1 × R+,
Nilpotent group of biholomorphisms of the Siegel domain Dn, isomorphic to Rn−1 × R with the group 

action

(b, h) : (z′, zn) ∈ Dn �→ (z′ + b, zn + h + 2iz′ · b + i|b|2) ∈ Dn,

for each (b, h) ∈ Rn−1 × R;
Quasi-nilpotent group of biholomorphisms of the Siegel domain Dn, isomorphic to Tk × Rn−k−1 × R, 

0 < k < n − 1, with the group action

(t, b, h) : (z′, z′′, zn) ∈ Dn �−→ (tz′, z′′ + b, zn + h + 2iz′′ · b + i|b|2)) ∈ Dn,

for each (t, b, h) ∈ Tk × Rn−k−1 × R.
The latter, quasi-nilpotent, type of groups involves the integer parameter k, thus giving in total n + 2

model groups for the n-dimensional ball Bn.
In the present paper we give a detailed characterization of commutative C∗-algebras generated by Toeplitz 

operators related to the quasi-elliptic group (and of ambient commutative von Neumann algebras) as algebras 
of functions of the proper systems of commuting self-adjoint operators. The largest among the considered 



G. Rozenblum, N. Vasilevski / J. Math. Anal. Appl. 528 (2023) 127543 3
algebras is the algebra generated by Toeplitz operators with symbols being invariant under the smallest 
quasi-elliptic group Tn, namely the diagonal subgroup of U(n) (the latter, as usual, denotes the group of 
all n×n unitary matrices). Here the collection of operators V consists of n entries. Toeplitz operators with 
symbols invariant with respect to larger subgroups of U(n), the ones consisting of block-diagonal matrices, 
generate commutative algebras coinciding with algebras of functions of smaller collections of commuting 
operators. Such symbols are called quasi-radial.

We consider also Toeplitz operators with radial symbols, the ones invariant with the respect to the group 
U(n) itself. It turns out that this algebra is isomorphic to the algebra of functions of one single operator 
V = (V1). Generally, the quantity of self-adjoint operators present in the functional calculus representation 
of the algebra generated by Toeplitz operators equals the number of diagonal blocks in the subgroup of 
U(n).

Finally, we consider from the spectral point of view certain commutative algebras of Toeplitz operators, 
which are proper subalgebras of the previous ones. Symbols of such Toeplitz operators depend only on a part 
of variables, or possess some similar degeneracy. Such symbols and the corresponding Toeplitz operators 
were discussed, in particular, in [1,4,11]. Contrary to the above, for each such algebra there is no subgroup 
of U(n) for which the symbols of the generating Toeplitz operators are exactly those which are invariant 
under the action of this group. Nevertheless, a spectral representation of such algebras can be found.

2. Preliminaries

2.1. Spectral theorem

For the Readers’ convenience and in order to fix the notation, we recall some basic facts related to the 
Spectral Theorem for a finite collection of commuting self-adjoint operators. For proofs and more details 
see, e.g., [5, Chapter 6, Section 5], [15, Chapter 1], and [16, Chapter 5].

As well known, for each, generally speaking unbounded, self-adjoint operator V in a separable Hilbert 
space H, there exists its spectral measure E(·), the projection-valued σ-additive function defined on Borel 
sets in R, orthogonal in the sense E(Δ1∩Δ2) = E(Δ1)E(Δ2), and such that E(∅) = 0, E(R) = I. Associated 
with E(Δ), is the resolution of identity, E(η) = E(−∞, η]. The operator V admits the Stieltjes integral 
representation

V =
∫
R

ηdE(η),

understood in the strong sense, with the domain

D(V ) =

⎧⎨⎩f ∈ H :
∫
R

η2d〈E(η)f, f〉 < ∞

⎫⎬⎭ .

In the functional calculus associated with V , for a Borel complex-valued function ψ(η) on R, the operator 
ψ(V ) is defined as

ψ(V ) =
∫
R

ψ(η)dE(η), (2.1)

again understood in the strong sense, with the domain
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D(ψ(V )) =

⎧⎨⎩f ∈ H :
∫
R

|ψ(η)|2d〈E(η)f, f〉 < ∞

⎫⎬⎭ .

Such operators ψ(V ) are normal, self-adjoint for a real-valued function ψ; they are bounded for E-
essentially bounded functions ψ and the mapping

OpE : ψ �→ ψ(V ) (2.2)

is an isometric isomorphism of the commutative C∗ algebra of E-essentially bounded Borel function to a 
commutative algebra of bounded operators.

For unbounded, E-almost everywhere finite functions ψ, the normal operators ψ(V ) commute in the 
resolvent sense, as long as they possess at least one regular point.

Suppose now that a finite collection of (possibly, unbounded) self-adjoint operators V = (V1, V2,..., Vm)
(an m-tuple) in the same separable Hilbert space H is given, and let E1(·), E2(·),..., Em(·) be their spectral 
measures. We say that the operators V1, V2,..., Vm (strongly) commute if their spectral measures commute, 
i.e., for any Borel sets Δ1 and Δ2 in R and each j′ �= j, Ej(Δ1)Ej′(Δ2) = Ej′(Δ2)Ej(Δ1).

Theorem 2.1 (Spectral Theorem). For each m-tuple V = {V1, . . . , Vm} of pairwise strongly commuting self-
adjoint operators in a separable Hilbert space H, there exists a unique joint spectral measure E(·) on the 
σ-algebra of Borel sets in Rm, such that for the corresponding resolution of identity,

E(ηηη) ≡ E

⎛⎝ m∏
j=1

(−∞, ηj ]

⎞⎠ , ηηη = (η1, . . . , ηm),

the following Stieltjes representation holds:

Vj =
∫

Rm

ηjdE(ηηη), j = 1, . . . ,m,

with the integral understood in the strong sense.

The spectral measure E(·) can be constructed in the following way. For a rectangle Δ = [a1, b1] × . . .×
[am, bm], we set E(Δ) =

∏m
j=1 Ej([aj , bj ]) and then extend it to all Borel sets on Rm in the standard way.

We recall also that the support of the spectral measure E(·) (the smallest closed set of full measure) is 
called the joint spectrum of the m-tuple V = {V1, . . . , Vm} and is denoted by σ(V) ≡ σ(V1, . . . , Vm) ⊂ Rm; 
here

σ(V) =
m∏
j=1

σ(Vj). (2.3)

Theorem 2.2 (Functional Calculus). Given an E-measurable function ψ on Rm, the operator

ψ(V) ≡ ψ(V1, . . . , Vm) :=
∫

Rm

ψ(η1, . . . , ηm) dE(η1, . . . , ηm)

=
∫

σ(V)

ψ(η1, . . . , ηm) dE(η1, . . . , ηm) (2.4)

is well defined and normal on its domain
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Dψ =

⎧⎨⎩f ∈ H :
∫

Rm

|ψ(η1, . . . , ηm)|2 d〈E(η1, . . . , ηm)f, f〉 < ∞

⎫⎬⎭ .

The operator ψ(V1, . . . , Vm) is bounded, and thus defined on the whole H, if and only if the function ψ is 
E-essentially bounded. The functional calculus mapping

OpE : ψ �→ ψ(V1, . . . , Vm) ≡ ψ(V)

is an isometric isomorphism of the C∗-algebra of E-essentially bounded complex functions onto a commu-
tative ∗- algebra of bounded normal operators in H.

Remark 2.3. In concrete situations, for a given tuple of operators V, the description of the range of OpE
may be a serious analytical problem. This can be seen in the analysis in [14] of the one-dimensional case

2.2. The Bergman space on the ball

In our analysis, we consider domains in the complex space Cn for a certain n and in its subspaces. Let 
Bn = {z = (z1, ..., zn) ∈ Cn : |z|2 ≡ |z1|2 + ... + |zn|2 < 1} be the unit ball in Cn; for any k ≤ n, for a ball 
Bk ⊂ Cn, we denote by τ(Bk) ⊂ Rk ⊂ Cn the base of the unit ball Bk, considered as a Reinhard domain, 
i.e.,

τ(Bk) = {(r1, ..., rk) = (|z1|, ..., |zk|) : r2 = r2
1 + ... + r2

k ∈ [0, 1)}.

Given a multi-index α = (α1, α2, ..., αn) ∈ Zn
+ we will use the standard notation,

|α| = α1 + α2 + ... + αn,

α! = α1!α2! · · · αn!,

zα = zα1
1 zα2

2 · · · zαn

n ,

zl = xl + iyl, l = 1, 2, ...,n.

Denote by dV = dx1dy1...dxndyn the standard Lebesgue measure in Cn; for λ > −1, we introduce the 
probability weighted measure on Bn,

dvλ(z) = cλ (1 − |z|2)λ dV(z), where cλ = Γ(n + λ + 1)
πn Γ(λ + 1) , λ > −1.

The basic object of our considerations is the weighted Hilbert space Hn
λ ≡ L2(Bn, dvλ) and its subspace, 

the weighted Bergman space A2
λ = A2

λ(Bn) which consists of all analytic functions in Hn
λ . By P we denote 

the orthogonal projection onto A2
λ.

Further on, in notations, the superscript 2 will be skipped since our considerations concern only the 
Hilbert space theory.

Recall that the standard orthonormal basis of the Bergman space Aλ(Bn) consists of the monomials

eα(z) := eα,(n)(z) ≡ ωλ,α,(n)z
α, with α ∈ Zn

+, (2.5)

where ωλ,α,(n) =
√

Γ(n+|α|+λ+1)
α!Γ(n+λ+1) . Note that the normalization factor ωλ,α,(n) in (2.5) depends on the dimen-

sion n, so the function zα having αl = 0 for l > k with some k, 1 ≤ k < n, produces an element eα,(k)(z)
in the basis of the space Aλ(Bk), but with the normalization factor ωλ,α,(k), different from the one in (2.5). 
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If some value k different from n comes into consideration, the subscript (k) will be present in the notation 
eα,(k), otherwise, k = n is assumed. In the sections where the weight exponent λ is fixed, we may omit it in 
the notation as well.

Thus, the space Aλ(Bn) = A(Bn) consists of analytic functions f(z) = f(z1, . . . , zn) for which the Fourier 
coefficients

fα = 〈f, eα〉Hλ(Bn) (2.6)

satisfy 
∑

α∈Zn

+
|fα|2 < ∞.

2.3. Partitions and isometry groups

Let k = (k1, ..., km) be a tuple of positive integers: k1 + ... + km = n. Given the partition k = (k1, ..., km), 
we arrange the coordinates of z ∈ Bn in m groups having, respectively, kj , j = 1, ..., m, entries and introduce 
the notation

z(1) = (z1,1, ..., z1,k1) ∈ Ck1 , z(2) = (z2,1, ..., z2,k2) ∈ Ck2 , ..., z(m) = (zm,1, ..., zm,km
) ∈ Ckm ,

with a proper re-numbering of co-ordinates, so that

Bn � z = (z1, z2, . . . , zn) = (z(1), z(2), . . . , z(m)).

With a group z(j) fixed, the complementing group of variables will be denoted by

z̃(j) = (z(1), . . . , z(j−1), z(j−1), . . . , z(m)), (2.7)

so, with an obvious permutations of variables (which is always assumed performed), z = (z(j), ̃z(j)). In the 
extreme case k = (1, 1, . . . , 1), z̃j = z̃(j). (Note the subtlety in notation: the subscript j (as in zj , z̃j , Vj , 
etc.) is used for denoting a single complex variable or some related object, while the subscript (j) is used 
to denote a tuple of variables and related objects, as in z(j), ̃z(j) etc.)

With a partition k = (k1, ..., km) we associate the subgroup H = Hk ⊂ U(n)

Hk = U(k) := U(k1) × . . .× U(km),

realized as a block diagonal subgroup of U(n).
Among such subgroups, the smallest one and the only commutative one is the group Hmin corresponding 

to the partition kmax = (1, 1, . . . , 1); this group is the n-dimensional torus Hmin = Tn realised as the group 
of diagonal unitary matrices. The largest of such subgroups is U(n) itself. It corresponds to the trivial 
partition k = (n). All other partitions generate groups partially ordered by inclusion.

With each partition k we associate the class of (first, bounded) symbols S(k) invariant under the action 
of the group Hk. It stands to reason that the classes S(k) are ordered in the inverse way to the groups Hk. 
As we will see, Toeplitz operators with symbols in S(k) generate a commutative C∗-algebra. In the sections 
to follow we associate with each subgroup Hk a collection of commuting unbounded self-adjoint operators 
V = V(k) so that the (von Neumann) algebra of all bounded measurable functions of the operators V is 
commutative and contains the C∗-algebra generated by Toeplitz operators with symbols in S(k). It turns 
out that the smaller is the group Hk, the more operators in the system V are needed. In the extreme cases 
H = U(n), respectively, H = Tn, the system V consists of one, respectively, n operators.
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3. Toeplitz operators with separately radial symbols

We consider first the subgroup Hmin = Tn represented as the group of diagonal unitary matrices in a 
certain fixed co-ordinate system z = (z1, . . . , zn) in Bn. This group, the smallest one, corresponds to the 
maximal partition, kmax = (1, . . . , 1). Symbols in the class S(kmax) are invariant with respect to the action 
of Tn; these are functions a(r1, . . . , rn), where rj = |zj |, j = 1, . . . , n. Such symbols are called separately 
radial.

Following our convention, for z = (z1, . . . , zn) ∈ Bn and a fixed j ∈ [1, n] we denote by z̃j the comple-
menting collection of variables,

z̃j = (z1, . . . , zj−1, zj+1, . . . zn),

thus, with an obvious permutation, z = (zj , z̃j).
A basic function eα = eα,(n) is not separately radial, but the one-dimensional subspace spanned by eα is

invariant with respect to the action of Tn, and this property persists after the multiplication by a separately 
radial function a(z) ∈ S(kmax), as well as the orthogonality relations,

〈eα, a(z)eα′〉 = 0, α �= α′, a ∈ S(kmax).

Therefore, for a separately radial symbol a, the Toeplitz operator Ta : f �→ Paf in Aλ(Bn) is diagonal in 
the basis eα,

Taeα = γaeα = γa,sepeα, (3.1)

where

γa(α) ≡ γa,sep(α) = (3.2)

2n Γ(n + |α| + λ + 1)
Γ(λ + 1)α!

∫
τ(Bn)

a(r1, ..., rn)(1 − |r|2)λ
n∏

j=1
r
2|αj |+1
j drj

= Γ(n + |α| + λ + 1)
Γ(λ + 1)α!

∫
ΔΔΔn

a(√ρ1, ...,
√
ρn)(1 − (ρ1 + . . . + ρn))λ

×
n∏

j=1
ρ
αj

j dρj ;

here ΔΔΔn = {ρ ∈ Rn
+ : ρ1 + · · · + ρn < 1} is the standard n-dimensional simplex, ρj = r2

j .
For a fixed multi-index s = (s1, . . . , sn) ∈ Zn

+, we define, following ([3, Formula (3.10)]), the one-
dimensional subspace Hs spanned by the basic function es. We also define, for a given � ∈ Z+ and a 
fixed j, the infinite-dimensional subspace H(j)

� ⊂ Aλ(Bn) as

H
(j)
� ≡ Ȟ

(j)
� ≡ span {eα : αj = �}. (3.3)

It is important to explain here that the non-closed space Ȟ(j)
� in (3.3) consists of all polynomials in z

containing the variable zj taken exactly to the power �, f(z) = z�jh(z̃j). After being closed in the norm 
of Aλ(Bn), this structure is modified in the following way. We calculate the norm in Aλ(Bn) of a function 
f(z) = z�jh(z̃j). We have
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‖f‖2
Aλ(Bn) = cλ

∫
Bn

|z�j |2|h(z̃j)|2(1 − |zj |2 − |z̃j |2)λdV(z) (3.4)

= cλ

∫
Bn−1

|h(z̃j)|2dV(z̃j)
∫

|zj |<(1−|z̃j |2)
1
2

|zj |2�(1 − |zj |2 − |z̃j |2)λdV(zj).

We set |z̃j | = r̃j and calculate the zj-integral in (3.4), making use of [6, Formula 3.191.1]∫
|zj |<(1−r̃j

2)
1
2

|zj |2�(1 − |zj |2 − |z̃j |2)λdV(zj) (3.5)

= 2π
(1−r̃j

2)
1
2∫

0

r2�+1
j (1 − r2

j − r̃j
2)λdrj

= π

1−r̃j
2∫

0

ρ�j(1 − ρj − r̃j
2)λdρj

= π(1 − |r̃j2|)�+λ+1 Γ(� + 1)Γ(λ + 1)
Γ(� + λ + 2) .

Thus, the square of the norm of f = z�jh(z̃j) in Aλ(Bn) equals

‖f‖2
Aλ(Bn) = cλ,�‖h‖2

Aλ+�+1(Bn−1), (3.6)

with

cλ,� = (n + λ)Γ(� + 1)Γ(λ + 1)
Γ(� + λ + 2) (3.7)

As a result of these calculations we can see that the space H(j)
� defined in (3.3) consists of functions of 

the form f(z) = z�jh(z̃j), with h belonging to the Bergman space Aλ+�+1(Bn−1). Moreover, the norms of f
in Aλ(Bn) and of h in Aλ+�+1(Bn−1) are equivalent.

It follows from the definition that Hs =
⋂n

j=1 H
(j)
sj for s ∈ Zn

+. We introduce the orthogonal projections, 
Ps : H −→ Hs (a rank one projection) and P(j)

� : H −→ H
(j)
� , so that Ps =

∏n
j=1 P(j)

sj . For each j, �, the 

monomials eα with αj = � form an orthonormal basis in H(j)
� . Therefore the projection P(j)

� can be written 
as

(P(j)
� f)(zj , z̃j) =

∑
αj=�

〈f, eα〉eα(z). (3.8)

With this notation, the Bergman space Aλ(Bn) splits into the orthogonal sum in two ways:

Aλ(Bn) =
⊕
s∈Zn

+

Hs and for each j = 1, . . . ,n, Aλ(Bn) =
⊕
�∈Z+

H
(j)
� . (3.9)

We can see that in the first decomposition, we split the Bergman space into the direct sum of one-dimensional 
subspaces, in the second one each subspace in the splitting consists of functions having a fixed homogeneity 
order in the variable zj (and analytic in all remaining variables.)
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For f being a basic monomial, f(z) = eα(zj , z̃j), the projection P(j)
� acts, according to (3.8), as the 

identity operator in z̃j variables and as an integral operator in zj variable. By continuity, this description 

extends to the whole H(j)
� . Therefore, for j′ �= j and any �′, � ∈ Z+ the projections P(j)

� and P(j′)
�′ commute; 

taken in any order, their composition is the projection onto the space of functions of the form z�jz
�′

j′h(z̃j,j′), 
where z̃j,j′ is the collection of variables complementary to zj , zj′ and h is a function in Aλ+�+�′+2(Bn−2).

Now we introduce the rotation operator with respect to the variable zj ,

Vj = zj
∂

∂zj
= 1

ı

∂

∂θj
, (3.10)

in the trigonometrical representation zj = |zj |eıθj . This operator is self-adjoint being considered on the 
domain

D(Vj) =

⎧⎨⎩f =
∑
α∈Zn

+

fαeα ∈ Aλ(Bn) :
∑
α∈Zn

+

|αj |2|fα|2 < ∞

⎫⎬⎭ .

For a fixed j, each element in the space H(j)
� is an eigenfunction of Vj with eigenvalue �. The second 

orthogonal sum decomposition in (3.9) implies that finite linear combinations of elements in all H(j)
� are 

dense in Aλ(Bn).
For any fixed j, each function of the form z�jh(z̃(j)), h ∈ Aλ+�+1(Bn−1), is an eigenfunction of Vj with 

eigenvalue �; linear combinations of all such functions are dense in Aλ(Bn). This means that the spectrum 
of Vj in Aλ(Bn) consists of all nonnegative integer points � ∈ Z+ with the corresponding spectral subspace 
H

(j)
� ; each integer point is an eigenvalue of infinite multiplicity.
It follows that the spectral measures of the self-adjoint operators Vj, j ≤ n commute, with Zn

+ being the 
joint spectrum. Therefore, the joint spectral measure E is supported on the integer lattice Zn

+, while the 
set Rn \ Zn

+ has zero E-measure. The corresponding partition of unity is

E(η1, . . . , ηn) =
n∏

j=1

⎛⎝ ∑
sj≤ηj

P(j)
sj

⎞⎠ .

The general spectral theory for systems of commuting operators, presented in Sect. 2, applies to V =
(V1, . . . , Vn).

Therefore, the Functional Calculus produces

Proposition 3.1. Given an E-measurable function ψ(ηηη) on Rn, the operator

ψ(V) ≡ ψ(V1, . . . , Vn) :=
∫
Rn

ψ(η1, . . . , ηn) dE(η1, . . . , ηn)

is well defined and normal on its domain

Dψ =

⎧⎨⎩f ∈ Aλ(Bn) :
∫
Rn

|ψ(η1, . . . , ηn)|2 d〈E(η1, . . . , ηn)f, f〉 < ∞

⎫⎬⎭ .

Moreover the operator ψ(V1, . . . , Vn) is bounded, and thus defined on the whole H, if and only if the function 
ψ is E-essentially bounded.
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Representation (2.4) implies that

ψ(V) ≡ ψ(V1, . . . , Vn) =
∫

σ(V)

ψ(η1, . . . , ηn) dE(η1, . . . , ηn) =
∑
s∈Zn

+

ψ(s)Ps.

Corollary 3.2. The set of all operators {ψ(V)}, defined by (the classes of equivalence) of E-measurable 
essentially bounded functions ψ with ψ = {ψ(s)}s∈Zn

+ ∈ �∞(Zn
+) constitutes an algebra R of bounded 

mutually commuting operators in Aλ(Bn), and the mapping

OpE : ψ �−→ ψ(V) =
∑
s∈Zn

+

ψ(s)Ps,

defines the isomorphism

OpE : �∞(Zn
+) −→ R (3.11)

of the C∗-algebras.

Note here that although the operator Vj acts upon the basis elements in the same way in weighted spaces 
Aλ(Bn) for all values of λ > −1, the domain of Vj depends on λ, therefore, the self-adjoint operators Vj

as well as their spectral projections depend on λ, although this dependence might be not reflected in the 
notation.

Returning now to Toeplitz operators with separately radial symbols, we see that by (3.1), the Toeplitz 
operator Ta with such a = a(r1, r2, . . . , rn) admits the representation

Ta =
∑
s∈Zn

+

γa(s)Ps,

where the scalars γa(s) are given by (3.2). Thus, by Corollary 3.2,

Ta = ψa(V1, V2, . . . , Vn),

where ψa belongs to the equivalence class of essentially bounded E-measurable functions, defined by the 
sequence ψa = {ψa(s)}s∈Zn

+ , with ψa(s) = γa(s). In other words

Ta =
∑
s∈Zn

+

ψa(s)Ps =
∑
s∈Zn

+

γa(s)Ps. (3.12)

Theorem 3.3. Denote by T (kmax) the C∗-algebra generated by Toeplitz operators with bounded separately 
radial symbols. Then T (kmax) is contained in the image R in the mapping (3.11). In other words, every 
operator in T (kmax) is a certain function of the system of commuting operators Vj.

Similar to the one-dimensional case, T (kmax) does not exhaust R, this means that there exist functions 
ψ such that the operator ψ(V) does not belong to the C∗ algebra T (kmax), although ψ is bounded. On 
the other hand, a Toeplitz operator with an unbounded separately radial symbol a can belong to R. 
Corresponding examples can be constructed on the base of reasoning in [14]. Note also that Theorem 3.3
implies a compactness condition for Toeplitz operators of the type under consideration. Namely, since all 
points of spectrum of V are eigenvalues of finite multiplicity placed at the nodes of a lattice, an operator 
ψ(V) is compact iff ψ(s) → 0 as |s| → ∞. For a Toeplitz operator, such behavior of s can be derived from 
the convergence to zero in a proper sense of the symbol, as |z| → 1, similarly to [14]. In Sect. 6 we encounter 
the situation when this kind of results on compactness break down.
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4. Toeplitz operators with radial symbols

The radial symbols correspond to the smallest partition kmin = (n) consisting of only one element. The 
corresponding isometry group is U(n). Although this group is not commutative, Toeplitz operators Ta with 
symbols in S(kmin), commute, see [17]. Such symbols, invariant with respect to U(n), depend only on the 
radius r = (

∑
r2
j )

1
2 and therefore they are called ‘radial’. We denote by Arad the C∗ algebra generated by 

Toeplitz operators with bounded symbols in S(kmin). An extensive description of properties of operators 
with radial symbols can be found in [2]. We use these facts to perform the spectral analysis of such operators, 
along the lines of our paper [14], where the case of the Bergman space on the disk (n = 1) was considered. 
We will see that, similarly to the case of the disk, the spectral representation of the algebra A uses only one 
operator V .

We define the differential operator (the rotation operator)

V = z1
∂

∂z1
+ · · · + zn

∂

∂zn
= 1

ı

∂

∂θ1
+ · · · + 1

ı

∂

∂θn
, (4.1)

in the trigonometric representation zj = |zj |eıθj . This operator is self-adjoint in Aλ(Bn), being defined on

D(V ) =

⎧⎨⎩f =
∑
α∈Zn

+

fαeα ∈ Aλ(Bn) :
∑
α∈Zn

+

|α|2|fα|2 < ∞

⎫⎬⎭ . (4.2)

The operator V is diagonal in the basis {eα} and it acts on an element eα in the basis as V eα = |α|eα. 
Therefore, each nonnegative integer � ∈ Z+ is an eigenvalue of V , and the multiplicity of � equals the number 
of multiindices α ∈ Zn

+ satisfying |α| = �. As well known, this number equals d� =
(
�+n−1
n−1

)
. We denote by 

L� the eigenspace of V corresponding to the eigenvalue �, so dim L� = d�.
Let P� be the orthogonal (in Aλ(Bn)) projection onto L�. It can be expressed as

P�f =
∑
|α|=�

〈f, eα〉eα, (4.3)

where 〈., .〉 denotes the scalar product in the Hilbert space Hλ(Bn). By (4.3), P� is an integral operator

(P�f)(z) =
∫
Bn

f(ζ)P�(z, ζ)dvλ(ζ)

with the (degenerate) integral kernel

P�(z, ζ) =
∑
|α|=�

eα(z)eα(ζ) =
∑
|α|=�

pαz
αζ̄α (4.4)

where pα ≡ pα,(n) = 1
α!

Γ(n+�+λ+1)
Γ(n+λ+1) , in accordance with (2.5). Since

∑
|α|=�

1
α!z

αζ̄α = 1
�!
∑
|α|=�

�!
α!z

αζ̄α =

1
�!
∑
|α|=�

�!
α!

∏
1≤j≤n

(zj ζ̄j)αj = 1
�! 〈z, ζ̄〉

�,

(4.4) gives



12 G. Rozenblum, N. Vasilevski / J. Math. Anal. Appl. 528 (2023) 127543
P�(z, ζ) = 1
�!

Γ(n + � + λ + 1)
Γ(n + λ + 1) 〈z, ζ̄〉�. (4.5)

The spectral measure for V is given by

EV (Δ) =
∑
�∈Δ

P�, (4.6)

with the corresponding resolution of identity

EV (η) =
∑
�≤η

P�. (4.7)

Thus, for any f ∈ Aλ(Bn), the measure μf (Δ) = 〈EV (Δ)f, f〉 is supported at integer points.
Further on, for an EV -measurable, almost everywhere finite complex-valued function ψ(η), η ∈ R1, the 

operator ψ(V ) is defined as

ψ(V ) =
∑
�∈Z+

ψ(�)P�, (4.8)

with the natural domain

D(ψ(V )) = {f =
∑

fαeα ∈ Aλ(Bn) :
∑
�

|ψ(�)|2
∑
|α|=�

|fα|2 < ∞}.

On this domain, the operator ψ(V ) is normal; if ψ has real values at all integer points, ψ(V ) is self-adjoint; 
it is bounded iff ψ is a bounded function on Z+.

Similarly to the case n = 1 considered in [14], the operator ψ(V ) is compact iff ψ(�) → 0 as � → ∞. 
The explanation of this property is just a little bit more intricate than for n = 1, since the projections P�

are not one-dimensional anymore and their rank is not uniformly bounded. Namely, for any given ε > 0, 
let Δ(ε) be the set of those � ∈ Z+ where |ψ(�)| > ε. This set is finite, moreover the spectral projection 
EV (Δ(ε)) is finite-dimensional (here we use the fact that all eigenspaces of V are finite-dimensional). Thus 
the operator ψε(V ) =

∑
�∈Δ(ε) ψ(�)P� has finite rank, in particular, it is compact. On the other hand, for 

ψ′
ε(η) = ψ(η) − ψε(η), we have ‖ψ′

ε(V )‖ ≤ ε, since |ψ(η)| ≤ ε for η /∈ Δ(ε). So, ψ(V ) is ε-approximated in 
the operator norm by a compact operator and therefore it is compact itself. The converse implication is also 
justified rather easily.

For different functions ψ1, ψ2 the operators ψ1(V ), ψ2(V ) commute: in the strict sense, for bounded 
ψ1, ψ2, or in the resolvent sense for more general functions, as in [14].

Being applied to the function ψ = 111, 111(�) = 1 for all � ∈ Z+, (4.8) gives 111(V )|Aλ
= IdAλ(Bn), the identity 

operator in Aλ(Bn). On the other hand, if f ∈ Hλ(Bn) and f is orthogonal to all functions in Aλ(Bn), we 
have 111(V )f = 0 since each P�f equals zero. Therefore, 111(V ) is nothing else but the Bergman projection 
P ≡ Pλ : Hλ(Bn) → Aλ(Bn).

Let a(r) = a(|z|) be a radial symbol on the ball Bn. Suppose that a(r) ∈ L∞(0, 1). Following [14], we 
establish a relation between radial Toeplitz operators in Aλ(Bn) and functions of the rotation operator V .

The Toeplitz operator Ta in Aλ(Bn) with symbol a ∈ L∞ acts as

Taf = Paf. (4.9)

In particular, for f = eα, (4.9) gives

(Taeα)(z) = (Paeα)(z) =
∑

P�(a(|ζ|)eα(ζ))(z). (4.10)

�
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Now we recall that the multiplication by a radial symbol preserves the orthogonality of the basic functions 
eα. Therefore, the operator Ta is diagonal in the basis {eα}. As well known (see, e.g., [7]), in each eigenspace 
L�, the elements on the diagonal of Ta depend only on �, in particular, they are equal. It follows that the 
operator Ta has block structure with respect to the eigenspaces L�, with each block of dimension d� having 
the form γ�,aId�, this latter symbol denoting the identity operator in L�. This is exactly the structure we 
described above for functions of the operator V . Namely, with the radial symbol a(r), we associate the 
function ψa

ψa(�) = γ�,a, � ∈ Z+. (4.11)

Thus we obtain the description of a class of radial Toeplitz operators.

Theorem 4.1. For a radial symbol a, the Toeplitz operator Ta in Aλ(Bn) is a function of the operator V ,

Ta = ψa(V ).

The operator Ta is bounded iff the function ψa is bounded on Z+; Ta is compact iff ψa(�) → 0 as � → ∞.

It follows from the expression for γ�,a that for a bounded radial symbol a(r), the function ψa is bounded 
and therefore the operator Ta is bounded. The relation a ⇔ ψa can be extended to a wide class of unbounded 
symbols a. Since the expression for ψa for the ball Bn is formally the same as for the one-dimensional complex 
disk B1 (up to a re-numeration), the results in [14] carry over to the multidimensional case without changes. 
We describe them here briefly.

On the one hand, bounded Toeplitz operators can be defined for symbols considerably more general 
than the bounded ones. First, as in [14], quite a wide class of symbols with compact support is admissible. 
Any a ∈ L1(0, 1) that vanishes in some neighborhood of the endpoint 1 generates a bounded function 
ψa. Moreover, the same is correct for a being a distribution with compact support in [0, 1). Although the 
reasoning in [14] cannot be carried over directly to the multi-dimensional case (some complications in dealing 
with the point 0 arise), the corresponding reasoning in [13] works, namely by means of considering the symbol 
a as a distribution in E ′(Bn), invariant with respect to rotations of the ball. A class of symbols with support 
touching the point 1 can be considered as well, including the ones unbounded in any neighborhood of 1 but 
fast oscillating as r → 1.

On the other hand, it is important to keep in mind that not for all bounded functions ψ(�) the operator 
ψ(V ), even a bounded one, is a radial Toeplitz operator with a bounded radial symbol a. The necessary and 
sufficient condition for this can be derived from [7]. Namely, the sequence ψ(�) must be slowly oscillating, 
see [14].

The condition for the compactness of Toeplitz operators, expressed in terms of the function ψa, is given 
above: it requires that ψa(�) → 0 as � → ∞. In terms of the symbol a(r) itself the exact condition is 
unknown; a sufficient condition involves vanishing of a(r) at the boundary in the averaged sense,

1∫
s

a(r 1
2 )rn−1dr = o(1 − s), s → 1 − 0,

see Theorem 3.3 in [9].

5. Toeplitz operators with quasi-radial symbols

Now we pass to the algebras of Toeplitz operators with symbols of more complicated structure, namely 
the ones being radial in separate groups of variables. Each class of symbols is invariant with respect to a 
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certain isometry group of the ball Bn described by a partition k, as in Section 2.3. The classes considered 
in two previous sections serve as extreme cases.

Further on, in this Section, the partition k = (k1, ..., km) is assumed fixed. A measurable function a = a(z), 
z ∈ Bn, will be called k-quasi-radial if it depends only on r(1),..., r(m), where

r(j) = |z(j)| =
√

|zj,1|2 + . . . + |zj,kj
|2, j = 1, . . . ,m. (5.1)

With this definition, such symbols can vary from separately radial, a = a(|z1|, . . . , |zn|), if k = (1, ..., 1), 
to radial, a = a(|z|), if k = (n); these extreme cases have been considered in the previous sections.

Recall, see [18, Lemma 3.1], that the Toeplitz operator Ta in Aλ(Bn), with k-quasi-radial symbol a =
a(r(1), . . . , r(m)), acts on the basis elements eα(z) as

Ta eα = γa,k,λ(α) eα, α ∈ Zn
+, (5.2)

where

γa,k,λ(α) = γa,k,λ(|α(1)|, ..., |α(m)|) (5.3)

= 2m Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m
j=1(kj − 1 + |α(j)|)!

∫
τ(Bm)

a(r(1), ..., r(m))(1 − |r|2)λ
m∏
j=1

r
2|α(j)|+2kj−1
(j) dr(j)

= Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m
j=1(kj − 1 + |α(j)|)!

∫
ΔΔΔm

a(√ρ1, ...,
√
ρm)(1 − (ρ1 + . . . + ρm))λ

×
m∏
j=1

ρ
|α(j)|+kj−1
j dρj ,

and ΔΔΔm = {ρ ∈ Rm
+ : ρ1 + . . . + ρm < 1} denotes the standard simplex, ρj = r2

(j).
We will denote by T (k) the C∗-algebra, generated by Toeplitz operators with k-quasi-radial symbols.
Given a multi-index s = (s1, . . . , sm) ∈ Zm

+ , we define (see e.g. [3, Formula (3.5)]) the finite dimensional 
subspace Hs in Aλ(Bn) as

Hs = span {eα : |α(j)| = sj , j = 1, . . . ,m}.

This subspace consists of functions which are, for each j = 1, . . . , m, homogeneous polynomials of order 
sj in the group of variables z(j). Then, given � ∈ Z+, for any fixed j, we define also (see e.g. [3, Formula 

(3.10)]) the infinite dimensional subspace H(j)
� in Aλ(Bn) as

H
(j)
� = span {eα : |α(j)| = �}.

The latter space is the closure in Aλ(Bn) of the space of polynomials in z which are order � polynomials 
with respect to the group of variables z(j). With this definition, Hs =

⋂
j=1,...,m H

(j)
sj . We introduce the 

corresponding orthogonal projections

Ps : Aλ(Bn) −→ Hs and P(j)
� : Aλ(Bn) −→ H

(j)
� , with Ps =

∏
j=1,...,m

P(j)
sj .

In this way, the Bergman space Aλ(Bn) splits into the orthogonal sum in two ways:

Aλ(Bn) =
⊕

m

Hs and Aλ(Bn) =
⊕

H
(j)
� . (5.4)
s∈Z+ �∈Z+
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We see that in the second case, each summand consists of functions having the fixed homogeneity order in 
variables in the group z(j) and analytic in the remaining variables.

Further, (5.2) implies a decomposition of the Toeplitz operator:

Ta =
∑

s∈Zm
+

γa,k,λ(s)Ps, (5.5)

understood in the sense of the strong convergence.
For each j = 1, . . . , m, we introduce the rotation operator along the group of variables z(j):

V(j) = zj,1
∂

∂zj,1
+ . . . + zj,kj

∂

∂zj,kj

= 1
ı

∂

∂θj,1
+ . . . + 1

ı

∂

∂θj,kj

, where zj,l = |zj,l|eıθj,l , (5.6)

which is self-adjoint being defined on

D(V(j)) =

⎧⎨⎩f ∈ Aλ(Bn), f =
∑
α∈Zn

+

fαeα :
∑
α∈Zn

+

|α(j)|2|fα|2 < ∞

⎫⎬⎭ .

Note that on this domain, the operator V(j) admits the representation

V(j) =
∑
�∈Z+

�P(j)
� , (5.7)

understood in the sense of the strong convergence.
For each j the operator V(j) acts only upon variables zl entering in z(j) and is the identity operator in 

all other variables. Therefore, these operators commute. For each fixed j, the operator V(j) has spectral 
structure similar to the one we described in Sect. 4 for a ball, with the only difference that this ball has 
dimension kj instead of n. Therefore, the spectrum of V(j) consists of isolated points � ∈ Z+. Namely, the 
spectral subspace of V(j), corresponding to the eigenvalue � is spanned by the eigenfunctions of the form

f
(j)
� (z) = z

α(j)
(j) h(z̃(j)) (5.8)

with some multiindex α(j) ∈ Zkj

+ , |α(j)| = � and an analytic function h of the complementing variables z̃(j). 
The calculation, similar to the one in (3.5) shows that the function f (j)

� (z) of the form (5.8) belongs to the 
Bergman space Aλ(Bn) if and only if the function h(z̃(j)) of the complementing variables belongs to the 
Bergman space Aλ+�+kj

(Bn−kj ) in the ball of a smaller dimension n − kj , with equivalence of norms.
Finite linear combinations of elements in different subspaces H(j)

� are dense in Aλ(Bn), therefore there are 
no other points of spectrum of V(j). Each point � ∈ Z+ is thus an eigenvalue of V(j) of infinite multiplicity, 
and P(j)

� is the spectral projection of V(j) corresponding to the eigenvalue � ∈ Z+.
The Spectral Theorem representation of the operator V(j) is therefore

V(j) =
∫
R

ηjdEj(ηj),

where the resolution of identity Ej(ηj) ≡ Ej((−∞, ηj ]) is given by

Ej(ηj) =
∑

P(j)
� .
�≤η
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Having done this for all j = 1, 2, ..., m, we construct the joint spectral measure on Rm using E1, E2,..., 
Em, as described in Sect. 2. The measure E is supported on the integer lattice Zm

+ , while the set Rm \ Zm
+

has zero E-measure. Note that, for each j = 1, 2, ..., m, we have also

V(j) =
∫

Rm

ηjdE(η1, ..., ηm),

where E(ηηη) is the resolution of identity corresponding to the measure E,

E(ηηη) =
∏
j

Ej(ηj).

The Functional Calculus implies now

Proposition 5.1. Given an E-measurable almost everywhere finite function ψ on Rm, the operator

ψ(V) = ψ(V(1), . . . , V(m)) :=
∫

Rm

ψ(η1, . . . , ηm) dE(η1, . . . , ηm)

is well defined and normal on its domain

Dψ =

⎧⎨⎩f ∈ Aλ(Bn) :
∫

Rm

|ψ(ηηη)|2 d〈E(ηηη)f, f〉 < ∞

⎫⎬⎭ , ηηη = (η1, . . . , ηm).

Moreover the operator ψ(V) is bounded, and thus defined on the whole Aλ(Bn), if and only if the function 
ψ is E-essentially bounded.

Representation (2.4) implies that

ψ(V) ≡ ψ(V(1), . . . , V(m)) =
∫

σ(V)

ψ(ηηη) dE(ηηη) =
∑

s∈Zm
+

ψ(s)Ps.

Corollary 5.2. The set of all operators {ψ(V)}, defined by (the classes of equivalence) of E-measurable 
essentially bounded functions ψ with ψψψψψψψψψ = {ψ(s)}s∈Zm

+ ∈ �∞(Zm
+ ) constitutes the algebra R(k) of bounded 

mutually commuting operators in Aλ(Bn), and the mapping

OpE : ψ �−→ ψ(V) =
∑

s∈Zm
+

ψ(s)Ps,

defines the isomorphism

OpE : �∞(Zm
+ ) −→ R(k) ⊂ B(Aλ(Bn))

of commutative C∗-algebras.

We return now to Toeplitz operators with k-quasi-radial symbols. By (5.5), a Toeplitz operator Ta, with 
k-quasi-radial symbol a = a(r(1), r(2), . . . , r(m)), admits the representation

Ta =
∑

m

γa,k,λ(s)Ps,

s∈Z+
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where the coefficients γa,k,λ(s) are given by (5.3). Thus, by Corollary 5.2,

Ta = ψa(V(1), V(2), . . . , V(m)), (5.9)

where ψa belongs to the equivalence class of essentially bounded E-measurable functions on Rm, defined by 
the sequence ψψψψψψψψψa = {ψa(s)}s∈Zm

+ , with ψa(s) = γa,k,λ(s).
In what follows we add some important properties and characteristics of the objects under study based 

on the representation theory. Our considerations are based upon [10], where all definitions, details, and 
proofs can be found.

Recall, that a unitary representation πλ : U(n) → B(Aλ(Bn)) of the group U(n) of all n × n unitary 
matrices on the weighted Bergman space Aλ(Bn) is given by

πλ(U)(f) = f ◦ U−1, U ∈ U(n).

For a closed subgroup H of U(n), we denote by πλ|H the restriction of the representation πλ to the group 
H. Then, an operator T ∈ B(Aλ(Bn)) intertwines the restriction πλ|H, equivalently T is H-equivariant, if

Tπλ(U) = πλ(U)T, for all U ∈ H.

We will denote by EndH(Aλ(Bn)) the algebra of all such intertwining, or H-equivariant, operators. It is 
well known that EndH(Aλ(Bn)) is a von Neumann algebra.

For our partition k = (k1, ..., km), let

H = U(k) := U(k1) × . . .× U(km),

realized as a block diagonal subgroup of U(n).
Note that [10, Proposition 4.5] demonstrates the importance of the first orthogonal sum decomposition 

in (5.4). We give an equivalent formulation of this proposition, in which the summands are defined in terms 
of basis elements of Aλ(Bn)), while the original formulation defines them in terms of certain polynomials 
in z.

Proposition 5.3 ([10, Proposition 4.5]). Given a partition k = (k1, ..., km), the isotypic decomposition of the 
restriction πλ|U(k) is

Aλ(Bn) =
⊕
s∈Zm

+

Hs. (5.10)

Furthermore, this isotypic decomposition is multiplicity-free.

This means that the restriction πλ|U(k) onto each summand Hs is irreducible, and each two summands in 
the above orthogonal sum decomposition are non-isomorphic irreducible U(k)-modules. Then by the Schur 
Lemma, each U(k)-equivariant operator preserves isotypic components in (5.10), acting on each Hs as the 
multiplication by a scalar operator. This means that each operator T ∈ EndU(k)(Aλ(Bn)) must have the 
form

T =
∑

s∈Zm
+

γ(s)Ps,

where, recall, Ps : Aλ(Bn)) → Hs is the orthogonal projection.
An equivalent reformulation of [10, Proposition 4.9] says now
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Proposition 5.4 ([10, Proposition 4.9]). Given a partition k = (k1, ..., km), the mapping

�∞(Zm
+ ) −→ EndU(k)(Aλ(Bn))

defined by

{γ(s)}s∈Zm
+ �−→

∑
s∈Zm

+

γ(s)Ps

is the isomorphism of the C∗-algebras which are von Neumann algebras at the same time.

The results of Corollary 5.2 and Proposition 5.4 lead now to the following statement.

Proposition 5.5. The C∗-algebra R(k) = OpE(�∞(Zm
+ )) coincides with the von Neumann algebra

EndU(k)(Aλ(Bn)) of all bounded U(k)-equivariant operators. Each operator T ∈ EndU(k)(Aλ(Bn)) is thus 
a certain function of the commuting operators V1, V2, . . . , Vm,

T = ψ(V(1), V(2), . . . , V(m)),

where ψ belongs to the equivalence class of essentially bounded E-measurable functions, defined by the 
sequence ψψψ = {ψ(s)}s∈Zm

+ , with

ψ(s) = tr(T |Hs
)

dimHs
.

Now instead of a fixed partition k = (k1, k2, . . . , km), we consider the finite set K of all possible partitions 
of n into positive integers. We introduce the partial order on K as

k′ = (k′1, k′2, . . . , k′m′) � k′′ = (k′′1 , k′′2 , . . . , k′′m′′)

if and only if for each j = 1, 2, . . . , m′, k′j is a sum, after a re-numeration, of certain consecutive elements of 
the partition k′′,

k′j = k′′pj
+ k′′pj+1 + . . . + k′′pj+qj−1,

or if and only if for each j = 1, 2, . . . , m, after a reordering,

z′(j) = (z′′pj
, z′′pj+1, . . . , z

′′
pj+qj−1),

equivalently if and only if U(k′′) ⊆ U(k′).
With respect to this partial order, k = (n) and k = (1, 1, . . . , 1) are the minimal and the maximal 

elements in K, respectively. Furthermore, this order implies the order by inclusion of the von Neumann 
algebras EndU(k)(Aλ(Bn)) of the sets of bounded U(k)-equivariant operators:

EndU(k′)(Aλ(Bn)) ⊆ EndU(k′′)(Aλ(Bn)) if and only if k′ � k′′.

Note that the subalgebras T (k) of EndU(k)(Aλ(Bn)), generated by Toeplitz operators with bounded symbols, 
maintain the same order,

T (k′) ⊆ T (k′′) if and only if k′ � k′′.
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6. Degenerate elliptic commutative C∗-algebras

In the preceding sections we have demonstrated that the size of the set of commuting operators involved 
in the spectral representation of Toeplitz operators with a certain class of symbols depends on the size of 
this set of symbols: the larger is the algebra of symbols, the more operators are needed for the spectral 
representation. In this last section we discuss two examples demonstrating to what extent this rule applies 
to classes of symbols in a more general setting.

The symbols to be considered are characterized by their (essential) dependence only on a part of variables 
z(j) (or only on an incomplete set of their combinations), therefore, we call them degenerate elliptic. Such 
symbols and the corresponding Toeplitz operators were studied, in particular, in [1,4], see also [11, Section 6], 
where they are present under the name β-quasi-elliptic symbols.

As before, we rearrange (via an appropriate biholomorphism of Bn) the coordinates of z = (z1, ..., zn) ∈ Bn

in the most convenient order for the further description. Thus, without loss of generality, we will use the 
following setup.

Let, as in Section 5, k = (k1, k2, ..., km) be a partition of n, with correspondingly z = (z(1), . . . , z(m−1),

z(m)). We denote by k′ the partition k′ = (k1, k2, ..., km′), m′ = m −1 of the integer n′ = n−km. The symbols 
under consideration depend on the first m′ radii r(j) = z(j), j = 1, . . . , m − 1, where r′ = (r(1), . . . , r(m−1)). 
The dependence on r′′ ≡ r(m) = |z(m)| is realized, in our first example, via the presence of the weight,

aw(z) = aw(r′, r′′) = a

(
r(1)√

1 − |r′′|2
, . . . ,

r(m′)√
1 − |r′′|2

)
. (6.1)

Here, although all variables are present, the symbol is, actually, a function of m′ variables via the superpo-
sition.

In the second example, the symbols are independent of z(m):

a(z) = a(r(1), . . . , r(m−1)) = a(r′). (6.2)

Of course, both classes of symbols belong to the set of k-quasi-radial ones, so the general spectral repre-
sentation involving m operators V(j) is valid. Since each of these classes is considerably smaller than the 
algebra of k-quasi-radial symbols, one might expect that the spectral representation uses fewer operators.

6.1. Weighted k′-quasi-radial symbols

We consider the algebra Sw(k′) of all bounded symbols aw(z) in (6.1) and call them weighted k′-quasi-
radial symbols.

Since each weighted k′-quasi-radial symbol is quasi-radial for our k = (k′, km), the corresponding Toeplitz 
operator is diagonal,

Taw
eα(z) = γaw,k′,λeα(z),

where, by (5.3), for a multi-index α = (α(1), . . . , α(m−1), α′′) ∈ Zn
+,

γaw,k′,λ(α) = 2m Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m′

j=1(kj − 1 + |α(j)|)!(km − 1 + |α′′|)!

×
∫
m

aw(r(1), ..., r(m′), |r′′|)(1 − |r|2)λ
m−1∏
j=1

r(j)
2|α(j)|+2kj−1dr(j)r

′′2|α′′+2km−1
dr′′
τ(B )
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= 2m Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m−1
j=1 (kj − 1 + |α(j)|)!(km − 1 + |α′′)!

1∫
0

r′′
2|α′′|+2km−1

dr′′ · I,

with

I =
∫

|r′|2<1−|r′′|2

aw(r(1), ..., r(m−1), |r′′|)(1 − |r′|2 − |r′′|2)λ
m−1∏
j=1

r(j)
2|α(j)|+2kj−1dr(j).

Making the change of variables r(j) =
√

1 − |r′′|2uj , |u| =
√

u2
1 + ... + u2

m−1, υj = u2
j we have

I =
∫

τ(Bm−1)

a(u(1), ..., u(m−1))(1 − |r′′|2)λ+|α′|+n′
(1 − |u|2)λ

m−1∏
j=1

uj
2|α(j)|+2kj−1duj

= 21−m(1 − |r′′|2)λ+|α′|+n′
∫

ΔΔΔm′

a(
√
υ1, ...,

√
υm′)(1 − υ1 − ...− υm−1)λ

m′∏
j=1

υj
|α(j)|+kj−1dυj .

Thus, finally,

γaw,k′,λ(α) = 2−1 Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m−1
j=1 (kj − 1 + |α(j)|)!(km − 1 + |α′′|)!

×
1∫

0

(1 − |r′′|2)λ+|α′|+n′
r′′

2|α′′+2km−1
dr′′

×
∫

ΔΔΔm′′

a(
√
υ1, ...,

√
υm−1)(1 − υ1 − ...− υm−1)λ

m−1∏
j=1

υj
|α(j)|+kj−1dυj

= Γ(n′ + |α′| + λ + 1)
Γ(λ + 1)

∏m−1
j=1 (kj − 1 + |α(j)|)!

×
∫

ΔΔΔm−1

a(
√
υ1, ...,

√
υm−1)(1 − υ1 − ...− υm−1)λ

m−1∏
j=1

υj
|α(j)|+kj−1dυj .

The most important result of these calculations is that the coefficient γaw,k′,λ(α) does not in fact depend 
on the last component α′′ = αm since all factors depending on α′′ cancel,

γaw,k′,λ(α) = γaw,k′,λ(|α(1)|, ..., |α(m−1)|). (6.3)

Therefore, following Section 5, for a given multi-index s = (s1, . . . , sm−1) ∈ Zm−1
+ , we can define the infinite 

dimensional subspace Hs in Aλ(Bn) as

Hs = span {eα : |α(j)| = sj , j = 1, . . . ,m− 1}.

Let Ps : Aλ(Bn) −→ Hs be the orthogonal projection.
In this way, given a weighted k′-quasi-radial symbol aw, the equality (5.5) implies the representation

Taw
=

∑
m′

γaw,k′,λ(s)Ps,
s∈Z+
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understood in the sense of the strong convergence. The difference with the, formally similar, expression in 
Section 5 consists in the fact that now the projections Ps are infinite-dimensional.

The rotation operators V(j), j = 1, . . . , m − 1 are defined in the same way as before, they commute, and 
we arrive at the spectral representation using a smaller set of generating operators, just as we expected.

Ta = ψa(V(1), V(2), . . . , V(m′)), (6.4)

where V(j) are given by (5.6) and ψa belongs to the equivalence class of essentially bounded E-measurable 
functions on Rm′ , defined by the sequence ψψψa = {ψa(s)}s∈Zm′

+
, with ψa(s) = γaw,k′,λ(s).

An essential difference is that the reasoning in Sect. 3 proving the compactness of the Toeplitz operator 
under the assumption that ψ(s) → 0 as |s| → 0 breaks down, again, due to the infiniteness of the multiplicity 
of each point of the joint spectrum. Thus, such Toeplitz operators can never be compact.

6.2. k′-quasi-radial symbols

Using the same notations as in the Section 6.1, we consider now the symbols satisfying (6.2). We denote 
by S(k′) the algebra of such symbols.

For a multiindex α = (α′; α(m)) = (α(1), . . . , α(m−1); α′′) we calculate, again, the action of the Toeplitz 
operator with k′-quasi-radial symbol upon the basic element eα. This calculation follows the same way as 
for general quasi-radial symbols, however, some simplifications are present.

Toeplitz operators with symbols a ∈ S(k′) are diagonal in the basis {eα(z}) = {εα′,α′′(z′, z′′)} and act 
on such basis elements as

Taeα(z) = γa,k′,λeα(z),

where, by (5.3),

γa,k′,λ(α) = 2n′ Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m′

j=1(kj − 1 + |α(j)|)!(km − 1 + |α′′|)!

×
∫

τ(Bn)

a(r(1), ..., r(m−1))(1 − |r|2)λ
m−1∏
j=1

r(j)
2|α(j)|+2kj−1dr(j) r

′′ 2|α′′|+2km−1dr′′

= 2n′ Γ(n + |α| + λ + 1)
Γ(λ + 1)

∏m′

j=1(kj − 1 + |α(j)|)!(km − 1 + |α′′|)!

×
∫

τ(Bm−1)

a(r(1), ..., r(m−1))
m−1∏
j=1

r(j)
2|α(j)|+2kj−1dr(j) · Iα′′(|r′|),

with

I =
∫

|r′′|2<1−|r′|2

(1 − |r′|2 − |r′′|2)λr′′2|α
′′|+2km−1

dr′′.

Making the change of variables r′′ =
√

1 − |r′|2u, we have

I =
1∫
(1 − |r′|2)λ+|α′′|+km(1 − |u|2)λu2|α′′|+2km−1du =
0
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2−1(1 − |r′|2)λ+|α′′|+km

1∫
0

(1 − υ)λυ|α′′|+km−1dυ =

2−1(1 − |r′|2)λ+|α′′|+km
Γ(λ + 1)(|α′′| + km − 1)!

Γ(λ + |α′′| + km + 1) .

Thus, finally,

γa,k′,λ(α) = 2m′ Γ(n + |α| + λ + 1)
Γ(λ + |α′′| + n − n′ + 1)

∏m′

j=1(kj − 1 + |α(j)|)!

×
∫

τ(Bm−1)

a(r(1), ..., r(m−1))(1 − |r′|2)λ+|α′′|+n′′
m=1∏
j=1

r(j)
2|α(j)|+2kj−1dr(j)

= Γ(n + |α| + λ + 1)
Γ(λ + |α′′| + n − n′ + 1)

∏m−1
j=1 (kj − 1 + |α(j)|)!

×
∫

τ(Δm−1)

a(√ρ(1), ...,
√
ρ(m−1))(1 − ρ(1)...− ρ(m−1))λ+|α′′|+n′′

m−1∏
j=1

ρ(j)
|α(j)|+kj−1dρ(j).

Observe that, in fact,

γa,k′,λ(α) = γa,k′,λ(|α(1)|, ..., |α(m−1)|, |α′′|) (6.5)

Following Section 5, for a given multi-index s = (s1, . . . , sm−1, sm) ∈ Zm
+ , we define the finite dimensional 

subspace Hs in Aλ(Bn) as

Hs = span {eα : |α(j)| = sj , j = 1, . . . ,m′, |α′′| = sm},

and let Ps : Aλ(Bn) −→ Hs be the orthogonal projection.
Further, given a k′-quasi-radial symbol a, (5.5) implies the representation

Ta =
∑

s∈Zm
+

γa,k′,λ(s)Ps, (6.6)

understood in the sense of the strong convergence. Then Corollary 5.2 together with (5.9) implies that

Ta = ψa(V(1), V(2), . . . , V(m)), (6.7)

where V(j) are given by (5.6) and ψa belongs to the equivalence class of essentially bounded E-measurable 
functions on Rm, defined by the sequence ψa = {ψa(s)}s∈Zm

+ , with ψa(s) = γa,k′,λ(s).
This calculation shows that for the spectral representation of Toeplitz operators with symbol in S(k′) we 

need the same system of m operators V(j) as for the algebra of general quasi-radial symbols. This quantity 
cannot be reduced since the coefficients γa,k′,λ(α) depend on all components of the multi-index α, including 
α′′, unlike the case of weighted k′-quasi-radial symbols, where the coefficients are independent of α′′. This 
dependence is quite implicit, therefore it seems to be impossible to describe in a transparent way the set 
of those sequences γ(α) which can serve as the function ψ for this class of symbols. The question of the 
compactness of Toeplitz operators of this class seems to be rather hard as well.
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6.3. Discussion: a more general setting

To explain the reason of results in cases presented in the section, we embed them in a more general 
common setting. In both cases we started with a function a depending on k′ = m − 1 radii r(1),...,r′(m−1). 
Formally, the qualitative difference between these two cases is the following. In the first case, we include 
the dependence of |z′′| in the arguments of a. Here, both the resulting sequence γ (6.3) and the spectral 
representation of the corresponding Toeplitz operator (6.4) depend only on the first group of k′ = m − 1
arguments, |α(1)|,..., |α(m−1)| and V(1),..., V(m−1), respectively. In the second case, the symbol still depends 
only on m − 1 arguments, however, both the resulting sequence γ in (6.5) and the spectral representation 
of the corresponding Toeplitz operator (6.7) depend on the whole group of arguments, |α(1)|,..., |α(m−1)|, 
|α′′| and V(1),..., V(m), respectively.

To understand the reason for such differences, it is instructive to combine the above two cases in one more 
general setup. We start with a partition k = (k′, k′′) of the number n, such that the partition k′ consists of 
m′ elements, k′1 + ... + k′m′ = n′ and k′′ consists of m′′ elements, k′′1 + ... + k′′m′′ = n′′, with n′ + n′′ = n. 
Correspondingly, we divide coordinates z = (z1, ..., zn) ∈ Bn in groups, z = (z′, z′′), where

z′ =
(
z′(1), . . . , z

′
(m′)

)
, with z′(j) =

(
z′k′

1+...+k′
j−1+1, . . . , z

′
k′
1+...+k′

j

)
∈ Ck′

j

z′′ =
(
z′′(1), . . . , z

′′
(m′′)

)
, with z′′(j) =

(
z′′k′′

1 +...+k′′
j−1+1, . . . , z

′′
k′′
1 +...+k′′

j

)
∈ Ck′′

j .

The following considerations will be based on the results of [1, Sections 2 and 3], where all proves and details 
can be found.

Recall that the standard orthonormal basis of A2
λ(Bn) is formed, see (2.5), by the weighted monomials

eλα(z) =

√
Γ(n + |α| + λ + 1)
α!Γ(n + λ + 1) zα.

We will use also the weighted Bergman spaces A2
λ(Bn′) and A2

λ+p+n′(Bn′′), with p ∈ Z+, whose bases 
elements we denote by eλα′(z′) and eλ+p+n′

α′′ (z′′), respectively. For each multi-index β = (β1, · · · , βm′) ∈ Zm′
+

we introduce the Hilbert space

Hβ := span
{
eλα(z) : α = (α(1), · · · , α(m′), α

′′) ∈ Zn
+ and |α(j)| = βj , j = 1, ...,m′} .

Then we have the following orthogonal decomposition

A2
λ(Bn) =

⊕
β∈Zm′

+

Hβ .

A similar orthogonal decomposition can be made for the Bergman space A2
λ(Bn′):

A2
λ(Bn′

) =
⊕

β∈Zm′
+

Hβ ,

where, for each β = (β1, ..., βm′) ∈ Zm′
+ , the finite dimensional space Hβ is defined as

Hβ = span
{
eλα′(z′) : α′ = (α(1), · · · , α(m′)) ∈ Zn′

+ and |α(j)| = βj , ∀ j = 1, ...,m′
}
.

Following [1, Formula (2.6)], for a multi-index β = (β1, ..., βm′) ∈ Zm′
+ , we introduce the isometric isomor-

phism
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uβ : Hβ −→ Hβ ⊗A2
λ+|β|+�(Bn′′

),

defined on the basis elements eλα, α = (α′, α′′) ∈ Zn′
+ × Zn′′

+ , of Hβ by

uβ : eλα(z) �−→ eλα′(z′) ⊗ e
λ+|β|+n′

α′′ (z′′).

Next we introduce the Hilbert space

H =
⊕

β∈Zm′
+

Hβ , with Hβ = Hβ ⊗A2
λ+|β|+n′(Bn′′

)

and the unitary operator

U =
⊕

β∈Zm′
+

uβ : A2
λ(Bn) =

⊕
β∈Zm′

+

Hβ −→ H =
⊕

β∈Zm′
+

Hβ ⊗A2
λ+|β|+n′(Bn′′

),

acting component-wise with respect to the direct sum decomposition.

Proposition 6.1 ([1, Proposition 2.1]). The unitary operator U generates an isometric isomorphism between 
the spaces

A2
λ(Bn) =

⊕
β∈Zm′

+

Hβ and H =
⊕

β∈Zm′
+

Hβ ⊗A2
λ+|β|+n′(Bn′′

).

We return now to the symbols (in notations of [1, Section 3]) of Toeplitz operators to be considered. 
Given a function a ∈ L∞(Bn′) we denote by fa the function

aw(z) ≡ fa(z) ≡ fa(z′, z′′) = a

(
z′√

1 − |z′′|2

)
∈ L∞(Bn).

Similarly, for a function b ∈ L∞(Bn′′), we define the function fb(z) = fb(z′, z′′) = b(z′′) ∈ L∞(Bn). In this 
notation, for the Toeplitz operators Tλ

fa
and Tλ

fc
we have, respectively,

γfa,k′,λ(α) = γaw,k′,λ(α′) = Γ(n′ + |α′| + λ + 1)
Γ(λ + 1)

∏m′

j=1(k′j − 1 + |α′
(j)|)!

×
∫

ΔΔΔm′

a(
√
υ1, ...,

√
υm′)(1 − υ1 − ...− υm′)λ

m′∏
j=1

υj
|α′

(j)|+k′
j−1dυj ,

γfb,k′′,λ(α) = γb,k′′,λ(α′, α′′) = Γ(n + |α| + λ + 1)
Γ(λ + |α′| + n′ + 1)

∏m′′

j=1(k′′j − 1 + |α′′
(j)|)!

×
∫

τ(Δm′′ )

a(√ρ1, ...,
√
ρm′′)(1 − ρ1...− ρm′′)λ+|α′|+n′

m′′∏
j=1

ρj
|α′′

(j)|+k′′
j −1dρj .

This calculation leads to the following result.

Proposition 6.2 ([1, Corollary 3.5]). The unitary operator U realizes the unitary equivalence of Toeplitz 
operators Tλ

fa
and Tλ

fb
acting on A2

λ(Bn) with the following operators acting on H =
⊕

β∈Zm′
+

Hβ ⊗
A2

′(Bn′′):
λ+|β|+n
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UTλ
faU

−1 =
⊕

β∈Zm′
+

Tλ
a |Hβ

⊗ I,

UTλ
fb
U−1 =

⊕
β∈Zm′

+

I ⊗ Tλ+|β|+n′

b .

Observe now that, for each fixed α′ = (α′
(1), ..., α

′
(m′)),

Tλ
a |Hα′ = γaw,k′,λ(|α′

(1)|, ..., |α′
(m′)|)I,

so that Tλ
a |Hα′ = γaw,k′,λ(α′)I = γaw,k′,λ(|α′

(1)|, ..., |α′
(m′)|) is a scalar operator, and the Toeplitz operator 

Tλ+|β|+n′

c , acting on A2
λ+|β|+n′(Bn′′), is unitary equivalent with the multiplication operator γb,k′′,λ+|β|+n′I, 

where the entries in the sequence γb,k′′,λ+|β|+n′ are given by

γb,k′′,λ+|β|+n′(α′′) = γfb,k′′,λ(α) = γb,k′′,λ(|α′|, |α′′
(1)|, ..., |α′′

(m′′)|).

That explains the difference in the structure of the operators Tλ
fa

and Tλ
fb

, which correspond to the above 
two cases, the special properties of the corresponding coefficients γ’s, and, as a consequence, the differences 
in the spectral representations of the Toeplitz operators in question.
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