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Intended Human Arm Movement Direction Prediction using Eye Tracking
Julius Pettersson and Petter Falkman

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

ABSTRACT
Collaborative robots are becoming increasingly popular in industries, providing flexibility and 
increased productivity for complex tasks. However, the robots are still not interactive enough 
since they cannot yet interpret humans and adapt to their behaviour, mainly due to limited sensory 
input. Prediction of human movement intentions could be one way to improve these robots. This 
paper presents a system that uses a recurrent neural network to predict the intended human arm 
movement direction, solely based on eye gaze, utilizing the notion of uncertainty to determine 
whether to trust a prediction or not. The network was trained with eye tracking data gathered 
using a virtual reality environment. The presented deep learning solution makes predictions on 
continuously incoming data and reaches an accuracy of 70.7%, for predictions with high certainty, 
and correctly classifies 67.89% of the movements at least once. The movements are, in 99% of the 
cases, correctly predicted the first time, before the hand reaches the target and more than 24% 
ahead of time in 75% of the cases. This means that a robot could receive warnings regarding in 
which direction an operator is likely to move and adjust its behaviour accordingly.
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1. Introduction

Collaborative robots are becoming increasingly pop-
ular in industries (Makrini et al. 2017). The advantages 
of having humans and robots in the same workspace 
interacting with each other are many, such as 
improved flexibility (Krüger, Lien, and Verl 2009) and 
increased productivity for complex tasks (Krüger, Lien, 
and Verl 2009). However, the robots are not interac-
tive enough since they cannot interpret humans and 
adapt to their swift changes in behaviour in a way that 
another human would. The main reason is that the 
collaborative robots today are limited in their sensory 
input, which makes the human responsible for staying 
out of the way.

Human intention prediction can be achieved 
using camera images and probabilistic state 
machines (Awais and Henrich 2010) with the goal 
of determining between explicit and implicit 
intent. It can also be achieved using 3D-vision, 
speech recognition, and wearable sensors with 
the objective of predicting intention in hand-over 
tasks (Wang et al. 2022). It was proposed by 
Mainprice and Berenson (2013) to use a Gaussian 

Mixture Model and data from a Kinect camera to 
predict human motion, reporting about 80% classi-
fication accuracy, on eight movement classes, after 
60% of the trajectory has been observed. Other 
ways are to monitor eye gaze to predict an upcom-
ing decision (Huang and Mutlu 2016) for robot 
control or analyze bioelectric signals, such as elec-
tromyography, to predict human motion (Luzheng 
et al. 2019). In the paper by Haji Fathaliyan, Wang 
et al. (2018) it is shown that eye gaze can be used 
to recognize actions related to pouring and mixing 
a powder-based drink. Shi, Copot, and Vanlanduit 
(2021) presents a way of using Earth Mover’s 
Distance to calculate the similarity score between 
the hypothetical gazes at objects and the actual 
gazes to determine if the human visual intention is 
on the object or not. It was shown by Ravichandar, 
Harish, and Dani (2016) that is possible to use 
a Kinect camera to capture eye gaze and arm 
movements, and use that to predict the goal loca-
tion of a reaching motion, reporting a success rate 
of above 80% after 40% of the trajectory has been 
observed. The work by Gomez Cubero and Rehm 
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(2021) shows that it is possible to use an LSTM- 
based neural network, together with a wearable 
eye tracker, to predict intention regarding which 
object is about to be picked out of three objects in 
a virtual reality environment. They achieve an accu-
racy between 70% and 80% for test sequences that 
are 3–14 s long using the gaze projected on the 
surface where the objects are placed.

Other fields that have been rapidly expanding and 
could make collaborative robots smarter through an 
understanding of the operators behaviour and inten-
tions are; virtual reality, eye tracking, gathering and 
management of large datasets, and artificial 
intelligence.

Eye-tracking (ET) is an objective, painless, and 
noninvasive (Gould et al. 2001) way to gather 
more insight into how a person is reasoning from 
measurements and analysis of where the person is 
directing their gaze (Karatekin 2007). It is possible 
to gain insight into the alternatives a person is 
considering or what strategy is used while per-
forming a task, based on what a person is looking 
at. There are three types of interesting eye move-
ments when observing visual attention: fixation, 
saccades, and smooth pursuits (Duchowski 2017). 
ET has, for example, been used in an industrial 
context with gaze as machine control input 
(Jungwirth et al. 2018), to evaluate new ways to 
facilitate human – robot communication (Tang, 
Webb, and Thrower 2019), analyze the navigational 
intent in humans and how they interact with 
autonomous forklifts (Chadalavada et al. 2020), 
and investigate pedestrians’ understanding of an 
autonomous vehicle’s intention to stop at 
a simulated road crossing (Hochman, Parmet, and 
Oron-Gilad 2020).

Virtual Reality (VR) can be described as 
a technology through which visual, audible, and hap-
tic stimuli is able to give the user a real-world experi-
ence in a virtual environment (Dahl et al. 2017). 
Benefits such as being able to provide more relevant 
content and present it in a suitable context (Rizzo 
et al. 2004) are reasons to promote the use of VR. It 
can, for example, be used when making prototypes 
(Abidi et al. 2016), to train operators in assembly (Al- 
Ahmari et al. 2016), and improve remote maintenance 
(Aschenbrenner et al. 2016).

VR makes it possible to have an all-in-one sys-
tem for the gathering of movement and interac-
tion data where the developer has full control over 
the data and has the ability to add or remove 
visual and audible distractions. VR also removes 
the risk of injuries when the user interacts with 
industrial equipment in the VR environment (VRE).

The use of modern technologies such as ET and 
VR, therefore, make it possible to collect larger 
amounts of data, with higher accuracy, and at 
a higher pace than before (Pettersson et al.  
2018). These large volumes of data, created at 
high speed, and with great variety (Andrew et al.  
2012), is referred to as Big Data. One way to pro-
cess this data is through the use of an area of 
artificial intelligence called deep machine learning 
(Samek, Wiegand, and Müller 2017). Big data and 
artificial intelligence has been shown to be impor-
tant tools to improve industrial manufacturing 
(Morariu et al. 2018; Nagorny et al. 2017; Wang 
et al. 2018).

Combining these areas to increase the intelligence 
of the collaborative robots can be broken down into 
the following three stages:

S1: Movement Direction Classification

Deep machine learning requires large amount of 
data to train the neural networks. The first step is 
therefore to create a virtual, measurable environ-
ment that is capable of gathering all the necessary 
data. The environment has to limit distractions and 
ambiguous stages to ensure that it is possible to 
evaluate any results and draw conclusions using 
domain knowledge. The end goal of the first 
stage is to be able to classify the movement direc-
tion of the test participant upon completion of the 
test. A solution to this stage has been provided by 
Pettersson and Falkman (2020).

S2: Fixed Movement Direction Prediction

The goal of the second stage is to be able to predict 
the human movement direction angle in the horizon-
tal plane, ahead of time, based solely on a set of 
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historical gaze data. This was achieved by Pettersson 
and Falkman (2021) at 62.50% accuracy for a fixed 
timestep ahead of ,500 ms.

S3: Dynamic Movement Intention Prediction

Finally, the third stage is to be able to predict the 
intended movement direction of a test participant 
ahead of time in a dynamic online fashion. This 
means that the system should be able to handle 
a continuous stream of data along with being 
able to make predictions on movement sequences 
of different length. In this stage it is important to 
incorporate uncertainty estimation regarding the 
network’s performance in order to later be able to 
safely utilize the intended functionality in colla-
borative manufacturing. The implementation of 
a real-world application could later be achieved 
using the same ET technology mounted to the 
safety glasses that the operator already wears.

The contribution of this paper is a system that 
reaches one important milestone in the work 
towards a solution to the third stage (S3). It is 
achieved through the development of a recurrent 
neural network that is able to continuously predict 
the intended human arm movement direction, 
solely based on eye gaze, ahead of the arm move-
ment being completed. The developed neural net-
work provides estimates of its own uncertainty, 
which is used to determine whether a prediction 
should be trusted or not. The goal of predicting 
the direction that a human is about to move/is 
moving their hand was separated into the follow-
ing two objectives:

● Primary - the main goal is to determine the 
discrete horizontal direction corresponding to 
the box that was clicked,

● Secondary - the secondary objective is to distin-
guish between whether the movement occurred 
on the upper or lower level of boxes.

This work is based on adjustments and improve-
ments of the VR test case presented in (Pettersson 
and Falkman 2021), and the collection of new move-
ment data that was used to train the artificial neural 
network.

2. Preliminaries

This section provides brief descriptions of convolu-
tional neural networks, recurrent neural networks, 
and dropout as a Bayesian approximation, that are 
used to perform the human intention prediction.

Convolutional neural networks (CNNs) are one type 
of artificial neural networks (ANNs) that are more 
robust to shift, scale, and distortion invariance 
(LeCun et al. 1998) than fully connected (FC) net-
works, and are therefore better at detecting spatial 
and temporal features. It is achieved by convolving or 
sub-sampling the input to the layer with local recep-
tive fields (LeCun et al. 1998) (filters) of a given size [n 
x m]. Each filter has n number of trainable weights + a 
trainable bias and these are shared (LeCun et al. 1998) 
for all outputs of the filter.

Recurrent neural networks (RNNs) are a subgroup 
of ANNs that are used to process sequences of data 
(Goodfellow, Bengio, and Courville 2016). An RNN 
shares its weights across several timesteps 
(Goodfellow, Bengio, and Courville 2016) whereas 
a FC network would have separate weights for each 
part of a sequence. In an RNN, the current step is not 
only a function of its input but also depends on all the 
output states previous in time (Goodfellow, Bengio, 
and Courville 2016). Traditional RNNs tend to suffer 
from problems with exploding or vanishing error gra-
dients (Goodfellow, Bengio, and Courville 2016; 
Hochreiter and Schmidhuber 1997) that prohibits 
proper learning over longer time instances. Long 
Short-Term Memory (LSTM) cells (Hochreiter and 
Schmidhuber 1997) are designed to solve this pro-
blem using a constant error flow (Hochreiter and 
Schmidhuber 1997) the network, together with three 
gates that open and close in order to access it 
(Hochreiter and Schmidhuber 1997). The input gate 
determines when the internal state of the LSTM cell is 
affected by the input to the cell, the forget gate 
handles when the cell’s internal memory resets, and 
the output gate controls when the current state of the 
cell influences the error flow (Hochreiter and 
Schmidhuber 1997). An LSTM network may contain 
multiple cells and the network learns to control each 
individual gate (Hochreiter and Schmidhuber 1997) 
and cell.

Dropout is a deep machine learning method that is 
used to reduce overfitting (Hinton et al. 2012) by 
randomly ignoring, with probability p, each neuron 
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in a network layer every time a training case is pre-
sented to the network. The dropout method can be 
used to approximate Bayesian inference (Gal and 
Ghahramani 2016). It is achieved by enabling dropout 
at all times, not only during the training of the net-
work, which means that the network will also ran-
domly omit some neurons when making predictions, 
causing variation. The mean prediction and the model 
uncertainty can, according to Gal and Ghahramani 
(2016), be obtained by making N number of predic-
tions on the same data and they suggest that 
N 2 ½10; 1000� should give reasonable results. This 
way of using dropout provides a way to reason 
about model uncertainty that is easy to implement 
and less computationally expensive than alternative 
methods (Gal and Ghahramani 2016). They suggest 
using a probability p 2 ½0:1; 0:5� for dropping 
a neuron.

3. Experimental setup

This section will present the development of the VR 
environment, the test execution, the gathered data, 
and the way the data was processed, including selec-
tion of features and labels to train the ANN with.

3.1. Development of the VR test environment

The VR environment (VRE) will be visualized using the 
HMD and the two hand-held controllers that are part of 
the ‘Tobii Eye Tracking VR Devkit’ (Tobii 2020), which is an 
ET solution based on the HTC-Vive. The system is capable 
of tracking the position and orientation of the HMD and 
the hand held controllers. The eye gaze is tracked with 

Binocular dark pupil tracking at a frequency of 120 Hz. 
This type of eye-tracking is achieved by illuminating the 
eyes, off-axis compared to the cameras that are used to 
capture images of the reflected light as it bounces off the 
retina and exits the eye, causing the pupil to appear 
darker than the rest of the eye. The images are used to 
calculate a gaze direction vector based on the positional 
relationship between the cornea and the pupil. The ET 
can be performed in the entire 110° field of view of the 
HTC-Vive HMD (Tobii 2020), with an accuracy of ,0.5° 
and a delay of ,10 ms from the illumination of the eye 
until the data is available in the SDK. The eye tracker is 
individually calibrated to each test participant using 
a 5-point calibration strategy available in the SDK. The 
calibration is based on that the user is instructed, visually 
and audibly, to focus her/his gaze on 5 pre-defined 
points in the VRE and that gaze data is used in the SDK 
to calculate a 3D-model of the eye.

The 3D components in the project are modelled in 
the software Blender and implemented in a VRE using 
Unity, a game creation engine. Unity supports VR 
through Steam VR SDK and custom written scripts in 
C# that makes it possible to implement all the desired 
functionality from the SDK as well as the intended test 
logic.

The VRE designed to collect the data consists of four 
stages: language selection where the test participant 
selects whether the written instructions in the VRE 
should be given in Swedish or English, ET calibration, 
an information form where the participant enters age, 
gender, and whether they are right handed or not, and 
the last stage is the test itself. The test stage, Figure 1, is 
an alteration of the test in (Pettersson and Falkman  
2021).

Figure 1. A top-down view of the block placements, the radii r1; r2, a lit target box and the test participant reaching for the target. 
Note that the human is not actually visible in the VRE.
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The test starts with an even distribution of nine cubes 
each, at two different heights and radii, which allows for 
a wide range of movements in different directions. One 
additional box, #0, is positioned 30 cm in front of the 
participant at height h0 and acts as a neutral position 
close to the body. The height levels (h0, h1, h2), mea-
sured from the floor, and radii (r1, r2) are individually 
adjusted to each test person based upon a calibration 
procedure using the two controllers. The participant is 
instructed to raise their hands forward in three steps and 
click the touchpads at these locations to collect the 
different controller positions. The first step is to stand 
still with the head pointing forwards and the arms rest-
ing along the sides of the body, the second step is to 
raise the forearms to a horizontal level, pointing for-
wards, while keeping the elbows fixed against the 
sides of the body, and the third one is to fully extend 
the arms and raise them to a horizontal level, pointing 
forwards. The heights, h1 for the inner cubes and h2 for 
the outer ones, are calculated as the average distance to 
the floor from the controllers for the second and third 
position whereas h0 ¼ h1 � 0:1m. The radii, r1 for the 
inner semicircle and r2 for the outer one, are defined as 
the average distance along the z-axis between the con-
trollers and the HMD, as seen in Figure 1 where the black 
X corresponds to the HMD position. Note that the 
human is not actually visible in the VRE and that the 
participant’s only point of reference to their own body is 
the controller.

Each test starts with a warm-up sequence of move-
ments in random directions in order to make the parti-
cipant accustomed to the VRE. The warm-up is followed 
by a sequence of 76 movements using the right hand 
and 76 movements using the left hand. The sequence is 
randomized for everyone in a way that ensures balanced 
data and that all combinations are used.

The cubes are lit up one at a time, marked as the 
target box in Figure 1, and the task is to reach for the 
box that is lit and touch it while simultaneously press-
ing the touchpad on the controller to make the cube 
disappear. After a cube has disappeared, and a delay 
of 0.2 s, the next cube in the pre-defined sequence is 
lit. The delay is used as a way to force a slower pace 
throughout the test and data is collected during this 
time. The alterations of the test are:

● The previous test was considered too long and 
strenuous by the participants and was, therefore, 

halved in length, i.e. fewer number of movements 
in total.

● The test sequence was randomized as suggested 
in future improvements.

● Data is now collected during the short delays 
between the cubes appearing, this is necessary in 
order to be able to use and evaluate the developed 
network in a continuous manner that imitates 
a real-world system where perfect segments of 
data rarely are available.

● The sweeping motions were excluded due to the 
fact that the eye-hand movement connection is 
very different from the search and click beha-
viour that the random cubes induce.

The test is launched when the test participant presses 
the start button in the environment. Data is then 
collected, in the same manner as in (Pettersson and 
Falkman 2020, 2021), during the time between two 
pressed cubes and saved as one data sample. The 
data that is collected from each test participant, 
each test, and at each timestamp shown in Table 1 
are: the eye gaze direction vector for each eye 
(EyeDirection), the coordinate in the virtual room 
where the gaze hits (EyeHitpoint), which object is 
gazed upon (EyeHitObject) as well as the size and 
position of the pupils (PupilDiameter, Pupilposition). 
The head specific data that is collected are the posi-
tion (HeadPosition) and rotation (HeadRotation), and 
the same data is also obtained from the two control-
lers that are held one in each hand 
(ControllerPosition, ControllerRotation). The general 
information about the user includes an anonymous 
participant ID, age, gender, language used, whether 
the person is right handed or not, as well as the date 
and time when the data was gathered.

3.2. Description of test execution

The data was collected in the VR-area of a laboratory 
at Chalmers University of Technology in Gothenburg. 
All test participants were given the same instructions 
regarding putting on the headset, calibrating the eye- 
tracker, entering the required information, perform-
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ing the height and reach calibration, starting the test, 
and the test specific instructions. The full set of 
instructions are as follows:

Calibration instructions
(1) Put on the headset and adjust it such that the 

displays are centered in front of the eyes.
(2) Receive a controller in each hand. The control-

lers are used to navigate the menus (using the 
laser pointer), touch the cubes during the test, 
and acknowledge all actions using the click 
function of the touchpad.

(3) Now it is time to:  
(a) Choose the desired language, either Swedish 

or English by clicking the corresponding flag 
using the laser pointer. 

(b) Calibrate the eye-tracker:

(i) Stand still with your head pointing forwards.

(ii) Press ‘Calibrate’ using the laser pointer.

(iii) Focus your gaze on the red dots that 
appear on the screen until they disappear, 
without moving your head.
(iv) Press ‘Done’ when the calibration is 
complete.

(c) Enter the required information using the laser 
pointer.
(d) Calibrate the height and reach parameters:

(i) Stand still with the head pointing forwards 
and the arms resting along the side of the 
body, then click the touchpad on the right 
controller.

(ii) Raise the right forearm to a horizontal 
level, pointing forwards, while keeping the 
elbow fixed against the side of the body 
then click the touchpad on the right 
controller.
(iii) Extend the right arm fully and raise it 
to a horizontal level, pointing forwards, 
then click the touchpad on the right 
controller.
(iv) Repeat steps 3.d.i-3.d.iii for the left 
arm. 
(v) Press ‘Done’ when the calibration is 
complete or ‘Re-calibrate’ to start over if 
something went wrong.

Test instructions
(1) Press the ‘Start’-button on the screen by reach-

ing towards it and touching it.
(2) (Reach for the cube that is lit up and touch it, 

press the touchpad while doing so to acknowl-
edge the completion of the movement.

(3) Wait for the next cube to light up.
(4) Repeat steps 2 & 3 until the cubes stop emitting 

light.
(5) Press the ‘Done’-button and remove the 

headset.

3.3. The obtained dataset

The dataset consists of 3192 data points obtained 
from 21 participants, collected at Chalmers 
University of Technology. The data consists of 
a majority of younger adults with a higher level of 
education. The gender distribution of the collected 
data is 24% female, 76% male and 0% other. The 
variations in age ranged from the youngest 

Figure 2. Histogram of the number of samples for all data points.
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participant being 23 and the oldest 30 years old with 
an average age of 26.

3.4. Filtering of the data

The same procedure for filtering as in (Pettersson and 
Falkman 2020, 2021) was applied in this paper and 
starts with the data from the tests being loaded into 
the computer memory from previous storage in files 
on the harddrive. The warm-up sequences, described 
in Section 3.1, were discarded before the visual 
inspection of the histogram in Figure 2 that shows 
the length of all data points, i.e. how many data 
samples that were collected from the time a box 
was lit until it was destroyed. It can be seen that the 
dataset contains a few outliers and the shape of the 
data in the histogram can be approximated using 
a Beta distribution, indicated by the black solid line 
in the figure. A threshold was set to the mean μð Þ plus 
three standard deviations (σ) of this distribution, as 
suggested by Pettersson and Falkman (2020), with the 
values from Table 2, such that a maximum of   μþ 3σ  
= 175þ 3 � 66 ¼ 373 data samples was allowed for 
the data point to be used in the classification.

The next step removed all samples, within each 
data point, that contained NaN values and replaced 
these with the gaze vector from the previous sample. 
NaN values appear when the ET fails to read the eye 
properly, the most common cause, according to 

Pettersson and Falkman (2020), being due to the 
participant blinking.

3.5. Selection of features and labels

The features, shown in Table 3, that were used as 
input to the network are the combined eye gaze 
direction vector ðx; y; zÞ, obtained as an average of 
the separate gaze vectors from each eye, the y- and z- 
coordinates of the HeadPosition, and the pupil dia-
meter, averaged between left and right eye. The x- 
coordinate of the HeadPosition was removed as it 
corresponds to the participant’s height, which is con-
stant during the entire duration of the test due to the 
fact that they remain standing and does, therefore, 
not provide much information to the network since 
the boxes are individually calibrated to the partici-
pant’s height and reach. The HeadRotations were 
removed since the focus point of the gaze is more 
interesting and because of the fact that the head is 
often rotated in conjunction with the eyes, therefore, 
providing limited information to the network. The 
reason that information such as EyeHitPoint and 
EyeHitObject are not used is because they require 
specific knowledge of all objects in the environment, 
something that is possible to know in a VRE but would 
limit the possibility to implement the system in a real- 
world scenario.

The boxes from 10 to 18 were re-labeled as 1–9 and 
coupled with a boolean, IsUpperLevel, that is set to 
one for these and zero for all others in order to fit the 
primary and secondary classification objectives 
described in Section 1.

The ID, age, and gender were used to manage the 
dataset as well as to provide some general informa-
tion, these were however not used to train the 
network.

3.6. Preprocessing of the data

The selected features mentioned in the previous sec-
tion, Table 3, were feature-wise normalized between 
½� 1; 1� in order to make sure that different value of 
magnitude between features does not bias the 

Table 1. Table of data parameters collected during the test.
Type Parameter

Participant ID
Participant Age
Participant Gender
Participant Date & time
Participant LanguageIsEnglish
Participant IsRightHanded
Test specific BoxClicked
Test specific Timestamp
ET EyeDirection [x, y, z], (left, right)
ET EyeHitpoint [x, y, z], (left, right)
ET EyeHitObject (left, right)
ET PupilPosition (left, right)
ET PupilDiameter (left, right)
HMD HeadPosition [x, y, z]
HMD HeadRotation [x, y, z]
Controllers ControllerPosition [x, y, z], (left, right)
Controllers ControllerRotation [x, y, z], (left, right)

Table 2. Distribution information for unfiltered and filtered data.
Type Mean Median σ Min Max N

Unfiltered 175 152 66 74 598 3192
β-filtered 171 151 62 74 371 3141
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network to emphasize the importance of one feature 
over another.

The training data was augmented by appending NT 

nr of additional copies of the training data, where the 
ordering of the different movements in each new 
copy was shuffled to provide a new set of transitions 
between movements. The number of copies to use is 
investigated in Section 5. No noise was added to the 
data augmentation based on the fact that noise tends 
to worsen the learning of an LSTM network (Greff 
et al. 2016).

After augmentation, the data was transformed 
using a sliding window of size w = 350 and step Ns =  
70, where every window in turn was split into Nw = 14 
nr of subwindows of size ws = 25 samples.

The window size, w = 350, i.e. the number of histor-
ical gaze data samples used as network input, was set 
to two times the mean length from Table 2 in order to 
have a window that most likely spans across two 
different movements and thereby captures at least 
one transition between movements. The subwindow 
size, was set to the same window size as in (Pettersson 
and Falkman 2021) and it was chosen based on the 
fact that the window should be able to capture entire 
saccadic eye movements that last, 10–100 ms 
(Duchowski 2017).

The amount of data and its quality is also depen-
dent on the step size, Ns, that is used when sweeping 
over the training data. This means the number of 
timesteps that are skipped before the next time 

Figure 3. An overview of the RNN architecture.

Table 3. Description of data used in the classification.
Type Feature

Input AvgRLEyeDirection ½x; y; z�
Input AvgRLPupilDiameter
Input HeadPosition ½y; z�
Label BoxClicked ð0 � 9Þ
Label IsUpperLevel ð0; 1Þ
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window is picked. The value for Ns should be large in 
order to provide the network with as unique informa-
tion as possible, however, in order to not accidentally 
skip any movements it should not exceed the shortest 
movement, i.e. 73 samples. It was, therefore, set to the 
largest even multiple of w = 350 that satisfies this 
criteria, namely Ns = 70.

Every subwindow is coupled with a label corre-
sponding to the correct box/vertical position of the 
last sample of the subwindow. This means that each 
window, w = 350, is divided into Nw = 14 subwindows 
that each get their own label and that the network 
makes Nw = 14 separate predictions, for each w = 350, 
regarding the class that the subwindow belongs to.

The proportions of the data splits are; 45% of the data 
for training, 5% for validation, and the remaining 50% 
was used for testing and evaluation of the network.

4. Neural network design

The recurrent neural network used in this paper, 
Figure 3, was built as follows: the network takes the 
input X and feeds it to a TimeDistributed and slightly 
modified version of the feature extraction that was used 
in (Pettersson and Falkman 2020). The difference being 
the addition of an LSTM layer, adapting (adding time 
distribution) the network to work with the LSTM, and the 
AvgPooling1D followed by a flattening was replaced 
with a single GlobalAvgPooling1D that achieved 
a similar outcome, extracting the most important fea-
tures and reducing its dimensions, in a single layer. 
TimeDistributed refers to the fact that the parts of the 
network encircled by the dotted grey lines are applied to 
each timestep of the recurrent network.

The layout of the feature extraction uses the 
Conv1D-layers, blue rectangles in the figure, as the 
base for extracting information from the data and the 
design itself was inspired by the inception modules 
from Inception-v3 (Szegedy et al. 2016). The Conv1D- 
layers analyze the time-dependency between a few 
nearby data samples across all features. The idea 
behind the inception modules, according to 
Pettersson and Falkman (2020), was to calculate con-
volutional features with several filter sizes in parallel 
while at the same time reducing the number of para-
meters and complexity of the network compared to 
using a fully connected (FC) neural network.

The network also contains pooling layers (red 
rounded rectangles) that reduce the spatial size of 

the data fed to them, only keeping the most signifi-
cant parts. This further reduces the number of para-
meters in the network (Pettersson and Falkman 2020). 
The purple parallelogram manages the dimensions of 
the network connections through concatenation 
along the last dimension of the layers connected to 
it. The TimeDistributed outputs from the global pool-
ing layer are fed to an LSTM layer (teal circle, 
return_sequence=True means that all timesteps are 
used as output and recurrent_dropout = 0.5 refers to 
dropout being applied recurrently with probability 
0.5) that manages the time aspect of the network 
and thereby gives it its recurrent properties.

The last part of the network are the TimeDistributed 
uncertainty estimation (UE) (Gal and Ghahramani 2016) 
implemented as follows: two dense layers (yellow 
squares, corresponding to FC layers) each followed by 
a dropout layer (green diamonds, training=True means 
that it is used also when making predictions). The UE is 
followed by two TimeDistributed final dense layers, 
one with as many neurons as there are output classes 
(10) that gives the output Ŷ1 and one with a single 

neuron that gives the binary output for Ŷ2. The out-

puts Ŷ1 and Ŷ2 are obtained once for each timestep.
All layers of the network use the tanh activation 

function apart from the final dense layers that use 
a softmax activation to enable multi-class classifica-
tion (Ŷ1) and sigmoid activation to enable binary clas-

sification (Ŷ2). The network was trained using the 
adam optimizer (Kingma and Jimmy 2014), sparse 

categorical crossentropy as the loss function for Ŷ1, 

and binary crossentropy as the loss function for Ŷ2. 
The training was performed until the validation loss 
stopped decreasing, terminating using early stop-
ping. The final network configuration contains 20 
layers with 8550 trainable parameters in total.

4.1. Evaluation procedure

This section provides a description of how predictions 
are made with UE (Gal and Ghahramani 2016), what 
metrics that were used to evaluate the network and 
how to interpret them, and a brief description of how 
to simulate making predictions on a continuous flow of 
data.

The difference when making a prediction with UE is 
that several predictions are made on the same data in 
order to obtain a mean value and a standard 
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deviation of the prediction. The pseudo code for this 
is shown in Algorithm 1 (Pettersson and Falkman  
2020).

Once the means and standard deviations have 
been obtained from the network, these can be 
used to determine the network’s confidence, high 
mean and low standard deviation, to make an 
accurate prediction. The implementation is shown 
in Algorithm 2 (Pettersson and Falkman 2020), 
where a prediction is accepted if the mean minus 
two standard deviations is larger than a chosen 

limit. One way of choosing this limit will be cov-
ered in Section 5.

The performance of the networks was evaluated 
using the following custom metrics;

● AP = Accuracy of predictions that are above UE 
threshold,

● AM = Accuracy of how many movements are cor-
rectly identified at least once,

● MT = Mean fraction of time left until the comple-
tion of the task,

● AVP = Vertical accuracy, evaluated whenever 
there is a box prediction.

These were considered more suitable to use to evaluate 
the network on how well it is able to utilize its notion of 
UE in order to predict the intended movement direction, 
compared to a standard accuracy metric that does not 
capture the aspect of UE at all.

The evaluations have been performed in a way that 
imitates the continuous flow of data in a real world 
system. This is done by making a prediction for every 
timestep of the test set, starting with all zeros as the 
input and then shifting the input data by one at a time in 
order to ‘obtain’ new information. The last of the Nw 

predictions (the last subwindow) at each timestep is the 
one that is evaluated since that subwindow contains the 
most recent data.

Figure 4. A figure showing the selection of the optimal threshold for the first network configuration.

Algorithm 1 Pseudo code for predicting with UE.

Input: X, nrOfPredictions
Output: Ŷ , ŶSTD

1: predictions = []
2: for i ¼ 0 to nrOfPredictions do
3: predictions[i] = model.predict(X)
4: end for
5: Ŷ , ŶSTD = mean(predictions), std(predictions)
6: return Ŷ, ŶSTD

Algorithm 2 Pseudo code that accepts or discards a prediction.

Input: Ŷ , ŶSTD , lowerLimit
Output: Ŷ

1: if Ŷ � 2 � ŶSTD > lowerLimit then
2: Accept Ŷ as the prediction for this sample.

3: else
4: Discard Ŷ , the network is not confident enough.
5: end if
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5. Results

This section will provide the prediction results, on the 
validation set and the test set. The first network con-
figuration that was evaluated, on the validation set, 
was w ¼ 350 and NT ¼ 1, the results can be seen in 
Figure 4. The validation set contains 27,323 timesteps 
in total and the performance was evaluated using 

n ¼ 25 for the UE. The intersection point between 
the two metrics, AP and AM, can be seen as the net-
works optimal performance since the accuracy for the 
predictions are high while at the same time, as many 
movements are covered as possible. This is, therefore, 
the point that specifies the threshold, ThL, that is used 
to further evaluate the network. Due to the fact that 

Figure 5. A figure showing the comparison of different network configurations, using the intersections of the metrics AP and AM. NR 
stands for not using randomized copies of training data.

Table 4. Table showing a performance comparison between the first network configuration and 
the best model, evaluated on the test set.

First and best model – Test Set

ws NT ThL AP AM MT AVP

25 1 0.40 54.18% 50.64% 32.12% 70.38%
10 10 0.38 70.70% 67.89% 37.20% 81.29%

Figure 6. A figure that shows a prediction segment from the network configuration, ws ¼ 10 and NT ¼ 10 with NR, obtained on the 
test set.
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predictions are filtered out based on an increasing 
threshold, once it reaches above the highest certainty 
of the network, all predictions will be filtered out i.e. 
no predictions are made, and the accuracy therefore 
goes to zero, as seen in Figure 4.

Different configurations were evaluated in order to 
determine the effect of changing the subwindow size ws, 
the number of training copies NT , and whether the order 
of the movements in the augmented data should be 
randomized or not (NR=No Randomization). The com-
parison between these is based on the intersection 
points, described above, shown in Figure 5 where the 
black dot corresponds to the original configuration. It is 
clearly seen that changing NT does not improve the 
results unless NR is used as well. The best performing 
combination is ws ¼ 10 and NT ¼ 10 with NR. Different 
values for w, [175, 700, 1400], were also tested but these 
showed no significant improvement.

The original configuration, w ¼ 350 and NT ¼ 1, 
and the best performing one from Figure 5, ws ¼ 10 
and NT ¼ 10 with NR, were further evaluated on the 
test set. The test set consists of 250,660 timesteps in 
total and the performance was evaluated using 
n ¼ 25 for the UE. The resulting comparison, using 
each networks optimal threshold obtained on the 
validation set, can be seen in Table 4. This table also 
shows the performance measures obtained using MT 

and AVP, the best performing model achieves an aver-
age MT of 37.2% ahead of the action being com-
pleted. The timing of the predictions will be further 
evaluated at the end of this section. The vertical pre-
dictions were evaluated every time a new prediction 
was accepted as a contribution to AP, the result for the 
best model is AVP ¼ 81:29%.

Figure 6 shows a segment of prediction results 
from, ws ¼ 10 and NT ¼ 10 with NR, obtained on the 
test. The upper graph displays the predicted and true 
labels without taking the UE into account. The graph 
in the middle shows the predictions that were above 
the specified threshold and the graph at the bottom 
shows the fluctuation in certainty regarding the most 
probable output class.

A comparison of filtered predictions using different 
thresholds, 0:75 � ThL, ThL, and 1:25 � ThL, for the same 
segment of predictions from, ws ¼ 10 and NT ¼ 10 
with NR, is shown in Figure 7. The top plot shows 
that more movements are covered when the thresh-
old is lowered, however, more of the predictions are 
incorrect. The middle one is the same as in Figure 6 

and the plot at the bottom shows that increasing the 
threshold would result in higher prediction accuracy 
at the cost of missing more of the movements 
completely.

Figure 8 shows an aggregation of all hand move-
ments from the test set created in order to further 
evaluate the performance of the network with regard 
to time. The upper graph shows the normalized dis-
tance, di, that the controller travelled from the 
moment the previous box was clicked until the next 
one, calculated at each sample i for each move-
ment as:

di ¼ 1 �
jpend � pij

jpend � pstartj
(1) 

where pstart is the coordinate ðx; y; zÞT of the control-
ler for the first sample of the movement and pend is 
the last one. The normalized distance was then 
plotted with an alpha of 0:03 2 ½0; 1� and normalized 
time in order to show the characteristics of all move-
ments on the same scale. The lower graph shows the 
velocity, vi, towards the target, pend , at each sample i 
for each movement, calculated as: 

vi ¼ fs � ðpi � pi� 1Þ
T
�

pend � pi

jpend � pij
(2) 

where fs is the sample frequency of the eye tracker. 
The velocity towards the target was then plotted with 
the same alpha and the same normalized time as 
described above. The results from the velocity calcu-
lations sometimes, due to positional tracking errors, 
result in unreasonable values. The velocity vi was 
therefore removed if it exceeded 2.5 m/s.

From the figure it is clear that the data is noisy and 
with some variation, however, a few trends are clearly 
emerging as well. The figure shows that there is little 
to no movement in the beginning of each time series 
followed by a segment with varying amount of move-
ment, both towards and away from the target, up 
until about the halfway point. Around the halfway 
point the combination of the distance and the velo-
city graph shows a stationary segment followed by 
a new segment of movement that slows down 
towards the end. However, during the second move-
ment segment almost all movements have positive 
velocity towards the target the entire time.

The normalized distance data from Figure 8 was 
used in Figure 9 to further investigate the time ahead 
of movement completion (TAMC) data that was 
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summarized in the evaluation metric MT . The figure 
shows the first correct prediction from each of the 
movements that were correctly classified at least once 
together with the mean value MT . The 5th, 25th, 50th, 

75th, 95th, and 99th percentiles were added in order 
to give a more nuanced description of the TAMC and 
the normalized time values for these are summarized 
in Table 5. The first 5% of the correct predictions are 

Figure 7. A figure that shows a comparison of filtered predictions using 0:75 � ThL, ThL, and 1:25 � ThL for the same segment of 
predictions from, ws ¼ 10 and NT ¼ 10 with NR.

Figure 8. The figure shows an aggregation of all hand movements from the test set, with respect to distance left to target and velocity 
towards target, plotted with normalized time.
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most likely ‘lucky-shots’, i.e. a result of the network 
sticking to the prediction from the previous move-
ment, which due to the randomness of the test was 
the same target twice in a row. The reason being that 
the test person does not know the next target for the 
first 0.2 s, i.e. first 5.4% to 27.0% for the max/min 
duration of the movements, due to the delay that 
was inserted between each task in the VRE, as 
described in Section 3.1. The movements are, in 99% 
of the cases, correctly predicted the first time, before 
the hand reaches the target and more than 24% 
ahead of time in 75% of the cases, which corresponds 
to about 302 ms for the median movement duration. 
The histograms, top and right, show the distributions 
of correct predictions with regard to the normalized 
time and normalized distance respectively.

Finally, the histogram of the TAMC-distribution from 
the top of Figure 9 was re-scaled to the same range as 
the velocity, i.e. max 2.5 (for visual purposes) and 
plotted together with the velocity graph from 
Figure 8 with normalized time. It can be seen that the 
shape of the histogram is very similar to the second 
movement segment of the velocity graph, however, 
shifted a bit to the left. This indicates that the intended 

movement direction often is predicted at the early 
timesteps of the final movement towards the target.

6. Discussion

The goal of this paper was to provide a system for 
intended human arm movement prediction and 
the two classification objectives, presented in 
Section 1, were Primary - determine the discrete 
horizontal direction corresponding to the box that 
was clicked and Secondary - distinguish between 
whether the movement occurred on the upper or 
lower level of boxes. The best network reached an 
accuracy of 70.70% for the primary objective, cor-
rectly classifies 67.89% of the movements at least 
once, and an accuracy of 81.29% for the secondary 
objective. These results might seem far from 100%, 
however, it is important to remember that human 
behaviour is complex and difficult to capture. It is, 
therefore, perhaps impossible to reach 100% and 
maybe not a requirement for intention prediction 
to provide value. Considering that the system pre-
dicts upcoming movement directions, before the 
completion of these events, solely based on eye 

Figure 9. A figure that shows the first correct prediction for all hand movements from the test set, plotted with normalized time and 
distance to target.
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gaze and without knowing the directions specifi-
cally only the number of directions (10) it 
becomes easier to see the benefits of the system. 
A robot could receive warnings, ahead of time, 
about in which direction an operator is likely to 
move and adjust its behaviour either by a quick 
halt or more preventative measures, depending on 
its current position. The parts where the network 
is uncertain may also prove useful, as it could 
potentially be used to inform the robot to main-
tain a larger distance between the operator and 
itself since the human is behaving in a way that is 
difficult to predict.

The results presented in this paper are comparable, 
in terms of accuracy, to the work by Gomez Cubero 
and Rehm (2021) and achieved using a much smaller 
LSTM-network. The task presented here has 10 move-
ment directions instead of three possible choices and 
the duration of a movement sequence is much lower, 
less than 4 s. Compared to the work by Chaandar 
Ravichandar, Kumar, and Dani (2016), it is clear that 
their combined approach of tracking both gaze and 
arm movements results in higher accuracy than 
a gaze-only solution. However, the small LSTM- 
network proposed in this paper should be 

significantly faster at inference time, which is crucial 
for an online application.

The main advantage of using eye gaze compared 
to a hand tracking based systems is that the gaze can 
give insights into the decision leading up to 
a movement, thereby gaining a head start compared 
to a hand tracking system that, by definition, has to 
wait for the movement to start before it can be 
detected. A hand tracking system may, however, be 
more robust since it makes predictions based on the 
actual movement, which suggests that a combination 
of the two approaches may work complementary.

The movements are, in 99% of the cases, correctly 
predicted the first time, before the hand reaches the 
target and more than 24% ahead of time in 75% of the 
cases, which corresponds to about 302 ms for the med-
ian movement duration. It can be concluded from 
Figure 9 that the metric, MT , does not give an accurate 
description of the TAMC since it does not even cover the 
50th percentile. The percentiles are, therefore, a more 
suitable way of reasoning around the TAMC and the 
behaviour of the intention prediction system.

The velocity graph and the plateau of the distance 
to target, Figure 8, indicates that the actual move-
ment towards the target, on average, most likely 

Figure 10. A figure that shows the normalized prediction time ahead of movement completion (TAMC) distribution plotted with 
normalized time and velocity to target for all hand movements from the test set.

Table 5. A table that summarizes the normalized time values for the percentiles shown in Figure 9.
Percentile 5 25 50 75 95 99

Normalized time ½0; 1� 0.03 0.55 0.66 0.76 0.88 0.96
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starts after half of the time has elapsed. The intuition 
being that why would the test person slow down and 
stop halfway to the target if the target has been 
identified. The movements prior to that are likely 
movements related to either a retraction from the 
previous target to a more neutral position or related 
to the search for the next target. This argument is 
strengthened by the fact that the test person does 
not know the next target for the first 0.2 s, i.e. first 
5.4% to 27.0% for the max/min duration of the move-
ments, due to the delay that was inserted between 
each task in the VRE. Combining this reasoning with 
the fact that the TAMC-distribution from Figure 10 
leads the velocity graph for the second movement 
segment, one could argue that the intention predic-
tion results are probably better, with respect to TAMC, 
than what is shown by observing the entire move-
ment duration as in Figure 8.

The use of uncertainty as a way to decide whether 
to trust a prediction or not, clearly improves the per-
formance of the network for the primary objective. 
The filtered behaviour is displayed in the middle 
graph of Figure 6 and it shows that the network 
sometimes struggles to predict the correct box. 
However, when that happens, the predictions are 
mostly neighbouring boxes and these predictions 
could be used as well to give indications regarding, 
e.g. which half of the environment that the human 
intends to interact with. There are quite sharp drops 
in certainty when the target changes. This high uncer-
tainty carries information too, regarding that the 
human is behaving in a way that is difficult to predict. 
The way the threshold is calculated clearly affects the 
results, for example, increasing the threshold would 
result in a higher prediction accuracy but would result 
in more movements being missed entirely. Lowering 
the threshold would have the opposite effect, as 
shown in Figure 7. However, there may exist more 
refined ways of selecting and utilizing the UE thresh-
old, for example, a dynamic threshold that changes 
based on the certainty or variation of the last few 
predictions would likely give a different outcome.

The results presented in this paper are based on 
making predictions on every new sample of incoming 
data. This is potentially a waste of resources since the 
amount of new information in a single sample is 
probably not enough to affect the prediction results. 
Therefore, making predictions every n:th sample may 
give better results and reduce the total amount of 

computation required. Selecting the appropriate n 
depends on the application, since a too large n for 
a certain application would make predictions too late, 
perhaps even after the end of a movement. A suitable 
n for the presented application may be in the range of 
n 2 ½1; 10�, since that would correspond to making 
predictions at least 10 times per second, which should 
be fast enough to maintain most of the TAMC.

In addition to the previously mentioned factors 
that affect the prediction performance, both with 
respect to accuracy and TAMC, there may also exist 
other configurations of the current neural network or 
other network architectures all together, which could 
give better results.

Somewhat surprisingly, Figure 5 shows that not 
randomizing (NR) the copies of training data performs 
the best. The reasoning behind the randomization 
was to use the same data to create new transitions 
between movements. It is, however, possible that this 
creates too large discontinuities in the data, com-
pared to the test sequence that consists of continuous 
data, thereby decreasing performance. The fact that 
the use of data augmentation improves the results 
could be seen as an indicator that the developed 
network could benefit from training on a larger 
dataset.

The eye tracker used in this paper collects data at 
120 Hz, which means that it should capture most eye 
movements, including the faster saccades that typi-
cally range from 10 to 100 ms in duration. A faster 
tracker, up to maybe 200 Hz, could give some addi-
tional information regarding the fastest eye move-
ments. However, it is not certain that it will improve 
the results of the intention prediction as it will also 
give more data samples that are similar to each other 
for the slower movements, i.e. there will be a trade-off 
between new information and overflow of data, and 
this problem is likely becoming more prominent for 
even faster tracking systems. A slower tracker would 
deal with the issue of too much data, however, due to 
the nature of the eye and the rapid movements, 
saccades, the lower limit to capture the majority of 
eye movements is probably around or slightly above 
1=10 ms, i.e. about 120 Hz.

The gaze-based intention prediction results pre-
sented in this paper show promise. However, there 
are clearly several steps to go before it is possible to 
use such a system in a real-world application together 
with industrial robots. The experiment has been 
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structured around using ET-hardware that already 
exists today in the form of safety goggles. This 
means that most of the prediction stage should be 
possible to implement in the real world also. 
However, the evaluation of the performance of such 
a system would require other ways than the control-
lers used today to keep track of the users hands and 
whether or not they have reached their target 
location.

7. Conclusions and future work

This paper has presented a system that uses 
a recurrent neural network to predict the intended 
human arm movement direction, solely based on 
eye gaze, utilizing the notion of uncertainty to 
determine whether a prediction should be trusted 
or not. The developed deep learning solution 
makes predictions on continuously incoming data 
and reaches an accuracy of 70.7%, for predictions 
with high certainty, and correctly classifies 67.89% 
of the movements at least once. The movements 
are, in 99% of the cases, correctly predicted the 
first time, before the hand reaches the target and 
more than 24% ahead of time in 75% of the cases, 
which corresponds to about 302 ms for the median 
movement duration. These results show that gaze- 
based arm movement intention prediction is 
a promising step towards enabling efficient 
human-robot collaboration.

Potential immediate next steps to build upon the 
results of this paper are: investigate alternative ways 
to utilize the uncertainty and/or to set the threshold 
that determines whether to trust a prediction or not, 
explore the impact of making predictions less often, 
i.e. at every nth timestep ðn > 1Þ,and finally there may 
exist other neural network architectures that could 
improve the current results.

To further evaluate the performance of the pre-
sented system for human intention prediction, the 
implementation of a VRE with more complex tasks 
would be of interest. For example, an assembly 
station where the operator collaborates with 
a virtual robot, such a system could be evaluated 
using an external control system that receives the 
predicted intentions and makes the robot adapt 
accordingly. A natural extension to this, if the 

results are successful, would be to implement the 
same system in a real-world version of that applica-
tion. This would include using safety glasses with 
built-in ET instead of a VR-headset and the evalua-
tion of using such a system in a real-time 
environment.
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