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ABSTRACT The conservation of marine resources requires constant monitoring of the underwater environ-
ment by researchers. For this purpose, visual automated monitoring systems are of great interest, especially
those that can describe the environment using semantic segmentation based on deep learning. Although
they have been successfully used in several applications, such as biomedical ones, obtaining optimal results
in underwater environments is still a challenge due to the heterogeneity of water and lighting conditions,
and the scarcity of labeled datasets. Even more, the existing deep learning techniques oriented to semantic
segmentation only provide low resolution results, lacking the enough spatial details for a high performance
monitoring. To address these challenges, a combined loss function based on the active contour theory
and level set methods is proposed to refine the spatial segmentation resolution and quality. To evaluate
the method, a new underwater dataset with pixel annotations for three classes (fish, seafloor, and water)
was created using images from publicly accessible datasets like SUIM, RockFish, and DeepFish. The
performance of architectures of convolutional neural networks (CNNs), such as UNet and DeepLabV3+,
trained with different loss functions (cross entropy, dice, and active contours) was compared, finding that
the proposed combined loss function improved the segmentation results by around 3%, both in the metric
Intercept Over Union (IoU) as in Hausdorff Distance (HD).

INDEX TERMS Active contour, computer vision, convolutional neural network, deep learning, semantic
segmentation, underwater images.

I. INTRODUCTION
Sustaining and conserving the seas, oceans, and marine
resources is one of the Sustainable Development Goals of the
United Nations (SDGs). The strategies for achieving this goal
are to protect andmanage coastal andmarine ecosystemswith
the purpose of adopting the required measures to preserve the
oceans’ health and to facilitate artisanal fishermen’s access to
marine resources [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Shorif Uddin .

To that end, automated marine ecosystem monitoring is a
key tool that takes advantage of the increasing availability of
video collections of marine life [2]. The goal of a monitoring
system is to perform a scene comprehension and react appro-
priately to the surrounding events and environment conditions
[3]. One of the key system modules is the segmentation
that generates labels for each pixel describing the object to
which it belongs. The location and comprehension of the
objects in the scene provided by the segmentation serve as
the foundation for a more in-depth analysis [4].

In the last years, different advanced neural network
architectures from the field of deep learning have been
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successfully incorporated in numerous application fields [5],
[6], [7]. In natural image segmentation challenges, these
architectures have proven to be much better than previous
systems based on handcrafted features and shallow classifiers
[8], [9]. It is remarkable the recent progress in the field
of medical imaging, where the most promising algorithms
belong to the family of active contour methods [10], [11]
and deep neural networks [12], [13], [14]. However, image
or video segmentation in underwater environments presents
additional significant challenges due to the absorption, scat-
tering, attenuation of light rays, effects of suspended par-
ticles in the water [15], and the potential dynamic camera
condition [16].

This paper proposes to combine convolutional neural net-
works (CNN) and learned active contour to improve the
quality of the segmentation in underwater imagery. More
specifically, the main contributions of this work are as
follows: (1) a comparison of the performance of different
segmentation algorithms based on deep learning architectures
for the task of fish segmentation in underwater environments;
(2) an strategy to improve the segmentation performance in
underwater environments by combining different loss func-
tions (cross-entropy, dice and active contours); and (3) the
creation of a new underwater dataset whose images have been
obtaining from existing databases (SUIM, RockFish, and
DeepFish), but whose annotations have been fully relabeled
for the purpose of semantic segmentation considering three
classes (water background, seafloor/obstacle, and fish). This
dataset along with the best obtained models are available
at https://github.com/miguelCh2912/Fish-and-Underwater-
Environments.

The remainder of this article is structured as follows. Sec-
tion II describes the state of the art in image segmentation in
underwater environments, including active contour methods
and deep learning models. Section III presents the proposed
segmentation system, describing the pre-processing, the neu-
ral network architectures for semantic segmentation, and the
loss functions used to combine them. Section IV describes
the experiments, including quantitative/qualitative results and
an ablation study. Finally, Section V presents the conclusions
and future work.

II. RELATED WORKS
Recently, there has been an increasing interest in using image
segmentation for estimating the volume and quantity of fish
on the seabed. Traditional segmentation methods based on
image processing techniques [15] have been widely outper-
formed by deep learning techniques for many marine appli-
cations. In [17], the neural network mask R-CNN is used to
detect various fish types. In [18], authors compare various
Convolutional Neural Network (CNN) approaches for classi-
fying and semantically segmenting coral reefs in underwater
images. King et al. [19] present a three-dimensional recon-
struction of coral reefs combining CNN and Siamese network
architectures. Some works are oriented to the problem of the

data scarcity for training the underlying deep learning mod-
els. In [20], a semantic segmentation approach for coral reefs
is proposed taking into account the sparsity of the annotated
labels. Alonso et al. [21] describe a method for working with
few labeled data that utilizes adaptive superpixel segmenta-
tion propagation to increase sparse annotations.

To address the lack of annotated data, several works
have focused on the creation of large databases. An under-
water large-scale dataset for the semantic segmentation,
called SUIM, is presented in [22]. They also propose an
encoder-decoder model (SUIM-Net) to balance the perfor-
mance and computational efficiency. In [23], a dataset of
images of real and simulated environments is presented,
and explores different strategies of segmentation, fine-tuning,
and image restoration. Complementarily, [24] presents the
DeepFish benchmark for classification, counting, location,
and segmentation tasks, allowing the training of multitasking
models.

Other works address the enhancement of underwater
imagery to compensate for the challenges of this type of
imagery. In [25], a CNN-based approach to enhance underwa-
ter imagery is proposed for obstacle detection by combining
monocular semantic image segmentation with sparse stereo
point clouds. Also, Generative Adversarial Networks (GANs)
have been successfully used to improve the quality and reso-
lution of underwater images [3], [26], [27].

Despite deep neural networks’ success in semantic seg-
mentation tasks, some limitations remain, such as the loss of
spatial details due to the low resolution of the segmentation
results. Some methods make use of a post-processing stage to
refine the segmentation results, such as Conditional Random
Fields (CRFs) [28], at the expense of increasing the require-
ments of memory and computational cost. Recently, numer-
ous approaches based on variational methods and active con-
tours have been proposed to address the limitations in the
results of segmentation by deep neural networks. The first
approaches proposed the use of active contour methods as a
post-processing step. Later approaches integrated the active
contours as part of the network architecture, performing an
end-to-end training. For example, Hatamizadeh et al. in [29]
first used active contours without edges (ACWE) along with
the Chan-Vese method as a post-processing stage in DALS,
and later, in [30], they embedded their approach in an end-
to-end learning neural network in DCAC. Lastly, in [31],
they exchanged the Chan-Vese method with the Localizing
Region-Based Active Contours (LRACWE) in TDAC. Simi-
larly, Zang et al. [32] evaluated an end-to-end approach using
the Split Bregman method for active contours (SBACWE) in
DACN.

Other works addressing the loss of spatial details have
focused on the design and combination of new loss functions
for guiding the training of the underlying neural network
architectures. Kim et al. [33] proposed a loss function based
on level set theory for multiple classes, decomposing the
ground truth into a binary image for each class. Kim and Ye
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[34] presented a loss function based on the Mumford-Shah
functional for semi-supervised and unsupervised segmenta-
tion. An elastic loss function is used in [35] and [36] that
is inspired by Euler’s Elastic model and the mean curvature
of objects. Ma et al. [37] integrated global geometric infor-
mation of objects in a loss function using Geodesic Active
Contours (GAC). And, Le et al. [38] combined a CNN based
level set approach with recurrent networks, named Recurrent
Level Set (RLS).

III. METHODS
The methodology of the segmentation process is shown in
Figure 1, involving two steps. The first one, the preprocessing
step, involves the acquisition and labeling of images, fol-
lowed by the database division into training, validation, and
testing partitions, with a proportion of 70%, 15%, and 15%,
respectively. The training partition is further subject to data
augmentation to alleviate the overfitting. The second step,
the training one, performs the supervised training of deep
learning models based on the U-Net and DeepLabV3+ archi-
tectures, both characterized by an encoder-decoder scheme.
Different pretraining weights for the encoder stage are used to
improve the training convergence. The optimization process
for the training is guided by the proposed combination of
loss functions. This is carried out by a weighted loss function
that combines, in turn, the cross-entropy, dice, and active
contour losses. Finally, the segmentation system is evaluated
using the quality metrics of Intersection Over Union (IoU)
and Hausdorff Distance (HD).

A. IMAGE DATA PREPROCESSING
1) IMAGE DATASET
The dataset used in the experiment is composed of
1824 images obtained from images of underwater environ-
ments. The images come from different existing datasets,
but the associated labels do not fit the proposed segmen-
tation task. Subsequently, they have been specifically rela-
beled at the pixel level into 3 classes: water background
(BW), seafloor/obstacles (SO), and fish (F). A total of
918 images of several sizes were chosen from the Submarine
Imagery (SUIM) dataset [22], initially labeled in 8 seman-
tic classes (ship-wrecks/ruins, plants/aquatic flora, human
divers, water body background, robots and instruments, reefs
and other invertebrates, fish and other vertebrates, and sea-
floor/rocks), which have been grouped in the three considered
classes. The other 150 images were selected and labeled from
DeepFish dataset [24], consisting of underwater images from
20 habitats in tropical Australia. These images have little
background variability, as they are video sequences from
static cameras. Other 280 images were obtained from the
RockFish [39] dataset and labeled. These images contain
moving and stationary fish in a complex rocky seabed back-
ground, acquired by a remote-controlled submarine vehicle.
Over 200 images were obtained from videos captured by a

HD camera mounted on Chasing Gladius Mini underwater
drones. They contain footage from beaches and fish farms in
Peru. The remaining images have been obtained from public
repositories on the internet containing seabed scenes from
different parts of the world.

All the images were resized at 256 × 320 pixels and
divided into three subsets with 1280/272/272 images for the
training/validation/testing, respectively. Table 1 shows more
detail.

TABLE 1. Number of images according to the origin and split of the
dataset.

2) IMAGE ANNOTATION
The software tool MatLab Image Labeler has been used for
per-pixel annotation of the underwater images. This software
offers a graphical user interface that enables the labeling of
ground truth data in a collection of images. Then, a MatLab
script generates *.bmp files with pixels that are different col-
ors depending on the classes considered: water background
(black), seafloor/obstacle (red), and fish (yellow).

3) IMAGE DATA AUGMENTATION
Data augmentation improves the robustness and general-
ization abilities of deep learning models. The following
strategies are used to increase the number of samples in
the training partition: random crop and horizontal flip; shift,
scale, and rotation geometric transformations; random vari-
ations of brightness and contrast to ensure operation in a
variety of lighting settings; shifts in HSV and RGB color
representations. Furthermore, due to the frequent presence
of suspended particles in the water, the functions of blur,
Gaussian noise, and gamma noise were also applied. Details
can be found in the supplementary materials.

B. DEEP MODEL ARCHITECTURE FOR SEMANTIC
SEGMENTATION
In this study, we compared the DeepLabV3+ and U-Net
architectures within the proposed workflow. This is due
to the good results obtained in similar environments
[4], [22], [40].

1) U-NET
The U-Net architecture [41] is composed of two paths,
namely, the contraction path (encoder) and the expansion path
(decoder), and it incorporates the concept of skip connections
between the encoder and decoder layers to recover lost spatial
features. The encoder path begins with a pairwise convolution
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FIGURE 1. Overview of the proposed method.

layer of size 3 × 3, followed by batch normalization and
ReLU activation, and finally by 2 × 2 maximum pooling
operations. The decoder path begins with a 2 × 2 transposed
convolution operation that reduces the number of feature
channels, followed by two 3 × 3 convolutions with batch
normalization and ReLU activation. The convolutional layers
of each encoder block and the corresponding decoder blocks
present the following number of feature maps (64, 128, 256,
512, 1024).

In our experiments, we used a modification of the
U-Net architecture. The first modification is related to the use
of pre-trained networks in the encoder path and the second
modification with the use of attention mechanisms in the
decoder path. Figure 2 shows how the attention mechanisms
are incorporated into the decoder by adding a scSE block
following a combination of convolution, batch normaliza-
tion, and ReLU activation. The scSE blocks joint spatial and
channel squeeze and excitation [42]. By incorporating global
spatial information, the scSE blocks recalibrate the channels.
Additionally, the sSE blocks generate a spatial attention map,
indicating the areas on which the network should focus its
attention to help the segmentation. The convolutional layers
of each decoder block present the following number of feature
maps (256, 128, 64, 32, 16), refer to Figure 2.

FIGURE 2. U-Net architecture with scSE attention block.

2) DEEPLABV3+
The DeepLabv3+ architecture [43] is composed of encoder
and decoder paths. Initially, contextual information is
encoded to later retrieve the object’s bounds. The encoder is
based on DeepLabv3 [44], and it uses Atrous Convolution to
extract deep CNN computed features at any resolution. The
output step is defined in this architecture as the ratio of the
spatial resolution of the input image to the final output (before
global grouping). The Atrous Spatial Pyramid Pooling mod-
ule enables the analysis of convolutional features at various
scales by combining Atrous convolutions of various ratios
with image-level features. The decoder performs a bilinear
sampling by a factor of 4 on the encoder features and then
concatenates the result with the low-level features of the back-
bone with the same spatial resolution. After that, the number
of channels is reduced by performing a 1× 1 convolution on
the low-level features. Finally, following concatenation, 3 ×

3 convolutions are applied to refine the features, and a simple
bilinear upward sampling by a factor of 4 is performed. In our
experiments, the dilation rates for the ASPP modulate were
(6, 12, 18) with a downsampling factor of 16 between the
input and the output, as illustrated in Figure 3.

C. DEEP MODEL ARCHITECTURE FOR BACKBONE
ImageNet [45] is a database containing over a million object
categories that is used in the well-known ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) [46]. As a
result of this type of challenge, large databases are generated
with pre-trained networks that later serve as the initial stages
or network backbone for more complex tasks such as object
detection or segmentation. For the coder path of U-Net and
DeepLabv3+, different pre-trained networks in the ImageNet
database were used, such as the backbone with five stages in
all cases. The architecture used in this article is summarized
below.
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FIGURE 3. DeepLabV3+ architecture [43].

1) MOBILENET V2
Optimized architecture for mobile devices [47]. It consists of
an inverted residual structure connected by shortcuts between
the narrow bottleneck layers. The middle expansion layer
uses narrow-depth convolutions to eliminate output features
as a source of nonlinearity and maintain representativeness.
TheMobileNet v2 architecture consists of a convolution layer
with 32 filters and 19 residual bottleneck layers. Additionally,
ReLU6 is used to provide nonlinearity in combination with
batch normalization. This network demonstrated a strong
correlation between inference time and prediction accuracy.

2) EFFICIENTNET-B
Family of models scaled from a baseline network known as
EfficientNet-B0 [48]. This network was produced through
a multi-objective neural architecture search that optimizes
both accuracy and efficiency. It is mainly composed of
the mobile inverted bottleneck MBConv, which includes
squeeze-and-excitation optimization. All other models are
scaled by carefully balancing the depth, width, and reso-
lution of the network using a compound scaling method.
This method relates a user-specified coefficient that controls
how many more resources are available, and constants that
specify how to allocate these additional resources to the
width, depth, and resolution of the network. The network
architectures used in this study were EfficientNet-B0 and
EfficientNet-B7.

3) RESNEST
Split-Attention Network (ResNeSt) [49] is a ResNet variant
and consist of stacking several Split-Attention blocks. A split-
Attention block consist of a feature map group and split
attention operations. Each block incorporates a channel-wise
attention strategy to capture the interdependencies of the
featuremap. Furthermore, the combination with a multi-
path network layout approach allows learning diverse rep-
resentations. The network architecture used in this research
is ResNeSt-269e, since in experiments it has obtained
a higher precision than EfficientNet-B7 with 32% less
latency [49].

D. LOSS FUNCTIONS
1) CROSS-ENTROPY LOSS
The standard multi-class cross-entropy loss function is given
by:

LCE = −
1
N

N∑
n=1

C∑
c=1

P∑
p=1

Tncp ln
(
Yncp

)
. (1)

where P, C, and N are the number of pixels, the number of
classes, and the mini-batch size, respectively. Also, Tncp is a
binary indicator that indicates whether class label c is the cor-
rect classification for pixel p, and Yncp is the corresponding
predicted probability obtained from the softmax function’s
evaluation of the logits values, Fcp, by the softmax function;
see (2) and Figure 4.

Ycp =
eFcp∑C
c=1 e

Fcp
. (2)

FIGURE 4. Relationship between predicted and labeled GT pixels.

2) DICE LOSS
The Dice metric, which is defined in the following section,
can be expressed as a loss function. The smooth form of the
proposals is described in [50]:

LDice

=
1
N

N∑
n=1

1 −
2

∑C
c=1

∑P
p=1 TncpYncp∑C

c=1
∑P

p=1

(∥∥Tncp∥∥pp +
∥∥Yncp∥∥pp)

 .

(3)

where ∥∗∥pp represents the norm pp, finding in the literature
the use of norm 1 and 2. It is common to consider using the
whole batch to reduce the effect of the absence of a class in
some images, according to:

LDice

= 1 −
2

∑N
n=1

∑C
c=1

∑P
p=1 TncpYncp∑N

n=1
∑C

c=1
∑P

p=1

(∥∥Tncp∥∥pp +
∥∥Yncp∥∥pp) . (4)
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3) LEARNING ACTIVE CONTOUR
Active contour models consist of enveloping a curve, sub-
ject to the constraints of a given image. The criterion for
modifying the curve shape can be based on various features,
such as the intensity gradient, color, texture, or other image
features. The active contour models continuously update
the curve shape and must stop on the boundary of the
object [51].

Based on [33], [52], we use a loss function inspired by the
theory of active contour models without edges, specifically
the representation through the level set method of the energy
functional proposed by Chan-Vese [51] and defined by:

Fξ (c1, c2, φ)

= µ Length (φ)

+ λ1

∫
�

|u0 (x, y)) − c1|2 Hξ (φ (x, y)) dxdy

+ λ2

∫
�

|u0 (x, y)) − c2|2
(
1 − Hξ (φ (x, y))

)
dxdy. (5)

where u0 is the image to be segmented with the domain �.
The parameters µ, λ1, and λ2 are weighting coefficients for
each term; c1 is the internal grayscale average of the evolving
curve, and c2 is the external grayscale average of the evolving
curve, defined by (7). φ is the level set function, andHξ is the
Approximated Heaviside function, defined by:

Hξ (φ) =
1
2

[
1 +

2
π
arctan

(
φ

ξ

)]
. (6)

In addition, the terms c1 and c2 are defined as:

c1 (φ) =

∫
�
u0 (x, y)Hξ (φ (x, y)) dxdy∫

�
Hξ (φ (x, y)) dxdy

,

c2 (φ) =

∫
�
u0 (x, y)

(
1 − Hξ (φ (x, y))

)
dxdy∫

�

(
1 − Hξ (φ (x, y))

)
dxdy

. (7)

The first term corresponds to the length of the evolving
curve and is sensitive to the object’s size, so in this researchµ

is set to zero because the input images have multiple size
objects [33]. Then, the multi-class semantic segmentation is
calculated based on reconstructing the dense binary ground
truth for each class separately. Considering λ1 and λ2 equal
to one, the Chan-Vese loss function for deep learning is
formulated as follows:

LCV =
1
N

N∑
n=1

C∑
c=1

( P∑
p=1

∣∣Tncp − cncp,1
∣∣2 Hξ

(
φncp

)
+

P∑
p=1

∣∣Tncp − cncp,2
∣∣2 (

1 − Hξ

(
φncp

)))
. (8)

where the level set function Hξ is a shifted dense probability
map that is estimated from ξncp = Yncp − 0.5 ∈ [−0.5, 0.5]
and the average intensity of the binary ground truth map Tncp

for the inside and outside contours are:

cncp,1
(
φncp

)
=

∑P
p=1 TncpHξ

(
φncp

)∑P
p=1Hξ

(
φncp

) ,

cncp,2
(
φncp

)
=

∑P
p=1 Tncp

(
1 − Hξ

(
φncp

))∑P
p=1

(
1 − Hξ

(
φncp

)) . (9)

To help the network learn more discriminative features of
objects and handle the problem of class imbalance, we com-
bine the Chan-Vese loss function with the Dice loss and
cross-entropy loss as follows:

L = αLCE + βLDice + γLCV . (10)

where α, β, γ > 0 denote the weights used to achieve a
trade-off between the loss terms. We have used an empirical
approach similar to that used by Kervadec et al. [53] to obtain
the appropriate weights. In our experiment, β is set equal to
1 as a starting point, and then the approximate relationship
between LDice and the other loss functions (LCE and LCV ) is
established to find the initial values of α and γ. Then, as a
function of experimentation, balancing is performed.

FIGURE 5. Confusion matrix and notation.

IV. EXPERIMENTS AND RESULTS
A. EVALUATION METRIC
Generally, segmentation in computer vision is evaluated
using region-based quantitative metrics and statistical analy-
sis [54]. Metrics based on relevance enable an analysis of how
many of the image’s segmented pixels were correctly detected
or not compared to the data labeled ground truth (GT). The
relationship between the confusion matrix concept and image
segmentation is illustrated in Figure 5. True positives (TP)
are pixels with correct labels, whereas false negatives (FN)
are pixels with incorrect labels. The pixels that do not belong
but are incorrectly labeled as belonging to that class as false
positives (FP), and the number of pixels that do not belong
but are correctly labeled as true negatives (TN).

We can mention the following well-known relevance
metrics:

1) IOU
False positives are penalized using the intersection over
union (IoU) or Jaccard’s coefficient of similarity [55]. For
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each class, this is expressed by the relationship shown in (11).
mIoU is the average of the IoU of all classes in all images
in the dataset; see (12). When the class sizes of the images
are unbalanced, the frequency-weighted IoU metric is used
to minimize the effect of the small class error on the overall
score; see (13).

IoU =
|ST ∩ SP|
|ST ∪ SP|

=
TP

TP+ FP+ FN
. (11)

mIoU =
1
C

C∑
c=1

pii
ti +

∑
j pij − pii

. (12)

mfwIoU =
1∑
k tk

C∑
c=1

tipii
ti +

∑
j pij − pii

. (13)

where pij is the number of predicted pixels of class i that
belong to class j, and ti is the total number of pixels of class
i in the segmentation of the label or ground truth. Figure 5
shows the case of two classes. The number of elements in
the intersection set grows as the similarity grows, whereas
the cardinality of the union set decreases. As a result of
(11), when the similarity is maximized, the value of IoU
equals one. Additionally, IoU will be zero in the absence of
similarity.

2) DICE
Dice’s coefficient of similarity is defined as the relationship
between twice the intersection and the total pixels predicted
and labeled GT, and its definition is given by (14). This
metric determines the accuracy of the segmentation limits by
evaluating the number of correctly labeled pixels [49]. Dice
is positively correlated with IoU but has a lower penalty for
incorrect results [20].

Dice =
2 |ST ∩ SP|
|ST | + |SP|

=
2 ∗ TP

2 ∗ TP+ FP+ FN
. (14)

3) HD
The Hausdorff distance (HD) metric measures the longest
Euclidean distance, d(T,P), between the ground truth contour
(T) and the predicted contour (P), and its definition is given

TABLE 2. Mean IoU performance (mean and standard deviation) of our
proposed combined loss function compared to the separate loss
functions.

by (15) [56], [57]. The HD95 metric is slightly more stable to
small outliers and computes the 95th percentile of the Haus-
dorff distance (0 mm for a perfect segmentation). Therefore,
the HD95 metric is used in this research.

HD(T ,P)

= max

{
sup
t∈T

inf
p∈P

d (T ,P) , sup
p∈P

inf
t∈T

d (T ,P)

}
. (15)

B. EXPERIMENTAL SETTING
The experiment used the Pytorch deep learning framework.
The following are the characteristics and configurations of the
hardware used: Intel Core i9-9820X CPU @ 3.30 GHz with
20 threads, 96 GB of RAM, Nvidia GeForce RT2800 Ti GPU
with 11 GB of RAM, 1TB of solid state drive, NVIDIA driver
version 470.74, CUDA version 11.4, CUDNN 7.6.5 neural
network acceleration library, Linux Ubuntu 20.04 LTS oper-
ating system, Python version 3.8.10, and Pytorch version
1.9.1 with some packages [58].

A 5-layers U-Net, SegNet, and DenseUNet (DenseNet-
121 backend [59]) networks are used as a baseline for end-
to-end training for the experiments. It is also experimented
with models based on a U-Net network with MobileNetV2,
EfficientNet-B0, EfficientNet-B7, ResNet-50, and ResNeSt-
296e, such as feature extractionmodels or encoder layers; and
decoder layers with scSE blocks. The rest of the models are
DeepLabV3+ networks with a coding structure ASPP of 6,
12, and 18 holes and the following feature extraction models:
MobileNetV2, EfficientNet-B0, and EfficientNet-B7.

Each model runs for a maximum of 600 epochs. Adam
is chosen as an optimizer with beta 1 and beta 2 by default
(0.9 and 0.9999). To avoid overadjusting, we use a ReduceL-
ROnPlateau scheduler with a reduction factor of 0.1 and
patience of 40, and early stopping with patience of 60. Based
on the GPU memory limitations, batch sizes of 4, 8, and
16 were used. Additionally, the value of 0.0001 is selected
as the learning rate obtained from a quick search.

The objective of the next experiments is to demonstrate the
efficacy of the proposed loss function and the selection of the
best models by quantitative and qualitative comparison.

TABLE 3. Mean Dice performance (mean and standard deviation) of our
proposed combined loss function compared to the separate loss
functions.
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TABLE 4. Mean HD performance (mean and standard deviation) of our
proposed combined loss function compared to the separate loss
functions.

C. QUANTITATIVE AND QUALITATIVE RESULTS
This section shows the results of a quantitative compari-
son of all the models trained with the loss functions: LCE
(cross-entropy), LD (Dice), LCV (Chan-Vese), and LCE+D+CV
(combined). The metrics used are the average class values
of IoU (Table 2), Dice (Table 3), HD (Table 4), and HD95
(Table 5). The metrics HD and HD95 are expressed in mm
and calculated on the basis of the average of the results of
each image in the test split, whereas the metrics IoU and Dice
are calculated based on the confusion matrix of the entire
test split and are expressed in percentage. In the case of the
combined loss function, the best results were obtained for
values of (10): α = 0.1 − 0.5, β = 1, γ = 5 − 10.
The values in bold in each table refer to the best results for

each model based on the loss function used, and the values
in red correspond to the best result in the table. With some
exceptions, models trained with the combined loss function
produce the best results in all metrics. Table 2 and Table 3
shows that only in the case of the DeepLabV3+ model with
MobileNetV2, slightly better mIoU and mDice values are
obtained for the loss function LCV . Table 4 indicates that the
DeepLabV3+ model with EfficientNet-B7 achieves a better
mHD value for the loss function LCV , which is also the best
value obtained in the table. In general, the U-Net-scSE model
with ResNeSt-269e trained with the combined loss function
achieves the best results in all metrics except in mHD95,
where it obtains the second-best value. As expected, the
baseline models perform worst in all metrics. Furthermore,
it is visible that all models with pre-trained encoders achieve
successful results when trained only using LCV .

Table 6 shows the quantitative results of the segmentation
by class of the models obtained using the combined loss
function and based on IoU and HD95. The up arrow (↑)
indicates that it is better when it tends to 100%, and the
down arrow (↓) when it tends to 0. By grouping the models
according to their size, we can classify the first four as
lightweight and the last four as heavyweight. U-Net-scSE
with ResNeSt-296e performs best in all classes for both
metrics for all models. For lightweight models, U-Net-
scSE with EfficientNet-B0 achieves better performance for

TABLE 5. Mean HD95 performance (mean and standard deviation) of our
proposed combined loss function compared to the separate loss
functions.

both metrics in all classes except for the BW class, where
U-Net-scSE and DeepLabV3+ models with MobileNetV2
obtain a superior performance on IoU and HD95 metrics,
respectively.

Figure 6 shows the semantic segmentation results of
different lightweight models for the built dataset using
the combined loss function, where 6(a) is the origi-
nal RGB image, 6(b) is the result of manual seman-
tic segmentation or ground truth, 6(c) is the result
of semantic segmentation of the DeepLabV3+ with
MobileNetV2 model, 6(d) is the result of semantic
segmentation of the DeepLabV3+ with EfficientNet-B0
model, 6(e) is the result of semantic segmentation of the
U-Net-scSE with MobileNetV2 model, and 6(f) is the
result of semantic segmentation of the U-Net-scSE with
EfficientNet-B0 model. The red region represents the back-
ground water (BW), the black region is the seafloor or
obstacle (SO), and the yellow is the fish region. The first row
corresponds to an image from the RockFish dataset, and the
best result is obtained using U-Net-scSE and EfficientNet-
B0. The second row corresponds to an image from the
DeepFish dataset, and the best result comes from U-Net-
scSE with MobileNet. The third row corresponds to an image
from the SUIM dataset, and the best result is obtained using
U-Net-scSE with EfficientNet-B0. The fourth and fifth rows
correspond to images captured by an underwater drone, and
it is observed that in the case of the fourth row, U-Net-
scSE with EfficientNet-B0 obtains the best mIoU value,
but DeepLabV3+ with EfficientNet-B0 obtains by far a
better value of mHD95. In the fifth row, U-Net-scSE with
EfficientNet-B0 performs better.

Figure 7 shows the semantic segmentation results of dif-
ferent heavyweight models for the built dataset using the
combined loss function, where 6(a) is the original RGB
image; 6(b) is the result of manual semantic segmentation
or ground truth; 6(c) is the result of semantic segmentation
of the U-Net model; 6(d) is the result of semantic segmenta-
tion of the DeepLabV3+ with EfficientNet-B7 model; 6(e)
is the result of semantic segmentation of the U-Net-scSE
with EfficientNet-B7 model; 6(f) is the result of semantic
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TABLE 6. Quantitative segmentation results (mean and standard deviation) with intersection-over-union (IoU) and 95% Hausdorff distance (HD95) for all
classes on the proposed dataset.

FIGURE 6. Qualitative comparison results of the semantic segmentation with light models.

segmentation of the U-Net-scSE with ResNeSt-296e model.
The first row corresponds to the same image as the first row
in Figure 6, and U-Net-scSE with ResNeSt-269e gets the
best overall result. The same model obtains the best results
in the rest of the rows except the fourth, which corresponds
to an image captured in a fish farm with many fish and
suspended particles close to the drone camera, where the
U-Net model obtains a better result. The DeepLabV3+ with
EfficientNet-B7 model performs poorly in the fourth row

as well, which is confirmed by the high value of 70.3 mm
obtained in the mHD95 metric.

Table 7 shows a comparison of the best models trained
on our dataset. The results showed that the training time
per epoch of the small networks based on MobileNetV2
and EfficientNet-B0 is shorter, whereas large networks
require a longer training time. The largest networks based
on EfficientNet-B7 and ResNeSt-269e are trained with a
batch size of 4 because they require more memory. The
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FIGURE 7. Qualitative comparison results of the semantic segmentation with heavy models.

TABLE 7. Evaluation parameters.

DeepLabV3+ model with MobileNetV2 as an encoder only
requires 17.8 MB of storage space and can perform infer-
ence in just 11.24 ms, whereas U-Net with scSE blocks and
ResNeSt-269e as the encoder requires 26 times more storage
space and is 5 times slower.

D. ABLATION STUDY
To validate the contribution of each component of the com-
bined loss function, ablation experiments are performed using
the U-Net-scSE and DeepLabV3+ models with EfficientNet

B0 as the backbone. The quantitative results of the experi-
ments are summarized in Table 8.

1) EFFECTIVENESS OF LCE LOSS
Without using an LCE loss, the performance drops slightly on
the worked dataset. The results for the DeepLabV3+ model
show an average decrease of 0.14% in mIoU and an average
increase of 0.44 mm in mHD95. In the case of the U-Net-
scSE model, the results show an average decrease of 0.3% in
mIoU and an average increase of 0.5 mm in mHD95.

2) EFFECTIVENESS OF LD LOSS
Without using an LD loss, performance drops to a greater
extent compared to LCE, especially in the IoU metric. The
results for the DeepLabV3+model show an average decrease
of 0.37% in mIoU and an average increase of 0.18 mm in
mHD95. In the case of the U-Net-scSE model, the results
show an average decrease of 0.49% in mIoU and an average
increase of 0.87 mm in mHD95.

3) EFFECTIVENESS OF LCV LOSS
Without using an LCV loss, performance decreases to a
greater extent in both metrics. This highlights the impor-
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TABLE 8. Result of ablation study (mean and standard deviation).

tance of Chan-Vese based active contour loss and indi-
cates that this component allows for more accurate seg-
mentation results. The results for the DeepLabV3+ model
show an average decrease of 0.59% in mIoU and an aver-
age increase of 1.38 mm in mHD95. In the case of the
U-Net-scSE model, the results show an average decrease
of 1.18% in mIoU and an average increase of 1.42 mm in
mHD95.

In the worked dataset, the Dice coefficient-based loss func-
tion achieved better results compared to the cross-entropy
loss function, especially in the mIoU metric. However, there
were cases in which LD did not achieve convergence, specifi-
cally when using networks without pre-training such as Seg-
Net. For this reason, we chose to combine the terms LD
and LCE .

E. COMPARISON WITH STATE-OF-THE-ART LEARNED
ACTIVE CONTOURS FOR SEMANTIC
SEGMENTATION OF FISH
We also compared the LCV loss function with other studies
incorporating the use of active contours in deep learning. The
experiments were performed on the same dataset but only
on the fish class. A comparison was made between the end-
to-end approaches of [30], [31], [32] and the post-processing
approach of [29]. In both approaches, a CNN and an ACM
method are combined, but only [30], [31], [32] include the
ACM’s parameters as part of the end-to-end approach, theo-
retically improving the segmentation results. However, they
have difficulties handling multi-class problems because of
their high complexity. In comparison, the proposed method
can manage multi-class segmentation naturally, owing to
the design of a loss function based on active contours and
level sets. Moreover, it may be easily combined with other
loss functions. In the experiments, an exhaustive search was
carried out to determine the parameters that generate the
best segmentation results for each method. The details of the
parameter search procedure can be found in the supplemen-
tary materials.

Table 9 shows the quantitative segmentation results of
different methods on the worked dataset using DeepLabV3+,
whereas Table 10 shows the results for U-Net-scSE, both
architectures with EfficientNet-B0 as the backbone. Using
the LCV loss function in combination with LCE or LD
outperforms the benchmark methods mainly on the mIoU

TABLE 9. Result of comparison with state-of-the-art learned active
contours (mean and standard deviation). (DeepLabV3+ with
Efficientnet-B0).

TABLE 10. Result of comparison with state-of-the-art learned active
contours (mean and standard deviation). ( U-Net-scSE with
Efficientnet-B0).

metric and in most cases on mHD95. In particular, when
combining LCV with LCE to train DeepLabV3+, the mIoU
and mHD95 metrics improve on average by 1.09% and
0.62 mm, respectively. Whereas for U-Net-scSE, the mIoU
and mHD95 metrics improve on average by 1.4% and
0.56 mm, respectively. Similarly, when combining LCV
with LD to train DeepLabV3+, the mIoU and mHD95
metrics improve on average by 0.7% and 1.39 mm,
respectively.Whereas for U-Net-scSE, themIoU andmHD95
metrics improve on average by 0.14% and 1.23 mm,
respectively.

V. DISCUSSION
Given that 50% of our dataset is composed of relabeled
images from [22], we use the fact that a simple U-Net
architecture achieves the best results in its experiments as
a reference point. The best results were obtained by testing
an improved U-Net with a pre-trained ResNest296e encoder
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path and including scSE blocks on each decoder layer. Our
results are consistent with [44], indicating that ResNest296e
outperforms EfficientNet-B7 as the backbone of U-Net-scSE,
but with a longer time of inference. As a result, we believe that
the attention mechanisms described in [38] and [44] can be a
critical component of neural networks performing semantic
segmentation tasks.

We successfully evaluated the proposed loss function using
underwater image data sets containing fish of various sizes
and shapes in various habitats. The proposed combined loss
function takes advantage of the cross-entropy loss’s discrim-
inatory capacity, the Dice loss’s ability to handle class imbal-
ance, and the potential to refine the spatial details of the
learned active contours based on the Chan-Vese functional.
The results of the models evaluated show that our combined
loss function outperforms traditional loss functions (LCE and
LD). These results also demonstrate the good performance of
the lost function based on active contours and level sets (LCV ).
In this regard, the results of the ablation study confirm the sig-
nificant contribution of this component to the proposed com-
bined loss function. Furthermore, we compare the approach
of including active contours in the loss function (LCV ) with
other SOTA approaches such as post-processing and extreme
to extreme, obtaining comparable results with the advan-
tage of being easily extendable to multi-class segmenta-
tion problems [33], [52], without requiring a post-processing
stage and not being sensitive to an ACM method’s selection
parameters.

VI. CONCLUSION
This work addresses the problem of semantic segmen-
tation of underwater environments for autonomous nav-
igation tasks and fish monitoring using convolutional
neural networks. To perform the experiments, we built a
dataset that contains 1824 images with pixel annotations
for three classes: background water, seafloor/obstacles, and
fish.

A combined loss function is used to train the models by
incorporating active contour theory and level set approaches
into modern CNNs to simultaneously learn local appearances
and spatial information of ground truth. Experiment results
with SOTA networks evaluated in the dataset confirm the
performance of this loss function. We also observed that a
U-Net architecture that incorporates attention mechanisms in
the decoder layers using scSE blocks outperforms the com-
plex DeepLabV3+ architecture. Combining U-Net-scSE with
a pre-trained EfficientNet-B0 lightweight architecture gives a
value of 86%mIoU and 26.61 mm of mHD95. By combining
U-Net-scSEwith heavy architectures such as EfficientNet-B7
and ResNeSt-296e, the advantages of this updated version of
ResNet were verified, obtaining a value of 87.45% for mIoU
and 23.40 mm for mHD95.

Future work will focus on the inclusion of loss func-
tions based on active contour theory in semi-supervised and
unsupervised learning approaches to reduce the laborious
task of labeling.

REFERENCES
[1] United Nations. Oceans. Accessed: Nov. 30, 2021. [Online]. Available:

https://www.un.org/sustainabledevelopment/es/oceans/
[2] R. Danovaro, L. Carugati, M. Berzano, A. E. Cahill, S. Carvalho,

A. Chenuil, and C. Corinaldesi, ‘‘Implementing and innovating marine
monitoring approaches for assessing marine environmental status,’’ Fron-
tiers Mar. Sci., vol. 3, p. 213, Nov. 2016, doi: 10.3389/fmars.2016.
00213.

[3] F. Liu and M. Fang, ‘‘Semantic segmentation of underwater images based
on improved deeplab,’’ J. Mar. Sci. Eng., vol. 8, no. 3, p. 188, Mar. 2020,
doi: 10.3390/jmse8030188.

[4] J. Niemeijer, P. Pekezou Fouopi, S. Knake-Langhorst, and E. Barth,
‘‘A review of neural network based semantic segmentation for scene
understanding in context of the self driving car,’’ in Proc. Student Conf.
Med. Eng. Sci., 2017, pp. 1–4.

[5] F. Khan, M. Khan, N. Iqbal, S. Khan, D.M. Khan, A. Khan, and D.-Q.Wei,
‘‘Prediction of recombination spots using novel hybrid feature extraction
method via deep learning approach,’’ Frontiers Genet., vol. 11, Sep. 2020,
Art. no. 539227, doi: .10.3389/fgene.2020.539227.

[6] S. Khan, M. Khan, N. Iqbal, M. Li, and D. M. Khan, ‘‘Spark-based
parallel deep neural network model for classification of large scale RNAs
into piRNAs and non-piRNAs,’’ IEEE Access, vol. 8, pp. 136978–136991,
2020, doi: 10.1109/ACCESS.2020.3011508.

[7] N. Inayat, M. Khan, N. Iqbal, S. Khan, M. Raza, D. M. Khan,
A. Khan, and D. Q.Wei, ‘‘IEnhancer-DHF: Identification of enhancers and
their strengths using optimize deep neural network with multiple features
extraction methods,’’ IEEE Access, vol. 9, pp. 40783–40796, 2021, doi:
10.1109/ACCESS.2021.3062291.

[8] I. Ali, A. U. Rehman, D. M. Khan, Z. Khan, M. Shafiq, and J.-G. Choi,
‘‘Model selection using K-means clustering algorithm for the symmetri-
cal segmentation of remote sensing datasets,’’ Symmetry, vol. 14, no. 6,
p. 1149, Jun. 2022, doi: 10.3390/sym14061149.

[9] R. Prados, R. Garcia, N. Gracias, L. Neumann, and H. Vagstol, ‘‘Real-
time fish detection in trawl nets,’’ in Proc. OCEANS-Aberdeen, Jun. 2017,
pp. 1–5, doi: 10.1109/OCEANSE.2017.8084760.

[10] L. Fang, X. Wang, and L. Wang, ‘‘Multi-modal medical image segmen-
tation based on vector-valued active contour models,’’ Inf. Sci., vol. 513,
pp. 504–518, Mar. 2020, doi: 10.1016/j.ins.2019.10.051.

[11] Z. Zhang, C. Duan, T. Lin, S. Zhou, Y. Wang, and X. Gao, ‘‘GVFOM:
A novel external force for active contour based image segmentation,’’
Inf. Sci., vol. 506, pp. 1–18, Jan. 2020, doi: 10.1016/j.ins.2019.08.
003.

[12] W. Wang, Y. Wang, Y. Wu, T. Lin, S. Li, and B. Chen, ‘‘Quantifica-
tion of full left ventricular metrics via deep regression learning with
contour-guidance,’’ IEEE Access, vol. 7, pp. 47918–47928, 2019, doi:
10.1109/ACCESS.2019.2907564.

[13] W. Shen, W. Xu, H. Zhang, Z. Sun, J. Ma, X. Ma, S. Zhou, S. Guo, and
Y. Wang, ‘‘Automatic segmentation of the femur and tibia bones from X-
ray images based on pure dilated residual U-Net,’’ Inverse Problems Imag.,
vol. 15, no. 6, p. 1333, 2021, doi: 10.3934/ipi.2020057.

[14] H. Zhang, W. Zhang, W. Shen, N. Li, Y. Chen, S. Li, B. Chen, S. Guo,
and Y. Wang, ‘‘Automatic segmentation of the cardiac MR images based
on nested fully convolutional dense network with dilated convolution,’’
Biomed. Signal Process. Control, vol. 68, Jul. 2021, Art. no. 102684, doi:
10.1016/j.bspc.2021.102684.

[15] P. W. Patil, O. Thawakar, A. Dudhane, and S. Murala, ‘‘Motion saliency
based generative adversarial network for underwater moving object seg-
mentation,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019,
pp. 1565–1569, doi: 10.1109/ICIP.2019.8803091.

[16] C. Premachandra, S. Ueda, and Y. Suzuki, ‘‘Detection and tracking of mov-
ing objects at road intersections using a 360-degree camera for driver assis-
tance and automated driving,’’ IEEE Access, vol. 8, pp. 135652–135660,
2020, doi: 10.1109/ACCESS.2020.3011430.

[17] R. Garcia, R. Prados, J. Quintana, A. Tempelaar, N. Gracias, and
S. Rosen, ‘‘Automatic segmentation of fish using deep learning with
application to fish size measurement,’’ ICES J. Mar. Sci., vol. 77, no. 4,
2020, Art. no. 13541366, doi: 10.1093/icesjms/fsz186.

[18] A. King, S. M. Bhandarkar, and B. M. Hopkinson, ‘‘A comparison of
deep learning methods for semantic segmentation of coral reef survey
images,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2018, pp. 1475–14758, doi: 10.1109/CVPRW.2018.
00188.

VOLUME 11, 2023 33663

http://dx.doi.org/10.3389/fmars.2016.00213
http://dx.doi.org/10.3389/fmars.2016.00213
http://dx.doi.org/10.3390/jmse8030188
http://dx.doi.org/10.3389/fgene.2020.539227
http://dx.doi.org/10.1109/ACCESS.2020.3011508
http://dx.doi.org/10.1109/ACCESS.2021.3062291
http://dx.doi.org/10.3390/sym14061149
http://dx.doi.org/10.1109/OCEANSE.2017.8084760
http://dx.doi.org/10.1016/j.ins.2019.10.051
http://dx.doi.org/10.1016/j.ins.2019.08.003
http://dx.doi.org/10.1016/j.ins.2019.08.003
http://dx.doi.org/10.1109/ACCESS.2019.2907564
http://dx.doi.org/10.3934/ipi.2020057
http://dx.doi.org/10.1016/j.bspc.2021.102684
http://dx.doi.org/10.1109/ICIP.2019.8803091
http://dx.doi.org/10.1109/ACCESS.2020.3011430
http://dx.doi.org/10.1093/icesjms/fsz186
http://dx.doi.org/10.1109/CVPRW.2018.00188
http://dx.doi.org/10.1109/CVPRW.2018.00188


M. Chicchon et al.: Semantic Segmentation of Fish and Underwater Environments

[19] A. King, S. Bhandarkar, and B. Hopkinson, ‘‘Deep learning for seman-
tic segmentation of coral reef images using multi-view information,’’ in
Proc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. Workshops (CVPR),
Jun. 2019, pp. 1–10.

[20] I. Alonso, A. Cambra, A. Munoz, T. Treibitz, and A. C. Murillo, ‘‘Coral-
segmentation: Training dense labeling models with sparse ground truth,’’
in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 2874–2882, doi: 10.1109/ICCVW.2017.339.

[21] I. Alonso, M. Yuval, G. Eyal, T. Treibitz, and A. C. Murillo, ‘‘CoralSeg:
Learning coral segmentation from sparse annotations,’’ J. Field Robot.,
vol. 36, no. 8, Art. no. 14561477, 2019, doi: 10.1002/rob.21915.

[22] M. J. Islam, C. Edge, Y. Xiao, P. Luo, M. Mehtaz, C. Morse,
S. S. Enan, and J. Sattar, ‘‘Semantic segmentation of underwater imagery:
Dataset and benchmark,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2020, pp. 1769–1776, doi: 10.1109/IROS45743.2020.
9340821.

[23] P. Drews-Jr, I. D. Souza, I. P. Maurell, E. V. Protas, and
S. S. C. Botelho, ‘‘Underwater image segmentation in the wild using deep
learning,’’ J. Brazilian Comput. Soc., vol. 27, no. 1, p. 12, Dec. 2021, doi:
10.1186/s13173-021-00117-7.

[24] A. Saleh, I. H. Laradji, D. A. Konovalov, M. Bradley, D. Vazquez, and
M. Sheaves, ‘‘A realistic fish-habitat dataset to evaluate algorithms for
underwater visual analysis,’’ Sci. Rep., vol. 10, no. 1, p. 14671, Sep. 2020,
doi: 10.1038/s41598-020-71639-x.

[25] B. Arain, C. McCool, P. Rigby, D. Cagara, and M. Dunbabin, ‘‘Improving
underwater obstacle detection using semantic image segmentation,’’ in
Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 9271–9277, doi:
10.1109/ICRA.2019.8793588.

[26] M. J. Islam, S. Sakib Enan, P. Luo, and J. Sattar, ‘‘Underwa-
ter image super-resolution using deep residual multipliers,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2020, pp. 900–906, doi:
10.1109/ICRA40945.2020.9197213.

[27] M. J. Islam, Y. Xia, and J. Sattar, ‘‘Fast underwater image enhance-
ment for improved visual perception,’’ IEEE Robot. Autom. Lett.,
vol. 5, no. 2, pp. 3227–3234, Apr. 2020, doi: 10.1109/LRA.2020.
2974710.

[28] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
‘‘DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018, doi:
10.1109/TPAMI.2017.2699184.

[29] A. Hatamizadeh, A. Hoogi, D. Sengupta, W. Lu, B. Wilcox, D. Rubin, and
D. Terzopoulos, ‘‘Deep active lesion segmentation,’’ in Proc. Mach. Learn.
Med. Imag., 10th Int. Workshop Mach. Learn. Med. Imag. (MLMI), 2019,
pp. 98–105, doi: 10.1007/978-3-030-32692-0_12.

[30] A. Hatamizadeh, D. Sengupta, and D. Terzopoulos, ‘‘End-to-end
deep convolutional active contours for image segmentation,’’ 2019,
arXiv:1909.13359.

[31] A. Hatamizadeh, D. Sengupta, and D. Terzopoulos, ‘‘End-to-end trainable
deep active contour models for automated image segmentation: Delin-
eating buildings in aerial imagery,’’ in Computer Vision–(ECCV). Cham,
Switzerland: Springer, 2020, pp. 730–746, doi: 10.1007/978-3-030-58610-
2_43.

[32] M. Zhang, B. Dong, and Q. Li, ‘‘Deep active contour network for med-
ical image segmentation,’’ in Medical Image Computing and Computer
Assisted Intervention–(MICCAI). Cham, Switzerland: Springer, 2020,
pp. 321–331, 2020, doi: 10.1007/978-3-030-59719-1_32.

[33] Y. Kim, S. Kim, T. Kim, and C. Kim, ‘‘CNN-based semantic segmen-
tation using level set loss,’’ in Proc. IEEE Winter Conf. Appl. Com-
put. Vis. (WACV), Jan. 2019, pp. 1752–1760, doi: 10.1109/WACV.2019.
00191.

[34] B. Kim and J. C. Ye, ‘‘Mumford–Shah loss functional for image seg-
mentation with deep learning,’’ in IEEE Trans. Image Process., vol. 29,
pp. 1856–1866, 2020, doi: 10.1109/TIP.2019.2941265.

[35] Y. Lan, Y. Xiang, and L. Zhang, ‘‘An elastic interaction-based loss function
for medical image segmentation,’’ 2020, arXiv:2007.02663.

[36] X. Chen, X. Luo, G. Wangy, and Y. Zhengy, ‘‘Deep elastica for image
segmentation,’’ in Proc. IEEE 18th Int. Symp. Biomed. Imag. (ISBI),
Apr. 2021, pp. 706–710, doi: 10.1109/ISBI48211.2021.9433886.

[37] J. Ma, J. He, and X. Yang, ‘‘Learning geodesic active contours
for embedding object global information in segmentation CNNs,’’
IEEE Trans. Med. Imag., vol. 40, no. 1, pp. 93–104, Jan. 2021, doi:
10.1109/TMI.2020.3022693.

[38] T. H. N. Le, K. G. Quach, K. Luu, C. N. Duong, and M. Savvides, ‘‘Refor-
mulating level sets as deep recurrent neural network approach to semantic
segmentation,’’ IEEE Trans. Image Process., vol. 27, no. 5, pp. 2393–2407,
May 2018, doi: 10.1109/TIP.2018.2794205.

[39] G. Cutter, K. Stierhoff, and J. Zeng, ‘‘Automated detection of rock-
fish in unconstrained underwater videos using Haar cascades and a new
image dataset: Labeled fishes in the wild,’’ in Proc. IEEE Winter Appl.
Comput. Vis. Workshops, Jan. 2015, pp. 57–62, doi: 10.1109/WACVW.
2015.11.

[40] N. A. Nezla, T. P. Mithun Haridas, and M. H. Supriya, ‘‘Seman-
tic segmentation of underwater images using UNet architecture based
deep convolutional encoder decoder model,’’ in Proc. 7th Int. Conf.
Adv. Comput. Commun. Syst. (ICACCS), Mar. 2021, pp. 28–33, doi:
10.1109/ICACCS51430.2021.9441804.

[41] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. (Lecture Notes in Computer Science).
Cham, Switzerland: Springer, 2015, pp. 234–241, doi: 10.1007/978-3-319-
24574-4_28.

[42] A. G. Roy, N. Navab, and C. Wachinger, ‘‘Recalibrating fully convolu-
tional networks with spatial and channel ‘squeeze and excitation’ blocks,’’
IEEE Trans. Med. Imag., vol. 38, no. 2, pp. 540–549, Feb. 2019, doi:
10.1109/TMI.2018.2867261.

[43] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, ‘‘Encoder–
decoder with atrous separable convolution for semantic image segmenta-
tion,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 801–818.

[44] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘‘Rethink-
ing atrous convolution for semantic image segmentation,’’ 2017,
arXiv:1706.05587.

[45] ImageNet. Accessed: Dec. 4, 2021. [Online]. Available: http://www.image-
net.org/

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L.
Fei-Fei, ‘‘ImageNet large scale visual recognition challenge,’’ 2014,
arXiv:1409.0575.

[47] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520, doi: 10.1109/CVPR.2018.00474.

[48] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[49] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, ‘‘ResNeSt: Split-attention
networks,’’ 2020, arXiv:2004.08955.

[50] F. Milletari, N. Navab, and S.-A. Ahmadi, ‘‘V-Net: Fully convolu-
tional neural networks for volumetric medical image segmentation,’’
in Proc. 4th Int. Conf. 3D Vis. (3DV), Oct. 2016, doi: 10.1109/3DV.
2016.79.

[51] T. F. Chan and L. A. Vese, ‘‘Active contours without edges,’’ IEEE
Trans. Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001, doi:
10.1109/83.902291.

[52] X. Chen, B. M. Williams, S. R. Vallabhaneni, G. Czanner, R. Williams,
and Y. Zheng, ‘‘Learning active contour models for medical image
segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2019, pp. 11624–11632, doi: 10.1109/CVPR.2019.
01190.

[53] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, and
I. B. Ayed, ‘‘Boundary loss for highly unbalanced segmentation,’’ in
Proc. 2nd Int. Conf. Med. Imag. Deep Learn., 2019, pp. 285–296, doi:
10.1016/j.media.2020.101851.

[54] M. Harouni and H. Yazdani Baghmaleki, ‘‘Color image segmentation
metrics,’’ 2020, arXiv:2010.09907.

[55] G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, ‘‘What is a good
evaluation measure for semantic segmentation?’’ in Proc. Brit. Mach. Vis.
Conf., 2013, p. 5244.

[56] J. Ribera, D. Güera, Y. Chen, and E. J. Delp, ‘‘Locating objects without
bounding boxes,’’ 2018, arXiv:1806.07564.

[57] I. Rizwan I Haque and J. Neubert, ‘‘Deep learning approaches to biomed-
ical image segmentation,’’ Informat. Med. Unlocked, vol. 18, 2020,
Art. no. 100297, doi: 10.1016/j.imu.2020.100297.

[58] P. Yakubovskiy. (2020). Segmentation Models Pytorch. [Online]. Avail-
able: https://github.com/qubvel/segmentation_models.pytorch

[59] S. Malacrino. (2020). DenseUNet in PyTorch. [Online]. Available:
https://github.com/stefano-malacrino/DenseUNet-pytorch

33664 VOLUME 11, 2023

http://dx.doi.org/10.1109/ICCVW.2017.339
http://dx.doi.org/10.1002/rob.21915
http://dx.doi.org/10.1109/IROS45743.2020.9340821
http://dx.doi.org/10.1109/IROS45743.2020.9340821
http://dx.doi.org/10.1186/s13173-021-00117-7
http://dx.doi.org/10.1038/s41598-020-71639-x
http://dx.doi.org/10.1109/ICRA.2019.8793588
http://dx.doi.org/10.1109/ICRA40945.2020.9197213
http://dx.doi.org/10.1109/LRA.2020.2974710
http://dx.doi.org/10.1109/LRA.2020.2974710
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://dx.doi.org/10.1007/978-3-030-32692-0_12
http://dx.doi.org/10.1007/978-3-030-58610-2_43
http://dx.doi.org/10.1007/978-3-030-58610-2_43
http://dx.doi.org/10.1007/978-3-030-59719-1_32
http://dx.doi.org/10.1109/WACV.2019.00191
http://dx.doi.org/10.1109/WACV.2019.00191
http://dx.doi.org/10.1109/TIP.2019.2941265
http://dx.doi.org/10.1109/ISBI48211.2021.9433886
http://dx.doi.org/10.1109/TMI.2020.3022693
http://dx.doi.org/10.1109/TIP.2018.2794205
http://dx.doi.org/10.1109/WACVW.2015.11
http://dx.doi.org/10.1109/WACVW.2015.11
http://dx.doi.org/10.1109/ICACCS51430.2021.9441804
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/TMI.2018.2867261
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1109/3DV.2016.79
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1109/CVPR.2019.01190
http://dx.doi.org/10.1109/CVPR.2019.01190
http://dx.doi.org/10.1016/j.media.2020.101851
http://dx.doi.org/10.1016/j.imu.2020.100297


M. Chicchon et al.: Semantic Segmentation of Fish and Underwater Environments

MIGUEL CHICCHON received the B.S. degree in
electronic engineering from Universidad Nacional
de Ingeniería (UNI), Lima, Peru, in 2009, and
the M.S. degree in informatics with a major
in computer science from Pontificia Universi-
dad Católica del Perú (PUCP), Lima, in 2019,
where he is currently pursuing the Ph.D. degree in
engineering.

From 2009 to 2010, he conducted research in
satellite systems at the Information Technology

and Communications Center (CTIC) and the National Institute for Telecom-
munications Research and Training (INICTEL). Since 2019, he has been
a Consultant for applied research projects with the Institute of Scientific
Research of Universidad de Lima (IDIC-ULIMA). His research interests
include machine learning, deep learning, reinforcement learning, computer
vision, image processing, the Internet of Things, embedded systems, and
control systems.

HECTOR BEDON received the B.Sc. degree in
physics and the M.Sc. degree in telematic engi-
neering from the National University of Engi-
neering, Peru, in 2003, and the Ph.D. degree in
telematic systems engineering from Universidad
Politecnica de Madrid (UPM), Spain, in 2016.

He has taught and conducted research with Uni-
versidad Nacional de Ingenieria (UNI), Univer-
sidad de Lima, and UPM. Since 2022, he is a
Professor at the School of Technical Sciences and

Engineering of Madrid Open University (UDIMA). His research interests
include the development of new internet services and communication pro-
tocols for cubesats networks, Internet of Things and artificial intelligence
applied to smart cities, smart fishing, and precision agriculture using small
satellites, aerial drones, amphibians, and airships.

CARLOS R. DEL-BLANCO received the Telecom-
munication Engineering and Ph.D. degrees in
telecommunication from Universidad Politécnica
deMadrid (UPM), in 2005 and 2011, respectively.

Since 2005 he has been a member of the Image
Processing Group, UPM. In addition, since 2011,
he has been a member of the Faculty of E.T.S.
Ingenieros de Telecomunicación, and since 2021,
he has been a Professor of signal theory and com-
munications with the Department of Signals, Sys-

tems, and Communications. He has been actively involved in European
projects and national projects in Spain. His professional interests include
signal and image processing, computer vision, pattern recognition, machine
learning, and stochastic dynamic models.

IVAN SIPIRAN received the Ph.D. degree in com-
puter science from the University of Chile.

He was a Postdoctoral Researcher with the
University of Konstanz, in 2014 and 2015,
and a Professor with the Department of Engi-
neering, Pontifical Catholic University, Peru,
from 2015 to 2020. Since 2020, he has been
an Assistant Professor with the Department of
Computer Science, University of Chile. His cur-
rent research interests include geometry process-

ing, 3-D computer vision, and applications of computer vision in cultural
heritage.

VOLUME 11, 2023 33665


