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A B S T R A C T   

Pomegranate (Punica granatum L.) fruits are a historical agricultural product of the Mediterranean 
basin that became increasingly popular in the latest years for being rich in antioxidants and other 
micronutrients, and are extensively commercialized as fruits, juice, jams and, in some Eastern 
countries, as a fermented alcoholic beverage. In this work, four different pomegranate wines 
specifically designed using combinations of two cultivars (Jolly Red and Smith) and two yeast 
starters with markedly different characteristics (Saccharomyces cerevisiae Clos and Saccharomyces 
cerevisiae ex-bayanus EC1118) were analyzed. The chemical characterization of the wines together 
with the originating unfermented juices was performed by 1H NMR spectroscopy metabolomic 
analysis. The full spectra were used for unsupervised and supervised statistical multivariate 
analysis (MVA), namely Principal Component Analysis (PCA), Orthogonal Partial Least Squares 
Discriminant Analysis (OPLS-DA), and sparse PCA (SPCA). The MVA of the wines showed a clear 
discrimination between the cultivars, and a smaller, yet significant, discrimination between the 
yeasts used. In particular, a higher content of citrate and gallate was observed for the Smith cv. 
and, on the contrary, a statistically significant higher content of fructose, malate, glycerol, 2,3 
butanediol, trigonelline, aromatic amino acids and 4-hydrophenylacetate was observed in Jolly 
Red pomegranate wines samples. Significant interaction among the pomegranate cultivar and the 
fermenting yeast was also observed. Sensorial analysis was performed by a panel of testing ex
perts. MVA of tasting data showed that the cultivar significantly affected the organoleptic pa
rameters considered, while the yeast had a minor impact. Correlation analysis between NMR- 
detected metabolites and organoleptic descriptors identified several potential sensorially-active 
molecules as those significantly impacting the characteristics of the pomegranate wines.   

1. Introduction 

In these times of health awareness, healthy eating, and nutraceutical products, pomegranate fruits experienced a great growth of 
commercial popularity. Pomegranate (Punica granatum L.) is a plant belonging to the family Punicaceae native of Western and Central 
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Asia, from Iran to northern India. It has a lengthy history of cultivation throughout the whole Middle East, Indian subcontinent, and 
Mediterranean regions of Africa, Asia, and Europe [1]. Both the tree and the fruit of pomegranate had a wide range of uses in ancient 
therapeutics, together with a symbolic role in art, literature, and religion of the cultures, representing fundamental dualities, with the 
medicinal purposes for which pomegranate was reflecting symbolic associations as well as its pharmaceutical properties [2]. Pome
granates are thought to have been domesticated in the Transcaucasia-Caspian region, namely in the northeastern Turkey and the south 
Caspian regions [3]. Chemical evidences of consumption of pomegranates and possibly wine production were found in the Areni-1 
cave complex in southeastern Armenia, dated around 4000 BCE (Late Chalcolithic), presumably the first evidence of plant domesti
cation [4]. Archaeological evidence such as carbonized pips and fragments of pomegranate peels have been found from early Bronze 
Age Jericho and Arad, and remains of Punica species have been found in Nimrud [3]. Pomegranates were widely used in Egypt, as 
documented by occurrences in texts, artistic depictions, and dried fruits in tombs, Israel, Cyprus, Crete, and mainland Greece [5]. The 
crop was naturalized in the Mediterranean region from Phoenicians around 2000 BCE [6]. Plinius the Elder reported in his Naturalis 
Historiae that Carthage supplied Rome with large seedless pomegranates, called malum punicum or granatum [7]. Nowadays, pome
granate is widely cultivated in Mediterranean, tropical and subtropical regions, and in central Asia. 

In recent years, the global demand for pomegranate products is greatly increased, thanks to their well-studied nutritional and 
organoleptic properties [8,9]. In fact, the fruit is a rich source of bioactive compounds such as phenolics, hydrolysable tannins, an
thocyanins, flavonoids, and essential micro-nutrients such as vitamin C. The chemical composition is strictly related to cultivar, 
growing region, climate, maturity, cultivation practice, and storage conditions [1]. Among flavonoids, anthocyanin pigments are the 
largest and most important group present in pomegranate arils, which are used to obtain the juice. These molecules are responsible of 
the red colour of fruit and juice. In the group of phenolic acids, hydroxybenzoic (gallic and ellagic acids) and hydroxycinnamic acids 
(caffeic acid, chlorogenic acid, and p-coumaric acid) represent the main groups [1]. A relevant content of hydrolysable tannins mainly 
punicalagin, pedunculagin, and punicalagin could be found in pomegranate peel [10]. The presence of significant amounts of bioactive 
compounds, assures this fruit exhibits strong antioxidative, anti-inflammatory, apoptotic, and antimutagenic properties [11]. The 
regular consumption of this fruit is associated with prevention of gastric damage, cardiovascular disease, type 2 diabetes, specific types 
of cancers, renal illnesses, liver complications, and osteoarthritis [11]. 

Edible parts of pomegranate fruits traditionally are eaten by removing them manually after breaking the fruit hard skin, while in 
common commercial use, the seeds often are pressed to release the juice and served in cafes and restaurants as a centrifuged drink, but 
nowadays ample choice is given to consumers, with commercial pomegranate products such as canned beverages, jelly, jam, paste, and 
even vinegars. Pomegranate juice finds also use for flavouring and colouring beverage products [1]. Moreover, the need of methods for 
the characterization of food matrices chemical composition with the aim to assess the presence of healthy nutrients and bioactive 
compounds has gained great importance, also among consumers. These needs led to the development of analytical approaches for a 
comprehensive assessment of the benefits and risks associated with food intake [12]. Thus, in last years, metabolomics quickly 
emerged as a trustable and effective tool in food and nutrition sciences as it uses an untargeted approach that takes into account the 
most abundant low-molecular weight compounds present in any biological matrix. Among the analytical techniques used, NMR 
spectroscopy has been demonstrated to be widely used for characterization of quality, origin, adulteration, etc., of food products, 
including many types of fruits [13,14] and fruit juices [15]. This high throughput, reliable, non-invasive, high and reproducible 
technique provides quantitative and structural information on either specific molecules or complex mixtures [13], with minimal 
sample manipulation (typically just buffer addition) [15]. Thus, together with High Performance Liquid Chromatography coupled to 
Mass Spectroscopy (HPLC-MS), Nuclear Magnetic Resonance Spectroscopy (NMR) is widely used in metabolomic applications for food 
science and nutrition research [16–18]. In particular, the metabolomic approach based on NMR spectroscopy, has proven to be a 
powerful and reliable tool to obtain a simultaneous multiple-metabolites snapshot of biological samples for biomarker detection, food 
quality control, and/or origin discrimination [16,19–22]. 

There is a great number of studies on the composition of pomegranate juice, but very little of them are based on NMR spectroscopy 
[23–27]; moreover, to the best of our knowledge, there is no published study on the 1H NMR metabolomic analysis of pomegranate 
wines. Thus, few studies focused on the phytochemicals and qualitative characterization of pomegranate wines also related to their 
evolution during the fermentation processes by different yeast strains [28–30]. Similarly to the fresh fruits, pomegranate wine may 
show many health benefits. It contains antioxidants and anthocyanins in large amounts. These molecules are beneficial for anti-aging, 
cardiovascular diseases, kidney diseases, and diabetes (Fellipe Lopes de Oliveira et al., 2020; Kandylis & Kokkinomagoulos, 2020) [31, 
32]. Therefore, we decided to characterize the juice of the two cultivars used for the production of the wine, and the wine themselves, 
focusing on the changes in concentrations of biologically relevant molecules from juice to wine, and moreover on the impact of the 
yeasts used for the vinification on the final product. In particular we focused, for the first time, on the metabolic profile transformations 
of pomegranate fruit juice after fermentation with specific yeasts by 1H NMR spectroscopy associated to multivariate statistical 
analysis. Moreover, a panel test of the wines was organised to assess the organoleptic quality of the fermented beverages, and to allow 
correlation of the tasting parameters data with the chemical profiles provided by NMR spectroscopy, with the intent of establishing a 
chemical pathway to the choice of both cultivar and yeast in relation to the consumer perceptions. The obtained results allowed us to 
provide useful information for the selection of cultivar × yeast fermentation patterns able to provide a product with the best nutra
ceutical and organoleptic characteristics. 
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2. Materials and methods 

2.1. Collection of pomegranate fruits and sample preparation 

Pomegranate juice was obtained from freshly pressed fruits of the commercially available Smith and Jolly Red cultivars collected in 
fields belonging to the company ICS s.r.l., as previously described [33]. Two juice samples, one for each cultivar, were stored for 
further NMR analysis. Afterwards, pomegranate wine was prepared by fermenting the fruits with the commercial yeasts Saccharomyces 
cerevisiae (strain Clos) and Saccharomyces cerevisiae ex-bayanus (strain EC1118) (both Lallemand Inc., Montreal, QC, Canada), ac
cording to the previously reported procedure [33]. A total of 12 wines were produced separately by fermenting each of the 2 cultivars 
with each of the 2 yeasts, in 3 replications of winemaking. Wines were analyzed 3 months after fermentation end. 

2.2. NMR sample preparation 

Pomegranate juice and wine samples (900 μL each) were added with 100 μL of a phosphate buffer solution at pH 2.9. The buffer 
contained 1 M KH2PO4 in D2O, 0.1% trimethylsilylpropanoic acid (TSP) as internal reference standard, and 2 mM NaN3 to prevent 
microbial contamination. The resulting solution was successively centrifugated in order to remove solids (10,000 g at room tem
perature for 5 min). Then, 600 μL of the supernatant was transferred into a 5 mm NMR tube for spectral acquisition [13,34]. 

2.3. NMR experiments 

NMR spectra were acquired on a Bruker Avance III 600 Ascend NMR spectrometer (Bruker, Germany) operating at 600.13 MHz for 
1H observation, equipped with a z axis gradient coil and an automatic tuning-matching unit (ATM). The spectra were acquired at the 
temperature of 300 K with a Bruker Automatic Sample Changer, interfaced with the software IconNMR (Bruker). 1H 1D spectra were 
acquired using a standard pulse program including presaturation for residual solvent signal (zgcppr). 64 scans (with 16 dummy scans) 
were collected into 65536 data points, with a rcicle delay of 5.0 s. A spectral width of 12,019 Hz corresponding to 20.028 ppm 
(acquisition time of 2.7262144 s) were used. The resulting FIDs were weighted with an exponential function (line broadening of 0.3 
Hz) before Fourier transform, phasing, and baseline correction. Spectra were referenced setting the trimethyl silyl propionate standard 
signal at 0.00 ppm. Spectra were processed with TopSpin 3.5 pl 7 software (Bruker). Homo- and hetero-correlated 2D NMR spectra, 
using standard pulse sequences, were used to assign the metabolites (2D 1H Jres, 1H COSY, [1H,13C]-HSQC, and [1H,13C]-HMBC). 
Assignments were confirmed by comparison with literature [13,24–26]. 

The acquisition and processing of 2D spectra were performed as follows: 
2D [1H,1H]-COSY spectra, pulse sequence with presaturation during relaxation delay using gradient pulses for coherence selection, 

spectral width in both dimensions 12,019 Hz (20.028 ppm), 2048 data points in f2, 512 increments in f1, processed with a-bell squared 
window function in both dimension before Fourier transform; 

1H homonuclear J-resolved, spectral width 12 kHz for f2 dimension and 80 Hz for f1, 8096 data points in f2, 256 increments in f1, 
processed with zero filling in f1 to 4096 real data points, unshifted sine-bell squared window functions in both dimensions before 
Fourier transform; 

[1H,13C]-HSQC,1H–13C decoupling, 9 and 37 kHz spectral widths in the 1H and 13C dimensions respectively, 2048 data points in f2, 
256 increments in f1, forward Linear Prediction with 32 coefficients, zero filling to 4096 data points for the f1 dimension, unshifted 
sine-bell squared window functions were applied in both dimensions before Fourier transform.; 

[1H,13C]-HMBC, 9 and 45 kHz spectral widths in the 1H and 13C dimensions respectively, 2048 data points in f2, 512 increments in 
f1, forward Linear Prediction with 32 coefficients, zero filling to 4096 data points in f1, unshifted sine-bell squared window functions 
in both dimensions dimension before Fourier transform. 

2.4. NMR data processing and statistical analysis 

1H NMR spectra were segmented in buckets of the same size (0.04 ppm width), and integrated using Bruker Amix 3.9.15 (Analysis 
of Mixture, Bruker BioSpin GmbH, Rheinstetten, Germany) software. The residual non-deuterated water (4.9–4.75 ppm) and ethanol 
(3.68–3.58 and 1.24–1.15 ppm) signals were excluded from the bucketing, performed within the 10.00–0.5 ppm region. Total sum 
normalization was applied [35] in order to reduce small differences due to metabolites concentration and/or small fluctuations of 
experimental conditions among samples. Pareto scaling method [35] was then applied to the bucket reduced NMR spectra. The data 
table obtained from all aligned and bucket-reduced spectra was then used for multivariate data analysis. For identification, each bucket 
was labelled with the value of the central chemical shift for its 0.04 ppm width. Simca-P version 14 program (Sartorius Stedim Biotech, 
Umeå, Sweden) was used to perform the following multivariate statistical analysis: unsupervised principal component analysis, PCA, 
and supervised orthogonal partial least squares discriminant analysis, OPLS-DA pattern recognition methods. The PCA was used in the 
first place to get an overview of all observations in the data table [8,9]. OPLS-DA was applied in order to highlight discriminating 
variable in the two class problems filtering the portion of the variance useful for predictive purposes from the non-predictive variance 
[36]. Statistical models were validated by an internal cross-validation method (7-fold) and a permutation test (40 total permutations) 
[11]. Models’ quality was assessed by evaluation of the total variation in X, the variation in the response variable Y, and the predictive 
ability of the models, described by the R2X, R2Y, and Q2 parameters, respectively [12]. The variables responsible for the observed 
discrimination were identified by using an S-line plot. Mean values ± standard deviation of selected and distinctive bucket reduced 
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Fig. 1. Representative 1H NMR (Nuclear Magnetic Resonance Spectroscopy) spectrum of a pomegranate juice sample. Expanded areas in of (a) 
(− 0.5–3 ppm), aliphatic region; (b) (3–5 ppm) sugars region; (c) (5–10 ppm) aromatic region. Due to the weakness of their intensities, this spectral 
region was reported with a high peak intensities’ enhancement. The peaks of relevant identified metabolites are labelled. 
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NMR signal areas (normalized to the total spectrum excluding the residual water region) were used to evaluate the relative change in 
discriminating metabolite content between the observed groups [16]. Log2 fold change (FC) ratio of the normalized median intensity of 
the corresponding signals in the spectra of the groups was used to assess changes in metabolite level between two groups [13,14]. 
Statistical significance was assumed for adjusted p-values <0.05. The Sparse PCA (SPCA) and the standard PCA used for the com
parisons were performed with the package MixOmics [37] for the R Statistical Environment version 4.2.0 [38]. PCA biplots were also 
created with package MixOmics [37], while the correlation plot was created with the R corrplot package [39]. 

2.5. Sensorial analysis and correlation with chemical composition 

On December 11th, 2020, pomegranate wines were tasted by 11 experts (including sommelier, oenologists, pomegranate pro
ducers, and wine researchers). All participants were of legal drinking age and were informed that the tasting involved alcoholic 
beverages. They were also informed that the study was an academic research project, that all data was going to be de-identified and 
only reported in the aggregate, that the information collected would be used for research purposes only, and that they could refuse to 
participate or stop participating in the study at any time without providing a reason. All participants agreed to an informed consent 
statement in order to participate to the study. The tasting sheet used for the description of the wine quality is available in supple
mentary material S1. For each organoleptic descriptor, each taster was asked to judge the intensity of the perception in each wine. 
Then, the ranking was obtained after normalization based on the total variance of the perception of each taster for each parameter. 
Variables were tested for normal distribution using the Shapiro-Wilk test, and the significant effects of the factors “cultivar”, “yeast”, 
“cultivar × yeast”, “replication” and “tester” were assessed by ANOVA, with the software SPSS v. 20 (IBM Corporation, Armonk, US). 
SPSS was also used to calculate Spearman correlations between the organoleptic descriptors evaluated in this work and the volatile 
compounds, as obtained in a previous report for the same wine samples [33]. 

The sensorial parameters tested were correlated with the compounds identified by NMR analysis using Pearson’s rho correlations at 
p < 0.05, in order to identify the compounds potentially responsible for the organoleptic properties of the wines. 

3. Results and discussion 

3.1. Peak assignment in 1H NMR spectra 

3.1.1. Pomegranate juice 
Visual inspection of the 600 MHz 1H NMR methanol-d4 pomegranate juice spectra revealed a complex pattern of signals due to the 

presence of different compounds, mainly sugars, amino acids, organic acids, and polyphenols (Fig. 1). Relative expansions of sig
nificant spectral regions, with main metabolites assignment, performed on the base of literature data [23–26] and bidimensional 
experiments, are reported in Fig. 1a, b, and 1c and Figs. S2 and S3. 

In the low frequency field region of the spectrum (0.5–3.00 ppm) the resonances of aliphatic groups of amino acids and organic 
acids were identified. In particular, for the amino acids class, valine, threonine, alanine, arginine, glutamine, GABA 

Table 1 
Qualitative comparison of selected metabolites by cultivar and beverage type. +, metabolite present, ++ metabolite in high concentration, — 
metabolite undetectable, ± metabolite in low concentration. GABA, ɣ-ammino butyric acid. * only detected in the case of EC1118 Yeast.  

Metabolite Juice (Jolly Red) Juice (Smith) Wine (Jolly Red) Wine (Smith) 

Acetate – – ± ±

alanine + + + +

anthocyanins ± ± – – 
arginine ± ± ± ±

asparagine ± + – – 
2,3-butanediol – – ±* ±* 
citrate + ++ ++ ++

ethanol ± ± ++ ++

formate + + + – 
fructose + + + +

GABA ± ± – – 
gallate ± – + ++

glutamine + + – – 
glycerol – – + +

iso-pentanol/iso-butanol – – ± ±

lactate ± ± – – 
malate ± ± ± ±

phenylalanine ± ± ± ±

succinate – – + +

sucrose + + – – 
trigonelline ± ± ± ±

valine ± + – – 
α-glucose + + – – 
β-glucose ++ ++ ± ±

C.R. Girelli et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e16774

6

(γ-amminobutyrate), asparagine, and arginine were identified (Fig. 1a). Presence of alcohols such as ethanol was also detected. The 
most intense peaks in this region were ascribable to citrate, the predominant organic acids. A marked difference in concentration of 
citrate could be observed by simple superimposition of Jolly Red and Smith 1H NMR spectra (Supplementary Fig. S4). 

Moreover, signals assigned to malate and lactate were also observed in the spectra. Intense peaks assigned to anomeric protons of 
sucrose, α,β-glucose, and fructose dominated the overlapping middle frequency region of the spectrum (range 3–6 ppm) (Fig. 1b). 
Minor signals assigned to myo-inositol were also detected. The high frequency region of the spectra (5.0–9.5 ppm) showed peaks 
assigned to phenolic compounds with also important health promoting properties [8] could be observed (Fig. 1c). Among these, ar
omatic protons resonances of ellagitannins punicalagin were observed. This was confirmed by the assignments in the 2D 
[1H,13C]-HSQC and [1H,13C]-HMBC spectra (Supplementary Figs. S2 and S3) and comparison with literature data [25]. These mol
ecules were already investigated for their antibacterial, antitumor and inflammatory activities [40]. Signals of antioxidants molecules 
as gallic and ellagic acid were also identified. As already reported in literature [13], the two broad signals observed at 6.90 and 7.60 
ppm were assigned to other polyphenol compounds. Signals assigned to anthocyanin pigments, responsible for the red colour of the 
juice were also observed [24]. Other metabolites, such as trigonelline, together with aromatic amino acid as phenylalanine and 
tyrosine were also identified. A summary of the detected metabolites and their relative abundance is reported in Table 1, for juices and 
wines according to cultivar. 

3.1.2. Pomegranate wines 
The 1H NMR aliphatic and aromatic region of the spectra of both Jolly Red and Smith cultivars’ fruit juice fermented by both Clos 

and EC1118 yeast were also characterized as reported in Figs. 2 and 3, respectively. 
As expected, the most intense signals in the spectra were assigned to ethanol (1.17 and 3.65 ppm), as an indicator of fermentation of 

sugars [41]. Moreover, signals of iso-pentanol/butanol and 2,3 butanediol [42] were identified. In the aliphatic region (0–3 ppm) 
proton resonances assigned to organic acids acetate, pyruvate, succinate, malate, and citrate were identified. Citrate seemed to remain 
almost constant after the fermentation, with similar values in both varietal juices and wines, as reported in literature data [43]. 
Interestingly, the same trend was observed for malic acid, the signal intensity of which remained similar in wines and did not exhibit 
noticeable changes during the winemaking process. The presence of organic acids is known to be strictly related to the organoleptic 
properties of wines [29]. In the middle frequency region of the spectra (3–6 ppm) the drastic reduction of glucose and sucrose signals 
could be observed as a consequence of fermentation. Moreover, as previous literature reported [29,30], while glucose is almost un
detectable, fructose residues remains after the winemaking process as confirmed by the presence of the signals assigned to this 
reducing sugars. Likewise, signals assigned to the non-volatile alcohol glycerol were observed in all the fermented pomegranate va
rieties spectra. In the high frequencies region of the spectra the signal of gallate was observed with stronger intensity than that 

Fig. 2. Stacked plot of expanded area in the 0.5–5.5 ppm region of the 1H NMR (Nuclear Magnetic Resonance Spectroscopy) sample spectra of a 
fermented pomegranate juice sample. The peaks of identified metabolites are labelled accordingly. 
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Fig. 3. Stacked plot of expanded area in the 6–9.5 ppm region of the 1H NMR (Nuclear Magnetic Resonance Spectroscopy) sample spectra of a 
fermented pomegranate juice sample. The peaks of identified metabolites are labelled accordingly. 

Fig. 4. PCA t [1]/t [2] scores plot for pomegranate wines data set. C: Clos yeast; EC: EC1118 yeast.  
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observed in fruit juice spectra as a consequence of ellagitannins hydrolysis and/or other oxidation reactions [8]. Likewise, proton 
resonances of flavonoids, 4-hydroxyphenylacetic acid and aromatic amino acids as phenylalanine and tyrosine were also identified. 
Signals of organic acid salts as formate and fumarate, and other metabolites as trigonelline could be also observed. Much lower in
tensities of anthocyanins signals were observed, as reported in literature. A decrease in the anthocyanins concentrations is an expected 
consequence of several processes taking place during winemaking [29]. A summary of the detected metabolites and their relative 
abundance is reported in Table 1, for juices and wines according to cultivar. 

3.2. Multivariate statistical analysis: PCA and OPLS-DA 

In order to reveal the possible data grouping of the samples, an unsupervised PCA was applied on the whole data set (Stacked plot of 
the spectral buckets reported in Supplementary Fig. S5). The resulting PCA model was built with 5 components giving R2X = 0.984, Q2 

= 0.928, and showing a clear partition according to the pomegranate varieties along the t [1] principal component of the samples. 
Moreover, the cultivar Jolly Red showed an interesting discrimination along the t [2] component according to the yeast used for the 
fermentation. On the contrary, the cultivar Smith samples distributed as a quite compact group (Fig. 4). 

In order to specify the discriminating molecular components responsible for the observed clear discrimination, we refined the 
separation analysis between the two observed cluster, Jolly Red and Smith pomegranate cultivars, by pair-wise supervised OPLS–DA 
analysis. The resulting model is described by excellent parameters: 1 + 1+0 components gave R2X = 0.855, R2Y = 0.998 and Q2 =

0.997. Thus, the scores plot (Fig. 5a) for the model highlighted the discrimination among the two considered cultivars along the first 
component and, in this case, revealed the dispersion of Jolly Red cv. samples along to the orthogonal component. The corresponding S 
line plot (Fig. 5b) of the loading vectors for the first components, colored according the pcorr values, showed the molecular component 
that responsible for the observed separation among the samples. Higher relative value of citrate (binned at 2.98, 2.94 and 2.82 ppm) 
was observed as discriminating for the Smith cv. Moreover, for the Jolly Red variety, a higher relative content of fructose (binned at 
4.1, 4.02, 3.9 ppm) and glycerol (binned at 3.74, 3.54, 3.58 ppm) and 2,3 butanediol (binned at 1.14 ppm) was observed. 

The quantitative comparison between Jolly Red and Smith cultivar for the pomegranate discriminant metabolites was then per
formed by considering the fold change (FC) ratio [13,14], as reported in Fig. 6. 

In Smith pomegranate wine samples, a statistically higher content of citrate was observed. On the contrary, a statistically significant 
higher content of fructose, malate, glycerol and 2,3 butanediol was observed in Jolly Red pomegranate wines samples. 

In order to characterize the metabolites with distinctive signals in the aromatic region, the unsupervised PCA analyses was also 
performed discarding the aliphatic region of the spectra (middle and low frequencies, from 6 to 0 ppm), obtaining an excellent model 
(five components, R2X (cum) = 0.996, Q2(cum) = 0.974) (Fig. 7). A certain degree of separation of the pomegranate varieties was 
observed in the t [1]/t [2] PCA scores plot, with Smith Clos and EC1118 pomegranate wines occurring at positive values of t [1] 
component, well differentiated Jolly Red Clos and EC1118 that placed from − 0.3 to 0.2 values of t [1] component and at negative 

Fig. 5. (a) OPLS–DA t [1]/t [2] scores plot (t [1]/t [2] for Jolly Red and Smith pomegranates cultivar. (b) S line plot for the model colored according 
to the correlation-scaled coefficient (*p(corr) ≥|0.5|). C: Clos yeast; EC: EC1118 yeast. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Discriminant metabolite comparison between Jolly Red and Smith pomegranate wine samples. The metabolites with significant Log2(FC) 
values are indicated with * (p ≤ 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 7. PCA t [1]/t [2] scores plot for pomegranate wines data set in the aromatic region. C: Clos yeast; EC: EC1118 yeast.  
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values of t [2] component. 
Also in this case, a supervised discriminant analysis was performed in order to refine the separation among the groups and to 

identify the molecular component discriminating for the classes. The OPLS-DA analysis resulted in a good model descripted by 1 + 1+0 
components giving R2X = 0.902, R2Y = 0.956 and Q2 = 0.916 (Fig. 8a). The S line plot (Fig. 8b) of the loading vectors for the model 
showed as variables at 7.14, ascribable to gallic acid signal is discriminating for the Smith varieties; on the contrary, signals ascribable 
to aromatic amino acid as tyrosine (binned at 7.22 and 6.94 ppm) and phenylalanine (binned at 7.38, 7.34 and 7.30 ppm) together 
with trigonelline (binned at 9.1, 8.82 ppm) were found as discriminating for the Smith variety. 

The identified discriminant metabolites for Jolly Red and Smith cultivar pomegranate wines were then quantitatively compared by 
the FC ratio (Fig. 9) showing a general statistically significant higher content of gallate and alkaloid trigonelline, aromatic amino acids, 
4-hydrophenylacetate for the Smith and Jolly Red cv. respectively. 

3.3. Multivariate statistical analysis: sparse PCA and interpretation of components 

While PCA allows for an easy representation of the data in a dimensionally reduced space (see Fig. 4a), it is not easy to interpret the 
meaning of each of the principal components, given that the algorithm finds the new coordinates with the highest variance in order 
(Screeplot, Supplementary Fig. S6), but has no threshold on the weights of each variable constructing the principal components. This 
limitation reduces the number of variables to be considered but does not allow an easy correlation of the original variables to the new 
ones, and thus, a straightforward interpretation of the chemical meaning. Therefore, further actions have to be taken to evaluate the 
most important contributions. This limitation is not present in the sparse PCA methodology (SPCA), a variant of PCA that maximizes 
variance while at the same time setting to zero all the coefficients under a given threshold. The disadvantages of the SPCA over the 
classical PCA are the higher computational requirements and the need to optimise the number of coefficients for each PC in order to 
attain the maximum possible variance in the transformation. We performed the sparse PCA using the R package mixOmics [37] 
(implementing the regularized low rank matrix approximation algorithm by Shena and Huang [44] with a tuning procedure that 
chooses the optimal variance for each principal component number of variables selected) in order to pinpoint the NMR signals that had 
the maximum weight in discriminating the cultivar and the yeast strain in the final wines. 

Before applying the sparse PCA (SPCA) algorithm, the data were subjected to Pareto scaling [35], as the packages provide only 
standard centering and autoscaling (Pareto scaling is the most common scaling used for NMR metabolomics data). For the tuning 
algorithm, up to a maximum of 10 variables (over a total of 230 buckets) for each of the 6 sparse principal components (as in standard 
PCA, 6 variables explain 99.38% of the cumulative variance) was allowed to determine the maximum variance explained, with 10 
being selected as a reasonable upper limit for a straightforward interpretation of the contributions. Interestingly, the optimization 
procedure (Supplementary Fig. S7 outputs 1, 3, 3, 1, 3, and 1 variable as optimal for the six sparse principal components, with total 
explained variance of 32.05% (16.60, 5.60, 4.69, 4.10, 7.68, and 0.30% for the 6 components in order). Notwithstanding the much 
lower explained variance of the first two PC as compared to the standard PCA, the plot (Fig. 10) had a very simple interpretation: one of 

Fig. 8. a) OPLS-DA t [1]/t [2] scores plot for Jolly Red and Smith cultivar wines in the aromatic spectral region. b) S line plot for the model colored 
according to the correlation-scaled coefficient (*p(corr) ≥ |0.5|). C: Clos yeast; EC: EC1118 yeast. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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the buckets representing the citrate concentration was sufficient to discriminate between the cultivars used to obtain the wine on the 
principal component 1, with a relatively large separation among the single samples, while the information allowing to discriminate the 
yeast used was contained in the second sparse principal component, with 2,3-butanediol being a by-products of EC1118 and fructose of 
Clos. The loadings of the components were 1 for the Citrate.2 signal (at ~2.82) in PC1, while PC2 had a 2,3-butanediol coefficient of 
0.852, while Fructose.2 (the ~3.9 ppm signal) and Fructose.6 (signal at ~3.6 ppm) had loadings of − 0.398 and − 0.340, respectively. 
The signal dispersion seemed to indicate that the choice of the yeast had a reduced effect in the case of the Smith when compared to the 
Jolly Red cultivar. 

Fig. 9. Discriminant aromatic metabolite comparison between Jolly Red and Smith pomegranate wine samples. The metabolites with significant 
Log2(FC) values are indicated with * (p ≤ 0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 10. Biplot of the sparse PCA showing the first two sparse principal components. On the axes in parenthesis, the percentage of explained 
variance. Light blue dots, samples obtained from the Jolly Red cv.; Orange dot, samples obtained from the Smith cv. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The plots obtained by the sparse PCA loadings (Supplementary Table S8) are very similar to those obtained by the standard PCA, 
and moreover, the results agree with those obtained by calculating the fold change in OPLS-DA, with an even simpler description of the 
key differences among the wines. 

3.4. Sensorial analysis and correlation with chemical composition 

Any significant effect for any of the considered parameters (see Supplementary Materials S1, Report sheet) was recorded for both 
the tasters and the wine replications, demonstrating a significant role of the cultivar, the yeast, and the cultivar × yeast interaction in 
the pomegranate wine organoleptic properties. 

Jolly Red and Smith pomegranates were characterized by very different fruit quality. In fact, the cultivar significantly affected all 
the considered parameters except floral and herbal smells, the sapidity and the wine persistence (Table 2). Jolly Red obtained 
significantly higher rankings for most of the analyzed parameters: limpidity, intensity (olfactory), fruity, spicy, quality (olfactory), 
alcoholicity, softness, bitterness, balance, structure, quality (general) and harmony (Fig. 11a and b). On the other hand, Smith was 
characterized by a significantly higher perception of tonality, intensity (visual), acidity and astringency (Fig. 11c and d). 

The yeast used in the inoculum also significantly affected the wine perception (Table 2). Higher ranking in pomegranate wines were 
recorded in 2 parameters (fruity and acidity), and in 4 parameters (tonality, alcoholicity, sweetness, and structure) for wines fermented 
by EC 1118 and Clos respectively (Fig. 11e). 

The differences in the sensory perception of pomegranate wines should be ascribed to their chemical composition. 
In total, 170 negative and 243 statistically significant positive correlations (p < 0.05) were found between 21 sensorial properties 

tested and 39 compounds identified by NMR (Fig. 12, Supplementary Table S9). Two groups of compounds showed a higher number of 
correlations, and they had an opposite trend: gallate and citrate were positively correlated with tonality, intensity-visual, acidity and 
astringency, and negatively correlated with limpidity, intensity-olfactory, fruity, floral, spicy, quality-olfactory, alcoholicity, softness, 
sweetness, balance, structure, quality-general, and harmony. On the contrary, formate, fructose, glycerol and malate showed the 
opposite trend (Fig. 12, Supplementary Table S8). Further compounds positively correlated with general quality and harmony were 
trigonelline, histidine, phenylalanine, tyrosine, succinate, pyruvate, alanine and iso-pentanol/butanol. 

The results of the sensorial analysis were also studied in relation to the previously published data concerning the volatile com
pounds [33]. One-hundred positive correlations and 132 negative correlations were obtained (further details concerning the specific 
compounds are reported in Table S10). 

The complexity of this framework should be ascribed to the fact that the sensory perception of wines is the result of a huge number 
of interactions, including the ones among the chemical compounds in the solution and the ones of the molecules with the human 
receptor neurons. Positive correlations between sensorial properties tested and chemical compounds could be relatively easily ascribed 
to specific molecules. For example, it is well known that the yeast volatile metabolites and by-products such as alcohols, acetates and 
C4–C8 π-fatty acid ethyl esters contribute to the fermentation bouquet [45] However, it is worth to notice that the elaboration of our 
data also produced a large number of negative correlations. In wines, molecules chemically interact between each other, producing 
synergistic and antagonistic effects [46]. Furthermore, in mammalian, the response of olfactory receptor neurons to mixtures is 
strongly non-additive. An important role is played by inhibitory mechanisms responsible of antagonistic interactions among odorants 

Table 2 
Significance of the effects of pomegranate cultivar, yeast, and cultivar × yeast interaction on the sensorial parameters tested. Significant effects 
and significantly affected descriptors are in bold.  

SENSORIAL PARAMETER STATISTICAL SIGNIFICANCE (p) 

CULTIVAR YEAST CULTIVAR × YEAST 

Limpidity 0.000 0.214 0.016 
Tonality 0.000 0.014 0.037 
Intensity - Visual 0.000 0.396 0.447 
Intensity - olfactory 0.000 0.826 0.621 
Fruity 0.001 0.031 0.244 
Floral 0.186 0.969 0.816 
Herbal 0.281 0.390 0.137 
Spicy 0.018 0.453 0.234 
Quality - olfactory 0.000 0.178 0.198 
Alcoholicity 0.000 0.045 0.440 
Softness 0.000 0.605 0.569 
Sweetness 0.000 0.000 0.000 
Bitterness 0.043 0.266 0.002 
Acidity 0.000 0.001 0.118 
Sapidity 0.335 0.258 0.781 
Astringency 0.000 0.184 0.221 
Balance 0.000 0.438 0.992 
Structure 0.001 0.001 0.014 
Persistence 0.091 0.702 0.820 
Quality - general 0.000 0.096 0.368 
Harmony 0.000 0.870 0.888  
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[47]. Antagonistic interactions among sensorial properties and chemical compounds could also be very important in the definition of a 
production strategy: for example, ingredients showing bitterness suppression could be used to decrease added sugar content while 
preserving consumer acceptability in chocolate milk [48]. 

3.5. Multivariate statistical analysis: PCA and sparse PCA of sensorial analysis data 

The data were centered and autoscaled before submitting them to PCA and sparse PCA algorithms. Nine components were needed 
to explain more than 99% of the total variance in this case (percentage of explained variance for PC1-PC9, in order: 61.43, 15.24, 8.45, 
4.85, 3.62, 2.06, 1.84. 1.12, and 0.78% respectively). There was again a clear difference between the cultivars, with the first 
component discriminating between cultivars, and the second component discriminating, albeit in a less outstanding way, for the yeast 

Fig. 11. Results of the sensory analysis of the pomegranate wines divided by cultivar and yeast. In figures a, b, c and d, light lines indicate the single 
wine profiles (3 replication reported) and dark line indicates the average of the 3 replications of each cultivar × yeast combination. In figure e, the 
radar chart showing the comparison among the cultivar × yeast combination averages. 
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used. Even in the tasting, the change in yeast strain had a less pronounced effect on the wine obtained from the Smith cultivar than it 
did on the Jolly Red (Biplot in Fig. 13a). For the sparse PCA tuning algorithm, up to a maximum of 12 variables (over a total of 230 
buckets) for 5 sparse principal components were used. In this case, the optimization procedure kept a significant number of variables 
(11, 4, 11, 6, 3 for components 1–5, respectively), with a reasonably high total explained variance of 72.09% (42.14, 9.73, 8.56, 8.43, 
and 3.23% for the 5 components in order). 

The sparse PCA highlighted the wine organoleptic characteristics that are typical of Jolly Red (Intensity–olfactory, Softness, Spicy, 

Fig. 12. Correlation plot of organoleptic descriptors and compounds identified by NMR in pomegranate wines. Color intensity of positive (blue) and 
negative (red) ellipses represent the level of the correlation; the size of the ellipses indicates the data dispersion. Only correlations with p-val
ue<0.05 are plotted. A total of 170 negative and 243 statistically significant positive correlations (p < 0.05) were found between 21 sensorial 
properties and 39 identified compounds. Correlations between Pearson’s rho and corresponding p-values are reported in Table S9. (For interpre
tation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 13. Biplot of the PCA (a) and SPCA (b) showing the first two principal components. On the axes in parenthesis, the percentage of explained 
variance. Light blue dots, samples obtained from the Jolly Red cv.; orange dot, samples obtained from the Smith cv. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Sweetness, Harmony, Balance and General Quality) and Smith (Acidity, Intensity–Visual, and Tonality) (Biplot in Fig. 13b, Loadings of 
the sparse PCA in Table 3). 

While in the case of the chemical identity of the wines the sparse PCA was able to adequately discriminate the yeast used (along the 
PC2 in both cases), none of the components in the sparse PCA of the tasting data was able to single out the difference (data not shown), 
suggesting the effect of the yeast on the final product being more subtle and distributed on many parameters. 

4. Conclusions 

In this work, a 1H NMR metabolic profile analysis in combination with MVA was performed for the first time in order to char
acterize different pomegranate wines produced with a novel protocol. In particular, four different types of pomegranate wines, pre
viously obtained by using two different cultivars and two different yeast starters, were studied here by analysing their chemical and 
organoleptic composition. The NMR analysis revealed a statistically significant, clear discrimination between the cultivars, charac
terized by different metabolites content (higher content of organic acids citrate, gallate and fructose, malate, glycerol, 2,3 butanediol, 
trigonelline, aromatic amino acids and 4-hydrophenylacetate was observed for the Smith and Jolly Red pomegranate cv. wines 
samples, respectively). Moreover, a smaller, yet sizeable and significant, discrimination between the yeasts used from the chemical 
point of view. Sensorial analysis showed that both the cultivar and the yeast had significant influence on the composition and the 
organoleptic properties of the wines. Significant correlations between the chemical composition and the organoleptic parameters were 
found. Moreover, sparse PCA allowed to identify a limited number of parameters that could be referred as cultivar-dependent. On the 
other hand, the technique could not reproduce the yeast-dependent separation of the sample observed in the second principal 
component of PCA. Although further analyses are needed to achieve a complete characterization of this product, the NMR- 
chemometric study here reported could be considered as a promising starting point to define specific organoleptic and/or nutri
tional properties for consumer acceptance of pomegranate wines in Western countries. 
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Table 3 
Sparse loadings for the sparse principal components of the tasting data.   

PC1 PC2 PC3 PC4 PC5 

Limpidity 0.000 0.000 0.227 − 0.491 0.000 
Tonality 0.325 0.000 0.031 0.000 0.000 
Intensity - Visual 0.307 0.000 0.034 0.000 0.000 
Intensity -Olfactory − 0.332 0.000 0.000 0.000 0.000 
Fruity 0.000 0.000 0.105 − 0.129 − 0.936 
Floral 0.000 0.000 0.000 − 0.390 0.000 
Herbal 0.000 − 0.680 0.000 0.000 0.000 
Spicy − 0.035 0.000 0.367 0.000 0.000 
Quality -Olfactory − 0.194 0.000 0.220 0.000 0.000 
Alcoholicity 0.000 0.000 − 0.510 − 0.717 0.066 
Softness − 0.380 0.000 0.000 0.000 0.000 
Sweetness − 0.121 0.021 0.000 0.000 0.000 
Bitterness 0.000 − 0.550 − 0.162 0.000 0.000 
Acidity 0.319 0.000 0.000 − 0.118 0.000 
Sapidity 0.000 − 0.485 0.000 0.000 0.000 
Astringency 0.000 0.000 0.102 0.000 0.000 
Balance − 0.376 0.000 0.000 0.000 0.000 
Structure 0.000 0.000 0.353 0.000 0.347 
Persistence 0.000 0.000 0.576 − 0.251 0.000 
Quality -General − 0.357 0.000 0.000 0.000 0.000 
Harmony − 0.349 0.000 0.000 0.000 0.000  

C.R. Girelli et al.                                                                                                                                                                                                       



Heliyon 9 (2023) e16774

17

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

We thank Carlo De Benedittis and Ilario D’amato (Italy) for supporting this study by providing both the pomegranate fruits and a 
financial contribution. Marco Mascellani, Ilaria De Simone and AIS Lecce for wine tasting. Prof. Vito Michele Paradiso is acknowledged 
for contributing to the volatile compounds analysis. PP would like to thank Dr. Ebe C. Princigalli for helpful discussion on the historical 
significance of pomegranate wine. The Graphical abstract contains an edited photo (available on commons.wikimedia.org under a 
https://creativecommons.org/licenses/by-sa/4.0 licence) of the painting “Einblicke” (Insights), oil on canvas, by the Austrian artist 
Matthias Laurenz Gräff. 
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