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In the Forensic Speaker Recognition, the choice of the reference linguistic population plays 
a key role in evaluating the typicality of the voice recordings to be compared, and therefore 
the strength of the evidence, within the Likelihood Ratio framework. In the present study 
we carry out multiple comparison tests among voice recordings of the dialectal speech of 
Taranto and Brindisi varieties (Puglia, Italy), through an Automatic Speaker Recognition 
system, using two reference populations (databases): one of “standard” Italian, by professional 
speakers, and one of dialectal speakers of the same variety as the voices to be compared. The 
aim is to observe whether the accuracy of the recognition system improves if the dialect 
reference population is used instead of the Italian spoken one.

Keywords: forensic voice comparison, likelihood ratio, reference population, spoken dialect,
accuracy.

1. Introduction
1.1 The forensic voice comparison

In the Forensic Voice Comparison (FVC), one or more audio recordings of the voice 
of a known speaker (hence, known samples) are compared to an audio recording of 
the voice of a speaker of questioned identity (hence, questioned samples)1: the goal 
is to understand to what extent the two samples of voices can probably be attributed 
or not to the same person.

To this purpose, a Bayesian approach has been widely established, and recently 
recommended by European Network of Forensic Science Institutes (Drygajlo et al., 
2016). Accordingly, the task of the forensic scientist is to provide the court with 
a strength-of-evidence statement in answer to the question: “How much more 
likely are the observed differences between the known and questioned samples to 
occur under the hypothesis that the questioned sample has the same origin as the 
known sample than under the hypothesis that it has a different origin?” (Morrison, 
2009). The answer to this question is quantitatively expressed as a Likelihood 
Ratio (LR): the LR represents the relationship between similarity and typicality 
of the compared voice samples and quantifies how similar the characteristics of the 

1 Also, Forensic Speaker Recognition (FSR) is frequently used.
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recorded signal of the two voice samples are to each other, relative to the diffusion 
of the same characteristics in a reference linguistic population. The reference 
linguistic population, therefore, must be defined with particular attention and must 
be as homogeneous as possible (gender, age, language of the speakers, etc.) with 
respect to the characteristics of the recorded samples to be compared (Rose, 2002, 
2005; Jessen, 2008). Failure to implement an adequate reference population is one 
of the main factors that makes the estimate of the LR, as well as the strength of the 
evidence, inaccurate (Robertson, Vignaux, 1995; Rose, 2006).

A crucial issue for FVC is represented by dialectal variation (and also micro-
variation)2, not yet fully addressed within this field of research. At the moment,
the databases of speech populations used in semi- and full-automatic systems refer 
to idealized speakers: that is, speakers broadly identified in respect of a national 
language (English speakers, Italian speakers, German speakers, etc.).  Conversely, we 
know very well that national languages are abstract (administrative) entities and 
that speakers normally use regional varieties (more or less markedly) in their real 
life: this is particularly true for the Italian linguistic area. Furthermore, the varieties 
used by speakers are, in many cases, characterized by different phonological systems 
and different suprasegmental patterns. Also, phonological systems may drastically 
vary within a limited linguistic space, showing puzzling micro-variation; and each 
phonological system may show systematic phonological processes that change 
phonemes at the phonetic surface. So, what we today compare in forensic practice 
are, at best, common (general) features eventually shared by linguistic systems.

We do not know what biases this fact introduces within the forensic approaches 
(for instance, the Bayesian approach). Finally, this issue is inherently linked to socio-
phonetics aspects: in fact, speaker’s features may vary in respect of sociolinguistics 
variables (age, sex, literacy, contexts of use, etc.).  The semi-automatic approach, 
indeed, allows an expert to select general properties of the vowels analyzed, avoiding 
that macro- and micro-variation have a drastic impact on the LR. On the contrary, 
this is impossible when an automatic approach is used.

For what concerns the Italian domain, previous contributions have highlighted the 
necessity to appropriately develop speech databases for FVC taking care of dialectal 
variation (cf. Romito et al., 2009; Romito, Galatà, 2008). An example is given by 
the Primula corpus, which contains over 900 recordings of 4 Calabrian speakers. It is 
characterized by three types of recording channels: high fidelity, environmental and 
telephone recordings. The recordings have been captured under different conditions 
that determine their quality: silent room, tapping in and out of a car, calls effected 
in the car, in the street, and in the classroom (Romito, Galatà, 2008). Unfortunately, 
this corpus is not, at the moment, available for research scopes.

2 With the term ‘micro-variation’ we refer to the fact that dialects may often manifest subtle and irreg-
ular variations in respect of a general phonological or morpho-syntactic phenomena.
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1.2 The aim of the present work

Along this line of research, we collected a dialectal database from speakers of two 
different varieties spoken in Southern Apulia (Italy). In this pilot study, we aim to 
investigate to what extent the use of a dialectal population, compared with a standard 
Italian speech population (produced by professional speakers), can influence the 
performance of state-of-the-art Forensic Automatic Speaker Recognition (FASR) 
systems. We assume that the accuracy of the comparison can improve when dialectal 
variation is taken under consideration.

This pilot study focuses only on male speakers for the following reasons. Firstly, 
it is well known that the production of speech sounds from male and female 
speakers is strongly dependent on biological differences, such as inner dimension of 
the mouth, throat, and vocal folds (Simpson, 2009; Hillenbrand & Clark, 2009). 
Th ese important differences therefore justify a differentiated experimentation 
between the two genders, using two distinct reference population samples. On the 
other hand, collecting and analyzing audio samples (and especially dialect audio 
samples) is time-consuming. So, having a limited amount of time, we decided to 
focus our efforts on getting a large enough sample of one gender, rather than risk 
getting two too few samples for both genders. In the near future, however, it will 
always be possible to repeat the study with a sample of the other gender, integrating 
the results also in a comparative perspective between the two genders. The choice to 
begin with the male gender, instead of female, was essentially random.

Furthermore, the study has been carried out with audio samples at the classic 
telephonic audio quality, as this kind of signal happens very frequently in the 
forensic field (as in the case of wiretapping).

2. Methods
2.1 Datasets

2.1.1 The Italian dataset
A dataset made of 150 Italian male professional speakers has been collected 
by recordings of freely available audio samples (https://www.audible.it). The 
characteristics of the collected samples are summarized in Table 1.

Table 1 - Characteristics of the recorded audio samples for the Italian spoken dataset

Average durationg 3 minutes
Number of samples 150
Number of samples per speaker 1
Speaker genderg Male 100% (Female 0%)
Audio encoding (format, sampling rate, bit depth)g g Mono, wav, 44100 Hz, 16 bit
Background soundsg no
Signal-to-Noise Ratio (SNR)g > 25 dB
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In short, the voices of this dataset were those of professional speakers reading 
audiobooks (in the same case the reader impersonates two characters conversing 
on specific arguments). The average age of the speakers could not be determined.

Each audio recording was band-pass filtered between 300 and 3400 Hz and 
downsampled to 8000 Hz, using the Praat software (Boersma, Weenink, 2020), 
when necessary, after the sample collection.

2.1.2 The dialect datasets
Speakers from Taranto and Brindisi areas were interviewed in order to collect 
dialectal data. Specifically, during a semi-guided telephonic interview, they were 
asked to translate, as spontaneously as possible, into dialect some Italian target 
phrases proposed by the interviewer. The speakers were called to their own mobile 
phone from a landline connection using a dedicated hardware (KDR, by Sistel 
s.r.l.) connected to a Microsoft® Windows®-based Personal Computer running the 
software Audacity®3 which was used to capture and record the audio signal. The 
whole setup is depicted in Figure 1.

And so, we collected dialectal data as follows:
– 22 male speakers (mean age 44) for the Taranto area: 14 speakers from Taranto city, 

4 from Grottaglie, 2 from Monteiasi, 1 from Fragagnano, and 1 from Carosino;
– 22 speakers for the Brindisi area (mean age 40): all speakers come from Francavilla 

Fontana (see Figure 2).
All the audio samples were resampled to 8000 Hz, and have SNR > 20 dB.

Figure 1 - Diagram of the setup for the dialect varieties speech samples collection

3 Audacity® software is copyright © 1999-2021 Audacity Team. Web site: https://audacityteam.
org/. It is free software distributed under the terms of the GNU General Public License. The name 
Audacity® is a registered trademark.
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2.1.3 Dialectal properties of the Taranto and Brindisi varieties
The Taranto varieties shows clear features of the Apulian dialects: i.e, diphthongi-
zation of stressed vowels within open syllables ([aˈʧejtə] vinegar; [ˈpajlə] hair),
weakening of the final unstressed vowels ([ˈtandə] many; [kapeɖːə] hair), reduc-
tion of the metaphonic diphthongs [je], [we] to [i], [u] ([ˈpjedə] > [ˈpidə], foot, t
[ˈmwertə] > [ˈmurtə]), etc. (Mancarella, 1998).

On the other hand, the Francavilla Fontana variety, although characterized by 
the Apulian features, preserves many Salentino features, as the metaphony affecting 
the mid-high vowels [e], [o] developed by the Latin vowels ĭ, ē and ŭ, ū. The 
outcome is the raising of [e], [o] to the high vowels [i], [u]: [la ˈpera] the pear Sg F / r
[lu ˈpiru] the pear Sg M; [lu kur ˈlore] the color Sg / [li kur ˈluri] the colors Pl, etc. Also, 
the vowels [ɛ], [ɔ] derived by the Latin vowels ĕ, ŏ may be affected by metaphonic 
diphthongization: i.e., [lu ˈpɛti] the foot Sg.t / [li pjeti] the feet Plt ; l [la ˈnotti] the night
Sg. / [li / ˈnwetti] the nights Pl. (Ribezzo, 1912).

Figure 2 - Maps of the investigated dialect areas

It is interesting to note that for what concerns the Taranto area within the Monteiasi, 
Carosino, and Fragagnano varieties, Apulian features coexist with Salentino features 
(Ribezzo, 1912; Mancarella, 1998). Thus, this fact introduces further dialectal 
variation within the speech population, which is at the core of our aim (cf. Section 1.2).

2.2 Front-end audio processing

The comparison algorithm that has been chosen in the current study requires a 
preliminary conversion of the recorded audio samples into a sequence of vectors of 
numbers, which give an alternative representation of the information contained in 
the waveform of the voice signal. These “feature vectors” are the output of a front-
end audio processing stage, that for the current study has been simplified into a 
chain of only two processing blocks: the Voice Activity Detection (VAD) and the 
real Feature Extractor (see Figure 3).
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Figure 3 - Block diagram of the front-end audio processing,
which transforms the input audio file into a variable number of feature vectors

required by the modelling block (the UBM/i-vector/PLDA)

2.2.1 Voice Activity Detection
Voice Activity Detection (VAD), often referred to as Speech Activity Detection 
(SAD) or simply Speech Detection, is the task of locating speech segments within 
an audio recording. VAD plays a key role in any speech processing system, including 
speaker recognition applications where, at least for those approaches based on short-
term spectral features, it is required to prevent unnecessary processing of non-speech 
segments. To this purpose, many methods have been proposed. Classic digital signal 
processing methods usually classify voiced/unvoiced frames based on scalar features 
such as short-term energy, zero-crossing rate (Benyassine et al., 1997), periodicity 
(Tucker, 1992) or spectral divergence (Ramirez et al., 2004); these methods are 
quite simple and effective on clean condition, but the classification accuracy tends 
to suffer on low SNR. Statistical model-based approaches have been explored 
(Sohn et al., 1999; Shin et al., 2010), assuming that the spectral coefficients follow a 
particular parametric distribution, where the VAD decision is sought by calculating 
the likelihood ratio based on the hypothesized models. The statistical methods 
often outperform the classic methods in the presence of stationary noise, but non-
stationary noise conditions remain challenging. Supervised models have also been 
studied, using machine learning techniques and leveraging prior knowledge in large, 
annotated audio collections (Ng et al., 2016; Plchot et al., 2016; Wu, Zhang, 2011; 
Zhang, Wu, 2013; Thomas et al., 2015). Such VAD approaches tend to be sensitive to 
acoustic mismatch between the training and test. Adaptive supervised VADs, such as 
Huijbregts et al. (2007) and Kinnunen and Rajan (2013) have also been considered, 
that represent a compromise between the powerful supervised approaches, such as 
neural networks, and statistical model-based methods which require no prior training 
but whose parametric modelling assumptions might be over-simplistic.

In this work we decided to use a VAD technique which was adequate to the 
quality of the available speech recordings and for which a software implementation 
was already available. We found both requirements met in VoiceBox4, a freely 

4 VOICEBOX: Speech Processing Toolbox for MATLAB. Web site: http://www.ee.ic.ac.uk/hp/
staff/dmb/voicebox/voicebox.html
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available toolbox for Matlab®, that comes with an implementation of Sohn et al.’s 
(1999) approach.

2.2.2 The Feature Extractor
The output of the VAD is an audio waveform that is input to the real Feature 
Extractor algorithm. Even in this case, we decided to choose baseline features, such 
as the Mel-Frequency Cepstral Coefficients (MFCCs). MFCCs are short-time 
spectral features, meaning that the speech utterance is first divided into (usually 
overlapped) fragments (frames), that are small enough to be able to assume that in 
each one the characteristics of speech are time-invariant, then a MFCCs vector is 
computed for each frame. MFCCs were introduced in the early 1980s by Davis and 
Mermelstein for speech recognition, and then adopted in many studies on speaker 
recognition. MFCCs are computed with the aid of a psychoacoustically motivated 
filter bank, followed by logarithmic compression and discrete cosine transform 
(DCT). The step required to compute MFCCs are:
– pre-emphasis: this step refers to a filtering operation that emphasizes the speech sig-

nal at higher frequencies and is considered in many speech processing applications.
– framing: this operation has been described above. The frame length is usually 

fixed, but pitch-synchronous analysis has also been (Nakasone et al., 2004; Zilca 
et al., 2006; Gong et al., 2008) and is still studied (Chen and Miller, 2020).

– windowing: this operation aims at tapering the signal to zero at the beginning 
and end of each frame, to deal with the finite-length effect of the Discrete 
Fourier Transform (DFT). The Hamming window is commonly used but the 
choice of the window function is not considered critical (Kinnunen, Li, 2010).

– DFT: the very well-known technique. It is computed frame by frame to get the 
spectral amplitude of the signal inside each frame.

– Mel filter bank processing: the output of the DFT is multiplied by a bank of 
filters to achieve the so-called mel-spectrum. A mel is a unit of measure based 
on the human perception of tones. The human auditory system apparently does 
not perceive pitch linearly, so the mel does not correspond to the value of the 
physical frequency.

– Logarithmic compression: since voiced sounds can be modelled by a source signal 
filtered by the resonance cavity of the vocal tract, which is a multiplication in the 
frequency domain, applying logarithm operation allows to get multiplied factors 
of the spectrum (in this case, the mel-spectrum) into additive ones. This results 
in a signal in the cepstral domain with a quefrequency peak corresponding to the 
pitch of the signal and several formants representing low quefrequency peaks.

– Discrete Cosine Transform (DCT): since the vocal tract is smooth, the energy 
levels in adjacent bands tend to be correlated. Also, the filters in the filter-banks 
are overlapped, so the energy from ones next to each other is being spread 
between two. DCT applied to the transformed mel frequency coefficients 
produces a set of cepstral coefficients.

Figure 4 summarizes the MFCCs computation processing, while further details can 
be found in any speech processing manual.
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The specification of the MFCCs extraction used in this study are:
– Frame duration: 16 ms (i.e., 128 samples @ 8000 Hz);
– Frame overlap: 50% (i.e., 64 samples)
– 14 static coefficients, including 0-order and log energy
– 28 dynamics coefficients (delta, delta-delta), corresponding to the first- and 

second-order derivatives of the static coefficients.
– F = Total number of MFCCs = 42.

The actual computation has been performed using the VoiceBox toolbox.

Figure 4 - Steps in MFCC feature extraction from a speech frame:
(a) 200-sample frame representing 25 milliseconds of speech sampled at a rate of 8 kHz,

(b) DFT power spectrum showing first 101 points, (c) 24-channel triangular Mel-filter bank,
(d) log filter-bank energy outputs from Mel-filter, and (e) 12 static MFCCs obtained
by performing DCT on filter-bank energy coefficients and retaining the first 12 values 

(adapted from Hasan, Hansen, 2015)
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2.3 Automatic Speaker Recognition Algorithm

The chosen algorithm for the voice comparison is based on the UBM/i-vector/PLDA 
paradigm, which is a well-known state-of-art approach. In short:
– the Universal Background Model (UBM; Reynolds, 1997) is a probability density 

function in the form of a Gaussian Mixture Model (GMM) with K components, which 
is trained with all the feature vectors coming from all the speakers in the reference pop-
ulation. The output of the training is the set of UBM parameters (one estimated mean 
vector and covariance matrix for each Gaussian component in the mixture) as well as 
Baum-Welch sufficient statistics, that will play a role in the next blocks of the chain.

– i-vectors refers to a particular vector rep resentation of the single utterance on a vector 
space called “Total Variability Space” (TVS, Dehak et al., 2011), which is particularly 
convenient for the purpose of voice comparison. The basic idea is that every single ut-
terance of a generic speaker contains information that is a combination of a bias due to 
the target population, plus speaker-dependent and speaker-independent information. 
Speaker independent information depends on external factors such as the quality of 
the recording device, the amount and type of noise superimposed on the voice, etc., and 
is usually referred to as “channel / session dependent”. The i-vector approach has prov-
en to be a viable and effective way to represent speaker-dependent and independent 
information, without any bias due to the target population, using far fewer elements 
than the amount needed to work directly with Gaussian Mixed Models.

– GPLDA (Gaussian Probabilistic Linear Discriminant Analysis; Kenny 2010; Garcia-
Romero and Espy-Wilson, 2011) is a back-end stage, that extracts the speaker-depend-
ent information from the i-vectors (possibly after a further dimensionality reduction 
by Linear Discriminant Analysis), providing at the same time the framework to com-
pare two i-vectors in terms of a Likelihood Ratio-based score.

Figure 5 depicts the processing steps that occur to train all the mentioned models, while 
Figure 6 depicts the processing steps that occur in the computation of the models of 
the reference speaker (the known speaker in a real FVC case) and the test speaker (the 
questioned sample, in a real FCV case), up to the scoring stage.

The computation of the models has been done by means of the Microsoft® MSR 
Identity Toolbox5 for Matlab®.

Figure 5 - Train of the models of reference population
required by the UBM/i-vector/GPLDA paradigm

5 https://www.microsoft.com/en-us/download/details.aspx?id=52279
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Figure 6 - Processing steps to compute the reference and the test speaker models,
up to the scoring

2.4 Performance metric

The main global metrics to assess the accuracy performance of a speaker recognition 
system are the estimated probabilities that the system response supports contrary-
to-fact hypothesis. When the system’s response score supports the identification 
hypothesis of two utterances spoken by two different speakers, a False Acceptance 
(or False Identification) error occurs; when the system’s response score supports the 
rejection (i.e. no identification) hypothesis of two utterances spoken by the same 
person, a False Reject error occurs.

By collecting the scores coming from a multitude of comparison tests between 
couples of utterances spoken by different speakers, it is possible to build a 
distribution of the scores and the distribution of the False Acceptance error Rate 
(FAR) as a function of the score, in this different-origin hypothesis. Similarly, by 
collecting the scores coming from a multitude of comparison tests between couples 
of utterances spoken by the same speaker, it is possible to build a distribution of the 
scores, and the distribution of the False Rejection error Rate (FRR), in this same-
origin hypothesis. FAR and FRR computed in this way represent an estimate of the 
respective a priori error probabilities, while the a posteriori estimates depends on 
the outcome of the real forensic casework.

A very common global metric used to assess the accuracy of the system is then 
the Equal Error Rate (EER), which is the point where the FAR equals the FRR. The 
lower the EER, the higher the accuracy of the FASR system. It can be visualized 
using the Tippet plot as depicted in Figure 7.



FORENSIC AUTOMATIC SPEAKER RECOGNITION WITH DIALECTAL SPEAKERS 75

Figure 7 - Example of Tippet plot, showing the FRR (red line) and the FAR (blus line)
as functions of the score). The intersection point gives the value of the Equal Error Rate (EER)

2.5 Design of matched comparison tests

To assess the FASR performances in terms of EER, multiple test comparisons must be 
performed. In the case of reference population matched with the dialectal variety of 
the speaker, we proceeded as follows. Firstly, we divided the MFCCs matrix of each 
speaker in two equally sized matrices, in order to simulate two different utterances 
(sessions) for each speaker. Then, assuming that N is the number of dialect speakers 
in the dataset, to assess the distribution of the FAR we adopted a one-leave-out 
cross-validation, in which we compared the two sessions of each speaker, using the 
remaining N-1 speakers of the dialectal dataset to build the models of the reference 
populations. By this way, there is no chance that such models were biased due to any 
information about the test speaker. To assess the distribution of the FRR, we adopted 
a similar strategy, in which we compared the first session of each speaker with the 
second session of any other speaker, using the remaining N-2 speakers to build the 
models of the reference populations. Even in this way, there is no chance that such 
models were biased due to any information about the test speakers. Finally, the EER 
is computed as the score where FAR=FRR. We repeated such a cross validation 
procedure 100 times, in order to average with respect to some random initializations 
of the reference population models, occurring during their computation.

2.6 Design of mismatched comparison tests

The mismatched comparison tests are about the comparison of dialectal speaker 
using the Italian reference models. Since the Italian dataset is much larger than each 
dialectal dataset, we assumed that was not methodologically correct to build Italian 
reference models using the whole Italian dataset. Therefore, before to perform the 
comparison test, we have randomly split the whole Italian dataset into D smaller 
ones, having the same size (N) of the dialectal datasets. For each of the D sub-dataset, 
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we computed the reference population models and performed the comparison test 
between the two sessions of a same dialectal speaker (to assess FAR) a between the 
first session of each dialectal speaker with the second session of any other dialectal 
speaker. Moreover, we repeated the whole procedure (including the random 
composition of the D Italian sub-datasets) 100 times.

3. Results
The results achieved in terms of EER in the mismatched and matched conditions 
are summarized in Table 2 for Taranto speakers, and Table 3 for Brindisi/Francavilla 
speakers.

Table 2 - Descriptive statistics of the set of EER values coming from the multiple comparison
tests, for speakers belonging to the Taranto area, using an Italian reference population, then the 
matched dialectal one. Coefficient of variation % is defined as 100 x standard deviation / mean

Mismatched condition
(Italian refer. popul.)

Matched condition
(dialectal refer. popul.)

Number of trials 100 100
EER mean 7.9 % 3.0 %
EER standard deviation 1.3 % 0.43 %
EER coefficient of variation % 16.4 % 14.1 %
EER minimum 5.2 % 2.2 %
EER maximum 12.7 % 4.2 %
ERR rangeg 7.5 % 2.0 %

Table 3 - Descriptive statistics of the set of EER values coming from the multiple comparison
tests, for speakers belonging to the Brindisi area, using an Italian reference population, then the 
matched dialectal one. Coefficient of variation % is defined as 100 x standard deviation / mean

Mismatched condition 
(Italian refer. popul.)

Matched condition
(dialectal refer. popul.)

Number of trials 100 100
EER mean 10.0 % 6.1 %
EER standard deviation 1.35 % 0.74 %
EER coefficient of variation % 13.5 % 12.0 %
EER minimum 7.8 % 4.5 %
EER maximum 14.0 % 8.3 %
ERR rangeg 6.2 % 3.8 %
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4. Discussion
For both the dialectal varieties, we achieved a reduction in every EER-based metric 
in the matched (dialectal speakers and dialectal reference population) over the 
mismatched (dialectal speakers and “standard” Italian reference population) condition.

As for the Taranto dialectal area, the mean EER shows that it decreases from 
7.9% for the mismatched condition to 3.0% for the matched one. Further, even the 
standard deviation improves in the matched condition, as it lowers from 1.3% to 
0.43%, as well as the coefficient of variation even if quite slightly.

These results are also confirmed considering the Francavilla dialectal data. Indeed, 
the mean EER improves from the mismatched condition (10%) to the matched 
condition (6.1%). The standard deviation also improves as it lowers from 1.35% to 
0.74% in the matched condition and the coefficient of variation slightly improves too.

The achieved results clearly support our initial research hypothesis that in 
caseworks where dialectal speakers are involved, FVC systems can provide more 
accurate results when a reference population of the same dialectal variety is used, 
instead of a generic one.

However, it should be noted that further studies would be needed to consolidate 
these results. In fact, the present study, which is only in the preliminary phase, has 
only two areas in consideration, while it would be appropriate for the study to be 
repeated for other areas also outside Puglia. Furthermore, more robust results 
would be obtained by sampling each area more numerously, doubling the number of 
participants per area, and including an equal number of speakers of the other gender.

5. Conclusions and future directions
In the presented study, we have investigated to what extent the use of a dialectal 
population, compared with a standard Italian speech population, can influence 
the performance of state-of-the-art Likelihood Ratio-based FASR systems, also 
assuming that the accuracy of the comparison can improve when dialectal variation 
is taken under consideration in the reference population.

Although the results obtained in terms of improvement of the EER values are 
not yet generalizable, due to the small number of dialectal varieties in question, and 
the limited number of speakers sampled in each area, they clearly support at least 
the validity of the research hypotheses and establish an excellent starting point for 
future experiments.

Indeed, we plan to improve the above-mentioned limitations, by increasing the 
number of investigated areas, the number of speakers for each area, and including 
female speakers. Also, we plan to test different paradigms for FASR, like recent 
developments in the field of Deep Learning.

From a different point of view, the achieved results invite to carefully reflect on the 
importance and need to collect databases of dialectal language, for research purposes, 
not only at the level of academic institutions, but also and above all in collaboration 
with the relevant institutions and law enforcement agencies that daily carry out 
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investigations on the basis of intercepted conversations. By sharing under appropriate 
non-disclosure agreements, the certainly huge amount of phonic materials collected 
over years of investigations, it could give a significant boost to research in the field 
of the study of dialectal variations and their impact in the field of forensic phonetic.
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