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A B S T R A C T   

The assessment of coastal land use/cover (LULC) change is one of the most precise techniques for detecting 
spatio-temporal change in the coastal system. This study, integrated Land Change Modeler, Habitat Quality 
Model, and Digital Shoreline Analysis System, to quantify spacio-temporal coastal LULC change and driving 
forces between 2000 and 2020. Combined the CA-Markov Model with Sea Level Affecting Marshes Model 
(SLAMM), merged local SLR data with future representative concentration pathway (RCP8.5) scenarios, and 
predicted future coastal LULC change and associated sea-level rise (SLR) impact on the coastal land use and 
habitat quality in short-, medium- and long-term. The study area had significant coastal LULC change between 
2000 and 2020. The tidal flats, whose change was driven mainly by sea level, registered a total net gain of 57.93 
km2. We also observed the significant loss of developed land whose change was influenced by tidal flat with a 
total loss of − 75.58 km2. The tidal flat will experience a stunning net gain of 80.55 km2 between 2020 and 2060, 
making developed land the most negatively impacted land in the study area. The study led to the conclusion that 
the uncontrolled conversion of saltmarshes, mixed-forest, and mangroves into agriculture and infrastructures 
were the main factors affecting the coastal systems, including the faster coastal erosion and accretion observed 
during a 20-year period. The study also concluded that a low coastal elevation of − 1 m and a slope of less than 2◦

have contributed to coastal change. Unprecedented changes will unavoidably pose a danger to coastal ecological 
services, socioeconomic growth, and food security. Timely efforts should be made by establishing sustainable 
mitigation methods to avoid the future impact.   

1. Introduction 

The coastal LULC change disrupts hydrological and sedimentary re-
gimes, largely limiting the form and biomass of coastal ecosystems (Han 
et al., 2015). It is recognized that significant changes in coastal LULC can 
have a significant impact on regional climate, water balance, socioeco-
nomic activity, ecosystem stability, and biodiversity (Abdullah et al., 
2022; Alam et al., 2019; Kindu et al., 2013). Anthropogenic activity is 
one of the main driver of the dramatically rising change of coastal LULC 
(Yohannes et al., 2021). Gains in agriculture and losses in forestry 

during the past 300 years have been determined to categorize the 
worldwide LULC change route (Latham et al., 2002; Meyer and Turner, 
1992). It has been recognized that a major factor influencing LULC 
changes in Africa is the growth of agricultural area impacted by a rapidly 
expanding population. Up to the early 1900s, industrialization and 
agricultural development caused significant deforestation in the ma-
jority of developed countries, including the United States and Europe 
(Hailu et al., 2020). Additionally, LULC change has grown to be a major 
concern in many coastal ecosystems across the world (Belward and 
Skøien, 2015; Niedertscheider et al., 2014). Climate change intensifies 
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ocean circulation and coastal risks, which has decreased global land 
area, potential production, and ecosystem health (Sajjad et al., 2020; Wu 
and Han, 2019). The danger of climate change, particularly sea level rise 
and its effects on low-lying coastlines, has drawn attention on a global 
scale over the past few decades (IPCC, 2007). In the coming decades, sea 
level rise and storm surge effects are anticipated to increase coastal 
erosion and accretion, which pose a serious threat to the quality of 
coastal ecosystems in the short, medium, and long terms (Djouder and 
Boutiba, 2017; Ghoussein et al., 2018). According to a recent study by 
Lopes et al. (2022) in the Northwestern Coastline of Guinea-Bissau, the 
sea level has risen at a rate of 8.79 mm/year over the last 15 years. From 
1995, it is predicted that Guinea-Bissau’s SLR will be 0.13 m, 0.35 m, 
0.72 m, and 1.22 m in 2025, 2050, 2075, and 2100, respectively. The 
impacts are projected to cause considerable changes in coastal LULC, 
which will have an impact on the quality of coastal ecosystems and 
community livelihood (Sajjad et al., 2020). Understanding the current 
and future changes in LULC is crucial and necessitates an early assess-
ment due to the increasing coastal pressures (del-Toro and Más-López, 
2019). 

Predicting coastal LULC change has emerged as a significant factor in 
several disciplines, such as rural and urban plan modeling and identi-
fying biodiversity hotspots to advance conservation planning efforts 
(Wang et al., 2020). Environmentalists, conservationists, and urban 
planners are very concerned with the detection and prediction of coastal 
LULC change using a GIS-related remote sensing approach because of 
how it affects the natural ecosystems (Gashaw et al., 2017; Hyandye and 
Martz, 2017). By providing scientific and trustworthy information for 
economic development strategy to fulfill social and environmental 
goals, the forecast can help with land use and conservation planning 
(Bhuiyan et al., 2012). For instance, Addo (2010) claimed that using 
remote sensing to map LULC changes could provide important policy 
recommendations for developing nations’ sustainable coastal landscape 
management. Masrur et al. (2022) concluded that, Multitemporal sat-
ellite nighttime light (NTL) as a proxy for human presence in the river 
network is essential for regularly flood-affected low-lying regions and 
populous nations, like Bangladesh. Yirsaw et al. (2017) revealed that it is 
important to employ remote sensing data to track how sea level rise may 
affect future ecosystem services in Su-Xi-Chang, China. This will help to 
manage and conserve the area’s ecological resources. The most 
commonly used models in estimating the LULC and habitat quality 
changes include analytical equation-based models (Shamsi, 2010), 
Markov models (Yang et al., 2012), hybrid models (Subedi et al., 2013), 
statistical models (Hyandye et al., 2015) and, cellular models (Singh 
et al., 2015), InVEST Models. The cellular and Markov chain hybrid 
model known as the CA-Markov and InVEST Models is the most often 
utilized among the methodologies discussed above (Xu et al., 2022; Zhao 
and Peng, 2012). The Sea Level Affecting Marshes Model (SLAMM), 
which is based on geographic information systems, simulates and pre-
dict the key factors impacting shoreline change and coastal LULC 
(wetlands) at local to regional scales (Craft et al., 2009; Mcleod et al., 
2010). 

Predicting coastal LULC changes is critical to understanding how the 
earth interacts, coastal vegetation fragmentation, biodiversity loss, and 
future management strategies (Al-Tahir and Asim Ali, 2004; Halmy 
et al., 2015). Although there are still a very small number of studies 
being conducted globally (Abijith and Saravanan, 2021; Baig et al., 
2022; Mazor, 2021), none have yet focused on the Northwestern 
Coastline of Guinea-Bissau. This region is a designated Ramsar site due 
to its abundance of biodiversity and one of West Africa’s largest and 
densest mangrove areas (del-Toro and López, 2019; Lopes et al., 2022; 
Ramsar, 2015). Therefore, this study applied remote sensing related GIS, 
combining Land Change Modeler (LCM), Habitat Quality Model (HQM), 
and Digital Shoreline Analysis System (DSAS) to quantify temporal 
coastal LULC change and investigate the driving forces between 2000 
and 2020; combine CA-Markov Model with Sea Level Affecting Marshes 
Model (SLAMM) and merge the local study area’s SLR data with future 

representative concentration pathway (RCP8.5) scenario to predict 
future coastal LULC change and associated sea-level rise (SLR) impact on 
the coastal land use and habitat quality in short-, medium- and 
long-term in the Northwestern Coastline of Guinea-Bissau (NC-GB). The 
findings are anticipated to aid policymakers and coastal managers in 
developing sustainable mitigation and adaptation measures and rein-
forcing ecological protection to reduce the effects of SLR in the future. 

2. Materials and methods 

2.1. Study area 

Geographically, the study area is situated along Guinea-Bissau’s 
Northwestern Coastline, within the latitude and longitude of 12◦ 16′ 14′′

North and 16◦ 9′ 57′′ West, respectively (Fig. 1). Lowlands that are 
submerged during high tide (del-Toro et al., 2019; Lopes et al., 2022). It 
has a tropical climate with temperature variations of 20 ◦C and 34 ◦C 
(Pelissier and Rene, 2004). The NC-GB is home to a variety of natural 
resources that are important, such as an estuary, rivers, the Varela heavy 
sand mining area, long sandy beaches, and one of West Africa’s largest 
and most densely populated mangrove reservoirs. These resources pro-
vide ideal nesting and breeding habitats for a considerable fish popu-
lation and other seafood, migratory seabirds, and threatened species like 
the West African manatee. In addition to its rich natural biodiversity, the 
area offers tremendous cross-cultural value to the numerous ethnic 
groups living within its borders, who have engaged in artisanal fishing 
and agriculture for decades (Ramsar, 2015). Due to its significant nat-
ural importance and unique socioeconomic circumstances, this area 
needed sustained conservation actions (Lopes et al., 2022). 

2.2. Data collection and pre-processing 

This study used two distinct satellite images (2000–2020). Earth- 
Explorer was used to download the free Landsat images (USGS, 2020). 
With the use of Pan-sharpened Raster Dataset under Raster processing, 
ArcToolbox of ArcGIS 10.5, the resolution of Landsat-7 for the year 2000 
and Landsat-8 for the year 2020, both at 30 m resolution, was increased 
to 15 m. These images were utilized as inputs to the CA-Markov and 
SLAMM models to categorize coastal LULC. The expression times of the 
images were determined by taking into account seasonal changes from 
January to April, in accordance with the study area’s dry season. Three 
images of the study area were clipped, mosaicked, and corrected as part 
of the pre-processing of the images for maximum likelihood supervised 
classification. The main steps in this study are as follows: (1) Classifi-
cation and accuracy assessment; (2) Temporal coastal LULC change 
quantification; (3) Driving forces investigation; (4) Predicting coastal 
LULC change; and (5) Projecting future impact of SLR on coastal land 
use and habitat quality. The paradigm of the future prediction procedure 
is illustrated in Suppl. F1. 

2.3. Coastal LULC classification and accuracy assessment 

To extract important thematic information, image classification di-
vides all Landsat image pixels into LULC classes (Al-sharif and Pradhan, 
2014). After pre-processing the image, the “Maximum Likelihood Clas-
sification” algorithm was used for supervised classification (MLC)." For 
supervised classification, the MLC technique offers a popular optimiza-
tion algorithm (Richards, 1999). This method offers a strong conceptual 
foundation and the flexibility to accommodate different types of remote 
sensing data. The statistical classification-based supervised classification 
strategy is chosen because it preserves the fundamental characteristics 
of LULC (Cheruto et al., 2016; Gashaw et al., 2014). According to the 
“Official Bulletin” Land Act No. 5/98, the LULC classification status used 
in this study was obtained from the Ministry of Natural Resources of 
Guinea-Bissau. Text was created on April 23, 1998, and was used as the 
principal categorization scheme for the 2000 and 2020 images. This 
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classification takes six basic classes into account (Table 1). ArcGIS 
v.10.5 and Idrissi Terrset v.18.31 software was both used to classify 
images for mapping. 

Classification accuracy is a pre-condition for credible change detec-
tion (Wang et al., 2020). To evaluate the quality and precision of the 
images and contrast them with actual field locations, an error matrix and 
kappa are applied to the final categorized image (Congalton and Green, 
2019). This study adopted the Cohen (1968) formula to calculate Kappa 
coefficient. 

2.4. Coastal LULC change quantification 

Initial plans for the Land Change Modeler (LCM) in TerrSet IDRISI 
software included handling ecological and biodiversity assessment as 
well as LULC alterations (Ghosh et al., 2017; Mazor et al., 2021; Pirasteh 
et al., 2021). Based on thematic rasters with the same class number and 
sequential order, the model analyzes LULC changes (Singh et al., 2015). 
In this section, we quantify coastal LULC changes in NC-GB between 
2000 and 2020. 

A quick quantitative change assessment is provided by the change 

analysis through a graphical representation of gains and losses among 
various LULC classes, as well as the net change and contribution to the 
net change that each class experienced. Such changes are important for 
determining the most common transition between classes. The results 
are displayed in a graphical map using the spatial trend of change 
(Matlhodi et al., 2021). In this approach, each node served as the 
foundation for the processing component using a nonlinear activation 
function. Using the equation created by Hyandye et al. (2015), the 
neural model output can be achieved given the input data. 

2.5. Driving forces of coastal LULC change 

2.5.1. Socioeconomic drivers 
The Habitat Quality Model (HQM) combines information about 

coastal LULCs and habitat threats (Naturalcapitalproject, 2020). This 
approach produces two main pieces of information, including the rela-
tive amount of various habitat types in a location and changes over time, 
that help estimate conservation needs (Xiaowei et al., 2015). This 
assessment was based on socioeconomic factors that directly affected the 
coastal environment. It was assumed that the more frequent the eco-
nomic activities are in coastal zones, the worse the land cover and 
habitat quality in a region become (Yang et al., 2018). For instance, 
mangroves may be extremely susceptible to risks driven on by agricul-
tural activities but just slightly sensitive to those driven on by tourism. 
Agriculture and infrastructure, which were included in the HQM as 
threat variables, were the two key activities that the socioeconomic 
driver’s assessment in this study concentrated on. This study adopted the 
equation developed by Naturalcapitalproject (2020), to calculate the 
coastal habitat quality and its sensitivity to the agricultural and infra-
structural actions. 

2.5.2. Coastal hazards drivers 
The DSAS v-5.0 software, add-in for Esri ArcGIS desktop 10.4–10.7, 

Fig. 1. The location of study area in Africa and Guinea-Bissau based on the open street map and shapefile. a) The located study area in Guinea-Bissau; b) the 
classified study area map based on six LULC classes using Landsat-8, 15-m resolution. 

Table 1 
Land cover classes scheme.  

N. Primary land cover 
classes 

Secondary land cover classes 

1 Mangrove Rhizophora racemosa, Rhizophora mangle, Rhizophora 
harrisonii, Avicennia germinans, Laguncularia 
racemosa and Conocarpus erectus. 

2 Developed land Paddy field, horticulture, build up, dry land. 
3 Mixed forest Weeds, Wood Forest, Shrub, Casheu Plantations, 

broadleaf forests, conifer forests, and riparian. 
4 Tidal flat Mud flat, saltmarsh 
5 Sand Beach Ocean beach 
6 Open water Sea, rivers, streams, ponds, lakes, reservoirs  
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allows users to calculate the rate of change using various historical 
shoreline positions (Zagórski et al., 2020). This assessment was based on 
coastal accretion and erosion caused by the accelerated sea level rise 
between 2000 and 2020. These phenomena have an immediate impact 
on the condition of the coastal ecosystem. It has been assumed that a 
region’s habitat quality declines when coastal threats increase in fre-
quency. The shorelines, baselines, and transects for selected years were 
created to calculate the net change (Marfai et al., 2008). By fitting the 
least-squares regression line to all coastline sites on a transect, the net 
shoreline measurement (NSM) statistical parameter was chosen to esti-
mate the net change between 2000 and 2020 (Zagórski et al., 2020). 
This method includes all data, regardless of changes in trend or accu-
racy. It is calculated using Nicu, 2021 equation. 

2.5.3. DEM and slope implication 
Topographic, elevation, slope, road distance, stream distance, dis-

tance from an urban area, and raster evidence likelihood have all been 
employed as driving variables in numerous LULC change simulations 
(Hyandye et al., 2015). In this study, DEM and slope are taken into 
consideration as potential contributor variables for LULC change, due to 
the study area’s coastal characteristics. These variables measure the 
numerical transition from one land cover to another. The relevance of 
these two contributor factors was examined using Cramer’s V and P 
values, which reflect the high correlation between the two variables in 
the LCM. Cramer’s V value, which ranges from 0.0 to 1.0, is a basic 
statistical indicator correlated between variables. Variables with a 
Cramer’s total V-value of 0.15 or higher are frequently regarded as 
reasonable contributors, while those with a score of 0.40 or higher are 
regarded as sufficient contributors for change (Hyandye et al., 2015). 
Cramer’s V cannot accurately represent the prerequisites of science and 
the complex relationship content; thus, it cannot ensure that the vari-
ables function properly. Instead, it merely assists in determining the 
specific variable included as a contributor to the change in LULC (Sleeter 
et al., 2013). 

2.6. Predicting future coastal LULC change 

In the IDRISI Terrset v-18.31 program, the CA-Markov model is used 
to assess spatial-temporal LULC change (Ghosh et al., 2017; Islam and 
Ahmed, 2012). The CA-Markov model combines the Markov chain and 
cellular automata to predict the trends and patterns of LULC change over 
time, give a more precise knowledge of the drivers of change, and create 
a future map of LULC change to enable the creation of conservation 
policies (Pirasteh et al., 2021). Additionally, this model is frequently 
used to map the dynamics of forest cover, the extension of developed 
lands, plant growth, and watershed management modeling. 

To predict future coastal LULC changes for the study area, the 
following steps are taken: (a) coastal LULC maps for the years 2000 and 
2020 were used to obtain the transition probabilities image; (b) 
Considering the CA-Markov model approach, the coastal LULC map for 
2020 was simulated using the transition probabilities; (c) transition 
suitability image was computed using constraints and factors in the 
multicriteria evaluation (MCE) module; (d) Finally, the coastal LULC 
changes for the years 2040 and 2060 are predicted using the transition 
probabilities images, base map, and transition suitability image (Fig. 7). 
We adopted the equations used by Islam and Ahmed (2012) and Li et al. 
(2015), to predict the coastal LULC change in the study area. 

2.7. Future impact of SLR on coastal land use and habitat quality 

The Sea Level Affecting Marshes Model (SLAMM) v-6.7 predicts the 
main processes involving wetland conversions and coastal LULC change 
within short, medium, and long-term SLR scenarios. SLAMM predicts 
when and where coastal lands will possibly experience a change in 
inundation as a result of SLR. Under accelerated SLR scenarios, the 
coastal LULCs are predicted, and the results are presented in tabular and 

Geographic Information System (GIS) formats. According to a set of 
LULC codes (Suppl T1) in SLAMM, each coastal LULC class in the study 
region is categorized (Clough et al., 2016). Digital elevation model 
(DEM), intertidal slope, and SLR scenarios were some of the model in-
puts used in this work, which also included the SLAMM category 
described in SLAMM 6.7’s technical documentation (Clough et al., 
2016). The spatial interpolation feature in ArcGIS 10.5 was used to 
create the DEM and intertidal slope at a resolution of 15 m. The ArcGIS 
10.5 data conversion tool was then used to convert the layer of DEM and 
intertidal slope from raster data format to ASCII text format. 

This study used two scenarios to project the effects of SLR on land use 
and habitat quality. We merged the local SLR data (0.1 m), measured by 
Lopes et al. (2022) between 2008 and 2020 in the NC-GB, used as a 
baseline with the future high-emissions Representative Concentration 
Pathway (RCP8.5) for the years 2040–2100. Following RCP2.6, RCP4.5, 
and RCP6.0; the RCP8.5 is the most recent scenario that predicts a global 
mean SLR of 0.52–0.98 m by 2100. The projections are made for three 
time periods: the short term (2020–2040), the medium term 
(2020–2060), and the long term (2020–2080). 

3. Results 

3.1. Classification’s accuracy assessment 

Between 2000 and 2020, the NC-GB coastal LULC’s overall accuracy 
was assessed using the Kappa coefficient. A Kappa value larger than 0.5 
can be considered suitable. While >0.79 denotes exceptional quality, 
and one of 0.59 or less indicates moderate to inadequate quality (Cohen, 
1968). The 2020 coastal LULC was accurately achieved with 88%. So it 
was clear that the 2020 classified image was obtained with good results. 
Compared to the overall accuracy score of 87% for the 2000 classified 
image (see Suppl. T2 for more details). 

3.2. Quantified coastal LULC change 

Fig. 7 shows the coastal LULC change maps for the years 2000 and 
2020. Table 3 displays the statistical areas for the various coastal LULC 
classifications. The findings demonstrate that the tidal flat area under-
went significant changes between 2000 and 2020, rising from 6.23% to 
8.43%. Both developed lands and coastal mangrove have decreased as a 
result of the considerable tidal flat change during the previous two de-
cades (Fig. 2). In 2000, there were 10.01% of land areas that were 
developed; by 2020, that number had dropped to 9.45%. Similar de-
clines were seen in mangrove, which went from 18.00% to 17.14% 
respectively. This decline in developed land and mangroves is related to 
the study area’s increased tidal flat aggravated by SLR, which rose 8.79 
mm/y (Lopes et al., 2022). Between 2000 and 2020, the mixed forest 
increased from 14.39% to 15.02% (Table 2). This growth is related to 
the recent three decades’ large-scale monoculture production of cashew 
nuts (del-Toro and López, 2019). According to IBAP (2019) most recent 
study, large-scale cashew nut monoculture activities in Guinea-Bissau 
are lowering the amount of Savana and barren areas. The change of 
the coastal LULC analysis was through evaluation of gains or losses, and 
net change experienced by different classes using change analysis in 
LCM of Idrissi TerrSet software. Table 2 and Fig. 2 show the dynamic of 
spatial-temporal changes of different classes between the years 2000 and 
2020. 

The gains and losses of different coastal LULC classes are displayed in 
Fig. 2 and Table 2. Major coastal LULC gains involved the expansion of 
tidal flat and mixed-forest; and the main losses are the reduction in 
developed land, mangrove and open water. From 2000 to 2020, tidal flat 
gained 100.61 km2 and loss − 42.68 km2, with a net gain of 57.93 km2 

(Fig. 2 and Suppl. F2). Developed land lost − 75.58 km2 and gained 
37.17 km2, with a net loss of − 38.41 km2. The sand beach slightly lost 
− 2.71 km2 and gained 2.26 km2 with a net loss of − 0.45 km2. Mixed- 
forest, increased with a net gain of 48.61 km2 and loss of − 22.71 km2, 
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with net gain of 25.90 km2. 
The contribution to the net change of the all classes is presented in 

Suppl. F3. The net loss of mangroves has been caused by four coastal 
LULC classes, including open water, mixed-forest, tidal flats, and 
developed land (Suppl. F3). The biggest contributions were from tidal 
flat of roughly − 8.30 km2 followed by developed land − 3.20 km2 and 
open water − 2.00 km2, respectively. Mangroves made a negligible 
contribution to the net gain, with a value of under 1.00 km2. A total of 
two coastal LULCs contributed to the developed land’s net loss. The 
largest contributions came from the tidal flat with − 15.89 km2 and the 
mixed forest with roughly − 25.78 km2. Three coastal LULC made con-
tributions to the net gain by tidal flat such as, mangroves (8.30 km2), 
developed land (15.89 km2), and open water (32.6 km2). See Suppl. F3 
for more details. 

3.3. Driving forces of coastal LULC change 

3.3.1. Socioeconomic drivers 
The socioeconomic influence on coastal LULC in this study refers to 

changes in ecosystems and habitat quality driven on either directly or 
indirectly by human pressure (Aghdam et al., 2016). Reduced habitat 
quality is a result of rising human population and increased deforesta-
tion. Reversing the situation requires conservation, the protection of 
ecosystems and the creatures that live there. In general, the conversion 
of mangroves, mixed-forest, and tidal flats into agricultural land and 
infrastructure projects had a negative impact on habitat quality. 

The most substantial impact on habitat quality was caused by con-
verting tidal flats into agricultural land, with a value of − 0.91. The next 
most prevalent conversion was from mixed-forest to cultivated land, 
thus, the conversion of mangroves into agricultural area was the least 

Fig. 2. Gains and losses by each class in the northwestern coastline of Guinea-Bissau from 2000 to 2020.  

Table 2 
Statistics area of the coastal LULC change classes for the years 2000–2020 in the Northwestern Coastline of Guinea-Bissau.  

Coastal LULC Area (Km2/%) Change area (Km2) 

2000 2020 2000–2020 2000–2020 

Km2 % Km2 % Loss (Km2) Gain (Km2) Net change (Km2) 

Mangrove 443.29 18.00 429.39 17.14 − 52.37 38.35 − 14.02 
Developed land 250.72 10.01 212.12 9.45 − 75.58 37.17 − 38.41 
Mixed forest 343.91 14.39 369.86 15.02 − 22.71 48.61 25.90 
Tidal flat 148.07 6.23 206.25 8.43 − 42.68 100.61 57.93 
Sand beach 3.19 0.33 2.64 0.17 − 2.71 2.26 − 0.45 
Open water 1277.79 52.19 1246.72 51.28 − 37.63 6.68 − 30.95 

Total area 2466.98 100 2466.98 100 = = =

Table 3 
Statistics area of the coastal LULC change classes for the predicted years 2040–2060 in the northwestern coastline of Guinea-Bissau.  

Coastal LULC Area (Km2/%) Change area (Km2) 

2040 2060 2040–2060 2040–2060 

Km2 % Km2 % Loss (Km2) Gain (Km2) Net change (Km2) 

Mangrove 435.39 18.34 436.84 17.10 − 3.98 5.15 1.17 
Developed land 185.64 8.23 170.31 9.39 − 17.46 2.10 − 15.36 
Mixed forest 386.33 16.17 397.55 15.10 − 0.85 12.18 11.33 
Tidal flat 241.80 8.03 264.48 10.00 − 5.32 27.94 22.62 
Sand beach 2.64 0.40 2.68 0.28 − 0.42 0.44 0.02 
Open water 1216.71 49.01 1196.67 51.13 − 20.36 0.58 − 19.78 

Total area 2468.52 100 2468.52 100 = = =

N.D.R. Lopes et al.                                                                                                                                                                                                                              



Journal of Environmental Management 327 (2023) 116804

6

dominant (see Fig. 3). The conversion of mixed-forest into infra-
structural area had the strongest influence on habitat quality, followed 
by tidal flat, and mangroves which was the least impacted by infra-
structural actions (see Fig. 3). The conversion of agricultural land into 
habitat has a positive impact. Contrarily, the conversion of agricultural 
land had a positive impact on the habitat quality of mangroves, mixed- 
forests, and tidal flats. Additionally, the conversion of infrastructure 
sites had a positive impact on the habitat quality of mangroves, mixed 
forests, and tidal flats. Illustrates both negative and positive habitat 
quality conversions, focusing on agricultural and infrastructure sectors. 

3.3.2. Coastal hazards drivers 
The term “coastal hazards” in this assessment refers to hydrological 

phenomena such coastal erosion and accretion. Particularly, sea-level 
rise and storm-surges have an influence on these phenomena (Szlafsz-
tein and Sterr, 2007). They have the potential of impacting the coastal 
population, infrastructures, ecosystem and biodiversity (Boruff et al., 
2005). The rate of temporal change in coastal erosion and accretion was 
estimated between 2000 and 2020, taking into account sea-level rise, 
one of the main drivers affecting the quality of coastal habitat. The study 
discovered that there were changes in all of the study area’s coastline 
(Fig. 4). The net shoreline measurement (NSM) revealed a maximum 
erosion of 450 m and a minimum of 100 m, as well as a maximum ac-
cretion of about 400 m and a minimum of 90 m over a period of 20 years. 
These general trends of erosion and accretion vary according to the 
coastal LULC characteristics (sea Fig. 4). The rates of shoreline varia-
tions, measured by the NSM over the two decades, indicated that the 
shoreline change is potentially subjected to slight aggradation to coastal 
habitat quality. 

3.3.3. DEM and slope implication 
The variables that determine changes were based on spatial analyses 

integrated into the model as static or dynamic elements (Leta et al., 
2021). DEM and Slope were chosen in this study to analyze their 
contribution to the changes of coastal LULC. The change in coastal LULC 
is not sufficiently explained by Cramer’s V-value. Instead, it is a simpler 
technique that may be used to understand the importance of a single 

variable in determining the changes (Leta et al., 2021). In circumstances 
where Cramer’s V is low, it is typically advised that the probability of 
evidence result is regarded as being good (Fig. 5). In this study, the 
difference between tidal flats and all other land classes is quantified. We 
found the Cramer’s V-values of DEM is useful variable of transitions. 
Low Cramer’s V-values for the slope variable indicate that the influence 
on changes in coastal LULC is only moderately critical in the study area 
(see Fig. 5). The DEM is the prominent contributors of coastal LULC 
changes in the study area rather than slope. These variables have 
contributed to the significant extent of sea-water to tidal flat, tidal flat to 
developed land, and mangrove to mixed-forest. According to Fig. 5, a 
large fraction of the study area had low elevation and a flat slope, which 
could facilitate the quick and easy penetration of ocean water into the 
coastal LULC (Lopes et al., 2022). 

3.4. Predicted future coastal LULC change 

The base map 2000–2020 has been used to predict the future coastal 
LULC change for the years 2040–2060 (Fig. 6). Future changes in coastal 
LULC were examined for the years 2040 and 2060 using the transition 
probability matrix. The Markov chain provides the spatial distribution 
and amount of change, which are the two elements of the coastal LULC 
prediction in LCM (Leta et al., 2021). Fig. 6 shows the coastal LULC 
changes in the NC-GB derived from the LCM data. Table 3 displays the 
statistic area, percentage, gain or loss, and net change. 

Between 2000 and 2060, significant coastal LULC change was 
observed. Tidal flats have been driving LULC change along the coast. 
The results show that, it will increase from 148.07 km2 in 2000 to 
264.48 km2 by 2060, with total net change of 80.55 km2 (Table 3 and 
Suppl. F4). These changes were mostly driven on by the sea-level rise 
reported in the earlier section 3.3.2 analysis in this study. Similar to 
mixed-forest, which will grow from 343.91 km2 in 2000 to 397.55 km2 

in 2060, there will be a net change of 37.23 km2. Because cashew nuts 
are one of the country’s primary strategic economic products, their 
growing tendency has been a major factor in the progressive expansion 
of mixed-forests (IBAP, 2019). The study observed that developed land 
will decrease from 250.72 km2 in 2000 to 170.31 km2 by 2060 with total 

Fig. 3. Negative and positive conversions influenced by socioeconomic drivers (agricultural and infrastructural activities).  
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net change of − 53.77 km2 (Table 3 and Suppl. F4). This progressive 
decline has primarily been driven on by unplanned infrastructures in the 
study area that have been impacted by SLR and tidal flat (del-Toro and 
López, 2019). The findings also indicate that by 2060, mangrove and 

sand beaches will only notice minor changes, as seen in Table 3 and 
Suppl. F4. Mangroves have been chosen as a priority for protection and 
conservation because of the study area’s high coastal vulnerability 
(IBAP, 2019; Lopes et al., 2022). Tidal flat and mixed-forest expansion 

Fig. 4. Net shoreline change (Erosion and Accretion) based on NSM values in (m) between 2000 and 2020.  

Fig. 5. DEM and slope variables associated with Cramer’s v values and p-value.  

N.D.R. Lopes et al.                                                                                                                                                                                                                              



Journal of Environmental Management 327 (2023) 116804

8

Fig. 6. The future coastal LULC change prediction in the northwestern coastline of Guinea-Bissau for year 2040 and 2060 based on the years 2000–2020.  

Fig. 7. Contribution to net change experienced by mangrove, developed land, tidal flat, mixed-forest, sand beach and open water in the northwestern coastline of 
Guinea-Bissau from 2020 to 2060. 
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will be the major coastal LULC gain from 2040 to 2060, while open 
water and developed land were the main losses. Tidal flats will have the 
greatest gain between 2040 and 2060, followed by mixed forest and 
mangrove (see Suppl. F5). Open water and developed land, on the other 
hand, will see a record loss in the study area. The sand beach will slightly 
experience both loss and gain (see Suppl. F5). 

Only one coastal LULC class will contribute to the net change, which 
will result in a benefit for mangroves and tidal flats (see Fig. 7 and Suppl. 
T3). Open ocean, mixed-forest, sand beaches, and developed land, will 
each make a negligible contribution to the net loss that mangroves will 
suffer. Two coastal LULCs will make contributions to the net loss of 
developed land, including mixed-forests with a large contribution and 
tidal flats with a relative contribution. A small portion of area will be 
gained to sand beach. Tidal flat gains will come from two coastal LULC, 
such as open water and a relative amount of developed land (See Fig. 7 
and Suppl. T3). The dynamic increase and decline of coastal LULC from 
2000 to 2060 in the study area are shown in Suppl. F6 and Suppl. F7. 
Between 2000 and 2060, there is a trend toward less developed land, 
and this trend is environmentally friendly because it eases pressure on 
the coastal ecosystem and biodiversity. Contrary to the trend of less open 
water, this change will have two major consequences first, less salty 
water will enter agriculture and aquifers, which will have beneficial 
economic and social impacts; second, coastal habitats will suffer (envi-
ronmentally unfriendly). 

3.5. Future impact of SLR on the coastal land use and habitat quality 

Even if greenhouse gas emissions remain on a relatively modest 
trajectory in the following decades, the global mean sea level is pre-
dicted to rise by at least 0.3 m by the end of 21st century (Gilman et al., 
2007). Over the next 60 years, it is predicted that the sea level will rise 
along the coastline, having a particular impact on the lowlands. SLR 
along the shoreline will vary depending on the region due to changes in 

both land and ocean elevation (Ferreira et al., 2014). SLR resulting from 
RCP8.5 pathways will substantially alter coastal land use and habitat 
quality in the NC-GB by 2040–2080 (sea Fig. 8 and Table 4). Suppl. 
F8summarizes the projection results of the short-, medium-, and 
long-term impacts of SLR on coastal land use and habitat quality under 
the high emission scenario of RCP8.5 for the years 2040, 2060, and 
2080. The findings of Suppl. F8 are based on local SLR data obtained by 
Lopes et al. (2022) from 2008 to 2020 in the study area, and are 
intended to serve as a baseline for future projections of the impact on 
coastal land use and habitat quality. The results show that if no action is 
made to protect the coastline in such a coastal area, sea level will rise 
dramatically. Within the RCPs scenarios, these results are fairly similar 
to the global ones published by the IPCC (2013). 

3.5.1. Short-term SLR impact (2020–2040) 
Fig. 8b presents the results of the SLAMM projections of the short- 

term SLR impact on coastal land use and habitat quality under the 
local and RCP8.5 scenarios. Table 4 provides a summary of the statistic 
area, percentage of coastal land use, and habitat quality that will be 

Fig. 8. The projected coastal LULC that will be impacted under the local and RCP8.5 sea-level rise scenarios, without coastal protection in the study area from 2020 
to 2080. 

Table 4 
The total area and percentage of the coastal LULC that will be impacted over the 
short, medium, and long-term series in the study area.  

SLAMM Category 2020–2040 2020–2060 2020–2080 

km2 % km2 % km2 % 

Mangrove 1.15 15 3.26 20 5.81 23 
Developed land 5.58 74 10.73 65 16.19 64 
Mixed forest 0.76 10 2.07 13 3.01 12 
Tidal flat = = = = = =

Sand beach 0.03 0 0.05 0 0.30 1 
Open water = = = = = =

Total impacted area 7.52 100 16.56 100 25.31 100  
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impacted over the short-term series. SLAMM results show that by 2040, 
SLR will have an impact on 7.52 km2 of the overall coastal land use 
(Fig. 8a). Developed land will be the most impacted land in the study 
area with total of 5.60 km2. The habitat of mangrove and mixed forest 
will be most impacted with 1.16 km2 and 0.76 km2, respectively. The 
lack of coastline protection in these areas, as well as their lower eleva-
tion of less than 5 m above mean sea level and flat slope of around 2–5◦, 
may be the main factors of this impact (Fig. 5). The result of the short- 
term projection indicates that SLR will not have much impact on 
mangrove and mixed-forest habitats in the coming two decades. 

3.5.2. Medium-term SLR impact (2020–2060) 
The SLAMM projection results of medium-term SLR impact on 

coastal land use and habitat quality under the local data and RCP8.5 
scenarios are presented in Fig. 8b. The statistic area and percentage of 
the coastal land use and habitat quality that will be impacted over the 
medium-term series are summarized in Table 4. According to SLAMM 
results, nearly 16.56 km2 of the total coastal land use will be impacted 
by SLR by 2060 (Fig. 8c). Developed land will be the leading most 
impacted land with total approximately 11.73 km2. The habitat of 
mangrove and mixed-forest will be the first and second most impacted 
with 3.26 km2 and 1.27 km2, respectively. The absence of coastline 
protection in these locations is the biggest factor of this impact. The 
other reasons are related to lower elevation as well and flat slope 
observed in the study area. The other factors are connected to the study 
area’s flat slope and lower altitude as well (Fig. 5). According to the 
medium-term prediction, mangrove and mixed forest will have only 
small impact from SLR, as shown in Fig. 8. 

3.5.3. Long-term SLR impact (2020–2080) 
In accordance with the local data and RCP8.5 SLR scenarios, the 

SLAMM projection results of the long-term SLR impact on coastal land 
use and habitat quality are shown in Fig. 8d. Table 4 summarizes the 
overall area and the percentage of the coastal LULC that will be 
impacted during the long-term series. Results from the SLAMM project 
that by 2080, sea level rise will have an impact on almost 25.31 km2 of 
the entire coastal land usage (Fig. 8d). Developed land will continuously 
be the most impacted land use with approximately 16.19 km2. Mangrove 
and mixed-forest will be the second and third most impacted with 5.81 
km2 and 3.01 km2, respectively. The main factors of the impact have to 
do with no coastal protection, the low coastal elevation, and flat slope 
observed in these areas (Fig. 5). The long-term projection results indi-
cate that SLR will have huge impact on mangrove and mixed-forest as 
can be observed in Fig. 8. 

4. Discussion 

4.1. Recommendation for coastal protection 

The coastline of Guinea-Bissau, which extends 150 km into the 
interior of the country, makes up about 65% of the national territory 
(Seatemperatureinfo, 2021). This coastal country is classified in two 
different zones: the northwest zone which comprises the Region of 
Cacheu (study area), Biombo, and Autonomous Region of Bissau (the 
Capital); and the southwest which includes the Region of Quinara, 
Tombali and Bolama Bijagós Archipelago. As a result, there is a complex 
link between socioeconomic activity, sea level rise, and coastal LULC 
(Lopes et al., 2022). The first administration in Guinea-Bissau was 
established in 1974 (Patrick, 1981), and since then, there has been a 
significant increase in the use of land for urbanization and food pro-
duction. Such activities, especially in the northwestern coastal zones, 
have slowly contributed to the coastal LULC change. 

The results of this study indicate that the change in mixed-forest is 
favorable because cashew nut farms became a critical economic product 
after the country gained independence in 1973 (Patrick, 1981), ac-
counting for more than 90% of total exports and 20% of GDP, (Mendy 

et al., 2013). Due to this product’s economic importance, a significant 
portion of the rural population focused on its marketing and cultivation. 
Plantations for cashew nuts occupy more than 70% of the forest area, 
mostly in the northwest (FAO, 2019). Between 2000 and 2020, cashew 
nut cultivation areas were estimated at 253,000 ha, with an annual 
production of 140,000 tons of raw cashew nut (FAO, 2019). However, 
since then, annual production has climbed, and by 2020, exports have 
exceeded 180,004 tons, putting the nation the seventh-largest producer 
in the world and fourth in Africa, behind Ivory Coast, Benin, and 
Tanzania (FAO, 2019). Because of the high percentage of poverty in 
rural regions, natural resources are being used carelessly, which has 
resulted in the destruction of timber forests for trade and the alteration 
of ecosystems for the practice of rice farming. In Guinea-Bissau, 79% of 
the workforce is employed in the production of rice, which is typically 
grown in both the drier savanna region and the marshy coastal regions. 
Rice production has fluctuated substantially in recent years, from an 
increase of 50,000 tons by 2000 to approximately 187,000 tons in 2019 
corresponding to 26.73% of the increase (Knoema, 2019). These socio-
economic issues, namely the conversion of tidal flats and mixed-forest 
into agricultural areas, have considerably contributed to the decline of 
coastal habitats. 

The findings of this study predict that mixed-forest will grow during 
the next 40 years. SLR is a major factor in the rise of tidal flat, and these 
rises have had an adverse effect during the past two decades. Tripathi 
et al. (2018), provided evidence to support the claim that tectonic 
compaction and SLR related to storm surge have a significant impact on 
coastal LULC charges. Low-elevation and flat-sloped areas are particu-
larly susceptible to SLR effects. The tidal flat is moved and settled by 
hydrodynamic processes based on directions relative to sea level. The 
study area experienced an annual rise in high tide of more than 2.8 m 
(Hidrografico.pt, 2021) and an SLR rate of 8.79 mm/year (Lopes et al., 
2022), that is significantly greater than the predicted 3.1 mm/year for 
the global average (Bhuiyan et al., 2012). This has caused the tidal flat to 
gradually rise between 2000 and 2020, and by 2060, there will be 
comparable changes. A significant factor in these changes will be the flat 
coastline slope of less than 2◦ and lower elevation of less than 1 m below 
mean sea level seen in much of the study are. Developed lands, such as 
paddy fields, horticulture, build-up, and dry lands, have been affected by 
the expanded tidal flat as a result of rapid SLR. This impact is due to the 
influx of saline water onto agricultural lands and the relocation of 
coastal populations to the inland areas. Between 2000 and 2020, man-
groves only slightly changed, but during that time, restoration and 
conservation efforts in the NC-GB made significant advancements in 
wetlands, which allowed for a significant expansion of the mangrove 
ecosystem (IBAP, 2019; IUNC, 2018). IBAP (2019), estimates that the 
mangroves in Guinea-Bissau cover about 326,000 ha, or 9% of the 
country’s land area. The study’s findings showed that, the impact of 
accelerated SLR poses a serious risk to developed land, mixed-forest, and 
mangroves especially under the current and RCP8.5 scenarios. The study 
area is largely exposed to the Atlantic Ocean and highly vulnerable to 
SLR; without adequate protection, the potential decrease of coastal 
LULC and habitat quality in the NC-GB is unavoidable in the short-, 
medium- and long-term scenarios. To reduce the potential impacts of 
tidal flats related to SLR in the coastal LULC in the NC-GB, protective 
measures should be taken.  

➢ Properly restoring wetlands and native woodland patches can help to 
restore the consistency of the coastal ecosystem, which is essential 
for coastal protection (Berlanga-Robles and Ruiiz-Luna, 2002).  

➢ In order to reduce coastal flooding and safeguard low-lying built 
areas in the NC-GB, landward boundaries can be fixed as seawalls or 
setback zones can be implemented by creating dykes (Harman et al., 
2015). These seawalls could stop the mangrove environment from 
moving upward and prevent the eventual loss of this ecosystem due 
to SLR or tidal flats. 
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➢ To stop seawater from polluting or invading agricultural and com-
munity lands, buffers can be built along tidal waterways.  

➢ By limiting the force of tidal advance, soft technologies like sand 
barriers or geotextile bags filled with sand beaches can be an effec-
tive measure to safeguard this area. 

5. Conclusion 

This study is the first-ever to predict the dynamics of coastal LULC 
change and the impact of SLR on coastal land use and habitat quality in 
the NC-GB. The goal of the study was to comprehend the changes and 
their impact on past and future trends in LULC change between the years 
2000 and 2060. The combined techniques employed for data pre- 
processing, maximum likelihood classification, and accuracy assess-
ment included remote sensing and GIS-related techniques; integrated 
Land Change Modeler (LCM), Habitat Quality Model (HQM), and Digital 
Shoreline Analysis System (DSAS) to quantify the temporal change and 
driving forces of the coastal LULC between 2000 and 2020; combined 
CA-Markov Model with Sea Level Affecting Marshes Model (SLAMM) 
and merged the local study area’s SLR data with future representative 
concentration pathway (RCP8.5) scenarios to predict future coastal 
LULC change and associated sea-level rise (SLR) impact on the coastal 
land use and habitat quality in short-, medium- and long-term. The 
conclusions drawn from the results were as follows. 

Decisions about coastal LULC changes are based on multitemporal 
remote sensing data, which also provide the information needed to 
monitor coastal LULC changes. The maximum likelihood supervised 
classification performed successfully and accurately with the 15 m res-
olution remote sensing data that was used. The NC-GB has undergone 
significant coastal LULC changes over the past two decades (2000–2020) 
driven on by socioeconomic activity and SLR actions. Tidal flats, whose 
change was mostly driven by open water (sea level), saw a net gain of 
57.93 km2, whereas mixed-forest, whose gain was driven by developed 
land, saw a net change of 25.90 km2. The study also noted the disap-
pearance of two major coastal LULCs, including developed land driven 
by mixed-forest and tidal flat, which lost a total of − 75.58 km2, and open 
water, whose change was mostly driven by tidal flat, which lost a net of 
− 37.63 km2. In terms of gain and loss, mangrove and sand beaches 
showed little changes. A cumulative gain of 80.55 km2 in tidal flat area 
and a loss of − 53.77 km2 in developed land are the two primaries coastal 
LULCs that will experience significant changes between 2020 and 2060. 
From 2020 to 2080, developed land will be the most impacted coastal 
LULC with 64%, followed by mangrove with 23%, and mixed forest the 
last with 12%. 

The study came to the conclusion that the conversion of mangroves, 
mixed-forest, and tidal flats into agricultural and infrastructure areas 
were the primary drivers influencing coastal LULC and habitat quality 
change in the NC-GB. The coastal erosion and accretion, which caused 
the loss of significant ecosystems in the coastlines, were the other cause 
of the changes. Over a 20-year period, the studied area experienced 
maximum erosion of 450 m and accretion of about 400 m. The study 
came to the further conclusion that the study area’s low coastline 
elevation of − 1 m and flat slope of less than 2◦ in most of the study area 
have contributed to coastal LULC and habitat quality change. The ser-
vices provided by the coastal ecosystem, including, the socioeconomic 
development, and food security will all be put in danger by these un-
precedented and alarming changes. However, coastal managers and 
policymakers need to move quickly to support regional sustainable 
development. 
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