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Single index models are frequently used in econometrics and biometrics. Logit and
Probit models are special cases with fixed link functions. In this paper we consider a

bootstrap specification test that detects nonparametric deviations of the link function.

The bootstrap is used with the aim to find a more accurate distribution under the nuli
than the normal approximation. We prove that the statistic and its bootstrapped version
have the same asymptotic distribution. In a simulation study we show that the bootstrap
is able to capture the negative bias and the skewness of the test statistic. It yields better
approximations to the true critical values and consequently it has a more accurate level
than the normal approximation. '
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1. INTRODUCTION

Single index models are frequently used in econometrics and bio-
metrics. They are defined by the equation

Y = F(X70) +¢, (1)

where the “link function” Fis a known function that operates possibly
nonlinearly on the “linear index” X T9. For the error term € we assume

*Corresponding author.
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428 W. HARDLE e al.

that E(e|X = x)=0. Model (1) can be rewritten as

E(YIX = x) = F(X"#). (2)

the linear model
Y=X"0+¢. They allow modelling of a variety of situations, e.g.,
binary responses, multinomial and ordered discrete responses,
censored and truncation responses. In the context of binary choice

m Al
sdels Fa
M« 5 4.

....... q. {
E(YIX =x)=P(Y = 1|X = x) = ®(x"0)

(with @ the standard normal distribution), or the logit formulation

E(YIX =x) =P(Y = 1|X = x) = {1 + exp(—x"60)} "

McCullagh and Nelder (1989) give a survey with several applications
in biometrics. Fahrmeier and Tutz (1994) apply this model in credit
scoring. Stoker (1992) and Horowitz (1998) describe econometric
applications with a view towards semiparametric approaches. Exam-
ples are labour supply (Stoker, 1992), work-trip mode choice
(Horowitz, 1993), migration on the labour market (Burda, 1993) and
innovative behaviour of firms (Bertschek and Entorf, 1996). Further-
more, some models from survival analysis are single index models, see
(Cox and Oakes, 1984).

In this paper we consider the following model that is slightly more
general than (2)

E(Y|X = x) = F{v(x,0)} (3)

where Y'is a real valued response variable and where the covariable X
takes values in R*. The link function F: R— R and the index function
v: R¥*9— R are known. The parameter 6 is assumed to lie in a subset
O of R? Note that model (3) differs from (2) by allowing nonlinear
indices v(X, 9).

An important step in the use of single index models is the choice of
the link function F. There are often purely practical reasons for

choosing a certain functional form for F. Consider e.g., the case that
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model (3) is motivated by the stochastic utility approach, see Maddala
(1983). In this approach the form of the index stems from theoretical
considerations whereas the link function is the distribution function of
some error variables. Typically only for convenience the error vari-
ables are assumed to have normal or logit distribution.

On the other hand, empirical evidence has shown that such a
parametric specification of F is not always adequate, see e.g., the
transportation choice example in Horowitz (1993). It is therefore
important to have a test for the specification of the link F. Horowitz
and Hirdle (1994) have developed such a test. Their HH test is
different from procedures proposed by Azzalini, Bowman and
Hirdle (1989), Hirdle and Mammen (1993), or le Cessie and
van Houwelingen (1991). These latter tests are constructed for arbi-
trary nonparametric alternatives. If X is highdimensional such overall
tests can have a poor power. The HH test avoids this “curse of dimen-
sionality” by assuming that also on the alternative the conditional
expectation of ¥ depends on the covariable X only via the index
function v(X, 6).

Horowitz and Hardle (1994) propose to use normal approximations
for the calculation of critical values. Simulations have shown that the
accuracy of the normal approximation is affected by a negative bias of
the HH statistic, see Proenga (1993) and Proenga and Ritter (1993).
Here, we study bootstrap procedures. Our aim is to get approxima-
tions that work better in finite samples than the normal distribution.
We will discuss several bootstrap approaches. We will study the
performance of these bootstrap tests by asymptotics (see Section 3)
and by simulations (see Section 4). In the next section we will give a
short description of the HH test.

2. THE MODEL AND THE TEST STATISTIC

Let {(X1,Y1),--.,(Xn Y,)} be a random i.id. sample of (X, Y) that
follows model (3). We assume that there exists a \/n—consistent
estimator §, of 8. Typically, such a /n—consistent estimate is given
e.g., by the method of (weighted) least squares or by the (quasi)
maximum likelihood approach, see McCullagh and Nelder (1989) and

Severini and Staniswalis (1994).
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We come now to the description of the HH test. The test is
constructed for the test hypotheses

) @)

t hat under Hy and H; we
}. The HH statistic is motivated by
AG (1985) The main idea relies on

J N

condmonai moment tests,
the intuition that on the hypothe51s a nonparametric estimate of F
should be close to F. On the other hand, if the link F is not correctly
specified then the nonparametric estimate should significantly differ
from F. The HH statistic has the form

Ty =V Y winl¥i — FO)|Fu(v) — F(32)], (5)

i=l
where ¥; = v(X;,6,) and where w is a non-negative weight function
Often the weight function w is defined as the indicator function of an

appropriately chosen set. F;(¥;) is a leave-one-out kernel regression
estimate of E{Y|v(X,6)}. For asymptotic unbiasedness it is defined
according to the proposal of Bierens (1987). It is a linear combination

of two regression kernel smoothers with different bandwidths (hand s
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respectively)

Fut) = {Emt = () Fatr} [{1-(4)} @
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fort=h and t=s (7)

ra !

[{v —v(X;,0n)}/1]
where h=cn="*+D s=/p=8C*+D with ¢,¢ >0,0<6<1 and a

kernel K(-) of order r > 2.
Horothz and Hardle (1994) show that 7,, has an asymptotic normal

02 =2C; /Moo w(v)2o? (v)dv, (8)
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Cr = /OO K(u)*du, 9
2 (v) = V{¥v(X,0) = v}. (10)

With an estimator for o the normal limit of the test statistic can be
used for the calculation of approximate critical values, see Horowitz
and Hirdle (1994). However this approach can lead to very poor level
accuracy, see Proenga (1993) and Proenga and Ritter (1993). Boot-
strap is an alternative approach for getting approximate critical values.
In the next section we introduce several bootstrap procedures and
discuss their asymptotic properties.

3. THE BOOTSTRAP APPROACH

The main idea of the bootstrap approach is to mimic the model under
the hypothesis H,. Bootsirap gives an approximation for the dis-
tribution of the HH statistic when model (3) is true. We will see that it
produces critical values that are more reliable than the critical values
of the normal approximation.

We will consider a class of resampling schemes that work according
to the following steps.

Step 1 Calculate variables 67 that approximate the conditional
variances o” [v(X;, 6)] = var[Y{v(X; 0)] of the responses Y.
[Which choices of 67 are possible will be discussed below.]

Step 2 Generate n conditionally [given the original sample] indepen-
dent random variables €%, ..., &} with conditional mean 0 and
conditional variances 67,...,42. [Choices of the conditional
distributions of €} will be discussed below.]

Step 3 Put

Y; = F{v(X;,0,)} +¢] (11)
fori=1,...,n. We will use (X;,Y7), i =1,...,n as bootstrap

sample. Note that in these resampling schemes the covariables
X; are not resampled.
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Step 4 Calculate an estimate é,*, that is based on the bootstrap sample
(and the original sample).
Step 5 The bootstrap version of the HH statistic is now

AN ok Tork T oENTT Tk £ Ak Ak 71 AN

Tp=vh ) wir; — FODIF) — F)I, (12)
i=1

where 77 = v(X)H;), where w(-) is defined as above and where

F.(-) is calculated as () but with Y replaced by Y7. (The
covariables X; are not replaced in the definition of F7;(-).)

For the choice of the variables 67(i = 1,...,n) and 8’ and of the
distributions of f(i = 1,...,n) we make the following assumptions:

B 1. It holds that

i w(v;)*K

v
l

=) (20,0020 — 5257 = op(1)
nn;—;l« Py 7

where v;= v(X,,0) and where py is the density of v(X, 6).

(A

For the bootstrap error variables we have that there exists a
p>1 with n' ~?h~?log(n)* = O(1) and

[we]
[ o]

!@?EﬁE[|5714”|X1, - Xa] = 0p(1).
B 3. The estimate &’ fulfilis
0 = b, + Op(n™V/%),
ie., é,*, is y/n consistent in the bootstrap world.

Condition B1 holds if 6,? are consistent estimates of az(vi), ie.,

max |67 = o2(0)] = op(1). (1)

But condition (13) is not necessary. Note that B1 holds if certain local
and global averages of &2 are asymptotically equivalent to the
corresponding averages of o*(v;). In particular, we will apply our

results to a rpcnmnlmo scheme {uuH bootstrap. see below). where 52 is

sults to a resampling scheme (wil d bootstrap, se ow), where &7 is
equal to a squared single re31dual. Then under appropriate condmons
B1 holds whereas (13) is not fullfilled.

In B2 we consider the conditional expectation given only the co-
variables (and not the responses). It can be easily verified that this
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condition implies that
E*[|e;[%] = 0p(1), (14)

where E* denotes the conditional expectation given the whole sam-
ple X1, Yy,...,X,, Y, We will consider a resampling scheme (wild
bootstrap) that fulfills B2 but not (14).

We now come to a discussion of the choice of the parametric
estimate 6. An obvious choice that fulfills our condition B3 is g = 6,
Then the parametric estimation step is not mimicked in the
resampling. This choice of (5;“, works asymptoticaily because the first
order asymptotic distribution of our test statistic is not affected by the
choice of the estimate §,. However we expect for finite samples and
asymptotically in second order that bootstrap performs more
accurately if an estimate 8% is used that mimics f,. This estimate has
to be calculated in each cycle of the resampling algorithm. For most
estimates 6,, calculation is lengthy because it requires an it”afive

algorithm. In the bootstrap world we know the true erlying

parameter, namely 6,. So there we can use the same iterative algeﬁthm
with §, as starting value. Theoretical considerations for many
estimates (quasi-likelihood, weighted least squares) suggest that one
iteration in the algorithm suffices, see e.g., Mosbach (1992).

KII 11 A:
e will discuss the validity of these assumptions for several

resampling schemes after the statement of the following theorem. This
theorem states that on the hypothesis 7 has the same asymptotic
distribution as 7T, This implies that bootstrap gives a consistent
estimate of the critical values of T,. So the bootstrap test has
asymptotically correct level. The theorem uses assumptions A1-A9
that are stated in the appendix.

THEOREM 1 Suppose that the HH iest is used with bandwidths h=
en VD and s=cn= 5%+ (for constants c¢,c’ >0 and 0 <6< 1)
and with a \/n consistent estimate 6, = 0+ Op(n~'/?). Under assump-
tions B1— B3 stated above and A1— A9 from the appendix we get that

doo (L(T;), N(0,07)) — 0

in probability. Here L* denotes the conditional distribution given the
sample X,,Yy,...,X,,Y,. Furthermore, d., denotes the Kolmogorov
distance (i.e., the supremum norm between the corresponding distribution
functions).
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We now discuss Assumptions B1-B3 for several bootstrap re-
sampling schemes. We will discuss wild bootstrap and parametric
bootstrap. For a discussion of bootstrap in a related model, see also
Mammen and van de Geer (1997) and Hirdle, Mammen and Miiller
{1998).

Wild bootstrap is related to proposals of Wu (1986) and Beran
(1986) and was first proposed by Hardle and Mammen (1993) and
Mammen (1992) in nonparametric setups. In the wild bootstrap one
generates an i.i.d. sample 7, ..., 7, with mean 0 and variance 1 and
one puts €; = &;m;. The choice of 4; depends on our assumptions on
o*(v) = Var [Y|W(X, 0) = v]. We discuss here two types of choices for ;.

— If we make no smoothness assumptions on o*(v) then an
appropriate choice of 62 is [¥; — F(9,)]* or [¥; — Fi(9:)]%, respec-
tively (where, as above, ¥ = v(Xi,é,,)). It can be checked that
Assumptions B1 and B2 are fulfilled if the distribution of 71, ..., 9,
have compact support. In particular then B2 follows from A7 and
boundedness of F, see AS.

— Under smoothness assumptions on o°(v) estimates 4; can be used
that are based on smoothing of squared residuals (see e.g., Gasser,
Sroka and Jennen-Steinmetz (1986)). Suppose that estimates &; are
available such that

T8, 19 = 0ol =or()
and such that 6; is uniformly bounded (a.s.). Then wild bootsirap
fulifills Conditions B1, B2 as long as 7,,...,n, have a bounded
4p-th moment. This is easy to check.

Another modification of wild bootstrap is the moment oriented
bootstrap of Bunke (1997). In this resampling also higher order
moments of the data are mimicked by the resampling. Again it is easy
to see that, under appropriate conditions, this approach fits into our
framework B1-B2.

In the case of binary responses the (conditional) distribution of the

1 1 V) 1 3 +h Tiia ~AF
response Y (given the covariable X) is determined by the value of

F(X79). Then it makes sense to generate Y7 that have (conditional)
distribution according to the parameter F(X76,). This is an example of
the parametric bootstrap. It can be applied for the whole class of
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generalized linear models where the conditional distribution of the
response belongs to an exponential family. The conditions Al and A2
are fullfilled for parametric bootstrap if the 4p-th moments of the

responses are uniformly bounded for parameters in a neighborhood
of 8. For the case of a generahz"f‘ model this holdg if F‘(YTQ\ lies al-

most shurely in the interior of the natural parameter space of the
exponential family.

The statement of Theorem 1 can be extended to the case of local

E[Yi|v(X:,0n) = v] = Fu(v)

a.s., for a sequence of functions F, and parameters §,. Furthermore,
denote the conditional variance Var [Y;w(X,6,)=v] by o2(v). The
parameter §, now depends on n and is chosen such that b, = 6,+
Op(n~1/%). (Note that 5n is the estimate of § on the hypothesis Ho

r crn thors IT £,
where o= F. On the alternative where F, differs from F the center 9,,,

of the distribution of 6, may change. It is too rCStI‘ICtIVG to assume that
6,,=0.) If one assumes now that F£,.0, and 0’ converge to F, § or o2,
respectively, and that our smoothness assumptions on F, § and o 2 hold
for F,,0, and o2 then one can show that also on the alternative 7, has
the same asymptotic normal limit as stated in Theorem 1. Then also
on the altenative bootstrap gives a consistent estimate of the critical
values of T,,. So on the alternative the bootstrap test has asymptotically
the same power function as the test that uses correct critical values.
The HH test requires the choice of two bandwidth A and s. It is
needed that the bandwidth 4 is of order n~ /@ *1 and that s is of
smaller order, see Theorem 1. This choice of 4 is motivated by esti-
mation problems where this rate of convergence is optimal. However
for testing also other choices of A make sense. A test with large &
looks for more global deviations of the link function from F, whereas
small choices of 4 make the test more powerful for local deviations.
So the assumption that 4 is of order n~ 1/@r+1 is too restrictive. For
the HH test this assumption has been made to guarantee that the
estimate F,; is asymptotically unbiased. We propose now a modifica-
tion of the HH test that works for all choices /& with A= o(1). We put

mod __ . wEY: — F(9: ZJ-I,);ét[Y F{vj}]K([VJ — Vi) /h)
T = vh Z (3)[Y; — F(9;)] SR = 5/ .
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In this test statistic the smoother

P (9 \ Z,L],/;ef YiK([f’j = ¥i]/h)
nhi\Vi) — 7] - S .
’ Zj—_-x,/;éi K([5; — %l/h)

is compared with an estimate of its (conditional) expectation on the
hypothesis:

This test statistic has the same asymptotic limit as the HH test. This
asymptotic limit holds under weaker conditions. In particular, it is not
required that 4 is of order n~ '/ * D and that F and the density of
v(X, ,,0) have higher order derivatives. If /1 is of order n = /® * D then the

piotic : 1 it This is the

& B I PR ~ 1 - : 1 rTrrvy . s .
modified test is asym Ull.!l_d,l!y t:-qu!va.xcnl io the riH test.

content of the following theorem.

THEOREM 2 Suppose that h fulfills h=0(1) and n —ipd logn=o0(1),
that 8, = 6 + Op(n~'/2) and that conditions A1— A8 from the appendix
apply. Then ii holds that

T"wd—iN(O JT)

Under the additional assumption of A9 and that h=cn="**V gnd
s=c'n "D (for constants ¢, ¢ >0 and 0 < § < 1) we get that

T4 = T, + op(1).

r this test bootstrap can be use

) > 0
for th pprox1mat e determination of critical values.

THEOREM 3 Suppose that h fulfills h= o(1) and n~'h*log n = o(1), that
b, =0+ 0p(n~'?) and that assumptions Bl-B3 stated above and
conditions A1— A8 from the appendix apply. Then we get that

do (L (TTO0), N(0,07)) — 0

in probability, where T1"%* is the bootstrap version of T,
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We have carried out a small simulation study for binary responses.
The response variables took values from {0, 1} with

P{Y = 1]v(X,6) = v} = E{Y]»(X,0) = v} = F(v).

We considered the HH test 7, for the null hypothesis Hy:

with linear index v(x,0)=1+x76 where §=(—1,2)".
t 1

b
wo dimensional standard norma
¥ . taiiarg 11078 111

T n  ~mcrasiakl 1
The covariables X had a two dimensional 3

distribution and the generated samples had size n=200. We have
checked the test for the alternative Logit with a bump:

=1 - 0o o ).

with () the standard normal density and a=0.5, 0.75, 1,1.25. In our
simulation the HH test was performed with bandwidths h=0.5, h=1
and &= 1.5. These choices were made after a graphical inspection of
the kernel regression estimates. These bandwidths corresponds to
undersmoothing, nearly optimal smoothing and oversmoothing, re-
spectively. The bandwidth s was determined according to s = hnt— 905
with §=0.1. The weight function w(v) was defined as the indicator
function between the 5% and the 95% percentiles of the fitted index v.
The critical values were calculated by parametric bootstrap. The
bootstrap used 199 replications. In Table I the rejection probabilities

TABLE T Percentages of rejections using critical values from the normal approxima-
tion and bootstrap critical values. Nominal size is 5% or 10%, respectively

Nominal size 5% Nominal size 10%

Normal Bootstrap Normal Bootstrap

logit link

h=0.5 1.6 438 2.2 9.8
h=1.0 0.2 5.0 0.6 10.8
h=15 0.0 7.4 0.0 14.6
logit link with bump a=1

h=1.0 0.4 35.6 2.6 66.6
h=15 0.8 34.4 3.0 48.8
logit link with bump a=1.25

h=1.0 1.2 49.2 2.6 66.6

h=15 2.2 42.4 6.4 60.8
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are compared for the bootstrap test and for the HH test with critical
values from the normal approximation. The normal approximation
does not work. The levels are too small. The test is too conservative.
Because of the inaccurate critical values this test achieves no power
for the different alternatives. On the other hand. the bootstran test

CGIUICICIIL LA IVvesSs., i LAnlE, UL UUUSLIAp oot

performs reasonable well. Its level does not differ too much from the
nominal level and it achieves remarkably better power.
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A. CONDITIONS

For a neigbourhood Ny of 8, for an open subset 5, of the support of
v(x, ), and for a compact subset S, of §,, we make use of the following
assumptions. ‘

Al — The covariable X has compact support Sy.
A2 — There exists a constant M such that for every x€ S, and T€ N,

(@) |v(x, 7| < M,
(b) v(x, ) is continuously differentiable with respect to 7 and

|Ov(x,T)/0m| <M, j=1,... k.
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A3 ~ The variable v(x, ) has a density py w.r.t. Lebesgue measure.
For v€ S, the density is bounded from below and from above.

A4 — The weight function w(-) has compact support S,, C in?(S,) and
satisfies for some constants M, and M}:

(a) 0<w(vy< M, forall ve S,.
(b) |w(va) —w(vi)| <MLy, — v for all vy, v

v s ¥l

hY

m

AS -

(a) |F{v(x,7)}| is uniformly bounded over x& S, and 7€ N,.
(b) |F(v1)—F(v2)| < Mglv;—vy| for a constant My and for all
vy, v € S,.

A6 — o*(v)=V{Y|v(x,6)=v} is a uniformly bounded, continuous
function of v€ S,.
A7 — There exists a p > 1 with n' =? A~ 2 log(n)*” = O(1) such that

sup E[|Y —E{Y|X =x}|") <0 as.

v(x.0) €S,

A8 — K has bounded support, it is symmetrical about 0 and it has a
bounded derivative K.

A9 -
(a) Kis an r'th order kernel.
(b) F(v) has r continuous derivatives for v€ S,.
(c) po(v) has r continuous derivatives for ve S, that are uni-
formly bounded for ve S,.
B. PROOFS

We start by giving a proof that 7, has an asymptotic normal
distribution N(0,0%). We show that this result holds under Assump-
tions Al—A9. These assumptions are slightly weaker than the
assumptions used in Horowitz and Hérdle (1994). The only exception
is our additional Assumption A7 that we use to show that the quad-
ratic statistic A, ;(r) converges uniformly for 7 with ||7—8|| < Cn~ /2
to 0 (in probability), see (17). This implies that A, ; (é,,) converges to 0

(in probability). In Horowitz and Haérdle (1994) it is only shown that
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A1 (8,) converges to 0 (in probability) for deterministic sequences 6,
with ||8,—8|| < Cn~'%, see the proof of Lemma 6 in Horowitz and
Hérdle (1994).

Our proof of the asymptotic normality of T, differs slightly from
the proof given in Horowitz and Hérdle (1994). It has an appropriate
form that we can easily explain how the proof has to be modified to get
the statements of Theorems 1-3.

Write

Tu(r) = Vi Y_w{v(Xs, 1)}[¥i - F{v(X;, 7)}]
i=1

(Foi{v(Xi, 7)} = F{v(X;, 7)}].

Then it holds that T, = Tn(én), In a first step of the proof one shows
that

p(1). (15)
This follows from

sup  |Ta(7) = Tu(0a)] = 0p(1). (16)
lr—6l| < Cn-1/2

The proof of (16) requires several steps. Most steps use uniform
stochastic convergence of terms that are linear in &y,...,€,, Where
g;=Y;— E[Y}X;]. At one point one has to check a term that is
quadratic in €y,...,&,,. This term has the form

g; w{vi}ei i sf{ [Kh{V(Xi,T) —r%,7))
i=1 J

i=1j#1 \ pn,h,‘r{v(Xl'v T)}

' {vi — v} r\"
] (5)
{Ks{v(Xi,'r) —v(X;,7)}
p dv(X:. )}

L ros,T U\ )

S -G
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where

n

- 1
Pune V(X)) == Y K{v(Xi7) — v(Xi,7)}
=y

1 1
= > Ki{v(Xi,7) = v(X,,7)} = ~Ki(0).
nis "

We will discuss the quadratic term

0

] h
B =215 wie,
i=1

}: i [Kn{v(Xi, 7) — v(X;, )}
J=1 i

- Kh{vi - vj}]ﬁn_yhr{v(Xh T)}_li

inear ierms

oy

. PR N
4nda e

Bua(7) = VES whidalF{(Xn 7)) — F{nlpana(n) ™,
i=1

ll : - b nd 1 1
An3(7) =TZW{V1}E:‘ Z [F{vi} — F{}]
i=1 yy

[Kn{v(Xi, ) — v(Xj,7)}
- Kh{vi - vj}]ﬁn,h,‘r{v(Xh T)}—])

We will show that

for I=1, /=2 and /=3. The other linear and quadratic terms can be
treated similarly.

Proof of (17) for I=1 Choose 6,—0 such that

Yo = 6;%n1"Ph~2 log (n)z”E[e?pI{led > 8,1 log (n)~V/?)]
— 0.
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Such a §, exists because of Condition A7. Note that

E[e”I{|ei| > 6,n'/*h'? log (n)™'*}] — 0

for n—oo. Put

&) = ed{ei| < 8n'*h/ log (n) ™'/} —
Hi = EE,'I{‘E,'I < qnn h}/L log (”) !/7}
A 7N A NIt
Dp1i\T) = Lan,i‘]\T}E[EJ)
A
Ania(r) =2 anij(7) e,
J#
Ani3 (T> = zan,i,j(T)#iﬂjy
J#

() = ‘f{w{vw VX, 7) = X, 7))
7l

2y T

= Kip{vi = v HPpp (X,
4w [K.Iy(Y ) — v(Xj7T)}

AL\ )

— Kn{v; = villPus 10X, )}

Note now that for all constants C> 0

P{An)l (T) = An,l,l(f) + An,l,Z(T)
+ Apa(7) for all ||7 — 6| < Cn™'/?}
>Plei=¢+piforall 1 <i<n}
> P{lei] < 6un'/*h'* log (n) /2
for all 1 <i<n}

1/411/21 -1/2

>1- nFUE] bunt og{n) }

>1l—v — 1
So for our claim (17) it suffices to show for all constants C >0

B = or(1), (1)
fir—6ll < Cn=1/2

for j=1,2 and 3. For the proof of (18) for j=1 note first that there
exists a constant C; such that for all C >0, for all k> 2, and for all 7
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with |7 =8| < Cn~ 12
E[|Ani1 () X1, .., Xn] < CEKIE

, ) k2
[<sq)~k|x1,...,xnj{ ;aw(r)z} . (19)

This bound follows by a slight modification of a bound of Whittle
(1960), see also Lemma 4 and Eq. (3.23) in Mammen (1989). We use

now

E[() X1, .., X,] <2%6*n 1k log (n) ™ as. (20)

sup Y anii(1) = 0p(h 7). (21)
lr—8) < cn12 T

This bound (20) follows by definition of the variables /. For the proof
of (21} one uses standard kernel smoothing theory. With the help of

(19)—-(21) we now get the following bound for ¢ > 0 and for all + with
=) < Cn 12

sup  E[exp{rlog (n)An1,1(7)}X1,. .., Xa]

flr—8j| < Cn—1/2

o0
<1+ CKrlog FE[(ENHXy, ... X,
L1 =AY [ R WA | 3 1
k=2
, k/2
{ sup n,ij(T) } = 0p(1)
\ "T—ﬁﬁ < Cn—'? i#j J

With a similar bound on Elexp{— ¢ log(n)A, 1.1(7)} | X1, ..., X,] we get
that
]

in
e of
[l7—8)| < Cn—1/2

From inequality (22) we get the following bound for all ¢, C, C' >0

sup P[lAn,],l(T)I >C’lX1,...,Xn]
=6l < cn-12

< sup  exp[— C'tlog(n)]
ol < ns

E[exp{t1og (n)|An1s (D}, ... X,] = 0p(n™C").  (23)
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Consider now finite subsets I, of {7 |[7—8|| < Cn~'/*} with number of
clements bounded by ¢ (for a constant C"). Then we get from (23)

sup [An1,1(7)| = op(1). (24)

TE

We use now the following crude bound

sup 1Bn11(11) = Anpi(72)]
=0l < On- 2 lra=6] < Cn=V/2r —ma| < n=3/242
2 -1/2
= sup I = mllop(83n*2H71%)
i —6]l < Cn=1/2, I =6]) < Cn= 172 Jin—mal| < n=32R12

Claim (18) with j=1 follows now from (24) and (25) with an
appropriate choice of 1,

For the proof of (18) with j=2 and j=3 we use the following
estimate of u;

s = |Eed{|ei| < 6,n'/*h'/ log (n)~'/*}]
= | — Eeil{|ei] > '/ *h'? log (n) "'}
< 6;(4p—l)n—(4p—l)/4h——(4p—l)/2 log (n)—(4p—1)/2
Eled*I{le:] > 6,n*R"? 1og (n) ™'/}
= qun 1 6,m 4R 2 log (n)2Ele,|*
1{|ei| > 6,n'/*h"/? log (n)"V/*}
= o(n"¥*n?log (n)'7?). (26)

Claim (18) with j=2 now follows from the following bound

sup D lanig(7)| = Op(h72012),
=6l < cn=12 g

Els}l =0(1). (27)
For the proof of (18) with j=3 one applies (26) and (27).
Proof of (17) for I=2 Note that

An,z(T) = i an,i(r)s,-
i=1
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with
ani(7) = Viw{v F{v(Xi. 1) = F{vi}lpone(vi) "

We define now

n
Ay =S a (r)e
——nL 0\ J 5 el (NANAVAS B

i=1

n
A N N L N,
N sty = SN g tThiie
==n,i,i\7 ) MLENT JED

where ¢} and y; are defined as in the proof of (17) for /=1. We get
now that for all C>0 with probability tending to 1 for all 7 with
lT—8)l < Cn~ ' it holds that

A,,’z(’?') = An.,Z,l (T) + An,2,2(7—)-

So it remains to show for all C >0

sup A7)} = op(1), (28)
et < Cu 12

for j=1 and j=2. Claim (28) for j=2 follows easily from (26) and
\_’1‘. PR ~rr o 1/A s “ 1724 PN fom
L {ani{7)| = Olhn "'"(logn) '~ ) = o(l). (£9)

i=1

For the treatment of A, 5 ;(7) note that under our conditions it holds
for all C > 0 that

sup |ani(7)| = Op(R'?n~112).

=6l < Cn=i21 <i<n

Put d), (1) = an;(7)1{|an;(T)] < h'/*n~/?}
) n
and Apa3(7) = Zaﬁ,’i(r)aﬁ.
i=1

Then A, (1) = A, 23(7) with probability tending to 1. It remains to
show for all C >0

sup IA,,72’3 (T)l = Op(l). (30)
|lr—8|| < Cn='/2
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We argue now that there exists a constant Cy such that for >0,
1 <i<nand n large enough

sup  E[exp{tlog(n)d, (1)} X1, .., Xn]
lr—6) < etz ‘ )
<1+ Cot*log (n)’d, (1) E[(e))*|Xy, ..., Xn]
< exp {Co? log (n)’d, () E[(e})*1X1, ..., Xa) }. (31)

sup llog (n)d., (7)€} < Cyn 14,
lr—6ll < Cn-'21<i<n '

With the help of (31) we now get the following bound for ¢ > 0 and
for all 7 with ||r—6|| < Cn™'?

sup  FElexp{tlog (n)A, (7)) }X, X,
=6l < Cn'/2
< R N PR /.\2Yn“nl (AZET 2] v1\
< sup expy Got'log ()™ ) a, A7) E[(e)|X1,. .., Xn] (
-6l < Cn=12 L i=1 J

< exp{Cof* log (n)*h'/20p(1)} = 0p(1).
Claim (17) for /=2 follows now with the same arguments as for /= 1.

Proof of (17) for iI=3 Note that

n
An,3 (T) = Z bn,i(T)si
i=1

41

with

brir) = Do) 3 [FAd — PO ) — v 7))

sy
— K {vi = v Bup (vXs, 7)}

By standard kernel smoothing theory one shows first that under our
conditions for all C > 0 it holds that

sup |bni(T)| = Op(hl/znl/z).

Ir—6l| < Cn~121<i<n
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One  comsiders 00, &), (7)e;  where ), (7) = bui(7)1{|byi(7)| <
h'4n=1/2} Claim (17) for /=3 follows now with the same arguments
as for /=2.

We come now

norm aliter ~
normaiity o

o the second step of the proof of the asymptotic

—

where

n
A
Tat = ) Cnjijei€),

i#]

Vh

nig = WK = B}

1
Tn = iy P —— B
? T"[l—(//w }]

S /sy
Th3= v,,,uzw{vj}grl—\_i%“Kf{vr vi}e pnﬂ?{v ]'_1’
Ui v

Tas=[1 = (h/s)] \/EZW{V,}E g[F{v;} — F{»:}]

i
= -1
(Kn{vi — v}Puno{vi}
- (h/’s)rKS{vf - vj}ﬁn,s,ﬂ{vi}uli'
We now argue that
Tnj = OP(]) (32)

for j=2,3,4. This can be shown by calculation of the second moments
of T},2, Ty, 3 and T,,,4. We would like to mention that the proof of (32)
for j=4 is the only point of the proof where we need Condition A9.
With (15) and (32) we get that

T =Tou1 +op(1). (33)

It remains to show that 7,,; has an asymptotic N(0,02) distribution.
For this claim we show that

E*[TZ, = vart[T,] = 0% + op(1), (34)

doo (LT (T1), N(O,E*[T71])) (35)
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Here £+ denotes the conditional distribution given the covariables

Xi,...,X,and var™ denotes the (conditional) variance w.r.t. L.
Claim (34) follows by standard kernel smoothing arguments. So it

remains to show (35). According to Theorem 2.1 in de Jong (1987) for

this claim it suffices to show

a
i

ng
>

I/\

l ; Henijeiej)/vart [Tui] = op(1), (36)

EF T3]/ {var* [TalY =3 + 0p(1), (37)

where ET denotes the (conditional) expectation w.r.t. L7, Claim (36)
follows from

=t i

sup E[|[Y-E{Y|X= xHl<oo as,
v(x,0) €S,

see A7. For the proof of (37) note that

E*[TH] = 3{vart[T,1]} = 84,1 + 48452 + 19243,

where
4 & 4
Any = di EVelETe
i#f
Anp = > ol el 1 E €T E €] EY L E Vel
i,j,k,l pairwise different
2+ 3
An,3 = Z dn RA1 lkd"x/ kE+ 3E+ E+€ ko

i,j,k pairwise different

dyij = (Cnij + Cnji) [2-
Claim (37) follows from
App 20, (38)

An,2 Z O) (39)
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E An,l = 0(1)7 (40)
E A,n =o(1), ' (41)
ElA;l < > Eldhijd2 1y dnin EV e EY € E |ex ]
ij.k pairwise different (42)
—o(1)

- N FAON AN n
om dn ,J}U '\.Aauus '\ir'\l _\‘I‘Lj can ¢

3 )
shown by using A7 and simple bounds, see the proof of Theorem 1 in
Hardle und Mammen (1993) for similar calculations.

3

Proof of Theorem 1 Define T}, as T, , but with ¢, replaced by ;. The
statement of the theorem follows from

T, =T}, +op(l), 43)
doo (L*(Ty1), N(0,07)) = 0p(1), (44)

Note that (43) implies that for all § >0

PYIT, = T,_41 > 8] = op(1),
because of EP*[|T; — T, | > 6] = P[|T; — T;,| > 6] = o(1). Here P* de-
notes the conditional distribution given the sample X, Yy,...,X,, Y,.

Claims (43) and (44) can be shown with essentially the same
arguments as above. For the proof of (44) one has to show e.g., that

nl zd:IJE* E*(&' ) - 01’(])
i#

This follows from
B = D E ) E ) = o) Yl
i i#
see B2, and

Z nll—oP(l

i#j

because of

Z iy = o(1).

i#j
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Proof of Theorem 2 Define

Tmd(7) = Vh Zw{v(x,,ﬂ MY, — F{v(X;, 7)}]

Z,,j:lj;é;‘l{j = F{v(X;, 7)}] K([" o) = v(Xi, T/ )
Z;l:g i K([V(X:i) ) — v(X;, T)Vh)

Then it holds that Tm4 = T™4(f,). Again in a first step one shows

ittt
iiiat

Tmod — Tmod () 4 0p(1). (45)
This can be done with the same arguments as above by proving

sup |T74(r) — T4 (6)] = op(1).
llr=6]| < Cn172
ith h=0(1) and n~ '

o\ NT RN P ras AN
9). Now we have that

All steps of the proof work for bandwidth # wi
(log n)*> = o(1). The latter condition is used in (2
77%2(§) = T, . Furthermore, because T, converges in distribution to
N(0,02) we get that 779 has the asymptotic limit N(0,0%) (in
distribution). Note that we do not need Assumption A9 for the
asymptotic treatment of 7. In particular the term 7,4 does not
appear in the asymptotic expansion of 77°¢. Under the additional
assumption of A9 and that h=cn~V®*D and s=cn @+ we
have T,=T,1+0p(1), see (33). This immediately shows the claim
T4 =T, + op(1).

Proof of Theorem 3 See the proof of Theorem 1.
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