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A B S T R A C T

This paper presents a new method to approximate the inverse of the spatial lag operator, used in the estimation
of spatial lag models for binary dependent variables. The related matrix operations are approximated as well.
Closed formulas for the elements of the approximated matrices are deduced. A GMM estimator is also presented.
This estimator is a variant of Klier and McMillen’s iterative GMM estimator. The approximated matrices are
used in the gradients of the new iterative GMM procedure. Monte Carlo experiments suggest that the proposed
approximation is accurate and allows to significantly reduce the computational complexity, and consequently
the computational time, associated with the estimation of spatial binary choice models, especially for the case
where the spatial weighting matrix is large and dense. Also, the simulation experiments suggest that the proposed
iterative GMM estimator performs well in terms of bias and root mean square error and exhibits a minimum
trade-off between computational time and unbiasedness within a class of spatial GMM estimators. Finally, the
new iterative GMM estimator is applied to the analysis of competitiveness in the U.S. Metropolitan Statistical
Areas. A new definition for binary competitiveness is introduced. The estimation of spatial and environmental
effects are addressed as central issues.

1. Introduction

Modeling binary choice outcomes with spatial dependence has
become increasingly popular in recent years. Many applications can
be found in the literature, that cover, for example, the choice on the
participation in environmental policies (Beron et al., 2003; Murdoch
et al., 2003), the adoption of new technologies in agriculture (Case,
1992; Holloway et al., 2002; Wollni and Andersson, 2014), the imple-
mentation of state income taxes (Beron and Vijverberg, 2004; Fiva and
Rattsø, 2007), the location choice (Klier and McMillen, 2008; Miyamoto
et al., 2004), the decision to (re)open a business (Holloway and Lapar,
2007; LeSage et al., 2011) or the existence of high crime rates in a
given neighborhood (McMillen, 1992). However, the introduction of
spatial dependence in models with dichotomous dependent variables
raises several complications. Considering a latent variable approach to
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derive a model for binary choice outcomes, Anselin (2007) shows that
spatial dependence implies the presence of spatial heteroskedasticity
and spatial autocorrelation, which leads to specification issues and to
analytically intractable expressions for the quantities of interest. As a
result, estimation becomes complex and computationally demanding.

To address the issues related to the estimation of spatial binary
choice models, several approaches have been proposed. These
approaches can be categorized into three major groups, according to the
estimation method that they address: Maximum Likelihood (ML) meth-
ods, Bayesian methods and Generalized Method of Moments (GMM)
estimators. Examples of ML based approaches are the EM algorithm
(McMillen, 1992), the RIS simulator (Beron and Vijverberg, 2004), par-
tial ML estimation based on pairwise correlations (Bhat, 2011; Wang et
al., 2013), the GHK simulator (Pace and LeSage, 2016) and the Mendel-
Elston approximation (Martinetti and Geniaux, 2017). The Gibbs sam-
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pler (LeSage, 2000) and Markov Chains Monte Carlo (Smith and LeSage,
2004) are examples of Bayesian based approaches. Finally, the estima-
tor of Pinkse and Slade (1998) and the estimator of Klier and McMillen
(2008) consider the GMM framework. Nevertheless, most of these
approaches become computationally burdensome in large samples.

The computational issues associated with Maximum Likelihood
methods and Bayesian methods are related to the computation or simu-
lation of high-dimensional integrals. This is a consequence of requiring
the specification of the joint distribution (or, at least, some structure of
the distribution) of the spatial data. Even if the high-dimensional inte-
grals are approximated by one-dimensional integrals (Martinetti and
Geniaux, 2017) or obtained by simulation algorithms (Beron and Vijver-
berg, 2004; Pace and LeSage, 2016), estimation can still become com-
putationally infeasible, especially if the spatial units are influenced by
many neighbors and N (the sample size) is large.

Another possibility is to consider a GMM estimation approach.
Under the GMM framework, the distributional assumptions can be
relaxed in such a way that no high-dimensional integration is involved.
In fact, GMM only requires that a set of moment conditions is correctly
specified. But, even so, estimation becomes computationally impracti-
cable in large samples, due to N-dimensional matrix operations that
have to be computed on each iteration. Nevertheless, these computa-
tional issues can be tackled through matrix approximation methods.
The Taylor series approximation, the Chebyshev approximation (Pace
and LeSage, 2004), the eigendecomposition of a matrix, the Cholesky
decomposition (Pace and Barry, 1997a,b), the LU decomposition or
the conjugate gradient method (Smirnov, 2005, 2010) are examples of
approximation methods that are commonly used in spatial frameworks.
However, some of these approximation methods can be computation-
ally demanding, especially when N is large, and their accuracy depends
on the nature of the approximated matrices.

The purpose of this work is twofold. Firstly, it suggests a new
approximation method to deal with the computational issues related to
the N-dimensional matrix operations required in the GMM estimation of
spatially lagged models for binary choice outcomes. The new approxi-
mation method focuses on the approximation of the spatial lag operator
inverse, since every matrix operation required in the GMM estimation
procedure involves the computation of this inverse. The setup for the
proposed approximation method relies on non-restrictive assumptions
about the spatial weighting matrix and allows to accommodate sce-
narios where the spatial weighting matrix can be symmetric and non-
symmetric. Considering the series expansion of the inverse and the lim-
iting properties of the eigenstructure of normalized spatial weighting
matrices, it is shown that the spatial lag operator inverse can be approx-
imated by a sum of known matrices and a simple matrix-vector prod-
uct. As a result, other related N-dimensional matrix operations can be
straightforwardly approximated, as well. Also, closed formulas for the
elements of the approximated matrices are available and are deduced.
They are especially useful to determine the partial effects.

Secondly, it proposes a computationally simple iterative GMM esti-
mator. This estimator is based on the iterative GMM procedure of Klier
and McMillen (2008) together with the approximated matrices deduced
in the first part of this paper. This approach has two important advan-
tages. One, the moment conditions of the suggested iterative GMM esti-
mator correspond to orthogonality conditions that use only the infor-
mation in marginal distributions. Two, the approximated matrices are
used in the gradients of the iterative procedure. This allows to signif-
icantly reduce the computational complexity and computational time
of the suggested GMM estimator, when compared to the traditional
GMM estimator. In addition, the spatial heteroskedasticity and spatial
autocorrelation robust estimator of Kelejian and Prucha (2007) is used
to overcome potential biases in the estimated asymptotic covariance
matrix of the GMM estimator for the unknown parameter vector. Note
that, the computational simplicity associated with the GMM estimation
comes at a cost of accuracy, in comparison to full information methods,

where the joint distribution of the spatial data is used in the estimation.
It will be shown through a detailed simulation study that the pro-

posed approximation method fairly approximates the matrices of inter-
est, especially when N is large and the spatial weighting matrix is dense.
In addition, the proposed iterative GMM estimator proves to be accu-
rate, especially at low and moderate levels of spatial dependence. At
high levels of spatial dependence, the spatial lag parameter tends to be
overestimated, which is also a feature shared by other spatial GMM pro-
cedures. Moreover, using the approximated matrices in the GMM esti-
mation, not only allows to reduce the associated computational com-
plexity and the overall computational time, especially when N is large
and the spatial weighting matrix is dense, but also it allows to increase
the precision of the proposed iterative GMM estimator in comparison
to other spatial GMM estimators.

The new estimation procedure is used to assess how environmen-
tal indicators contribute to influence regional competitiveness in the
U.S. Metropolitan Statistical Areas, from 2001 to 2016. A new Binary
Competitiveness Indicator (BCI) is introduced. The new competitive-
ness indicator is based on three dimensions: labor efficiency, capi-
tal efficiency and economic growth of the corresponding area. Results
show a moderately high degree of spatial dependence between the U.S.
Metropolitan Statistical Areas and evidence of an “U” shaped effect
of the environmental indicators on regional competitiveness. Also, the
suggested estimator exhibited a good performance, in terms of compu-
tational time and goodness-of-fit.

The remainder of this paper is organized as follows. Section 2
reviews the literature on the specification and estimation of spatial lag
models for binary dependent variables. Section 3 reviews the litera-
ture on methods to approximate the inverse of the spatial lag operator
and related matrix functions. Section 4 introduces the new method to
approximate the inverse of the spatial lag operator. Section 5 derives
the new iterative GMM estimation procedure. Section 6 conducts a
set of Monte Carlo experiments to assess: firstly, the accuracy and the
computational time of the proposed approximation method, compared
with the other existing approximation methods; secondly, the statis-
tical properties and the computational performance of the new itera-
tive GMM estimator, compared with the traditional GMM estimator for
spatial binary choice models and the GMM estimator of the linearized
spatial lag model for binary dependent variables. Section 7 presents
an empirical application on the environmental impacts over a spatially
lagged Binary Competitiveness Indicator (BCI), in the U.S. Metropolitan
Statistical Areas. Finally, section 8 concludes. The results of the Monte
Carlo experiments are summarized in Appendix A and the estimation
results of the empirical application are shown in Appendix B.

2. Spatially lagged latent dependent variable model for binary
outcomes

A spatial binary choice model can be derived based on the following
spatially lagged latent variable specification:

Y∗
i = 𝛼

∑
i≠j

wi,jY∗
j + Xi𝜷 + 𝜉i, i = 1,2,… ,N (1)

where Y∗
i is a general dependent variable (possibly not observable) for

the unit i and N denotes the total number of spatial units. The coef-
ficients wi,j are known non-negative scalars that refer to the spatial
weight of unit j on unit i, with j ≠ i and j = 1,2,… ,N. By convention,
wi,i = 0, for all i. The scalar parameter 𝛼 is the spatial lag parameter.
The 1 × K vector Xi includes the observations for a set of K exogenous
explanatory variables and a constant, for the unit i. The K × 1 vector 𝜷
is the corresponding vector of regression parameters. The disturbance
term, 𝜉i, is an i.i.d. random error for the unit i.

Stacking over the cross-sectional units, the spatial lag model can be
written as a reduced form for the dependent variable:

Y∗ = 𝛼WY∗ + X𝜷 + 𝝃 = (I − 𝛼W)−1X𝜷 + 𝜺 (2)
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where Y∗ =
[
Y∗

1 ,Y
∗
2 ,… ,Y∗

N
]⊺ and X =

[
X⊺

1,X
⊺
2,… ,X⊺

N
]⊺. The error is

now 𝜺 = (I − 𝛼W)−1𝝃, where (I − 𝛼W)−1 is the spatial lag operator
inverse and 𝝃 =

[
𝜉1, 𝜉2,… , 𝜉N

]⊺. The N × N identity matrix is denoted
by I and the N × N spatial weighting matrix is denoted by W, with
generic element wi,j.

If Y∗
i is observable, the conditional expectation is given by

E
(

Y∗
i ∣ X,W

)
= X#

i 𝜷, where X#
i is the ith row of the matrix product

(I − 𝛼W)−1X, and equation (2) defines a linear spatial lag model. Here,
however, Y∗

i is not observable. The observed dependent variable is Yi, a
binary dependent variable, which is a function of particular character-
istics of Y∗

i and defined as Yi = 1 if Y∗
i ≥ 0 and Yi = 0 if Y∗

i < 0. The
conditional expectation of a spatial lag model when Y∗

i is not observ-
able and Yi is a binary dependent variable follows as:

E (Yi ∣ X,W) = P (Yi = 1 ∣ X,W) = P
(

Y∗
i > 0 ∣ X,W

)
= P

(
X#

i 𝜷 + 𝜀i > 0 ∣ X,W
)
= P

(
𝜀i > −X#

i 𝜷 ∣ X,W
)

= 1 − P
(
𝜀i ≤ −X#

i 𝜷 ∣ X,W
)
= G

(
X#

i 𝜷

𝜎i

)
,

i = 1,2,… ,N

(3)

where G (𝜂) is a function that takes on values in the interval 0 < G (𝜂) <
1, for all 𝜂 ∈ ℝ, and it is twice continuously differentiable, for all 𝜂 ∈ ℝ,
as well. Usually G (𝜂) is called the link function and 𝜂 is called the index.
It is further assumed that G (𝜂) is known1 and given by the cumulative
distribution function (CDF) of 𝜉 i conditional on (X,W). The parame-
ter 𝜎i is the square root of the conditional variance of 𝜀i, for each
i, obtained from the diagonal elements of the conditional covariance
matrix of 𝜺:

Var (𝜺 ∣ X,W) =
[
(I − 𝛼W)⊺ (I − 𝛼W)

]−1Var (𝝃 ∣ X,W) = 𝚺 (4)

where Var (𝝃 ∣ X,W) is fixed, to ensure identification. The scalar 𝜎i is
strictly positive and finite, for all i, assuming that the rows and columns
of the matrix (I − 𝛼W)−1 are uniformly bounded in absolute value.

In most applications using binary response models, the conditional
distribution of 𝜉i is assumed to be a standard Normal distribution or a
standard Logistic distribution. This implies that Var (𝜉i ∣ X,W) = 1 and
Var (𝜉i ∣ X,W) = 𝜋2∕3, respectively, for all i. Under these two specifica-
tions, the probability distribution functions (PDFs) of the link functions
are symmetric about zero, but this is generally not the case for other
possible links.2

Note that the specification in (3) is similar to the specification of
McMillen (1992) and LeSage (2000). Under this approach, only the
information in the marginal distributions of 𝜀i conditional on (X,W)
is used. The implications of this approach, regarding estimation, are
discussed in section 6.

Considering a generic link function, the spatial lag model for binary
dependent variables follows as:

Yi = G

(
X#

i 𝜷

𝜎i

)
+ ui, i = 1,2,… ,N (5)

where ui differs from 𝜀i because ui = Yi − E (Yi ∣ X,W) and 𝜀i = Y∗
i −

E
(

Y∗
i ∣ X,W

)
. Hence, ui is a discrete random variable assuming only

two values, 1 − G (·) and −G (·).
To estimate the model (5), a GMM approach is considered, based on

the works of Pinkse and Slade (1998) and Klier and McMillen (2008). It

1 Generally the link function, G (𝜂), is unknown and can be estimated using
nonparametric and semiparametric methods. See Härdle et al. (2004) and
Horowitz (2009) for details.

2 See, for example, the complementary log-log link or the Weibull link.

is assumed that the unknown parameters 𝜷 and 𝛼 satisfy the following
moment condition:

E (Z⊺u∗) = 0 (6)

where Z is the N × (K + p) matrix of instruments, with p the number of
additional instruments that are usually given by the product between
the powers of W and the matrix of explanatory variables. The N × 1
vector u∗ correspond to the “generalized errors” (Gourieroux et al.,
1987):

u∗,i =

[
Yi − G

(
X#

i 𝜷

𝜎i

)]
g
(

X#
i 𝜷

𝜎i

)
G
(

X#
i 𝜷

𝜎i

)[
1 − G

(
X#

i 𝜷

𝜎i

)] , i = 1,2,… ,N (7)

where the function g (·) is the first derivative of G (·) w.r.t. the index.
The GMM estimates of the parameter vector, 𝚯 = (𝜷, 𝛼)⊺, are obtained
by minimizing the objective function:

 (𝜷, 𝛼) = u⊺
∗Z𝚵Z⊺u∗ (8)

where 𝚵 is a (K + p) × (K + p) symmetric positive definite matrix.
Klier and McMillen (2008) sets 𝚵 = (Z⊺Z)−1 and the GMM estima-
tor reduces to nonlinear two stages least squares (N2SLS). However,
because the minimization problem in (8) does not have a closed for-
mula, an iterative procedure is used to obtain a solution for the
unknown parameters. The following steps are considered:

1. Assume initial values for the parameter vector 𝚯 = (𝜷, 𝛼)⊺, 𝚯(0),
and compute the gradients evaluated at the initial values, 𝚪(0)

i =(
𝜕u∗,i∕𝜕𝚯

)
∣𝚯=𝚯(0) , i = 1,2,… ,N.

2. Regress 𝚪(0) on Z, in a similar fashion to (linear) 2SLS. Obtain �̂�(0).
3. Construct new estimates as 𝚯(1) = 𝚯(0) +[(

�̂�(0)
)⊺ (

�̂�(0)
)]−1(

�̂�(0)
)⊺

u(0)
∗ , where u(0)

∗ are the generalized
residuals evaluated at the estimates of step 0.

4. Repeat steps 1. to 3., using the estimates from the last iteration, until
the algorithm converges.

The spatial heteroskedasticity and spatial autocorrelation robust
covariance estimator of the (iterative) GMM estimator follows as in
Kelejian and Prucha (2007):

̂
Avar

(
�̂�
)
=

( N∑
i=1

�̂�⊺
i �̂�i

)−1 { N∑
i=1

û2
i �̂�

⊺
i �̂�i +

n−1∑
j=1

[
K
(

j
d∗

)

×
n−j∑
i=1

ûiûi+j

(
�̂�⊺

i �̂�i+j + �̂�⊺
i+j�̂�i

)]}( N∑
i=1

�̂�⊺
i �̂�i

)−1
(9)

where K (j∕d∗) is a Kernel function with K ∶ ℝ → [−1,1], K (0) = 1,
K (j∕d∗) = K (−j∕d∗) and K (j∕d∗) = 0, for |j∕d∗| > 1, that satisfies|K (j∕d∗) − 1| ≤ cK|j∕d∗|𝜌K , for |j∕d∗| ≤ 1, for some 𝜌K ≥ 1 and a
finite positive cK. The scalar d∗ is a distance threshold.

The individual gradients for each parameter are:

(
𝚪𝜷

)
i =

𝜕u∗,i
𝜕𝜷⊺ = −u∗,i

⎛⎜⎜⎜⎜⎝
g′

(
X#

i 𝜷

𝜎i

)
g
(

X#
i 𝜷

𝜎i

) − u∗,i

⎞⎟⎟⎟⎟⎠
X#

i
𝜎i

, i = 1,2,… ,N (10)

and

(𝚪𝛼)i =
𝜕u∗,i
𝜕𝛼

= −u∗,i

⎛⎜⎜⎜⎜⎝
g′

(
X#

i 𝜷

𝜎i

)
g
(

X#
i 𝜷

𝜎i

) − u∗,i

⎞⎟⎟⎟⎟⎠
×

[
1
𝜎i

(
Hi𝜷 −

X#
i 𝜷

2𝜎2
i
Υii

)]
, i = 1,2,… ,N (11)
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where g′ (·) is the first derivative of the function g (·) w.r.t. the index, Hi
is the ith row of the matrix product (I − 𝛼W)−1W(I − 𝛼W)−1X and Υii is
the ith element of the diagonal of the matrix:

Υ = (I − 𝛼W)−1
{

W(I − 𝛼W)−1 +
[
W(I − 𝛼W)−1

]⊺}[
(I − 𝛼W)−1

]⊺
= (I − 𝛼W)−1W(I − 𝛼W)−1

[
(I − 𝛼W)−1

]⊺
+

{
(I − 𝛼W)−1W(I − 𝛼W)−1

[
(I − 𝛼W)−1

]⊺}⊺

(12)

with the diagonal of 𝚼 equal to

diag (Υ) = 2 × diag
(
(I − 𝛼W)−1W(I − 𝛼W)−1

[
(I − 𝛼W)−1

]⊺)
(13)

Having closed formulas for the gradients help to accelerate the numer-
ical optimization process. However, because they depend on the spa-
tial lag operator inverse, which has to be computed on each iteration,
the estimation procedure becomes computationally burdensome, espe-
cially for large samples and/or dense spatial weighting matrices. To
solve this issue, Klier and McMillen (2008) suggest a first order Taylor
series approximation of model (5) around 𝛼 = 0. In this way, the pre-
vious iterative GMM procedure is simplified, because no large matrices
need to be inverted. The major drawback of this approach is related to
the poor accuracy of the estimates for the spatial lag parameter when
𝛼 > 0.5.

Another possibility is to address the previously mentioned compu-
tational issues through the approximation of the spatial lag operator
inverse. Under this approach, the nonlinearity of model (5) is preserved
and the estimates for the spatial lag parameter yield reasonable results
for all admissible values of 𝛼. The methods that are commonly used in
the literature are presented in the section below.

3. Approximation methods for the spatial lag operator inverse

To deal with the computational issues related to the inversion of
the spatial lag operator, several methods have been proposed in the
literature. These methods approach the matrix inversion explicitly or
implicitly. For the explicit methods, the N × N spatial lag operator
inverse is explicitly obtained; examples are the Taylor series approxi-
mation, the Chebyshev approximation (Pace and LeSage, 2004) and the
eigendecomposition of the spatial weighting matrix. For the implicit
methods, a system that involves the spatial lag operator (usually a
matrix-vector product) is solved and a N × 1 vector is obtained rather
than a N × N matrix; examples are the Cholesky decomposition (Pace
and Barry, 1997a,b), the LU decomposition and the conjugate gradient
(Smirnov, 2005, 2010). Before presenting the details of the previous
methods, a set of assumptions are stated. Note that these assumptions
are already commonly used in the literature of spatial binary choice
models (see e.g., Baltagi et al., 2016; Billé, 2013).

3.1. Assumptions

Focusing on the properties of an initial spatial weighting matrix,
W0, it is assumed that:

Assumption 1. The matrix W0 is non-stochastic and diagonalizable.

Assumption 2. All of the diagonal elements of W0 are equal to zero.

Assumption 3. The matrix (I − 𝛼W0) is non-singular for all 𝛼 ∈(
−1∕|𝜆|0,max ,1∕|𝜆|0,max

)
, where |𝜆|0, max is the largest absolute eigenvalue

of W0. Additionally, |𝜆|0, max is assumed to be bounded away from zero by
some fixed constant c𝜆0,max

.

Assumption 4. Both row and column sums of W0 and (I − 𝛼W0)−1 are
uniformly bounded in absolute value by some constant cW0

, with 0 < cW0
<

∞.

Assumption 5. The matrix W is row-normalized and equal to D−1
R W0,

where DR is a N × N diagonal matrix whose diagonal elements are the row
sums of W0.

Remark 1. Under Assumption 5 the following properties are verified:

(a) W is non-symmetric;
(b) The eigenvalues of W are, in absolute value, less than or equal to

one;
(c) The largest absolute eigenvalue of W, |𝜆|max, is equal to one;
(d) The eigenvector of W associated with the largest absolute eigenvalue

is the vector of ones, 𝜾;
(e) The matrix (I − 𝛼W) is non-singular for all 𝛼 ∈ (−1,1) (see also

Kelejian and Robinson, 1995).

Alternatively, W0 can be normalized through the transformation
Wsim = D−1∕2

R W0D−1∕2
R (Ord, 1975), where Wsim is a N × N matrix

that is similar to W. In fact, Wsim can be written as D1∕2
R WD−1∕2

R . By
definition, the eigenvalues of Wsim and W are equal, which imply that
their eigenvectors are directly related. Also, in general, Wsim is non-
symmetric. However, if W0 is symmetric, then Wsim is symmetric as
well.3 A later discussion on the eigendecomposition of W will recover
this result.

3.2. Explicit methods

Consider the Taylor series expansion of the inverse:

(I − 𝛼W)−1 = I + 𝛼W + 𝛼2W2 + 𝛼3W3 +… =
∞∑

h=0
𝛼hWh (14)

which converges absolutely for all 𝛼 ∈ (−1,1). Following LeSage and
Pace (2009), the series (14) is partitioned into a finite lower-order and
an infinite higher-order series:

(I − 𝛼W)−1 =
q∑

h=0
𝛼hWh +

∞∑
h=q+1

𝛼hWh (15)

As suggested by several authors (Arbia, 2014; Elhorst, 2014; LeSage
and Pace, 2009, to name a few), for the case where 𝛼 quickly converges
to zero, (I − 𝛼W)−1 can be accurately approximated through the finite
lower-order series:

(I − 𝛼W)−1 ≈
q∑

h=0
𝛼hWh (16)

where q is small. The expression (16) corresponds to the Taylor series
approximation of the spatial lag operator inverse.

The Chebyshev approximation (Pace and LeSage, 2004) for the spa-
tial lag operator inverse is:

(I − 𝛼W)−1 ≈
[ q∑

h=0
cl (𝛼)Th (W)

]
− 1

2
c0 (𝛼) I (17)

where

cl (𝛼) =
2

q + 1

q+1∑
m=1

f (xm) cos
⎛⎜⎜⎝
𝜋 l

(
m − 1

2

)
q + 1

⎞⎟⎟⎠ (18)

xm = cos
⎛⎜⎜⎝
𝜋
(

m − 1
2

)
q + 1

⎞⎟⎟⎠ (19)

f (x) = (1 − 𝛼x)−1 (20)

3 If W0 is symmetric, then W0 = W⊺
0. Replacing W0 by D−1∕2

R W0D−1∕2
R yields

Wsim = W⊺
sim .
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and Tk+1 (W) = 2WTk (W) − Tk−1 (W), for k ≥ 1, with T0 (W) = I and
T1 (W) = W. The scalars cl (𝛼), with l = 0,1,2,… , q are the Cheby-
shev coefficients and depend on the spatial lag parameter. The func-
tions Tk (W), with k = 0,1,2,… , q are the Chebyshev polynomials and
depend only on the spatial weighting matrix.

Finally, consider the eigendecomposition of the spatial lag operator
inverse:

(I − 𝛼W)−1 = I + 𝛼W + 𝛼2W2 + 𝛼3W3 +…

= I + 𝛼VΛV−1 + 𝛼2(VΛV−1)2 + 𝛼3(VΛV−1)3 +…

= I + 𝛼VΛV−1 + 𝛼2VΛ2V−1 + 𝛼3VΛ3V−1 +…

= V
(

I + 𝛼Λ+ 𝛼2Λ2 + 𝛼3Λ3 +…
)

V−1

= V(I − 𝛼Λ)−1V−1

(21)

where the N × N diagonal matrix 𝚲 contains the corresponding eigen-
values of W and the N × N matrix V contains, on each column, the
ith eigenvector associated with the ith eigenvalue of W. Contrary to the
previous approximation methods, the expression in (21) is exact. Also,
the inverse of the eigenvector matrix is only required to be computed
once. Nevertheless, for the case where Wsim is symmetric, the eigen-
vectors in (21) can be expressed as orthogonal eigenvectors. In fact,
replacing Wsim in (21) yields:

(I − 𝛼W)−1 = D−1∕2
R (I − 𝛼Wsim)−1D1∕2

R

= D−1∕2
R Vsim(I − 𝛼Λ)−1V⊺

simD1∕2
R (22)

where the only matrix that is required to be computed is the N × N
matrix Vsim, that correspond to the orthogonal eigenvectors of Wsim.

It is important to note that these methods can also be applied
to approximate other matrix operations. In particular, they are
useful to derive approximate or exact expressions for the matrix
(I − 𝛼W)−1W(I − 𝛼W)−1, the diagonal elements of 𝚼 and the diagonal
elements of 𝚺, that are required in the computation of the gradients
(10) and (11), on each iteration.

Focusing on the term (I − 𝛼W)−1W(I − 𝛼W)−1, the series expansion
is given by:

(I − 𝛼W)−1W(I − 𝛼W)−1 = W + 2𝛼W2 + 3𝛼2W3 +…

=
∞∑

h=0
(h + 1)𝛼hWh+1 (23)

and the lower-order Taylor series approximation is:

(I − 𝛼W)−1W(I − 𝛼W)−1 ≈
q∑

h=0
(h + 1)𝛼hWh+1 (24)

Therefore, the diagonal of 𝚼 is approximately equal to:

diag (Υ) ≈ 2 × diag
⎛⎜⎜⎝

N∑
j=1

([ q∑
h=0

(h + 1)𝛼hWh+1

]
∘
[ q∑

h=0
𝛼hWh

])
i,j

⎞⎟⎟⎠ (25)

where “◦” is the Hadamard product operator. The previous expression
implies that the diagonal elements of 𝚼 are approximately given by the
row sums of the Hadamard product between the approximation of the
matrix (I − 𝛼W)−1W(I − 𝛼W)−1 and the approximation of the matrix
(I − 𝛼W)−1 – the spatial lag operator inverse.

Analogously, the Chebyshev approximation of
(I − 𝛼W)−1W(I − 𝛼W)−1 is given by (17), where the Chebyshev
coefficients are replaced by the function f (x) = x∕(1 − 𝛼x)2, and the
eigendecomposition of (I − 𝛼W)−1W(I − 𝛼W)−1 is:

(I − 𝛼W)−1W(I − 𝛼W)−1 = VΛ(I − 𝛼Λ)−2V−1 (26)

For the case where Wsim is symmetric, (26) can be written as:

(I − 𝛼W)−1W(I − 𝛼W)−1 = D−1∕2
R VsimΛ(I − 𝛼Λ)−2V⊺

simD1∕2
R (27)

Again, note that (26) and (27) are exact expressions.
With regard to the diagonal elements of 𝚺, they can be obtained

as the row sums of the Hadamard square of the approximated or exact
expression for the spatial lag operator inverse.

Nevertheless, these approaches can still be extremely demanding if
the sample size is large and/or the spatial weighting matrix is dense.
This is because, for both Taylor series and Chebyshev approximation,
there are as many matrix operations as the number of lower-order
powers of W, and, for the eigendecomposition, the full eigensystem is
required. Also, the approximate functional form for the elements of the
approximated matrices is complicated, especially for the elements of
the spatial lag operator inverse.

3.3. Implicit methods

The implicit methods used to compute the inverse of the spatial lag
operator are based in the solution of the following equation:

(I − 𝛼W) 𝜺 = 𝝃 (28)

for 𝜺, where 𝜺 and 𝝃 are N × 1 vectors.
Consider the LU decomposition, which generalizes the Cholesky

decomposition to non-symmetric matrices. Following LeSage and Pace
(2009), suppose that (I − 𝛼W) = LU. The solution for the system
LU𝜺 = 𝝃 is identical to the solution for L𝝂 = 𝝃, where 𝝂 = U𝜺.

The conjugate gradient method (Smirnov, 2005, 2010) is a numeri-
cal method that minimizes the quadratic form:

𝔣 (𝜺) = 1
2
𝜺⊺ (I − 𝛼W) 𝜺− 𝜺⊺𝝃 (29)

based on orthogonal descent directions.
In contrast to the explicit methods, the implicit methods have the

advantage that the N × N inverse is not explicitly computed. However,
for the LU decomposition the spatial lag operator has to be decomposed
into a lower triangular and upper triangular matrix, which can be com-
putationally demanding if the sample size is large and/or the spatial
weighting matrix is dense. As for the conjugate gradient method, it
may not converge for certain designs of W because it is not accurate
for matrices that are not symmetric and positive definite. Also, no func-
tional form for the elements of the spatial lag operator inverse is avail-
able.

4. The new explicit approximation method based on known
matrices

In this section a new explicit method to obtain the inverse of the
spatial lag operator is proposed. Consider the series expansion of the
inverse in (14). The idea is to approximate the powers h ≥ 2 of W by a
“long run” matrix, W∞, which is obtained from the limiting properties
of the eigenstructure of W and it is equal to a simple matrix-vector
product. In this way, no additional matrix operations are required and
a closed formula for the elements of the spatial lag operator inverse are
available and deduced. The details of this new procedure are presented
and discussed below.

Consider that the assumptions of Section 3.1 hold. In addition, con-
sider the following assumption on the eigenstructure of W:

Assumption 6. The algebraic multiplicity of |𝜆|max, amult (|𝜆|max), is
equal to one. For a block diagonal W, the largest absolute eigenvalue of
each block has algebraic multiplicity equal to one.

Note that, in general, the cases where the algebraic multiplicity of|𝜆|max is greater than one are those where there are only one or two
neighbors for every spatial unit. In practice, this assumption is not too
restrictive, because, in most of the applications, there are more than
two neighbors for every spatial unit or there are few spatial units with
less than two neighbors. Nevertheless, this assumption can be relaxed,
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but at a cost of computational accuracy, as it will be shown in a Monte
Carlo simulation study.

Now, under Assumption 1 to Assumption 6, the approximation of
the spatial lag operator inverse is given by:

(I − 𝛼W)−1 = I + 𝛼W + 𝛼2W2 + 𝛼3W3 + · · · + 𝛼qWq +…

≈ I + 𝛼W + 𝛼2W∞ + 𝛼3W∞ + · · · + 𝛼qW∞ +…

= I + 𝛼W + 𝛼2

1 − 𝛼
W∞

(30)

which converges absolutely for all 𝛼 in the parameter space (see
Assumption 5 and Kelejian and Robinson, 1995). The N × N matrix
W∞ is the “long run” matrix and equal to limh→∞Wh. Since the eigen-
decomposition of W is available, W∞ can also be written as:

W∞ = lim
h→∞

Wh = V
(

lim
h→∞

Λh
)

V−1

= V
[

lim
h→∞

diag
(

1h, 𝜆h
2, 𝜆

h
3 … , 𝜆h

N

)]
V−1

= V

⎡⎢⎢⎢⎢⎢⎣

1 0 … 0

0 0 … 0

⋮ ⋱ ⋮ ⋮

0 0 … 0

⎤⎥⎥⎥⎥⎥⎦
V−1 = col(V)1row

(
V−1)

1

(31)

because the eigenvalues 𝜆2, 𝜆3 … , 𝜆N are, in absolute value, less than
one. Also, 𝜆1 = |𝜆|max = 1 (see Assumption 5 and Assumption 6). The
N × 1 vector col(V)1 is the first column of V and the 1 × N vector
row

(
V−1)

1 is the first row of V−1. It is important to note that obtaining
these vectors entail drastically different implications. On one hand, the
expression for col(V)1 is exact and equal to N × 1 vector of ones, 𝜾 (see
Assumption 5). On the other hand, to obtain row

(
V−1)

1 the entire lin-
ear system has to be solved, which becomes computationally infeasible
in large samples.

Here, the issue related to the computation of row
(
V−1)

1 is addressed
through the orthogonalization of the eigenvectors of W, analogous to
the approach presented in Section 3.2 for the eigendecomposition prob-
lem. The similar matrix, Wsim, is used, because the eigenvectors are
related to those of W. However, as previously mentioned, Wsim is not
necessarily symmetric, as it depends on the properties of the initial spa-
tial weighting matrix, W0. Therefore, for the case where Wsim is sym-
metric, row

(
V−1)

1 can be straightforwardly written as a function of an
orthogonal eigenvector. For the case where Wsim is not symmetric, a
“symmetrization” procedure is suggested, such that row

(
V−1)

1 can be
approximated by a function of an orthogonal eigenvector.

In the next subsections, the exact and approximated expressions for
row

(
V−1)

1 are derived, according to the symmetric and non-symmetric
scenarios of W0. Also, it will be shown that, the expressions for
row

(
V−1)

1 are based on known quantities. In this way, the approxi-
mated expressions for the elements of the spatial lag operation inverse
will be derived, as well.

4.1. Case 1: symmetric W0

Consider that W0 is symmetric. Therefore, Wsim is also symmetric.
Because Wsim can be written as a function of W, consider the eigende-
composition for both matrices:

Wsim = D1∕2
R WD−1∕2

R ⇔ VsimΛV⊺
sim = D1∕2

R VΛV−1D−1∕2
R (32)

where 𝚲 is equal in both sides of the equation due to matrix similar-
ity. The equation above implies that the eigenvectors of Wsim and the
eigenvectors of W are related in the following way:

Vsim = D1∕2
R V and V⊺

sim = V−1D−1∕2
R , but also V⊺

sim = V⊺D1∕2
R (33)

Consider the hth power of (32):

VsimΛhV⊺
sim = D1∕2

R VΛhV−1D−1∕2
R ⇔

⇔ D−1∕2
R VsimΛhV⊺

simD1∕2
R = VΛhV−1

(34)

Using the eigenvector relationship in (33) yields:

D−1∕2
R

(
D1∕2

R V
)
Λh

(
V⊺D1∕2

R

)
D1∕2

R = VΛhV−1 (35)

Now, as h → ∞:

W∞ = 1‖D1∕2
R col(V)12‖col (V)⊺1 D1∕2

R ‖2

× D−1∕2
R

(
D1∕2

R col(V)1col (V)⊺1 D1∕2
R

)
D1∕2

R

= 1[√(
d1∕2

R,1

)2
+

(
d1∕2

R,2

)2
+ · · · +

(
d1∕2

R,N

)2
]2 × 𝜾𝜾⊺DR

=
( N∑

i=1
dR,i

)−1

× JDR

(36)

where dR,i is the sum of the ith row of W0 and J is the N × N matrix
of ones. The “long run” matrix, W∞, is rescaled by the sum of all rows
of W0 because the first eigenvector of W is now orthogonal. There are
two major advantages related to this expression. First, the matrix W∞ is
given by a simple matrix-vector product, since DR is a diagonal matrix.
Second, each element of the matrix W∞ have an exact closed formula:

w∞
i,j =

( N∑
i=1

dR,i

)−1

× dR,j (37)

which implies that the rows of W∞ are all equal and given by the sum
of the ith row of W0, that is row(W∞)i =

(
dR,1, dR,2,… , dR,N

)
, for all i.

Plugging (36) into (30), the approximation of the spatial lag opera-
tor inverse is given by:

(I − 𝛼W)−1 ≈ I + 𝛼W + 𝛼2

1 − 𝛼

( N∑
i=1

dR,i

)−1

JDR (38)

which still converges absolutely for all 𝛼 in the parameter space,
because the expression for W∞ is exact. Also, an approximate closed
formula is available for the elements of (I − 𝛼W)−1:

(
(I − 𝛼W)−1

)
i,j
≈ 𝟙i=j + 𝛼 × wi,j +

𝛼2

1 − 𝛼
×

( N∑
i=1

dR,i

)−1

× dR,j (39)

where 𝟙i=j is the indicator function that is equal to one if i = j and
equal to zero if i ≠ j, for all i, j = 1,2,… ,N. The accuracy of this
approximation depends on how fast the powers of the eigenvalues
𝜆2, 𝜆3,… , 𝜆N converge to zero, for a given value of 𝛼. In fact, this is a
special case of the approximation method proposed by Griffith (2000),
for linear models.

The expressions for the approximation of the spatial lag operator
inverse, in (38) and (39), allow for an interesting interpretation of
the product (I − 𝛼W)−1X which is approximately equal to X + 𝛼WX +
𝛼2∕(1 − 𝛼)−1

(∑N
i=1 dR,i

)−1
JDRX. This means that the previous matrix

product can be decomposed into the original matrix X, a spatial lag of
the matrix X and the “long run” spatial lag of the matrix X, that incor-
porates the bilateral effects (the combination of the neighboring effects
on a given unit and the effects of a given unit on its neighbors).

Note that the previous results are valid when W is column-
normalized or when W is doubly stochastic (simultaneously row- and
column-normalized). For the first case, the approximation method is
applied to W⊺, because it is row stochastic. For the second case, consid-
ering that W0 is symmetric, the doubly stochastic W is also symmetric,
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which implies that its eigenvectors are already orthogonal and the “long
run” matrix simplifies to W∞ = (1∕n)J.4

4.2. Case 2: non-symmetric W0

Consider that W0 is non-symmetric. In this case, the previous result
for W∞ is not valid. To see this write Wsim as a function of W and
consider the eigendecomposition for both matrices:

Wsim = D1∕2
R WD−1∕2

R ⇔ VsimΛV−1
sim = D1∕2

R VΛV−1D−1∕2
R (40)

with V−1
sim ≠ V⊺

sim because the eigenvectors of Wsim are no longer orthog-
onal. Therefore, to approximate the spatial lag operator inverse without
additional computational burden, it is crucial to obtain an expression
for V−1

sim based on a symmetric matrix.
Let W∗

0 be the “symmetrized” variant of W0, such that if unit j is
a neighbor of unit i, then unit i is also a neighbor of unit j with equal
weight, for all i, j = 1,2,… ,N and i ≠ j. This follows as:

W∗
0 = W0 −

1
2

⎧⎪⎨⎪⎩W0 − W⊺
0 −

[(
W0 − W⊺

0

)∘2]∘ 1
2
⎫⎪⎬⎪⎭ = W0 + A (41)

where A is the N × N “symmetrization” matrix. The operators “◦2”
and “∘ 1

2 ” are element-wise operations and correspond to the Hadamard
square and to the Hadamard square root, respectively. Also, as in
the previous case, a row-normalized matrix and a similar matrix can
be defined, based on W∗

0. The row normalized matrix is equal to
W∗ = D−1

R∗ W∗
0, where DR∗ is a N × N diagonal matrix whose diag-

onal elements are the row sums of W∗
0, and the similar matrix is

W∗
sim = D−1∕2

R∗ W∗
0D−1∕2

R∗ . Note that, here, the previous assumptions (see
Section 3.1) are also valid for W∗

0, W∗ and W∗
sim.

For A close to the null matrix, 0, the matrix W0 is well approxi-
mated by W∗

0. Then the eigenvectors of Wsim can be approximated by
the orthogonal eigenvectors of W∗

sim. To see this, write W∗
sim as a func-

tion of Wsim and consider the eigendecomposition for both matrices:

D−1∕2
R∗ W∗

0D−1∕2
R∗ ≈ D−1∕2

R∗ W0D−1∕2
R∗ ⇔

⇔ W∗
sim ≈ D−1∕2

R∗ D1∕2
R D−1∕2

R W0D−1∕2
R D1∕2

R D−1∕2
R∗ ⇔

⇔ W∗
sim ≈ D−1∕2

R∗ D1∕2
R WsimD1∕2

R D−1∕2
R∗ ⇔

⇔ V∗
simΛ

∗
(

V∗
sim

)⊺
≈ D−1∕2

R∗ D1∕2
R VsimΛV−1

simD1∕2
R D−1∕2

R∗

(42)

where the N × N diagonal matrix 𝚲∗ contains the corresponding eigen-
values of W∗

sim and the N × N matrix V∗
sim contains, on each column, the

ith eigenvector associated with the ith eigenvalue of W∗
sim. Note that 𝚲∗

and 𝚲 are not equal, but because W∗
sim and Wsim are similar to the cor-

responding row-normalized matrices, limh→∞
(
Λ∗)h = limh→∞Λh. Also,

the equation above implies that the eigenvectors of W∗
sim and the eigen-

vectors of Wsim are approximately related as:

V∗
sim ≈ D−1∕2

R∗ D1∕2
R Vsim and

(
V∗

sim

)⊺

≈ V−1
simD1∕2

R D−1∕2
R∗ , but also

(
V∗

sim

)⊺
≈ V⊺

simD1∕2
R D−1∕2

R∗ (43)

where V−1
sim can be straightforwardly approximated by(

V∗
sim

)⊺D1∕2
R∗ D−1∕2

R . Analogously to the results in (32) and (33),
the eigenvectors of W∗

sim are related to the eigenvectors of W∗ as
V∗

sim = D1∕2
R∗ V∗. This implies that:

V−1
sim ≈

(
V∗)⊺D1∕2

R∗ D1∕2
R∗ D−1∕2

R (44)

4 Note that if (38) is multiplied by a matrix or vector with zero mean, the pro-
posed approximation gives the same result as the linear transformation I + αW.

Consider the hth power of (40):

VsimΛhV−1
sim = D1∕2

R VΛhV−1D−1∕2
R ⇔

⇔ D−1∕2
R VsimΛhV−1

simD1∕2
R = VΛhV−1

(45)

Using the eigenvector relationships in (33) and (43) yields:

D−1∕2
R

(
D1∕2

R V
)
Λh

{[(
V∗)⊺D1∕2

R∗

]
D1∕2

R∗ D−1∕2
R

}
D1∕2

R = VΛhV−1 (46)

Note that Vsim = D1∕2
R V because no approximation is required, then the

result in (33) holds. Now, as h → ∞:

W∞ ≈ 1
∥ D1∕2

R col(V)1∥2 ∥ col
(
V∗)⊺

1 D1∕2
R∗ ∥2

× D−1∕2
R

(
D1∕2

R col(V)1col
(
V∗)⊺

1 D1∕2
R∗

)
D1∕2

R∗

=
( N∑

i=1
dR,i

)−1∕2( N∑
i=1

d∗R,i

)−1∕2

× JDR∗

(47)

where d∗R,i is the sum of the ith row of W∗
0 and col

(
V∗)

1 = 𝜾 because W∗

is row-normalized. As before, the “long run” matrix, W∞, is rescaled
due to the orthogonalization of the first eigenvector of W. In this case,
the geometric mean between the sum of all rows of W0 and W∗

0 is used.
The remaining results are straightforward.

5. GMM estimation with approximated gradients

The estimation of model (5) is addressed through a variant of the
iterative GMM estimator of Klier and McMillen (2008). The iterative
procedure deduced in Section 2 is used and the N-dimensional matrix
operations from the individual gradients (10) and (11) are approxi-
mated, considering the new method presented in Section 4. Under this
approach, it is no longer required to compute the inverse of the spatial
lag operator and related matrix operations on each iteration. Also, it is
possible to deduce approximate closed formulas for the elements of the
approximated matrices. In this way, the overall computational com-
plexity and the computational time of the estimation is significantly
reduced.

As in Section 3.2, consider the matrix (I − 𝛼W)−1W(I − 𝛼W)−1. Also,
consider the matrices 𝚼 and 𝚺, to derive the approximation for their
diagonal elements.

Focusing on (I − 𝛼W)−1W(I − 𝛼W)−1, consider the corresponding
series expansion and replace the powers h ≥ 2 of W by W∞. This
yields:

(I − 𝛼W)−1W(I − 𝛼W)−1 = W + 2𝛼W2 + 3𝛼2W3 + · · ·

+ (q + 1)𝛼qWq+1 +…

≈ W + 2𝛼W∞ + 3𝛼2W∞ + · · ·

+ (q + 1)𝛼qW∞ +…

= W +
(

1
(1 − 𝛼)2

− 1
)

W∞

(48)

In this way, the diagonal of 𝚼 is approximately equal to:

diag (Υ) ≈ 2 × diag

( N∑
j=1

([
W +

(
1

(1 − 𝛼)2
− 1

)
W∞

]
∘

[
I + 𝛼W + 𝛼2

1 − 𝛼
W∞

])
i,j

)
(49)

After some algebra (49) simplifies to:
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Υii ≈
(2 − 𝛼)2𝛼
(1 − 𝛼)2 w∞

i,i + 2𝛼
N∑

j=1
w2

i,j +
(3 − 2𝛼)2𝛼2

(1 − 𝛼)2
N∑

j=1
wi,jw∞

1,j

+ (2 − 𝛼)2𝛼3

(1 − 𝛼)3
N∑

j=1
(w∞

i,j )
2 (50)

for i = 1,2,… ,N. Note that, because the row vectors of W∞ are all
equal, the Hadamard product between W and W∞ is simplified to the
element-wise product between a matrix and a row vector.

Lastly, the diagonal elements of 𝚺 are equal to the row sums of the
Hadamard square of the spatial lag operator inverse:

diag (𝚺) ≈ 2 × Var (𝝃 ∣ X,W)

× diag
⎛⎜⎜⎝

N∑
j=1

([
I + 𝛼W + 𝛼2

1 − 𝛼
W∞

]∘2)
i,j

⎞⎟⎟⎠ (51)

or simply:

𝜎2
i ≈ 𝜎2

𝝃

[
2 + 4𝛼2

1 − 𝛼
(w∞

i,i )
2 + 2𝛼2

N∑
j=1

w2
i,j +

4𝛼3

1 − 𝛼

N∑
j=1

wi,jw∞
1,j

+ 2𝛼4

(1 − 𝛼)2
N∑

j=1
(w∞

i,j )
2

]
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where 𝜎2
𝝃
= Var (𝝃 ∣ X,W), for all i = 1,2,… ,N. In this way, the

approximate expression for the non-constant variances and related
quantities are obtained with minimal computational requirements.
Also, these quantities can now be used and interpreted in a meaningful
way.

6. Monte Carlo simulations

In this section, a set of Monte Carlo experiments are presented. The
explicit approximation method based on known matrices (AMBKM) is
compared with the methods presented in Section 3 (the Taylor series
approximation, the Chebyshev approximation, the eigendecomposition
of the spatial weighting matrix, the LU decomposition and the con-
jugate gradient method) in terms of the accuracy to approximate the
inverse of the spatial lag operator, (I − 𝛼W)−1, the diagonal elements of
the matrix 𝚼 and the matrix-vector product (I − 𝛼W)−1X. Also, the pro-
posed iterative GMM estimator with approximated gradients (iGMMa)
is compared to the estimators of Klier and McMillen (2008) – the iter-
ative GMM estimator (iGMM) and the GMM estimator of the linearized
spatial lag model for binary choice outcomes (LGMM) –, in terms of
bias, root mean squared errors and computational time. A variety of
simulation designs are considered, with particular interest on the ade-
quacy of the proposed procedures to large samples frameworks.

6.1. Simulation design

The binary dependent variable is constructed following the setting of
Klier and McMillen (2008). Consider the simplified version of the model
(5) with a single explanatory variable. The explanatory variable, X, is
randomly drawn, for each unit, from a  (−1,1) distribution. Under a
Probit specification, the probability of success is given by:

Pi = Φ
(
𝛽0x#1i
𝜎i

+
𝛽1x#2i
𝜎i

)
, i = 1,2,… ,N (53)

where Φ(·) is the standard Normal CDF, x#1,i is the ith row of the
matrix product (I − 𝛼W)−1𝜾 and x#2,i is the ith row of the matrix product
(I − 𝛼W)−1X. The scalars 𝜎i are the square root of the diagonal elements
of the matrix

[
(I − 𝛼W)⊺ (I − 𝛼W)

]−1. The observed dependent variable,

Yi, is defined as Yi = 1 if ei ≤ Pi and Yi = 0 otherwise, where ei is
randomly drawn, for each unit, from a  (0,1) distribution.

The working spatial weighting matrix, W, is constructed according
to a two stage setting. In the first stage, the N spatial units are ran-
domly drawn points in the unit square. In the second stage, based on
a distance criteria (radial distance or nearest neighbor), an initial spa-
tial weighting matrix, W0, is constructed and row normalized after-
wards. For the case where W0 is based on the radial distance crite-
rion, the maximum distance to the closest neighbor is computed and a
multiplicative factor, 𝛿R, is used to determine the maximum distance
such that the unit j is considered to be a neighbor of unit i, for all
i, j = 1,2,… ,N. For the case where W0 is based on the nearest neigh-
bor criterion, the number of nearest neighbors is given by 𝛿NN × N,
where 𝛿NN is the matrix density (the complement of sparsity), the pro-
portion of non-zero elements in W. In this way, the large sample prop-
erties of the proposed procedures can be addressed according to the
spatial statistics definitions of increasing-domain asymptotics and infill
asymptotics (Cressie, 2015). The former corresponds to a sampling sce-
nario where new spatial units are added to the edges of the lattice and
the number of neighbors, for each spatial unit, remains fixed, as N → ∞.
The latter corresponds to a scenario where new observations are added
between the existing ones and a bounded area becomes dense (Anselin,
2007). Also, it is important to note that, under the radial distance cri-
terion, W0 is symmetric, while under the nearest neighbor criterion,
W0 is non-symmetric. Therefore, simulations are performed to assess
the adequacy of the AMBKM when the assumption of symmetry is not
valid.

The Monte Carlo experiments are conducted for each design of W
and for each GMM estimator, as well. The number of spatial units,
N, vary over the set {100,1000,2000} and the spatial lag parameter
takes on values 𝛼 ∈ {0,0.2,0.5,0.8}. For the case where W is based on
the radial distance criterion, 𝛿R vary over the restricted set {1,2,4}.
For the case where W is based on the nearest neighbor criterion, 𝛿NN
vary over the restricted set {0.01,0.1,0.2}. In this way, the number of
neighbors is approximately equal for the two criteria. The regression
parameters are held fixed at 𝛽0 = 0 and 𝛽1 = 1 and the matrix of
instruments used in all estimation procedures is Z =

[
X WX W2X W3X

]
.

For each experiment, 1000 replications are used. The experiments were
performed in a Linux based server, with 64 GB of RAM and composed
by 24 AMD Opteron CPUs, ranging from 0.8 GHz to 2.1 GHz.

For each set of experiments per approximation method, the accuracy
of the approximated spatial lag operator inverse is summarized in terms
of the average relative norm difference w.r.t. the identity matrix:

1
1000

1000∑
r=1

‖‖‖(I − 𝛼W) (I − 𝛼W)−1
approx − I‖‖‖2‖I‖2

(54)

while the accuracy of the approximated diagonal elements of the matrix
𝚼 is summarized in terms of the average relative norm difference w.r.t.
the true values:

1
1000

1000∑
r=1

‖‖‖diag(Υ)approx − diag (Υ)‖‖‖2‖diag (Υ)‖2
(55)

The accuracy of the approximation of the matrix-vector product
(I − 𝛼W)−1X is summarized by the average correlation coefficient
between the approximated and the true values of the resulting vector.

For each set of experiments per GMM estimator, the estimates of the
regression parameters, 𝛽0, 𝛽1 and 𝛼 are reported, as well as three com-
putational indicators: time per loop (in seconds), number of iterations
and total time (in seconds). The parameter estimates are summarized
by both the mean and the root mean squared error (RMSE), while the
computational indicators are summarized only by the mean. Also, for
the case where W is based on the radial distance criterion, the number
of neighbors is reported and summarized by the mean, while for the
case where W is based on the nearest neighbor criterion, the percent-
age of asymmetric neighbors is reported and summarized by the mean.
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The calculations were performed using R and the package McSpatial
from McMillen (2013).

6.2. Results

The results of the Monte Carlo experiments are presented in
Appendix A. The simulation results on the accuracy of the approxima-
tion methods are detailed in Appendix A.1 and the simulation results
on the statistical and computational properties of the GMM estimators
are detailed in Appendix A.2. Also, the simulation results are orga-
nized according to the criteria chosen to construct the spatial weighting
matrix, W, and according to the true values of 𝛼.

The accuracy of the approximations considerably relies on the true
values of 𝛼. For 𝛼 = 0, the approximations are trivial. However, as 𝛼
becomes close to unity, their accuracy worsens. In particular, the accu-
racy of AMBKM rapidly deteriorates for 𝛼 ≥ 0.5. This highlights the
fact that the weight of the infinite higher-order term that is neglected
(or approximated), in the series expansion of the inverse – see (15) and
(17) –, becomes larger as 𝛼 → 1. In this way, the higher-order term is
more informative to the approximations at moderate and high levels of
spatial dependence.

In addition, there is a slight improvement in the accuracy of the
approximations as W becomes dense (𝛿R and 𝛿NN are increasing), for a
fixed N. This happens because the magnitude of each element of the spa-
tial lag operator inverse and related matrices, including the matrix 𝚼, is
smaller for a denser W. Also, since ∥ 𝛼hWh ∥ ≤ |𝛼|h ∥ W ∥ h = |𝛼|h,
the elements of the hth term of the series expansion of the inverse
are bounded by |𝛼|h, for any W satisfying Assumption 5. Therefore, as
W becomes dense, elements with progressively smaller magnitudes are
added to the series expansion of the inverse. Hence, for the case where
W is sparse (𝛿R = 1 and 𝛿NN = 0.01), the average relative norm dif-
ferences are w.r.t. large values, while for the case where W is dense
(𝛿R = 4 and 𝛿NN = 0.2), the average relative norm differences are
w.r.t. small values.

It should be noted that, for the reasons discussed above when W is
sparse, using the approximated matrices in the gradients of the GMM
estimation procedure, may reduce the accuracy of the estimates of 𝛼,
since the term involving Υii, in the gradient of 𝛼 (see equation (11)),
dominates the expression.

With regard to the approximation of the matrix-vector product
(I − 𝛼W)−1X, the simulations show that the average correlation coef-
ficient between the approximated and the true matrix-vector product
is, in general, approximately equal to 1. However, when 𝛼 = 0.8, the
average correlation coefficient deteriorates as W becomes sparse (𝛿R
and 𝛿NN are decreasing). This is particularly obvious for the Taylor
series approximation and the AMBKM, where the minimum average
correlation coefficient is equal to 0.987 and 0.887, respectively, corre-
sponding to the case where N = 100. For the case where N ≥ 1000,
the minimum average correlation coefficient becomes equal to 0.990
and 0.937, respectively. These results emphasize, once again, the issues
related to the accuracy of the approximations under the scenarios where
W is sparse and the degree of spatial dependence is high.

In terms of computational time, for N = 100, all the approxi-
mation methods are fairly quick. However, as N → ∞, the computa-
tional time associated with the eigendecomposition, the LU decompo-
sition and the conjugate gradient method clearly increases, in compar-
ison to the remaining methods, since they involve matrix operations
that become computationally burdensome for large N. Considering the
eigendecomposition, the full eigensystem and an N-dimensional matrix
product have to be computed. For the LU decomposition, (I − 𝛼W) has
to be factored. For the conjugate gradient method, an N-dimensional
matrix-vector has be computed on each iteration. Similarly, the compu-
tational demand associated with the Taylor series approximation and
the Chebyshev approximation tends to increase, as W becomes dense.
This is because the first four powers of W need to be computed. To the
contrary, the computational time of the AMBKM is much less sensitive

to the size and density of W, since it involves a simple summation of
known matrices.

Despite the simulation results showing that, under very specific
scenarios, the AMBKM produces larger average relative norm differ-
ences and less correlated approximations w.r.t. the true operation,
these effects are mitigated when regarding estimation. Furthermore, the
AMBKM is the approximation method that requires minimal computa-
tional time (less than a second) to recover the quantities of interest and
allows to approximate the partial effects. For these reasons, the AMBKM
is particularly useful when iterative procedures have to be used to esti-
mate spatial binary choice models with large samples and dense spatial
weighting matrices.

Now focusing on the performance of the GMM estimators, the results
are, in general, consistent with the previous findings in the literature
(see Billé, 2013; Calabrese and Elkink, 2014; Klier and McMillen, 2008).
The estimates of the regression parameters, 𝛽0 and 𝛽1, are extremely
accurate, except for 𝛼 = 0.8. In that case, they exhibit a small bias
(a downward bias for the iGMMa and the LGMM estimators and an
upward bias for the iGMM estimator) that tends to vanish as N → ∞
and W becomes dense.

The estimates of the spatial lag parameter, 𝛼, are far more open
to discussion, since its accuracy is simultaneously affected by the true
value of the parameter, the sample size and the density of W.

For 𝛼 ≤ 0.5 and a fixed N, as W becomes dense, the iGMM estima-
tor exhibits a significant growing downward bias, whereas the LGMM
and iGMMa estimators are much less biased. The only exceptions are for
𝛼 = 0.5 and 𝛼 = 0, where the LGMM and iGMMa estimators exhibit
a growing upwards bias, respectively. The decreased accuracy of the
LGMM estimator, at moderate and high levels of spatial dependence, is
expected, considering the existing simulation studies. The spurious spa-
tial dependence estimated by the iGMMa estimator, for the case where
𝛼 = 0, and the biases displayed by the iGMM estimator evidence that,
in general, the spatial GMM estimators can be severely distorted under
infill asymptotics (fixed N, denser W). This is especially obvious when
N = 100. See Lahiri (1996) for a discussion on this matter.

For 𝛼 ≤ 0.5 and a fixed density of W, as N → ∞, the iGMM estima-
tor exhibits a downward bias that tends to decline more rapidly when
W is sparse. The LGMM and the iGMMa estimators typically exhibit an
upwards bias. For 0 ≤ 𝛼 ≤ 0.2, this bias tends to vanish more rapidly
when W is sparse, while for 𝛼 = 0.5, it tends to vanish more rapidly
when W is dense. Note that, here, both infill and increasing domain
asymptotics appear to operate. This implies that the rate of conver-
gence for the various parameters can be different and possibly slower
than

√
N, as argued by Lee (2004).

The case of 𝛼 = 0.8 is of particular relevance, since all the spatial
GMM estimators exhibit a significant upward bias. Recall that, under
the GMM framework, consistency relies on the validity of moment
conditions, that use only the information in marginal distributions.
However, other estimation methods that consider the joint dependence
structure of the spatial data in the estimation, typically perform better
at high levels of spatial dependence. In fact, this corroborates with the
simulation results of Billé (2013) and Calabrese and Elkink (2014).

Nevertheless, there are two important results regarding the accuracy
of the iGMMa estimator that should be emphasized. First, for N ≥ 1000
and as W becomes dense, 𝛼 is better estimated when using the iGMMa
estimator, especially for the case where W is based on the nearest neigh-
bor criterion.5 This suggests that, for the iGMMa estimator, the number
of neighbors for each spatial unit can diverge to infinity at a faster
rate than that of the iGMM estimator, without compromising consis-
tency (see Lee, 2004). Second, for 𝛼 ≥ 0.5, the iGMMa estimator is
typically less biased than the other spatial GMM estimators. The only

5 Under the nearest neighbor criterion and using the AMBKM, W is based on
a symmetrized version of an initial spatial weighting matrix, which implies that
the number of neighbors for each spatial unit necessarily increases.
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exception is for 𝛼 = 0.8 and N = 2000, where 𝛼 is better estimated
when using the iGMM estimator, but 𝛽0 and 𝛽1 are better estimated
when using the iGMMa estimator, especially if W is not sparse (𝛿R > 1
or 𝛿NN > 0.01).

With regard to the RMSEs of the estimated parameters, the simula-
tion results show that the RMSEs of 𝛽0 and 𝛽1 are substantially smaller
than the RMSEs of 𝛼.

For a fixed N, as W becomes dense, all the RMSEs increase. In par-
ticular, when N = 100, the RMSEs of 𝛼 largely increase. These facts
evidence, once again, how the estimates can be severely distorted under
infill asymptotics.

For a fixed density of W, as N → ∞, the RMSEs of 𝛽0 and 𝛽1
decrease, whereas the RMSEs of 𝛼 exhibit a fairly different behavior
considering the criteria chosen for W. For the case where W is based
on the nearest neighbor criterion, the RMSEs of 𝛼 increase. For the
case where W is based on the radial distance criterion, the RMSEs of 𝛼
decrease.

Additionally note that the RMSEs of the iGMMa estimator are typi-
cally smaller than the RMSEs of the remaining spatial GMM estimators.
In particular, the RMSEs of 𝛼 in the iGMMa estimator are substantially
smaller than in both the iGMM and LGMM estimators, even for the case
where 𝛼 = 0.8.

In terms of the computational ability associated with the spatial
GMM estimators, measured by the average computational time required
to produce estimates for the parameters of interest, it strongly relies on
the sample size and on the density of W. As N → ∞ and W becomes
dense, the average computational time increases. In particular, for
𝛼 = 0.8, the average computational time is even larger, since the spa-
tial GMM estimators require, on average, 1 to 2 additional iterations
to converge. This is because the inverse of the spatial lag operator is
approaching singularity and the computation of the gradients becomes
troublesome.

When N = 2000 and W is dense, the average computational time
of the iGMMa estimator is about 3–6 times less than that of the iGMM
estimator, depending whether W is based on the radial distance crite-
rion or on the nearest neighbor criterion, respectively. Also, the iGMMa
estimator is typically less biased than the iGMM estimator, especially
for 𝛼 ≤ 0.5.

The average computational time of the LGMM estimator is clearly
impossible to overcome. However, the iGMMa estimator proves its abil-
ity to estimate 𝛽0, 𝛽1 and 𝛼 with more accuracy, more precision and in
a reasonable amount of time, even when the true value of 𝛼 is close to
unity.

7. Empirical application

In this section, an empirical application on the competitiveness in
the U.S. Metropolitan Statistical Areas (U.S. MSAs) is presented. The
adequacy of the previous GMM estimators to real data is assessed and
compared.

The strategies to promote and/or to improve competitiveness at the
regional and country level are currently centering the attention of pol-
icy makers. However, the definition of competitiveness is far from being
consensual. In the words of Porter (1990), competitiveness is more than
bilateral comparisons, it is related to the ability of the industries to
innovate. Fagerberg (1988) defines competitiveness as the growth in
relative unit labor costs (the cost of labour per units of output) and,
eight years later, considers that competitiveness can be addressed by the
growth of GDP per capita or the change in research and development as
a percentage of GDP (Fagerberg, 1996). More recently, in a report from
the World Economic Forum, Schwab and Sala-i-Martin (2010) defined
12 pillars for competitiveness, based on institutional background, phys-
ical infrastructures, macroeconomic environment, efficiency and inno-
vation. Then, in a broad sense, competitiveness is considered a mea-
sure for economic performance. Moreover, while promoting competi-

tiveness, the possible environmental impacts cannot be disregarded.
The relationship between environmental degradation and economic

growth has been extensively studied in the literature and hypothesized
as an “U”-shaped relationship, the so-called Environmental Kuznets
Curve (EKC) hypothesis (Grossman and Krueger, 1991; Panayotou,
1993; Shafik and Bandyopadhyay, 1992). However, the EKC hypoth-
esis is not free of criticism, mainly due to the shape of the relationship
and the lack of empirical evidence. Also, as Porter et al. (2015) points
out, the promotion of efficient energy infrastructures and a low-carbon
transition may help to improve competitiveness. In fact, this consists in
an inversion of the EKC hypothesis, yet to be tested empirically. Most
of the applied works focus on the analysis of competitiveness and envi-
ronmental quality as separate subjects and only a few consider the anal-
ysis under a spatial framework – Rice et al. (2006) and Dudensing and
Barkley (2010) on the spatial spillovers of regional competitiveness and
Millimet et al. (2003) and Rupasingha et al. (2004) on the shape of the
EKC and on the spatial spillovers associated with the emission of air
pollutants. Furthermore, none of the previous works estimate a spatial
model with binary dependent variables.

Here, the analysis of the environmental effects over the competi-
tiveness in the U.S. MSAs is addressed. A combined dataset of socioeco-
nomic data and environmental data from the U.S. Bureau of Economic
Analysis (BEA) and the U.S. Environmental Protection Agency (EPA),
respectively, is used. This dataset contains information about the GDP,
labor costs, price indexes, dividends, total employment and population,
as well as, information about the annualized Air Quality Index (AQI)
and for five main air pollutants – ground-level ozone (O3), particle
pollutants (PM2.5 and PM10), carbon monoxide (CO), sulfur dioxide
(SO2) and nitrogen dioxide (NO2). The U.S. MSAs that are included
in this analysis correspond to the continental MSAs that continuously
report information for the previous variables, between 2001 and 2016
(N = 4,848).

As previously mentioned, there are numerous ways to define com-
petitiveness. Because it is difficult to provide a clear interpretation or
to have precise units of measurement, competitiveness can be consid-
ered a latent variable. Therefore, the many existing proxies to measure
competitiveness can be used to define a new indicator. In this way, a
Binary Competitiveness Indicator (BCI) is proposed. A given Metropoli-
tan Statistical Area (MSA) is defined as competitive if, simultaneously,
(1) its employment-to-population ratio is greater than the employment-
to-population ratio in the combined area of the excluded MSAs and the
non-MSAs; (2) its GDP per capita is greater than the GDP per capita
in the combined area of the excluded MSAs and the non-MSAs; (3) its
Unit Labor Costs (the cost of labor per unit of output) are less than
the Unit Labor Costs in the combined area of the excluded MSAs and
the non-MSAs or the Unit Capital Costs (the cost of capital per unit
of output) are less than the Unit Labor Costs in the combined area of
the excluded MSAs and the non-MSAs, depending on whether the labor
intensity ratio (the cost of labor to the cost of capital) is greater than or
less than 1, respectively.

In Table B.1 the descriptive statistics for the variables included in
this study are presented. Considering the BCI, about 15% of the U.S.
MSAs are labeled as competitive. The variables AQImin and AQImax are,
respectively, the minimum and maximum annual values for the AQI,
and, as expected, AQImin exhibits a low variability pattern, contrarily to
AQImax, that is influenced by the existence of severe outliers. The vari-
ables %daysO3, %daysPM2.5, %daysPM10, %daysCO, %daysSO2 and
%daysNO2 correspond to the percentage of days that the observed value
of the AQI was determined by the concentration levels of each pollu-
tant. On average, O3 and PM2.5, by a large amount, the most important
contributors for the observed values of the AQI, in this sample. The vari-
ables %daysAboveModerate and %daysExceptionalEvents correspond,
respectively, to the percentage of days that the observed value of the
AQI was above 0.51 and to the percentage of days that the observed
value of the AQI was affected by “exceptional events” (wildfires or other
natural disasters).
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A spatial lag Probit is applied to the pooled sample of the U.S.
MSAs to study the effects of the environmental quality indicators over
the spatially lagged BCI. The spatial weighting matrix, W, is block-
diagonal and based on the radial distance criterion with a distance
threshold equal to 1, according to the pattern of proximity displayed
in Fig. B.1. Under this specification for W, the spurious spatial interac-
tions are controlled, because only the closest U.S. MSAs are considered
to be neighbors. Two models are estimated: the unrestricted model and
the restricted model. The first model considers a general specification,
based on the available information on the pollutants and air quality
and assuming that there is a quadratic relationship between the AQI
and the BCI. The second model is a restricted version of the first model,
focusing on statistically significant effects.

In Table B.2 the estimation results for the previous models are
presented, considering the three GMM estimators (iGMMa, iGMM and
LGMM). The instruments Z =

[
X WX W2X W3X

]
were used in all esti-

mation procedures. Also, time effects were added and the Mundlak
(1978) approach was used to filter the eventual dependence between
the unobserved regional effects and the explanatory variables. The esti-
mation routines6 are based on the R package McSpatial of McMillen
(2013).

In general, the estimates for the unrestricted model are quite poor
in terms of statistical significance, except for the linear and quadratic
effects of AQImin and for the estimate for the spatial lag parameter. In
fact, the estimated signs for the coefficients of AQImin are of particular
interest, due to the statistical evidence towards the existence of an “U”-
shaped effect. Also, the estimates for the spatial lag parameter reveal
that there may be a high degree of spatial dependence in the sample.
However, because the Wald test rejects the null of overall significance,
the robustness of the previous results to the exclusion of several sta-
tistically insignificant variables should be checked. In fact, the test for
exclusion restrictions allowed to considerably simplify the initial spec-
ification to a more parsimonious one. In the new specification, only
the linear and quadratic AQImin, %daysO3 and %daysPM2.5 remained.
Interestingly, these variables are also used in the applied literature (Mil-
limet et al., 2003; Rupasingha et al., 2004).

The estimates for the restricted model are now individually and
jointly statistically significant (except for the variable %daysPM2.5,
in the iGMM estimation). Most importantly, the magnitude of the
estimates do not change much, in comparison to the unrestricted
model. Therefore, based on the previously noted “U”-shaped effect of
AQImin, there is evidence towards the idea that the implementation of
environmental-friendly policies may initially involve substantial con-
version costs, penalizing regional competitiveness, but, at some point,
those costs can be transformed into development opportunities based on
new services or products, with large benefits to the economy as a whole.
This follows along the lines of Porter et al. (2015) and it is referred as
a “win-win path”. Nevertheless, some ambiguity may arise concerning
the positive estimated signs for the variables %daysO3 and %daysPM2.5.
However, note that, for the case where environmental-friendly policies
are implemented and the air quality is actually improved, the observed
values for the AQI can still be determined by the concentration levels of
the previous pollutants. Recall that O3 and PM2.5 largely contribute to
the observed values of the AQI. Lastly, having estimates for the spa-
tial lag parameter above 0.7 is evidence towards the importance of
the spillover effects over regional competitiveness. This emphasizes the
idea that regional policies do benefit the neighboring areas, regarding
their economic efficiency.

From the estimation of the previous models, both the iGMMa and
iGMM estimators exhibit a quite similar performance, based on Hansen
tests and on three measures of goodness-of-fit: the McFadden R2, the
squared correlation coefficient between the observed and the predicted
values – 𝜌2(Y, Ŷ) – and the percentage of the correctly predicted obser-

6 Available upon request.

vations – %(Ŷ = Y). The adequacy of the moment conditions is not
rejected and the predictive power is quite noticeable. This contrasts
with the performance of the LGMM estimator, where the Hansen tests
reject the null of correct moment conditions and the McFadden R2 is
persistently negative, displaying a very poor fit to the data. In terms
of computational time, the iGMMa estimator clearly outruns the iGMM
estimator. In this way, the iGMMa estimator proves to be a feasible and
an adequate alternative to estimate spatial binary choice models using
real data.

8. Conclusions

In this paper a new approximation method based on known matri-
ces (AMBKM) is proposed. It addresses the computational issues related
to the GMM estimation of spatially lagged models for binary dependent
variables. Focusing on the inversion of the spatial lag operator, a sim-
ple and intuitive approximation is deduced and applied to approximate
other related N-dimensional matrix operations. It is demonstrated that,
these matrices are approximated by known matrices and simple matrix-
vector operations. Furthermore, it is demonstrated that closed formulas
for the elements of the approximated matrices can be easily deduced.

The proposed AMBKM is based on a set of non-restrictive assump-
tions that allow to accommodate several frameworks for the spatial
weighting matrix. This method is computationally feasible in large sam-
ples, because the resulting approximations are based on known matri-
ces, up to an estimated parameter. This is important to note, since it
avoids the N-dimensional matrix operations required in the alternative
approximation methods, which turns them computationally infeasible
in large samples. Moreover, it allows to obtain a closed formula to
approximate the partial effects, that can be decomposed into three sep-
arate effects (regardless a scale factor): the pure direct effects (from
I), the first order neighboring effects (from W) and the “global” effects
(from W∞), which combines the “long run” direct and indirect effects.

This paper also proposes a new GMM estimator based on a modi-
fication of the iterative GMM estimator of Klier and McMillen (2008).
Aiming at the reduction of the overall computational complexity and
the computational time, the approximated matrices are used in the gra-
dients of the new estimation procedure.

Simulations show that the proposed approximation method yields
reasonably accurate approximations for the spatial lag operator inverse
and related matrices, especially when the spatial weighting matrix is
large and dense. Also, the computational time required to obtain these
approximations is minimal, regardless the computational complexity of
the true operation and the dimension of the spatial weighting matrix.

In addition, the Monte Carlo experiments show that the proposed
estimator – the iterative GMM with approximated gradients (iGMMa)
–, performs reasonably well in terms of the estimation of the param-
eters, except for the case where 𝛼 is close to unity. Nevertheless, for
𝛼 ≤ 0.5, the existing biases are attenuated as the spatial weighting
matrix becomes large and dense. Also, the iGMMa estimator proved to
be surprisingly accurate, for the case where the spatial weighting matrix
was based on the nearest neighbor criterion, with a moderate to large
number of neighbors. Furthermore, the iGMMa estimator outperformed
the benchmark iterative GMM (iGMM) estimator in terms of computa-
tional time, accuracy and precision, and outperformed the GMM esti-
mator of the linearized spatial lag model for binary choice outcomes
(LGMM) in terms of accuracy and precision. In fact, the iGMMa estima-
tor stood as most precise estimator, even for the case where 𝛼 is close
to unity.

The usefulness of the proposed iGMMa estimator is illustrated in
an empirical application that measures the impact of environmental
indicators over the competitiveness of the U.S. Metropolitan Statistical
Areas. A new Binary Competitiveness Indicator (BCI) is introduced
and a spatial lag Probit is estimated, addressing the level of spatial
dependence in regional competitiveness. The iGMMa estimator proved
to perform as well as the benchmark iGMM estimator, in terms of
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predictive power, and outperformed the LGMM estimator. Moreover, in
this example, where a large data set is used and several explanatory
variables are included in the estimation, the iGMMa estimator proved
to be computationally superior to the other spatial GMM estimators.

The performance and attractiveness of the proposed iGMMa estima-
tor in estimating models with spatially lagged binary dependent vari-
ables lead to obvious extensions, especially the estimation of models

with spatially lagged errors and with higher order spatial lags. The
estimation of spatial models for other discrete and censored dependent
variables can be addressed by GMM, using the approximated matrices,
as well.

All the algorithms used in this paper, the proposed approximation
method and the estimation procedures, can be easily implemented using
the R package McSpatial from McMillen (2013).

Appendix A. Simulation results

Appendix A.1. Approximation methods for the spatial lag operator inverse

Table A.1.1
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0 and W based on the radial distance criterion.

𝛿R 1 2 4

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.059] [0.003] [0.001] [0.013] [0.002] ≈[0.000] [0.016] [0.004] ≈[0.000]
AMBKM ≈0.000

[0.063]
–
[0.056]

≈1.000
≈[0.000]

≈0.000
[0.036]

–
[0.008]

≈1.000
≈[0.000]

≈0.000
[0.038]

–
[0.008]

≈1.000
≈[0.000]

Taylor4 ≈0.000
[0.072]

–
[0.088]

≈1.000
≈[0.000]

≈0.000
[0.029]

–
[0.033]

≈1.000
≈[0.000]

≈0.000
[0.040]

–
[0.044]

≈1.000
≈[0.000]

Cheb4 ≈0.000
[0.106]

–
[0.085]

≈1.000
≈[0.000]

≈0.000
[0.053]

–
[0.060]

≈1.000
≈[0.000]

≈0.000
[0.068]

–
[0.075]

≈1.000
≈[0.000]

Eigen 0.000
[0.010]

–
[0.005]

1.000
≈[0.000]

0.000
[0.009]

–
[0.003]

1.000
≈[0.000]

0.000
[0.011]

–
[0.003]

1.000
≈[0.000]

LU 1.000
[0.008]

1.000
[0.006]

1.000
[0.004]

CGrad ≈1.000
[0.073]

≈1.000
[0.009]

≈1.000
[0.010]

1000 True [0.023] [0.004] [0.001] [0.077] [0.008] [0.001] [0.848] [0.022] [0.001]
AMBKM ≈0.000

[0.309]
–
[0.151]

≈1.000
[0.001]

≈0.000
[0.216]

–
[0.156]

≈1.000
[0.001]

≈0.000
[0.412]

–
[0.165]

≈1.000
[0.002]

Taylor4 ≈0.000
[0.068]

–
[0.133]

≈1.000
[0.001]

≈0.000
[0.309]

–
[0.537]

≈1.000
[0.003]

≈0.000
[1.738]

–
[2.889]

≈1.000
[0.007]

Cheb4 ≈0.000
[0.184]

–
[0.152]

≈1.000
[0.001]

≈0.000
[0.402]

–
[0.553]

≈1.000
[0.003]

≈0.000
[2.033]

–
[2.291]

≈1.000
[0.007]

Eigen 0.000
[2.189]

–
[1.102]

1.000
[0.005]

0.000
[2.241]

–
[1.100]

1.000
[0.005]

0.000
[2.164]

–
[1.099]

1.000
[0.005]

LU 1.000
[0.264]

1.000
[0.261]

1.000
[0.329]

CGrad ≈1.000
[0.428]

≈1.000
[0.428]

≈1.000
[0.429]

2000 True [0.043] [0.007] [0.001] [0.306] [0.017] [0.001] [3.894] [0.052] [0.001]
AMBKM ≈0.000

[0.675]
–
[0.606]

≈1.000
[0.001]

≈0.000
[0.796]

–
[0.620]

≈1.000
[0.001]

≈0.000
[0.943]

–
[0.615]

≈1.000
[0.003]

Taylor4 ≈0.000
[0.126]

–
[0.270]

≈1.000
[0.002]

≈0.000
[0.765]

–
[1.828]

≈1.000
[0.007]

≈0.000
[4.505]

–
[8.716]

≈1.000
[0.020]

Cheb4 ≈0.000
[0.225]

–
[0.285]

≈1.000
[0.002]

≈0.000
[1.163]

–
[1.504]

≈1.000
[0.008]

≈0.000
[5.646]

–
[6.497]

≈1.000
[0.020]

Eigen 0.000
[15.669]

–
[8.442]

1.000
[0.018]

0.000
[15.534]

–
[8.442]

1.000
[0.018]

0.000
[15.797]

–
[8.430]

1.000
[0.018]

LU 1.000
[1.712]

1.000
[1.721]

1.000
[1.713]

CGrad ≈1.000
[3.048]

≈1.000
[3.048]

≈1.000
[3.048]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.

85



L. Silveira Santos, I. Proença Regional Science and Urban Economics 76 (2019) 74–102

Table A.1.2
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.2 and W based on the radial distance criterion.

𝛿R 1 2 4

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.014] [0.013] [0.001] [0.018] [0.019] [0.001] [0.078] [0.020] [0.001]
AMBKM 0.042

[0.026]
0.665
[0.010]

≈1.000
[0.001]

0.028
[0.027]

0.501
[0.009]

≈1.000
≈[0.000]

0.010
[0.031]

0.236
[0.008]

≈1.000
≈[0.000]

Taylor4 ≈0.000
[0.021]

0.002
[0.020]

≈1.000
≈[0.000]

≈0.000
[0.032]

0.002
[0.033]

≈1.000
≈[0.000]

≈0.000
[0.039]

0.003
[0.046]

≈1.000
≈[0.000]

Cheb4 ≈0.000
[0.045]

0.001
[0.047]

≈1.000
≈[0.000]

≈0.000
[0.115]

0.003
[0.064]

≈1.000
≈[0.000]

≈0.000
[0.133]

0.002
[0.076]

≈1.000
≈[0.000]

Eigen 0.000
[0.011]

0.000
[0.003]

1.000
≈[0.000]

0.000
[0.010]

0.000
[0.003]

1.000
≈[0.000]

0.000
[0.010]

0.000
[0.004]

1.000
≈[0.000]

LU 1.000
[0.004]

1.000
[0.004]

1.000
[0.005]

CGrad ≈1.000
[0.009]

≈1.000
[0.009]

≈1.000
[0.010]

1000 True [0.267] [14.103] [0.008] [1.003] [14.350] [0.008] [3.221] [14.903] [0.008]
AMBKM 0.041

[0.153]
0.706
[0.129]

≈1.000
[0.003]

0.039
[0.179]

0.703
[0.129]

≈1.000
[0.003]

0.036
[0.242]

0.647
[0.133]

≈1.000
[0.003]

Taylor4 ≈0.000
[0.052]

0.002
[0.093]

≈1.000
[0.001]

≈0.000
[0.425]

0.002
[0.779]

≈1.000
[0.004]

≈0.000
[1.541]

0.002
[2.663]

≈1.000
[0.007]

Cheb4 ≈0.000
[0.152]

0.002
[0.118]

≈1.000
[0.001]

≈0.000
[0.671]

0.003
[0.686]

≈1.000
[0.004]

≈0.000
[1.957]

0.003
[2.125]

≈1.000
[0.007]

Eigen 0.000
[2.226]

0.000
[1.098]

1.000
[0.005]

0.000
[2.226]

0.000
[1.152]

1.000
[0.005]

0.000
[2.150]

0.000
[1.097]

1.000
[0.005]

LU 1.000
[0.257]

1.000
[0.257]

1.000
[0.373]

CGrad ≈1.000
[0.443]

≈1.000
[0.445]

≈1.000
[0.440]

2000 True [1.390] [114.155] [0.031] [4.264] [115.969] [0.031] [21.177] [118.638] [0.031]
AMBKM 0.041

[0.547]
0.712
[0.528]

≈1.000
[0.012]

0.040
[0.601]

0.724
[0.584]

≈1.000
[0.013]

0.038
[0.785]

0.685
[0.532]

≈1.000
[0.013]

Taylor4 ≈0.000
[0.133]

0.002
[0.291]

≈1.000
[0.002]

≈0.000
[0.602]

0.002
[1.404]

≈1.000
[0.006]

≈0.000
[4.295]

0.002
[8.630]

≈1.000
[0.020]

Cheb4 ≈0.000
[0.288]

0.002
[0.299]

≈1.000
[0.002]

≈0.000
[0.938]

0.003
[1.218]

≈1.000
[0.006]

≈0.000
[5.628]

0.003
[6.445]

≈1.000
[0.020]

Eigen 0.000
[17.567]

0.000
[8.442]

1.000
[0.018]

0.000
[15.495]

0.000
[8.437]

1.000
[0.018]

0.000
[15.782]

0.000
[8.440]

1.000
[0.018]

LU 1.000
[1.704]

1.000
[1.730]

1.000
[1.710]

CGrad ≈1.000
[3.116]

≈1.000
[3.117]

≈1.000
[3.100]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.3
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.5 and W based on the radial distance criterion.

𝛿R 1 2 4

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.014] [0.014] [0.001] [0.017] [0.017] [0.001] [0.020] [0.020] [0.001]
AMBKM 0.258

[0.026]
0.786
[0.009]

0.995
≈[0.000]

0.208
[0.027]

0.630
[0.008]

0.999
≈[0.000]

0.108
[0.086]

0.260
[0.008]

≈1.000
≈[0.000]

Taylor4 0.038
[0.023]

0.110
[0.023]

≈1.000
≈[0.000]

0.033
[0.028]

0.089
[0.034]

≈1.000
≈[0.000]

0.032
[0.037]

0.118
[0.041]

≈1.000
≈[0.000]

Cheb4 0.006
[0.046]

0.018
[0.049]

≈1.000
≈[0.000]

0.004
[0.054]

0.032
[0.059]

≈1.000
≈[0.000]

0.003
[0.066]

0.014
[0.072]

≈1.000
≈[0.000]

Eigen 0.000
[0.010]

0.000
[0.003]

1.000
≈[0.000]

0.000
[0.011]

0.000
[0.060]

1.000
≈[0.000]

0.000
[0.009]

0.000
[0.003]

1.000
≈[0.000]

LU 1.000
[0.004]

1.000
[0.005]

1.000
[0.004]

CGrad ≈1.000
[0.009]

≈1.000
[0.009]

≈1.000
[0.009]

1000 True [0.283] [14.053] [0.008] [0.897] [14.280] [0.008] [3.143] [14.939] [0.008]
AMBKM 0.257

[0.154]
0.847
[0.130]

0.996
[0.003]

0.247
[0.234]

0.818
[0.128]

0.999
[0.003]

0.228
[0.239]

0.720
[0.134]

≈1.000
[0.003]

Taylor4 0.032
[0.056]

0.095
[0.103]

≈1.000
[0.001]

0.032
[0.285]

0.083
[0.606]

≈1.000
[0.003]

0.032
[1.330]

0.087
[2.575]

≈1.000
[0.007]

Cheb4 0.006
[0.107]

0.023
[0.128]

≈1.000
[0.001]

0.004
[0.449]

0.035
[0.552]

≈1.000
[0.003]

0.003
[1.790]

0.037
[2.135]

≈1.000
[0.007]

Eigen 0.000
[2.184]

0.000
[1.098]

1.000
[0.005]

0.000
[2.178]

0.000
[1.097]

1.000
[0.005]

0.000
[2.151]

0.000
[1.096]

1.000
[0.005]

LU 1.000
[0.257]

1.000
[0.260]

1.000
[0.259]

CGrad ≈1.000
[0.461]

≈1.000
[0.451]

≈1.000
[0.453]

2000 True [1.302] [114.794] [0.031] [3.984] [116.021] [0.031] [12.962] [117.668] [0.031]
AMBKM 0.259

[0.559]
0.853
[0.581]

0.996
[0.013]

0.250
[0.593]

0.842
[0.583]

0.999
[0.013]

0.242
[0.726]

0.795
[0.533]

≈1.000
[0.013]

Taylor4 0.033
[0.115]

0.092
[0.307]

≈1.000
[0.002]

0.032
[0.601]

0.081
[1.413]

≈1.000
[0.006]

0.032
[2.938]

0.083
[6.074]

≈1.000
[0.016]

Cheb4 0.007
[0.204]

0.024
[0.259]

≈1.000
[0.002]

0.004
[0.929]

0.037
[1.217]

≈1.000
[0.006]

0.003
[3.965]

0.038
[4.699]

≈1.000
[0.016]

Eigen 0.000
[17.265]

0.000
[8.441]

1.000
[0.018]

0.000
[15.486]

0.000
[8.438]

1.000
[0.018]

0.000
[15.746]

0.000
[8.436]

1.000
[0.018]

LU 1.000
[1.709]

1.000
[1.719]

1.000
[1.722]

CGrad ≈1.000
[3.191]

≈1.000
[3.153]

≈1.000
[3.154]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.4
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.8 and W based on the radial distance criterion.

𝛿R 1 2 4

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.014] [0.014] ≈[0.000] [0.016] [0.017] [0.001] [0.020] [0.020] [0.001]
AMBKM 0.663

[0.026]
0.861
[0.008]

0.933
≈[0.000]

0.550
[0.027]

0.469
[0.009]

0.977
≈[0.000]

0.206
[0.030]

0.041
[0.008]

0.999
≈[0.000]

Taylor4 0.354
[0.021]

0.696
[0.020]

0.990
≈[0.000]

0.340
[0.027]

0.636
[0.030]

0.997
≈[0.000]

0.340
[0.039]

0.747
[0.044]

≈1.000
≈[0.000]

Cheb4 0.128
[0.045]

0.139
[0.047]

0.999
≈[0.000]

0.094
[0.054]

0.091
[0.113]

0.999
≈[0.000]

0.069
[0.067]

0.205
[0.128]

≈1.000
≈[0.000]

Eigen 0.000
[0.068]

0.000
[0.003]

1.000
≈[0.000]

0.000
[0.009]

0.000
[0.005]

1.000
≈[0.000]

0.000
[0.064]

0.000
[0.003]

1.000
≈[0.000]

LU 1.000
[0.004]

1.000
[0.004]

1.000
[0.005]

CGrad ≈1.000
[0.010]

≈1.000
[0.009]

≈1.000
[0.009]

1000 True [0.290] [14.017] [0.008] [0.790] [14.391] [0.008] [2.992] [14.871] [0.008]
AMBKM 0.659

[0.152]
0.952
[0.131]

0.937
[0.003]

0.636
[0.168]

0.873
[0.129]

0.970
[0.003]

0.579
[0.233]

0.639
[0.128]

0.992
[0.003]

Taylor4 0.340
[0.059]

0.645
[0.110]

0.990
[0.001]

0.334
[0.225]

0.602
[0.488]

0.996
[0.003]

0.335
[1.335]

0.613
[2.489]

0.999
[0.007]

Cheb4 0.144
[0.110]

0.121
[0.136]

0.999
[0.001]

0.086
[0.366]

0.118
[0.510]

≈1.000
[0.003]

0.081
[1.844]

0.109
[1.997]

≈1.000
[0.007]

Eigen 0.000
[2.180]

0.000
[1.097]

1.000
[0.005]

0.000
[2.178]

0.000
[1.099]

1.000
[0.005]

0.000
[2.146]

0.000
[1.151]

1.000
[0.005]

LU 1.000
[0.258]

1.000
[0.255]

1.000
[0.260]

CGrad ≈1.000
[0.497]

≈1.000
[0.480]

≈1.000
[0.472]

2000 True [1.188] [115.265] [0.031] [4.058] [115.905] [0.030] [23.791] [118.997] [0.031]
AMBKM 0.661

[0.544]
0.962
[0.529]

0.938
[0.012]

0.641
[0.654]

0.912
[0.524]

0.972
[0.013]

0.605
[0.900]

0.739
[0.533]

0.991
[0.013]

Taylor4 0.343
[0.108]

0.633
[0.226]

0.990
[0.002]

0.333
[0.584]

0.593
[1.356]

0.996
[0.006]

0.334
[4.739]

0.602
[9.435]

0.999
[0.020]

Cheb4 0.142
[0.191]

0.113
[0.242]

0.999
[0.002]

0.084
[0.908]

0.126
[1.177]

≈1.000
[0.006]

0.077
[5.975]

0.112
[6.938]

≈1.000
[0.020]

Eigen 0.000
[18.701]

0.000
[8.439]

1.000
[0.018]

0.000
[15.560]

0.000
[8.438]

1.000
[0.018]

0.000
[15.782]

0.000
[8.438]

1.000
[0.018]

LU 1.000
[1.713]

1.000
[1.711]

1.000
[1.725]

CGrad ≈1.000
[3.334]

≈1.000
[3.267]

≈1.000
[3.228]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.5
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.060] [0.071] [0.001] [0.012] [0.002] ≈[0.000] [0.013] [0.002] ≈[0.000]
AMBKM ≈0.000

[0.062]
–
[0.056]

≈1.000
≈[0.000]

≈0.000
[0.034]

–
[0.011]

≈1.000
≈[0.000]

≈0.000
[0.034]

–
[0.010]

≈1.000
≈[0.000]

Taylor4 ≈0.000
[0.071]

–
[0.026]

≈1.000
≈[0.000]

≈0.000
[0.025]

–
[0.027]

≈1.000
≈[0.000]

≈0.000
[0.090]

–
[0.033]

≈1.000
≈[0.000]

Cheb4 ≈0.000
[0.101]

–
[0.081]

≈1.000
≈[0.000]

≈0.000
[0.048]

–
[0.052]

≈1.000
≈[0.000]

≈0.000
[0.111]

–
[0.118]

≈1.000
≈[0.000]

Eigen 1.000
[0.014]

–
[0.002]

0.971
≈[0.000]

0.743
[0.099]

–
[0.004]

0.987
≈[0.000]

0.725
[0.043]

–
[0.005]

0.991
≈[0.000]

LU 1.000
[0.009]

1.000
[0.004]

1.000
[0.006]

CGrad ≈1.000
[0.074]

≈1.000
[0.067]

≈1.000
[0.010]

1000 True [0.025] [0.004] [0.001] [0.413] [0.018] [0.001] [1.935] [0.033] [0.001]
AMBKM ≈0.000

[0.261]
–
[0.154]

≈1.000
[0.001]

≈0.000
[0.286]

–
[0.216]

≈1.000
[0.001]

≈0.000
[0.381]

–
[0.160]

≈1.000
[0.002]

Taylor4 ≈0.000
[0.068]

–
[0.133]

≈1.000
[0.001]

≈0.000
[1.142]

–
[2.176]

≈1.000
[0.006]

≈0.000
[2.958]

–
[4.869]

≈1.000
[0.008]

Cheb4 ≈0.000
[0.128]

–
[0.154]

≈1.000
[0.001]

≈0.000
[1.562]

–
[1.872]

≈1.000
[0.006]

≈0.000
[3.554]

–
[3.817]

≈1.000
[0.008]

Eigen 2.175
[22.666]

–
[2.106]

0.995
[0.012]

1.163
[22.468]

–
[2.104]

0.998
[0.012]

1.206
[22.258]

–
[2.167]

0.999
[0.012]

LU 1.000
[0.258]

1.000
[0.258]

1.000
[0.313]

CGrad ≈1.000
[0.425]

≈1.000
[0.426]

≈1.000
[0.426]

2000 True [0.125] [0.010] [0.001] [11.273] [0.076] [0.001] [17.259] [0.151] [0.001]
AMBKM ≈0.000

[0.743]
–
[0.599]

≈1.000
[0.001]

≈0.000
[1.142]

–
[0.622]

≈1.000
[0.004]

≈0.000
[1.537]

–
[0.648]

≈1.000
[0.007]

Taylor4 ≈0.000
[0.334]

–
[0.653]

≈1.000
[0.004]

≈0.000
[7.081]

–
[13.673]

≈1.000
[0.025]

≈0.000
[21.942]

–
[36.299]

≈1.000
[0.031]

Cheb4 ≈0.000
[0.470]

–
[0.610]

≈1.000
[0.004]

≈0.000
[9.009]

–
[9.972]

≈1.000
[0.025]

≈0.000
[23.981]

–
[25.574]

≈1.000
[0.031]

Eigen 2.793
[165.543]

–
[16.423]

0.995
[0.045]

1.275
[164.393]

–
[16.438]

≈1.000
[0.046]

1.306
[164.121]

–
[16.440]

0.999
[0.046]

LU 1.000
[1.700]

1.000
[1.726]

1.000
[1.732]

CGrad ≈1.000
[3.038]

≈1.000
[3.042]

≈1.000
[3.051]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.6
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.2 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.012] [0.002] ≈[0.000] [0.015] [0.017] [0.001] [0.017] [0.017] [0.001]
AMBKM 0.070

[0.028]
0.674
[0.009]

≈1.000
[0.001]

0.041
[0.026]

0.612
[0.008]

≈1.000
≈[0.000]

0.035
[0.028]

0.513
[0.009]

≈1.000
≈[0.000]

Taylor4 0.001
[0.019]

0.004
[0.016]

≈1.000
≈[0.000]

≈0.000
[0.024]

0.002
[0.025]

≈1.000
≈[0.000]

≈0.000
[0.027]

0.002
[0.088]

≈1.000
≈[0.000]

Cheb4 ≈0.000
[0.041]

0.001
[0.101]

≈1.000
≈[0.000]

≈0.000
[0.049]

0.002
[0.052]

≈1.000
≈[0.000]

≈0.000
[0.055]

0.003
[0.059]

≈1.000
≈[0.000]

Eigen 1.031
[0.011]

0.147
[0.002]

0.961
≈[0.000]

0.454
[0.104]

0.045
[0.005]

0.995
≈[0.000]

0.949
[0.042]

0.094
[0.004]

0.991
≈[0.000]

LU 1.000
[0.004]

1.000
[0.006]

1.000
[0.004]

CGrad ≈1.000
[0.009]

≈1.000
[0.009]

≈1.000
[0.009]

1000 True [0.385] [14.318] [0.008] [2.376] [14.864] [0.008] [5.806] [15.566] [0.008]
AMBKM 0.044

[0.149]
0.714
[0.124]

≈1.000
[0.004]

0.038
[0.225]

0.633
[0.125]

≈1.000
[0.004]

0.032
[0.321]

0.527
[0.128]

≈1.000
[0.003]

Taylor4 ≈0.000
[0.066]

0.002
[0.130]

≈1.000
[0.001]

≈0.000
[1.133]

0.002
[2.098]

≈1.000
[0.006]

≈0.000
[3.005]

0.002
[4.911]

≈1.000
[0.008]

Cheb4 ≈0.000
[0.124]

0.003
[0.152]

≈1.000
[0.001]

≈0.000
[1.438]

0.004
[1.680]

≈1.000
[0.006]

≈0.000
[3.540]

0.003
[3.850]

≈1.000
[0.008]

Eigen 2.111
[22.391]

0.074
[2.103]

0.993
[0.012]

1.389
[22.338]

0.036
[2.158]

0.997
[0.012]

1.169
[22.256]

0.029
[2.161]

0.999
[0.012]

LU 1.000
[0.256]

1.000
[0.255]

1.000
[0.258]

CGrad ≈1.000
[0.442]

≈1.000
[0.438]

≈1.000
[0.435]

2000 True [2.986] [116.255] [0.031] [39.494] [121.062] [0.031] [50.895] [127.362] [0.031]
AMBKM 0.042

[0.567]
0.721
[0.512]

≈1.000
[0.013]

0.037
[0.905]

0.634
[0.528]

≈1.000
[0.012]

0.032
[1.322]

0.526
[0.581]

≈1.000
[0.012]

Taylor4 ≈0.000
[0.332]

0.002
[0.651]

≈1.000
[0.004]

≈0.000
[7.047]

0.002
[13.587]

≈1.000
[0.025]

≈0.000
[21.848]

0.002
[36.129]

≈1.000
[0.031]

Cheb4 ≈0.000
[0.465]

0.003
[0.604]

≈1.000
[0.004]

≈0.000
[8.925]

0.004
[9.940]

≈1.000
[0.025]

≈0.000
[24.132]

0.004
[25.575]

≈1.000
[0.031]

Eigen 2.597
[165.286]

0.046
[16.469]

0.996
[0.045]

1.318
[164.427]

0.020
[16.479]

0.999
[0.046]

1.316
[164.123]

0.021
[16.473]

0.999
[0.046]

LU 1.000
[1.695]

1.000
[1.781]

1.000
[1.708]

CGrad ≈1.000
[3.118]

≈1.000
[3.151]

≈1.000
[3.096]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.7
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.5 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.012] [0.002] ≈[0.000] [0.015] [0.017] [0.001] [0.016] [0.017] [0.001]
AMBKM 0.498

[0.025]
0.831
[0.010]

0.981
≈[0.000]

0.252
[0.026]

0.690
[0.009]

0.997
≈[0.000]

0.212
[0.028]

0.525
[0.008]

0.999
≈[0.000]

Taylor4 0.059
[0.019]

0.154
[0.016]

≈1.000
≈[0.000]

0.035
[0.022]

0.101
[0.025]

≈1.000
≈[0.000]

0.034
[0.027]

0.101
[0.031]

≈1.000
≈[0.000]

Cheb4 0.021
[0.041]

0.022
[0.043]

≈1.000
≈[0.000]

0.005
[0.047]

0.026
[0.053]

≈1.000
≈[0.000]

0.004
[0.054]

0.030
[0.062]

≈1.000
≈[0.000]

Eigen 1.360
[0.014]

0.144
[0.058]

0.969
≈[0.000]

0.712
[0.098]

0.015
[0.004]

0.996
≈[0.000]

0.837
[0.043]

0.014
[0.004]

0.992
≈[0.000]

LU 1.000
[0.005]

1.000
[0.005]

1.000
[0.004]

CGrad ≈1.000
[0.019]

≈1.000
[0.009]

≈1.000
[0.009]

1000 True [0.374] [14.235] [0.008] [2.472] [14.851] [0.008] [5.844] [15.611] [0.008]
AMBKM 0.273

[0.150]
0.851
[0.127]

0.996
[0.004]

0.236
[0.228]

0.704
[0.184]

≈1.000
[0.003]

0.201
[0.321]

0.541
[0.181]

≈1.000
[0.004]

Taylor4 0.036
[0.067]

0.097
[0.130]

≈1.000
[0.001]

0.033
[1.076]

0.090
[2.146]

≈1.000
[0.006]

0.034
[3.000]

0.097
[4.861]

≈1.000
[0.008]

Cheb4 0.005
[0.178]

0.028
[0.152]

≈1.000
[0.001]

0.004
[1.492]

0.038
[1.682]

≈1.000
[0.006]

0.004
[3.542]

0.036
[3.860]

≈1.000
[0.008]

Eigen 1.977
[22.299]

0.013
[2.101]

0.991
[0.012]

1.115
[22.355]

0.005
[2.104]

0.999
[0.012]

0.885
[22.282]

0.006
[2.156]

0.999
[0.012]

LU 1.000
[0.253]

1.000
[0.255]

1.000
[0.253]

CGrad ≈1.000
[0.461]

≈1.000
[0.447]

≈1.000
[0.447]

2000 True [3.133] [116.241] [0.032] [39.723] [121.320] [0.031] [50.680] [127.814] [0.031]
AMBKM 0.262

[0.627]
0.851
[0.521]

0.998
[0.012]

0.235
[0.905]

0.704
[0.520]

≈1.000
[0.012]

0.202
[1.308]

0.541
[0.532]

≈1.000
[0.012]

Taylor4 0.034
[0.278]

0.088
[0.659]

≈1.000
[0.004]

0.033
[7.169]

0.089
[13.616]

≈1.000
[0.025]

0.034
[21.948]

0.096
[36.176]

≈1.000
[0.031]

Cheb4 0.005
[0.522]

0.035
[0.605]

≈1.000
[0.004]

0.004
[8.836]

0.039
[9.995]

≈1.000
[0.025]

0.004
[23.965]

0.037
[25.363]

≈1.000
[0.031]

Eigen 2.631
[165.227]

0.011
[16.518]

0.994
[0.045]

1.269
[164.365]

0.003
[16.474]

0.999
[0.045]

1.002
[164.075]

0.003
[16.475]

0.999
[0.046]

LU 1.000
[1.699]

1.000
[1.760]

1.000
[1.722]

CGrad ≈1.000
[3.168]

≈1.000
[3.265]

≈1.000
[3.136]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Computational times in seconds. Averages based on 1000 replications.
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Table A.1.8
Simulation results for the approximated spatial lag operator inverse and related matrix functions, considering the new approximation method based on known matrices
(AMBKM), fourth-order Taylor series approximation (Taylor4), fourth-order Chebyshev approximation (Cheb4), the Eigendecomposition (Eigen), the LU decomposition
(LU) and the Conjugate Gradient method (CGrad), with 𝛼 = 0.8 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X S−1 diag (Υ) S−1X

100 True [0.012] [0.002] ≈[0.000] [0.015] [0.017] [0.001] [0.016] [0.017] [0.001]
AMBKM 2.551

[0.027]
0.955
[0.008]

0.887
≈[0.000]

0.873
[0.026]

0.661
[0.008]

0.936
≈[0.000]

0.748
[0.027]

0.376
[0.008]

0.984
≈[0.000]

Taylor4 0.665
[0.019]

0.781
[0.016]

0.987
≈[0.000]

0.373
[0.022]

0.677
[0.026]

0.989
≈[0.000]

0.358
[0.027]

0.675
[0.033]

0.999
≈[0.000]

Cheb4 0.863
[0.042]

0.241
[0.043]

0.999
≈[0.000]

0.119
[0.050]

0.074
[0.052]

0.999
≈[0.000]

0.088
[0.054]

0.069
[0.060]

≈1.000
≈[0.000]

Eigen 3.641
[0.012]

0.136
[0.002]

0.970
≈[0.000]

0.865
[0.043]

0.004
[0.004]

0.995
≈[0.000]

0.822
[0.043]

0.004
[0.004]

0.992
≈[0.000]

LU 1.000
[0.005]

1.000
[0.005]

1.000
[0.005]

CGrad 0.603
[0.016]

≈1.000
[0.010]

≈1.000
[0.010]

1000 True [0.375] [14.218] [0.008] [2.381] [14.871] [0.008] [5.800] [15.617] [0.008]
AMBKM 0.735

[0.263]
0.943
[0.125]

0.939
[0.004]

0.612
[0.284]

0.628
[0.128]

0.994
[0.004]

0.680
[0.323]

0.344
[0.129]

0.998
[0.004]

Taylor4 0.377
[0.066]

0.651
[0.128]

0.990
[0.001]

0.346
[1.188]

0.631
[2.096]

0.999
[0.006]

0.356
[2.963]

0.659
[4.872]

≈1.000
[0.008]

Cheb4 0.129
[0.180]

0.094
[0.150]

0.999
[0.001]

0.088
[1.437]

0.082
[1.686]

≈1.000
[0.006]

0.090
[3.604]

0.064
[3.818]

≈1.000
[0.008]

Eigen 1.840
[22.331]

0.003
[2.102]

0.995
[0.012]

0.982
[22.302]

0.001
[2.102]

0.999
[0.012]

1.056
[22.282]

0.001
[2.161]

0.999
[0.012]

LU 1.000
[0.252]

1.000
[0.256]

1.000
[0.256]

CGrad ≈1.000
[0.498]

≈1.000
[0.475]

≈1.000
[0.498]

2000 True [3.090] [116.212] [0.031] [39.872] [121.396] [0.031] [50.982] [127.827] [0.031]
AMBKM 0.671

[0.560]
0.937
[0.580]

0.957
[0.012]

0.605
[0.976]

0.621
[0.524]

0.997
[0.012]

0.682
[1.429]

0.343
[0.594]

0.999
[0.013]

Taylor4 0.350
[0.277]

0.616
[0.652]

0.993
[0.004]

0.345
[7.097]

0.627
[13.523]

≈1.000
[0.025]

0.354
[21.872]

0.658
[36.160]

≈1.000
[0.031]

Cheb4 0.099
[0.470]

0.110
[0.610]

0.999
[0.004]

0.088
[8.781]

0.084
[9.921]

≈1.000
[0.025]

0.086
[24.093]

0.064
[25.557]

≈1.000
[0.031]

Eigen 2.170
[165.791]

0.002
[16.481]

0.998
[0.046]

1.304
[164.499]

≈0.000
[16.476]

0.999
[0.046]

1.128
[164.210]

≈0.000
[16.478]

0.999
[0.046]

LU 1.000
[1.716]

1.000
[1.721]

1.000
[1.705]

CGrad ≈1.000
[3.299]

≈1.000
[3.244]

≈1.000
[3.261]

NOTE: The matrix S = I − 𝛼W. The values for the column S−1 are the average norm differences w.r.t. the identity matrix. The values for the column diag (Υ) are
the average absolute deviations w.r.t. the true values. The values for the column S−1X are the average correlation coefficient between the approximated and the true
operation. Numbers in brackets are average computational times. Averages are based on 1000 replications.
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Appendix A.2. GMM estimation

Table A.2.1
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM
estimator for the linearized model (LGMM), with 𝛼 = 0 and W based on the radial distance criterion.

𝛿R 1 2 4

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.074
(0.377)

−0.033
(0.429)

−0.006
(0.576)

0.295
(0.720)

−0.498
(1.295)

−0.020
(1.319)

0.672
(2.168)

−0.894
(3.360)

−0.098
(5.309)

𝛽0 0.005
(0.141)

0.001
(0.172)

0.001
(0.159)

0.010
(0.149)

0.023
(0.352)

0.012
(0.241)

−0.015
(0.274)

0.072
(0.754)

−0.039
(0.944)

𝛽1 1.084
(0.263)

1.097
(0.268)

1.024
(0.256)

1.094
(0.272)

1.145
(0.367)

1.019
(0.250)

1.092
(0.247)

1.143
(0.316)

1.020
(0.267)

Time:
Loop 0.062 0.034 0.066 0.035 0.069 0.042
# Iterations 4 4 5 5 5 5
Total 0.305 0.201 0.068 0.371 0.233 0.064 0.418 0.288 0.076

# Neighbors 6 6 6 21 21 21 60 60 60
1000 𝛼 0.005

(0.201)
−0.014
(0.202)

0.001
(0.203)

0.056
(0.351)

−0.057
(0.435)

−0.005
(0.418)

0.188
(0.572)

−0.336
(1.154)

−0.055
(0.906)

𝛽0 0.001
(0.044)

0.001
(0.046)

0.001
(0.045)

0.003
(0.044)

0.001
(0.049)

0.001
(0.047)

0.000
(0.041)

0.000
(0.073)

0.001
(0.057)

𝛽1 1.002
(0.074)

1.005
(0.075)

1.002
(0.074)

1.003
(0.078)

1.006
(0.078)

0.999
(0.078)

1.012
(0.081)

1.030
(0.142)

1.005
(0.076)

Time:
Loop 1.867 0.504 2.115 1.091 1.953 3.989
# Iterations 3 4 4 4 5 5
Total 6.819 2.517 0.824 9.517 5.697 0.881 10.572 21.991 1.447

# Neighbors 9 9 9 33 33 33 118 118 118
2000 𝛼 0.000

(0.148)
−0.010
(0.147)

0.000
(0.148)

0.017
(0.285)

−0.044
(0.326)

−0.007
(0.306)

0.129
(0.462)

−0.129
(0.698)

−0.015
(0.601)

𝛽0 0.000
(0.030)

0.000
(0.030)

0.000
(0.030)

−0.002
(0.031)

−0.001
(0.034)

−0.001
(0.033)

0.000
(0.030)

−0.002
(0.040)

0.000
(0.035)

𝛽1 1.003
(0.054)

1.005
(0.054)

1.003
(0.054)

1.003
(0.053)

1.005
(0.054)

1.002
(0.054)

1.001
(0.056)

1.007
(0.083)

0.999
(0.055)

Time:
Loop 6.935 2.651 7.304 7.372 6.839 20.889
# Iterations 3 3 4 4 4 5
Total 23.064 11.109 2.464 30.193 33.943 2.489 34.917 107.516 4.050

# Neighbors 9 9 9 37 37 37 134 134 134

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational times in seconds. True
values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.

93



L. Silveira Santos, I. Proença Regional Science and Urban Economics 76 (2019) 74–102

Table A.2.2
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and the GMM
estimator for the linearized model (LGMM), with 𝛼 = 0.2 and W based on the radial distance criterion.

𝛿R 1 2 4

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.189
(0.388)

0.132
(0.389)

0.228
(0.589)

0.279
(0.655)

−0.147
(1.184)

0.221
(1.370)

0.827
(1.866)

−0.099
(3.875)

0.143
(5.414)

𝛽0 0.006
(0.132)

0.009
(0.142)

0.004
(0.148)

−0.007
(0.141)

−0.004
(0.246)

−0.004
(0.224)

0.011
(0.254)

−0.064
(0.689)

0.020
(0.778)

𝛽1 1.083
(0.275)

1.109
(0.278)

1.022
(0.254)

1.105
(0.272)

1.104
(0.349)

1.017
(0.259)

1.135
(0.301)

1.144
(0.343)

1.020
(0.263)

Time:
Loop 0.063 0.033 0.065 0.036 0.070 0.041
# Iterations 4 5 5 5 5 6
Total 0.319 0.198 0.063 0.361 0.230 0.067 0.439 0.283 0.077

# Neighbors 6 6 6 20 20 20 58 58 58
1000 𝛼 0.225

(0.205)
0.186
(0.165)

0.223
(0.202)

0.238
(0.380)

0.130
(0.355)

0.237
(0.428)

0.284
(0.518)

−0.028
(1.070)

0.218
(0.889)

𝛽0 −0.001
(0.033)

−0.001
(0.035)

−0.001
(0.033)

0.000
(0.036)

0.001
(0.039)

0.000
(0.037)

−0.003
(0.036)

−0.006
(0.072)

−0.004
(0.053)

𝛽1 1.001
(0.077)

1.007
(0.077)

0.999
(0.077)

1.011
(0.084)

1.010
(0.080)

1.004
(0.080)

1.011
(0.083)

1.033
(0.139)

1.001
(0.078)

Time:
Loop 1.489 0.441 1.596 0.933 1.670 3.549
# Iterations 3 4 4 5 5 5
Total 5.708 2.185 0.629 7.547 4.965 0.684 9.273 19.786 1.311

# Neighbors 9 9 9 33 33 33 119 119 119
2000 𝛼 0.222

(0.156)
0.189
(0.125)

0.220
(0.153)

0.234
(0.292)

0.166
(0.251)

0.232
(0.300)

0.270
(0.463)

0.064
(0.610)

0.243
(0.628)

𝛽0 0.000
(0.023)

0.000
(0.024)

0.000
(0.023)

−0.001
(0.026)

−0.001
(0.027)

−0.001
(0.026)

0.000
(0.027)

−0.001
(0.037)

0.000
(0.031)

𝛽1 0.997
(0.054)

1.002
(0.054)

0.996
(0.054)

1.001
(0.056)

1.003
(0.056)

1.001
(0.055)

1.001
(0.053)

1.021
(0.156)

0.998
(0.054)

Time:
Loop 6.381 2.596 5.949 6.381 6.356 21.036
# Iterations 3 4 4 4 5 5
Total 22.786 11.184 2.015 25.671 29.407 2.021 33.666 108.958 3.964

# Neighbors 9 9 9 37 37 37 133 133 133

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational times in seconds. True
values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.
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Table A.2.3
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator
(iGMM) and the GMM estimator for the linearized model (LGMM), with 𝛼 = 0.5 and W based on the radial distance criterion.

𝛿R 1 2 4

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.409
(0.451)

0.328
(0.389)

0.684
(0.686)

0.496
(0.733)

−0.110
(1.330)

0.627
(1.528)

0.837
(1.773)

−0.620
(4.238)

0.739
(4.292)

𝛽0 −0.002
(0.110)

0.002
(0.118)

0.001
(0.119)

0.007
(0.160)

−0.010
(0.509)

0.005
(0.282)

−0.030
(0.300)

−0.031
(1.054)

−0.049
(0.738)

𝛽1 1.051
(0.265)

1.082
(0.268)

0.947
(0.250)

1.121
(0.318)

1.109
(0.326)

1.003
(0.259)

1.066
(0.268)

1.139
(0.371)

1.007
(0.264)

Time:
Loop 0.063 0.033 0.066 0.035 0.069 0.042
# Iterations 5 5 5 5 5 6
Total 0.335 0.203 0.064 0.379 0.223 0.067 0.436 0.300 0.078

# Neighbors 6 6 6 20 20 20 59 59 59
1000 𝛼 0.669

(0.267)
0.477
(0.106)

0.678
(0.279)

0.615
(0.414)

0.376
(0.247)

0.718
(0.483)

0.474
(0.554)

0.274
(1.010)

0.696
(0.944)

𝛽0 0.000
(0.019)

0.000
(0.025)

0.000
(0.019)

0.002
(0.027)

0.002
(0.029)

0.002
(0.027)

0.001
(0.041)

0.001
(0.078)

−0.001
(0.054)

𝛽1 0.985
(0.093)

1.004
(0.076)

0.961
(0.084)

1.009
(0.105)

1.002
(0.076)

0.990
(0.076)

1.020
(0.105)

1.075
(0.296)

1.003
(0.078)

Time:
Loop 1.557 0.457 1.635 0.959 1.645 3.483
# Iterations 5 5 5 5 5 5
Total 8.076 2.621 0.561 8.765 5.337 0.674 9.473 19.264 1.302

# Neighbors 9 9 9 34 34 34 120 120 120
2000 𝛼 0.705

(0.256)
0.492
(0.070)

0.688
(0.245)

0.698
(0.357)

0.443
(0.141)

0.738
(0.386)

0.553
(0.494)

0.422
(0.544)

0.721
(0.670)

𝛽0 0.000
(0.012)

0.000
(0.016)

0.000
(0.012)

0.001
(0.015)

0.000
(0.018)

0.000
(0.015)

0.000
(0.024)

0.001
(0.030)

−0.001
(0.026)

𝛽1 0.979
(0.065)

1.004
(0.056)

0.966
(0.064)

1.008
(0.062)

1.005
(0.052)

0.993
(0.053)

1.007
(0.058)

1.050
(0.209)

0.997
(0.056)

Time:
Loop 8.178 3.004 7.848 7.641 6.861 21.501
# Iterations 5 5 5 5 5 5
Total 42.737 16.435 2.237 42.574 41.329 2.379 39.126 116.620 4.037

# Neighbors 10 10 10 36 36 36 136 136 136

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational
times in seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.

95



L. Silveira Santos, I. Proença Regional Science and Urban Economics 76 (2019) 74–102

Table A.2.4
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and
the GMM estimator for the linearized model (LGMM), with 𝛼 = 0.8 and W based on the radial distance criterion.

𝛿R 1 2 4

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.797
(0.589)

0.575
(0.509)

1.582
(1.418)

0.852
(0.985)

0.397
(1.460)

1.732
(2.137)

1.392
(2.318)

0.004
(4.172)

1.160
(5.572)

𝛽0 −0.002
(0.123)

−0.010
(0.140)

−0.007
(0.305)

0.016
(0.285)

0.024
(0.484)

0.010
(0.604)

−0.032
(0.696)

−0.124
(1.847)

0.113
(2.455)

𝛽1 0.933
(0.274)

0.995
(0.338)

0.748
(0.349)

0.969
(0.277)

1.000
(0.272)

0.873
(0.284)

1.013
(0.260)

1.040
(0.284)

0.912
(0.275)

Time:
Loop 0.066 0.032 0.067 0.036 0.071 0.042
# Iterations 5 5 5 5 6 6
Total 0.389 0.211 0.062 0.410 0.242 0.068 0.467 0.291 0.076

# Neighbors 6 6 6 21 21 21 60 60 60
1000 𝛼 1.403

(0.641)
0.690
(0.117)

1.584
(0.836)

1.418
(0.796)

1.009
(0.711)

1.853
(1.157)

1.173
(0.991)

1.330
(1.257)

1.824
(1.398)

𝛽0 0.002
(0.044)

−0.004
(0.014)

0.001
(0.063)

−0.007
(0.060)

−0.001
(0.096)

−0.003
(0.100)

0.010
(0.113)

−0.018
(0.163)

−0.005
(0.131)

𝛽1 0.880
(0.171)

0.956
(0.080)

0.799
(0.215)

0.941
(0.109)

1.114
(0.350)

0.916
(0.114)

0.988
(0.076)

1.110
(0.258)

0.973
(0.081)

Time:
Loop 1.673 0.449 1.581 1.046 1.653 3.683
# Iterations 6 6 6 6 5 6
Total 11.297 3.034 0.521 10.185 6.592 0.569 10.449 22.218 1.276

# Neighbors 8 8 8 39 39 39 125 125 125
2000 𝛼 1.255

(0.455)
0.650
(0.150)

1.616
(0.844)

1.522
(0.798)

0.825
(0.363)

1.880
(1.141)

1.795
(1.159)

1.491
(1.087)

1.876
(1.283)

𝛽0 −0.007
(0.007)

−0.019
(0.019)

0.002
(0.044)

−0.003
(0.060)

0.009
(0.040)

−0.001
(0.071)

0.001
(0.079)

0.007
(0.115)

0.001
(0.086)

𝛽1 0.890
(0.110)

0.986
(0.014)

0.813
(0.196)

0.953
(0.091)

1.129
(0.272)

0.926
(0.091)

0.983
(0.060)

1.264
(0.420)

0.975
(0.060)

Time:
Loop 6.707 2.594 5.965 7.410 5.962 22.797
# Iterations 7 5 6 6 5 6
Total 48.554 14.623 1.728 37.195 47.109 1.916 35.994 135.114 3.671

# Neighbors 8 8 8 44 44 44 143 143 143

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational times in
seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.
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Table A.2.5
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator
(iGMM) and the GMM estimator for the linearized model (LGMM), with 𝛼 = 0 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 −0.005
(0.225)

−0.001
(0.215)

0.004
(0.250)

0.198
(0.570)

−0.215
(0.847)

0.017
(0.953)

0.249
(0.776)

−0.499
(1.401)

−0.024
(1.445)

𝛽0 0.003
(0.142)

0.005
(0.152)

0.002
(0.141)

−0.004
(0.132)

0.019
(0.246)

−0.001
(0.183)

0.004
(0.146)

0.004
(0.377)

0.003
(0.266)

𝛽1 1.050
(0.256)

1.083
(0.267)

1.024
(0.257)

1.106
(0.295)

1.097
(0.279)

1.018
(0.257)

1.133
(0.289)

1.140
(0.305)

1.033
(0.260)

Time:
Loop 0.061 0.032 0.063 0.035 0.066 0.037
# Iterations 4 4 5 5 5 5
Total 0.288 0.181 0.061 0.353 0.224 0.066 0.376 0.242 0.064

%Asymmetry 0.274 0.274 0.274 0.151 0.151 0.151 0.146 0.146 0.146
1000 𝛼 0.012

(0.227)
−0.015
(0.229)

0.004
(0.230)

0.184
(0.561)

−0.260
(1.102)

0.028
(0.812)

0.264
(0.645)

−0.654
(1.959)

−0.025
(1.345)

𝛽0 0.001
(0.044)

0.002
(0.045)

0.002
(0.044)

0.000
(0.040)

0.002
(0.076)

0.003
(0.053)

0.001
(0.041)

0.005
(0.127)

0.001
(0.074)

𝛽1 1.003
(0.077)

1.006
(0.077)

1.002
(0.078)

1.016
(0.082)

1.028
(0.174)

1.003
(0.077)

1.015
(0.087)

1.031
(0.138)

1.006
(0.078)

Time:
Loop 1.382 0.495 1.568 2.324 1.575 5.631
# Iterations 3 4 5 5 5 5
Total 5.420 2.430 0.549 8.526 12.931 0.969 9.796 31.838 1.970

% Asymmetry 0.130 0.130 0.130 0.106 0.106 0.106 0.125 0.125 0.125
2000 𝛼 0.006

(0.232)
−0.021
(0.242)

0.000
(0.232)

0.176
(0.583)

−0.309
(1.104)

−0.030
(0.838)

0.303
(0.708)

−0.426
(1.903)

0.032
(1.258)

𝛽0 −0.001
(0.029)

−0.001
(0.031)

−0.001
(0.030)

−0.001
(0.030)

0.003
(0.052)

0.000
(0.040)

0.000
(0.028)

−0.001
(0.070)

0.002
(0.049)

𝛽1 1.000
(0.053)

1.001
(0.053)

0.999
(0.053)

1.005
(0.055)

1.019
(0.119)

1.000
(0.054)

1.007
(0.056)

1.020
(0.113)

1.001
(0.055)

Time:
Loop 6.846 4.995 6.435 38.929 6.486 49.120
# Iterations 3 4 5 5 5 5
Total 26.624 21.849 2.248 36.496 205.426 5.626 47.796 279.975 14.784

% Asymmetry 0.102 0.102 0.102 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational
times in seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.
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Table A.2.6
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator (iGMM) and
the GMM estimator for the linearized model (LGMM), with 𝛼 = 0.2 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.164
(0.214)

0.163
(0.218)

0.214
(0.268)

0.325
(0.556)

−0.121
(0.828)

0.250
(0.900)

0.293
(0.702)

−0.380
(1.394)

0.203
(1.440)

𝛽0 0.002
(0.119)

0.001
(0.131)

0.001
(0.115)

−0.006
(0.137)

−0.002
(0.273)

0.006
(0.184)

−0.009
(0.142)

0.002
(0.305)

0.014
(0.231)

𝛽1 1.026
(0.251)

1.071
(0.271)

0.990
(0.254)

1.100
(0.291)

1.103
(0.270)

1.010
(0.258)

1.098
(0.274)

1.148
(0.392)

1.013
(0.258)

Time:
Loop 0.062 0.033 0.064 0.035 0.064 0.037
# Iterations 4 4 5 5 5 5
Total 0.303 0.189 0.061 0.346 0.221 0.064 0.365 0.242 0.067

%Asymmetry 0.273 0.273 0.273 0.152 0.152 0.152 0.147 0.147 0.147
1000 𝛼 0.237

(0.241)
0.185
(0.188)

0.236
(0.239)

0.257
(0.518)

−0.087
(0.933)

0.226
(0.814)

0.366
(0.614)

−0.344
(1.827)

0.196
(1.333)

𝛽0 0.000
(0.033)

0.000
(0.035)

0.000
(0.033)

0.003
(0.038)

0.000
(0.065)

0.001
(0.050)

0.000
(0.040)

0.004
(0.105)

−0.002
(0.074)

𝛽1 1.002
(0.082)

1.006
(0.080)

0.999
(0.080)

1.010
(0.076)

1.036
(0.164)

1.001
(0.075)

1.016
(0.085)

1.033
(0.135)

1.006
(0.079)

Time:
Loop 1.300 0.488 1.474 2.163 1.546 5.685
# Iterations 4 4 5 5 5 5
Total 5.288 2.398 0.502 7.908 11.903 0.943 9.723 32.795 1.964

% Asymmetry 0.130 0.130 0.130 0.106 0.106 0.106 0.125 0.125 0.125
2000 𝛼 0.227

(0.238)
0.174
(0.194)

0.224
(0.237)

0.300
(0.538)

−0.081
(0.992)

0.221
(0.831)

0.386
(0.647)

−0.340
(1.730)

0.190
(1.249)

𝛽0 −0.001
(0.023)

−0.001
(0.024)

−0.001
(0.023)

0.000
(0.026)

0.000
(0.045)

0.001
(0.035)

−0.001
(0.029)

0.001
(0.072)

−0.002
(0.047)

𝛽1 1.000
(0.053)

1.003
(0.053)

0.999
(0.053)

1.009
(0.067)

1.029
(0.125)

1.003
(0.052)

1.007
(0.061)

1.022
(0.098)

1.000
(0.056)

Time:
Loop 5.646 4.368 6.266 38.941 6.251 48.360
# Iterations 4 4 5 5 5 5
Total 22.771 19.424 1.836 36.008 203.903 5.603 46.456 271.254 14.558

% Asymmetry 0.103 0.103 0.103 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational times in
seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.
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Table A.2.7
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator
(iGMM) and the GMM estimator for the linearized model (LGMM), with 𝛼 = 0.5 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.375
(0.260)

0.393
(0.238)

0.581
(0.397)

0.528
(0.595)

0.132
(0.852)

0.795
(1.233)

0.537
(0.660)

−0.091
(1.539)

0.739
(1.476)

𝛽0 0.004
(0.090)

0.005
(0.106)

0.000
(0.083)

−0.009
(0.124)

0.032
(0.264)

0.007
(0.282)

−0.002
(0.124)

−0.015
(0.456)

−0.005
(0.295)

𝛽1 1.006
(0.241)

1.092
(0.301)

0.870
(0.285)

1.099
(0.305)

1.114
(0.324)

0.990
(0.253)

1.109
(0.314)

1.162
(0.407)

1.002
(0.265)

Time:
Loop 0.064 0.033 0.065 0.035 0.066 0.037
# Iterations 5 5 5 5 5 5
Total 0.354 0.206 0.062 0.375 0.227 0.063 0.385 0.246 0.066

%Asymmetry 0.274 0.274 0.274 0.151 0.151 0.151 0.147 0.147 0.147
1000 𝛼 0.683

(0.294)
0.459
(0.111)

0.706
(0.315)

0.509
(0.569)

0.316
(0.855)

0.721
(0.853)

0.463
(0.672)

0.073
(1.682)

0.744
(1.274)

𝛽0 0.000
(0.020)

0.000
(0.025)

0.000
(0.020)

0.000
(0.037)

0.004
(0.066)

0.001
(0.048)

−0.002
(0.041)

−0.004
(0.114)

−0.003
(0.072)

𝛽1 0.999
(0.093)

1.006
(0.075)

0.972
(0.080)

1.010
(0.078)

1.060
(0.199)

1.000
(0.075)

1.018
(0.099)

1.053
(0.211)

0.999
(0.082)

Time:
Loop 1.469 0.521 1.499 2.183 1.562 5.623
# Iterations 5 5 5 5 5 5
Total 7.873 2.937 0.517 8.560 12.478 0.938 10.004 32.083 1.964

% Asymmetry 0.131 0.131 0.131 0.106 0.106 0.106 0.126 0.126 0.126
2000 𝛼 0.702

(0.301)
0.462
(0.104)

0.721
(0.321)

0.547
(0.557)

0.390
(0.814)

0.731
(0.832)

0.485
(0.692)

0.293
(1.647)

0.698
(1.338)

𝛽0 −0.001
(0.014)

−0.001
(0.018)

−0.001
(0.014)

0.002
(0.025)

0.002
(0.041)

0.002
(0.032)

0.001
(0.030)

0.005
(0.065)

0.003
(0.056)

𝛽1 0.998
(0.057)

1.003
(0.056)

0.984
(0.058)

1.009
(0.055)

1.058
(0.190)

1.000
(0.053)

1.011
(0.067)

1.033
(0.176)

0.999
(0.052)

Time:
Loop 7.442 5.147 6.422 38.466 6.764 48.674
# Iterations 5 5 5 5 5 5
Total 40.022 27.738 1.980 38.652 208.172 5.454 48.511 274.855 14.525

% Asymmetry 0.102 0.102 0.102 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational
times in seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.
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Table A.2.8
Simulation results for the Spatial Probit model considering the iterative GMM estimator with approximated gradients (iGMMa), the iterative GMM estimator
(iGMM) and the GMM estimator for the linearized model (LGMM), with 𝛼 = 0.8 and W based on the nearest neighbors criterion.

𝛿NN 0.01 0.1 0.2

N iGMMa iGMM LGMM iGMMa iGMM LGMM iGMMa iGMM LGMM

100 𝛼 0.377
(0.472)

0.637
(0.249)

1.609
(15.527)

0.839
(0.699)

0.411
(0.698)

1.928
(1.920)

0.767
(0.885)

0.166
(1.562)

1.897
(2.322)

𝛽0 0.012
(0.079)

0.003
(0.092)

0.171
(5.020)

0.004
(0.174)

−0.004
(0.197)

−0.008
(0.442)

0.023
(0.238)

0.070
(0.633)

0.031
(0.730)

𝛽1 0.805
(0.296)

0.984
(0.359)

0.577
(0.478)

0.954
(0.255)

0.998
(0.255)

0.798
(0.310)

1.002
(0.279)

1.048
(0.341)

0.860
(0.284)

Time:
Loop 0.064 0.033 0.065 0.034 0.065 0.037
# Iterations 5 6 6 5 6 5
Total 0.356 0.234 0.065 0.409 0.221 0.063 0.422 0.252 0.066

%Asymmetry 0.272 0.272 0.272 0.152 0.152 0.152 0.145 0.145 0.145
1000 𝛼 1.523

(0.792)
0.627
(0.176)

1.773
(1.028)

1.049
(0.824)

1.329
(1.283)

1.942
(1.461)

0.877
(0.854)

1.190
(1.752)

1.720
(1.618)

𝛽0 0.016
(0.046)

0.000
(0.019)

−0.002
(0.078)

−0.005
(0.053)

0.005
(0.176)

0.003
(0.139)

−0.001
(0.066)

0.008
(0.192)

−0.001
(0.172)

𝛽1 0.881
(0.139)

0.979
(0.090)

0.817
(0.197)

0.997
(0.107)

1.150
(0.307)

0.968
(0.085)

0.994
(0.086)

1.074
(0.270)

0.980
(0.080)

Time:
Loop 1.464 0.541 1.456 2.188 1.512 5.654
# Iterations 6 6 6 6 5 6
Total 9.445 3.432 0.421 8.984 13.301 0.860 10.190 33.624 1.894

% Asymmetry 0.128 0.128 0.128 0.105 0.105 0.105 0.125 0.125 0.125
2000 𝛼 1.786

(1.034)
0.621
(0.179)

1.850
(1.089)

1.759
(1.236)

1.477
(1.190)

1.900
(1.391)

1.462
(1.227)

1.130
(1.747)

1.701
(1.590)

𝛽0 −0.001
(0.031)

0.010
(0.010)

−0.001
(0.065)

−0.002
(0.065)

−0.001
(0.133)

−0.005
(0.096)

0.002
(0.065)

−0.018
(0.139)

−0.007
(0.119)

𝛽1 0.859
(0.150)

0.975
(0.025)

0.886
(0.125)

0.994
(0.061)

1.176
(0.348)

0.987
(0.057)

0.998
(0.059)

1.056
(0.190)

0.990
(0.054)

Time:
Loop 6.170 4.801 5.842 39.105 5.834 47.706
# Iterations 6 6 5 6 5 6
Total 38.760 30.506 1.885 36.167 227.035 5.528 43.368 282.436 14.560

% Asymmetry 0.100 0.100 0.100 0.101 0.101 0.101 0.123 0.123 0.123

NOTE: Simulations based on 1000 replications. Numbers are mean values and numbers in parentheses are root mean square errors (RMSEs). Computational
times in seconds. True values of the regressions parameters fixed at 𝛽0 = 0 and 𝛽1 = 1.

Appendix B. Empirical application

Table B.1
Descriptive statistics for the variables included in the empirical application on the competitiveness in the U.S. Metropolitan
Statistical Areas.

Mean Std. Dev. Min Q1 Median Q3 Max N

BCI 0.147 0.354 0.000 0.000 0.000 0.000 1.000 4848
AQImin 0.131 0.086 0.000 0.060 0.120 0.190 0.430 4848
AQImax 1.514 0.931 0.380 1.120 1.430 1.710 22.120 4848
% days O3 0.480 0.276 0.000 0.312 0.468 0.682 1.000 4848
% days PM2.5 0.406 0.273 0.000 0.192 0.386 0.584 1.000 4848
% days PM10 0.030 0.101 0.000 0.000 0.000 0.011 1.000 4848
% days CO 0.008 0.048 0.000 0.000 0.000 0.000 0.738 4848
% days SO2 0.052 0.126 0.000 0.000 0.000 0.019 0.962 4848
% days NO2 0.024 0.056 0.000 0.000 0.000 0.019 0.499 4848
% days Above Moderate 0.370 0.213 0.000 0.202 0.344 0.504 0.966 4848
% days Exceptional Events 0.024 0.092 0.000 0.000 0.000 0.000 0.940 4848
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Fig. B.1 Centroids of the U.S. Metropolitan Statistical Areas included in the empirical application.

Table B.2
Spatial lag Probit estimation results for the empirical application on the competitiveness in the U.S. Metropolitan
Statistical Areas.

Dependent variable: BCI

UNRESTRICTED MODEL RESTRICTED MODEL

(iGMMa) (iGMM) (LGMM) (iGMMa) (iGMM) (LGMM)

Intercept 0.046
(0.806)

0.178
(0.932)

−0.423
(1.136)

−0.059
(0.796)

0.194
(0.900)

−0.328
(1.144)

AQImin −2.370∗∗

(1.039)
−2.589∗∗

(1.061)
−3.022∗∗∗

(0.990)
−2.154∗∗

(1.025)
−2.339∗∗

(1.047)
−2.749∗∗∗

(0.989)
AQI2

min 6.630∗∗

(3.354)
8.078∗∗

(3.319)
8.850∗∗∗

(3.261)
6.213∗

(3.336)
7.423∗∗

(3.299)
8.419∗∗

(3.280)
AQImax −0.022

(0.085)
−0.033
(0.090)

0.024
(0.094)

AQI2
max 0.004

(0.005)
0.004
(0.006)

−0.003
(0.008)

% days O3 0.776
(0.589)

0.780
(0.622)

0.674
(0.553)

0.703∗∗∗

(0.247)
0.640∗∗

(0.250)
0.643∗∗∗

(0.236)
% days PM2.5 0.396

(0.586)
0.366
(0.611)

0.349
(0.573)

0.445∗

(0.232)
0.325
(0.231)

0.435∗∗

(0.215)
% days PM10 0.965

(0.717)
0.967
(0.750)

0.884
(0.632)

% days SO2 −0.717
(0.676)

−0.524
(0.698)

−0.917
(0.662)

% days NO2 0.400
(0.942)

0.395
(0.964)

0.626
(0.897)

% days Above Moderate 0.334
(0.352)

0.231
(0.375)

0.421
(0.327)

% days Exceptional Events 0.116
(0.359)

0.241
(0.371)

0.056
(0.373)

Spatial Lag (𝛼) 0.771∗∗∗

(0.051)
0.686∗∗∗

(0.056)
0.954∗∗

(0.375)
0.768∗∗∗

(0.052)
0.711∗∗∗

(0.055)
1.051∗∗∗

(0.388)
Observations 4848 4848 4848 4848 4848 4848
# Neighbors (average) 16 16 16 16 16 16
# Iterations 11 14 – 15 18 –
Total Time (in seconds) 33.999 123.689 7.102 34.928 154.002 6.891
# Instruments 141 141 141 113 113 113
Wald test (overall sig.)
(p-value)

24.155
(0.012)

23.004
(0.018)

30.584
(0.001)

11.123
(0.025)

12.490
(0.014)

15.435
(0.004)

Wald test (excl. restr.)1

(p-value)
–
(−)

–
(−)

–
(−)

12.783
(0.078)

9.999
(0.189)

15.781
(0.027)

Hansen’s J test
(p-value)

85.178
(0.911)

49.565
≈(1.000)

1124.975
≈(0.000)

77.899
(0.638)

44.497
≈(1.000)

1530.180
≈(0.000)

McFadden R2 0.038 0.061 −0.428 0.037 0.058 −0.662
𝜌2(Ŷ,Y) 0.056 0.061 0.033 0.055 0.059 0.003
%(Ŷ = Y) 0.861 0.856 0.679 0.859 0.856 0.559

NOTE: Robust standard errors in parentheses, based on Kelejian and Prucha (2007). Time effects and Mundlak
variables were added. Significance at the 1%, 5% and 10% levels indicated by ∗∗∗, ∗∗ and ∗, respectively. Wald
test for exclusion restrictions. Under the null hypothesis, the coefficients for the variables AQImax, AQI2

max,
% days PM10, % days SO2, % days NO2, % days Above Moderate and % days Exceptional Events are jointly
equal to zero.

101



L. Silveira Santos, I. Proença Regional Science and Urban Economics 76 (2019) 74–102

References

Anselin, L., 2007. Spatial Econometrics. In: Baltagi, B. (Ed.), A Companion to Theoretical
Econometrics. Blackwell Publishing Ltd, pp. 310–330. https://dx.doi.org/10.1002/
9780470996249.ch15.

Arbia, G., 2014. A Primer for Spatial Econometrics: With Applications in R. Springer.
Baltagi, B.H., LeSage, J.P., Pace, R.K., 2016. Spatial econometrics: qualitative and

limited dependent variables. Emerald Group Publishing.
Beron, K.J., Murdoch, J.C., Vijverberg, W.P.M., 2003. Why Cooperate? Public Goods,

Economic Power, and the Montreal Protocol. Rev. Econ. Stat. 85 (2), 286–297.
https://dx.doi.org/10.1162/003465303765299819.

Beron, K.J., Vijverberg, W.P.M., 2004. Probit in a Spatial Context: A Monte Carlo
Analysis. In: Luc Anselin, R.J.G.M.F., Rey, S.J. (Eds.), Advances in Spatial
Econometrics: Methodology, Tools and Applications. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 169–195. https://dx.doi.org/10.1007/978-3-662-05617-2_8.

Bhat, C.R., 2011. The maximum approximate composite marginal likelihood (MACML)
estimation of multinomial probit-based unordered response choice models. Transp.
Res. Part B Methodol. 45 (7), 923–939. https://dx.doi.org/10.1016/j.trb.2011.04.
005.

Billé, A.G., 2013. Computational issues in the estimation of the spatial probit model: A
comparison of various estimators. Rev. Reg. Stud. 43 (2, 3), 131–154. https://
journal.srsa.org/ojs/index.php/RRS/article/view/43.23.3.

Calabrese, R., Elkink, J.A., 2014. Estimators of binary spatial autoregressive models: A
Monte Carlo study. J. Reg. Sci. 54 (4), 664–687. https://dx.doi.org/10.1111/jors.
12116.

Case, A., 1992. Neighborhood influence and technological change. Reg. Sci. Urban Econ.
22 (3), 491–508. https://dx.doi.org/10.1016/0166-0462(92)90041-X.

Cressie, N.A.C., 2015. Statistics for Spatial Data. Wiley, New York.
Dudensing, R.M., Barkley, D.L., 2010. Competitiveness of Southern Metropolitan Areas:

The Role of New Economy Policies. Rev. Reg. Stud. 40 (2), 197–226. http://journal.
srsa.org/ojs/index.php/RRS/article/view/208.

Elhorst, J.P., 2014. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels.
Springer.

Fagerberg, J., 1988. International Competitiveness. Econ. J. 98 (391), 355–374. http://
www.jstor.org/stable/2233372.

Fagerberg, J., 1996. Technology and competitiveness. Oxf. Rev. Econ. Pol. 12 (3),
39–51. https://doi.org/10.1093/oxrep/12.3.39.

Fiva, J.H., Rattsø, J., 2007. Local choice of property taxation: evidence from Norway.
Publ. Choice. 132 (3), 457–470. https://dx.doi.org/10.1007/s11127-007-9171-z.

Gourieroux, C., Monfort, A., Renault, E., Trognon, A., 1987. Generalised residuals. J.
Econom. 34 (1), 5–32. https://dx.doi.org/10.1016/0304-4076(87)90065-0.

Griffith, D.A., 2000. Eigenfunction properties and approximations of selected incidence
matrices employed in spatial analyses. Lin. Algebra Appl. 321 (1), 95–112. https://
dx.doi.org/10.1016/S0024-3795(00)00031-8.

Grossman, G.M., Krueger, A.B., 1991. Environmental Impacts of a North American Free
Trade Agreement. Working Paper 3914. National Bureau of Economic Research,
http://www.nber.org/papers/w3914.

Härdle, W., Müller, M., Sperlich, S., Werwatz, A., 2004. Nonparametric and
semiparametric models. Springer Science & Business Media.

Holloway, G., Lapar, M.L.A., 2007. How Big is Your Neighbourhood? Spatial
Implications of Market Participation Among Filipino Smallholders. J. Agric. Econ.
58 (1), 37–60. https://dx.doi.org/10.1111/j.1477-9552.2007.00077.x.

Holloway, G., Shankar, B., Rahman, S., 2002. Bayesian spatial probit estimation: a
primer and an application to HYV rice adoption. Agric. Econ. 27 (3), 383–402.
https://dx.doi.org/10.1016/S0169-5150(02)00070-1.

Horowitz, J.L., 2009. Semiparametric and nonparametric methods in econometrics.
Springer.

Kelejian, H.H., Prucha, I.R., 2007. HAC estimation in a spatial framework. J. Econom.
140 (1), 131–154. https://dx.doi.org/10.1016/j.jeconom.2006.09.005.

Kelejian, H.H., Robinson, D.P., 1995. Spatial Correlation: A Suggested Alternative to the
Autoregressive Model. In: Anselin, L., Florax, R.J.G.M. (Eds.), New Directions in
Spatial Econometrics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 75–95.
https://dx.doi.org/10.1007/978-3-642-79877-1_3.

Klier, T., McMillen, D.P., 2008. Clustering of Auto Supplier Plants in the United States. J.
Bus. Econ. Stat. 26 (4), 460–471. https://dx.doi.org/10.1198/
073500107000000188.

Lahiri, S.N., 1996. On Inconsistency of Estimators Based on Spatial Data under Infill
Asymptotics. Sankhya: Ind. J. Statist. Ser. A. 58 (3), 403–417. http://www.jstor.org/
stable/25051119.

Lee, L.-F., 2004. Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for
Spatial Autoregressive Models. Econometrica. 72 (6), 1899–1925. https://dx.doi.
org/10.1111/j.1468-0262.2004.00558.x.

LeSage, J.P., 2000. Bayesian Estimation of Limited Dependent Variable Spatial
Autoregressive Models. Geogr. Anal. 32 (1), 19–35, https://doi.org/10.1111/j.1538-
4632.2000.tb00413.x.

LeSage, J.P., Kelley Pace, R., Lam, N., Campanella, R., Liu, X., 2011. New Orleans
business recovery in the aftermath of Hurricane Katrina. J. Roy. Stat. Soc. 174 (4),
1007–1027. https://dx.doi.org/10.1111/j.1467-985X.2011.00712.x.

LeSage, J.P., Pace, R., 2009. Introduction to Spatial Econometrics. Statistics: A Series of
Textbooks and Monographs. CRC Press.

Martinetti, D., Geniaux, G., 2017. Approximate likelihood estimation of spatial probit
models. Reg. Sci. Urban Econ. 64, 30–45. https://dx.doi.org/10.1016/j.
regsciurbeco.2017.02.002.

McMillen, D.P., 1992. Probit with spatial autocorrelation. J. Reg. Sci. 32 (3), 335–348.
https://dx.doi.org/10.1111/j.1467-9787.1992.tb00190.x.

McMillen, D.P., 2013. McSpatial: Nonparametric spatial data analysis. R package version
2.

Millimet, D.L., List, J.A., Stengos, T., 2003. The Environmental Kuznets Curve: Real
Progress or Misspecified Models? Rev. Econ. Stat. 85 (4), 1038–1047. https://dx.doi.
org/10.1162/003465303772815916.

Miyamoto, K., Vichiensan, V., Shimomura, N., Páez, A., 2004. Discrete Choice Model
with Structuralized Spatial Effects for Location Analysis. Transport. Res. Rec.: J.
Transport. Res. Board. 1898, 183–190. https://dx.doi.org/10.3141/1898-22.

Mundlak, Y., 1978. On the pooling of time series and cross section data. Econometrica.
69–85. https://dx.doi.org/10.2307/1913646.

Murdoch, J.C., Sandler, T., Vijverberg, W.P., 2003. The participation decision versus the
level of participation in an environmental treaty: a spatial probit analysis. J. Publ.
Econ. 87 (2), 337–362. https://dx.doi.org/10.1016/S0047-2727(01)00152-9.

Ord, K., 1975. Estimation methods for models of spatial interaction. J. Am. Stat. Assoc.
70 (349), 120–126. https://dx.doi.org/10.2307/2285387.

Pace, R.K., Barry, R., 1997a. Quick computation of spatial autoregressive estimators.
Geogr. Anal. 29 (3), 232–247. https://dx.doi.org/10.1111/j.1538-4632.1997.
tb00959.x.

Pace, R.K., Barry, R., 1997b. Sparse spatial autoregressions. Stat. Probab. Lett. 33 (3),
291–297. https://dx.doi.org/10.1016/S0167-7152(96)00140-X.

Pace, R.K., LeSage, J.P., 2004. Chebyshev approximation of log-determinants of spatial
weight matrices. Comput. Stat. Data Anal. 45 (2), 179–196. https://dx.doi.org/10.
1016/S0167-9473(02)00321-3.

Pace, R.K., LeSage, J.P., 2016. Fast Simulated Maximum Likelihood Estimation of the
Spatial Probit Model Capable of Handling Large Samples. In: Fomby, T.B., Hill, R.C.,
Jeliazkov, I., Escanciano, J.C., Hillebrand, E. (Eds.), Spatial Econometrics:
Qualitative and Limited Dependent Variables, pp. 3–34. https://dx.doi.org/10.
1108/S0731-905320160000037008.

Panayotou, T., 1993. Empirical tests and policy analysis of environmental degradation at
different stages of economic development. World Employment Programme research
working paper 292778, Geneva.

Pinkse, J., Slade, M.E., 1998. Contracting in space: An application of spatial statistics to
discrete-choice models. J. Econom. 85 (1), 125–154. https://dx.doi.org/10.1016/
S0304-4076(97)00097-3.

Porter, M.E., 1990. The Competitive Advantage of Nations. Harv. Bus. Rev. 68 (2),
73–93.

Porter, M.E., Gee, D.S., Pope, G.J., 2015. America’s Unconventional Energy Opportunity:
A win-win plan for the economy, the environment, and a lower-carbon,
cleaner-energy future. Tech. rep.. Harvard Business School and The Boston
Consulting Group.

Rice, P., Venables, A.J., Patacchini, E., 2006. Spatial determinants of productivity:
Analysis for the regions of Great Britain. Reg. Sci. Urban Econ. 36 (6), 727–752.
https://dx.doi.org/10.1016/j.regsciurbeco.2006.03.006.

Rupasingha, A., Goetz, S.J., Debertin, D.L., Pagoulatos, A., 2004. The environmental
Kuznets curve for US counties: A spatial econometric analysis with extensions. Pap.
Reg. Sci. 83 (2), 407–424. https://dx.doi.org/10.1111/j.1435-5597.2004.tb01915.x.

Schwab, K., Sala-i-Martin, X., 2010. The Global Competitiveness Report 2010-2011.
World Economic Forum, Geneva.

Shafik, N., Bandyopadhyay, S., 1992. Economic growth and environmental quality:time
series and cross-country evidence. World development report WPS 904 World Bank,
http://documents.worldbank.org/curated/en/833431468739515725/Economic-
growth-and-environmental-quality-time-series-and-cross-country-evidence.

Smirnov, O.A., 2005. Computation of the information matrix for models with spatial
interaction on a lattice. J. Comput. Graph Stat. 14 (4), 910–927. https://dx.doi.org/
10.1198/106186005X78585.

Smirnov, O.A., 2010. Modeling spatial discrete choice. Reg. Sci. Urban Econ. 40 (5),
292–298. https://dx.doi.org/10.1016/j.regsciurbeco.2009.09.004.

Smith, T.E., LeSage, J.P., 2004. A Bayesian probit model with spatial dependencies. In:
Fomby, T.B., Hill, R.C., Jeliazkov, I., Escanciano, J.C., Hillebrand, E. (Eds.), Spatial
and Spatiotemporal Econometrics, pp. 127–160. https://dx.doi.org/10.1016/S0731-
9053(04)18004-3.

Wang, H., Iglesias, E.M., Wooldridge, J.M., 2013. Partial maximum likelihood
estimation of spatial probit models. J. Econom. 172 (1), 77–89. https://dx.doi.org/
10.1016/j.jeconom.2012.08.005.

Wollni, M., Andersson, C., 2014. Spatial patterns of organic agriculture adoption:
Evidence from Honduras. Ecol. Econ. 97, 120–128. https://dx.doi.org/10.1016/j.
ecolecon.2013.11.010.

102

https://dx.doi.org/10.1002/9780470996249.ch15
https://dx.doi.org/10.1002/9780470996249.ch15
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref2
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref3
https://dx.doi.org/10.1162/003465303765299819
https://dx.doi.org/10.1007/978-3-662-05617-2_8
https://dx.doi.org/10.1016/j.trb.2011.04.005
https://dx.doi.org/10.1016/j.trb.2011.04.005
https://journal.srsa.org/ojs/index.php/RRS/article/view/43.23.3
https://journal.srsa.org/ojs/index.php/RRS/article/view/43.23.3
https://dx.doi.org/10.1111/jors.12116
https://dx.doi.org/10.1111/jors.12116
https://dx.doi.org/10.1016/0166-0462(92)90041-X
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref10
http://journal.srsa.org/ojs/index.php/RRS/article/view/208
http://journal.srsa.org/ojs/index.php/RRS/article/view/208
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref12
http://www.jstor.org/stable/2233372
http://www.jstor.org/stable/2233372
https://doi.org/10.1093/oxrep/12.3.39
https://dx.doi.org/10.1007/s11127-007-9171-z
https://dx.doi.org/10.1016/0304-4076(87)90065-0
https://dx.doi.org/10.1016/S0024-3795(00)00031-8
https://dx.doi.org/10.1016/S0024-3795(00)00031-8
http://www.nber.org/papers/w3914
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref19
https://dx.doi.org/10.1111/j.1477-9552.2007.00077.x
https://dx.doi.org/10.1016/S0169-5150(02)00070-1
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref22
https://dx.doi.org/10.1016/j.jeconom.2006.09.005
https://dx.doi.org/10.1007/978-3-642-79877-1_3
https://dx.doi.org/10.1198/073500107000000188
https://dx.doi.org/10.1198/073500107000000188
http://www.jstor.org/stable/25051119
http://www.jstor.org/stable/25051119
https://dx.doi.org/10.1111/j.1468-0262.2004.00558.x
https://dx.doi.org/10.1111/j.1468-0262.2004.00558.x
https://doi.org/10.1111/j.1538-4632.2000.tb00413.x
https://doi.org/10.1111/j.1538-4632.2000.tb00413.x
https://dx.doi.org/10.1111/j.1467-985X.2011.00712.x
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref30
https://dx.doi.org/10.1016/j.regsciurbeco.2017.02.002
https://dx.doi.org/10.1016/j.regsciurbeco.2017.02.002
https://dx.doi.org/10.1111/j.1467-9787.1992.tb00190.x
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref33
https://dx.doi.org/10.1162/003465303772815916
https://dx.doi.org/10.1162/003465303772815916
https://dx.doi.org/10.3141/1898-22
https://dx.doi.org/10.2307/1913646
https://dx.doi.org/10.1016/S0047-2727(01)00152-9
https://dx.doi.org/10.2307/2285387
https://dx.doi.org/10.1111/j.1538-4632.1997.tb00959.x
https://dx.doi.org/10.1111/j.1538-4632.1997.tb00959.x
https://dx.doi.org/10.1016/S0167-7152(96)00140-X
https://dx.doi.org/10.1016/S0167-9473(02)00321-3
https://dx.doi.org/10.1016/S0167-9473(02)00321-3
https://dx.doi.org/10.1108/S0731-905320160000037008
https://dx.doi.org/10.1108/S0731-905320160000037008
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref43
https://dx.doi.org/10.1016/S0304-4076(97)00097-3
https://dx.doi.org/10.1016/S0304-4076(97)00097-3
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref45
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref46
https://dx.doi.org/10.1016/j.regsciurbeco.2006.03.006
https://dx.doi.org/10.1111/j.1435-5597.2004.tb01915.x
http://refhub.elsevier.com/S0166-0462(17)30399-X/sref49
http://documents.worldbank.org/curated/en/833431468739515725/Economic-growth-and-environmental-quality-time-series-and-cross-country-evidence
http://documents.worldbank.org/curated/en/833431468739515725/Economic-growth-and-environmental-quality-time-series-and-cross-country-evidence
https://dx.doi.org/10.1198/106186005X78585
https://dx.doi.org/10.1198/106186005X78585
https://dx.doi.org/10.1016/j.regsciurbeco.2009.09.004
https://dx.doi.org/10.1016/S0731-9053(04)18004-3
https://dx.doi.org/10.1016/S0731-9053(04)18004-3
https://dx.doi.org/10.1016/j.jeconom.2012.08.005
https://dx.doi.org/10.1016/j.jeconom.2012.08.005
https://dx.doi.org/10.1016/j.ecolecon.2013.11.010
https://dx.doi.org/10.1016/j.ecolecon.2013.11.010

	The inversion of the spatial lag operator in binary choice models: Fast computation and a closed formula approximation
	1. Introduction
	2. Spatially lagged latent dependent variable model for binary outcomes
	3. Approximation methods for the spatial lag operator inverse
	3.1. Assumptions
	3.2. Explicit methods
	3.3. Implicit methods

	4. The new explicit approximation method based on known matrices
	Case 1: symmetric ?
	Case 2: non-symmetric ?
	5. GMM estimation with approximated gradients
	6. Monte Carlo simulations
	6.1. Simulation design
	6.2. Results

	7. Empirical application
	8. Conclusions
	Simulation results
	References


